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Abstract

Due to the high price and heavy energy consumption of GPUs, deploying deep
models on IoT devices such as microcontrollers makes significant contributions
for ecological AI. Conventional methods successfully enable convolutional neu-
ral network inference of high resolution images on microcontrollers, while the
framework for vision transformers that achieve the state-of-the-art performance
in many vision applications still remains unexplored. In this paper, we propose a
hardware-algorithm co-optimizations method called MCUFormer to deploy vision
transformers on microcontrollers with extremely limited memory, where we jointly
design transformer architecture and construct the inference operator library to fit
the memory resource constraint. More specifically, we generalize the one-shot
network architecture search (NAS) to discover the optimal architecture with highest
task performance given the memory budget from the microcontrollers, where we
enlarge the existing search space of vision transformers by considering the low-rank
decomposition dimensions and patch resolution for memory reduction. For the
construction of the inference operator library of vision transformers, we schedule
the memory buffer during inference through operator integration, patch embedding
decomposition, and token overwriting, allowing the memory buffer to be fully
utilized to adapt to the forward pass of the vision transformer. Experimental results
demonstrate that our MCUFormer achieves 73.62% top-1 accuracy on ImageNet
for image classification with 320KB memory on STM32F746 microcontroller.
Code is available at https://github.com/liangyn22/MCUFormer.

1 Introduction

Deep neural network deployment for realistic applications usually requires high-performance com-
puting devices such as GPUs and TPUs [16, 12]. Due to the high price and energy consumption of
these devices, the unacceptable deployment expenses strictly restrict the utilization of deep models
in a widely variety of tasks[17, 39], especially in the scenarios without sufficient battery support.
Deploying deep neural networks on cheap IoT devices with low energy consumption becomes a
practical solution in many industrial applications such as maritime detection [34, 24], agricultural
picking [31, 43] and robot navigation [2, 29].

Recently, the hardware-algorithm co-design framework [20, 19, 30] is widely studied to deploy deep
convolutional networks with high storage and computational complexity to microcontroller units
(MCU) with extremely limited memory (SRAM) and storage (flash). By searching the optimal
architectures and arranging the memory buffer according to the overall network topology, deep
convolutional neural networks with large numbers of parameters and high FLOPs are successfully
deployed on MCUs with comparable accuracy as inferencing on high-performance computing devices.
Vision transformers [22, 33] have surpassed convolutional neural networks in a wide variety of tasks,
which can further push the limit of intelligent visual perception in resource-constrained devices.
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However, the memory footprint of vision transformers significantly exceeds the budget of MCUs due
to the matrix multiplication with large sizes, and the lack of operator library for transformer inference
on MCUs also obscure the practical deployment.

In this paper, we present a hardware-algorithm co-optimizations framework to deploy vision trans-
formers on MCUs with extremely limited memory budget. We jointly design transformer architectures
that achieve the highest task performance within the memory resource constraint and construct an
operator library for transformer inference with efficient memory scheduling. More specifically, we
leverage the one-shot network architecture search method to discover the optimal architecture, where
we enlarge the search space by considering low-rank decomposition ratios and token numbers that
significantly influence the peak memory during the forward pass. To efficiently acquire effective
supernets in the huge search space, we learn the supernet in the fixed search space consisting of
given low-rank decomposition ratios and token numbers, and evolve the search space of supernet
optimization by predicting the correlation between the task performance and the search space. To
construct the operator library within the memory budget, we approximate full-precision operators
such as softmax and GeLU layers with integer arithmetics. Moreover, we decompose the patch
embedding layers with large convolution kernels to multiple patchification steps with small receptive
fields, and overwrite the input token features in the matrix multiplication during the inference for
further memory reduction. Extensive experimental results show our method can achieve 73.62%
top-1 accuracy on the large-scale image classification dataset ImageNet [11] with the 320KB SRAM
STM32F746 microcontrollers, and significantly outperforms the CNN based state-of-the-art networks
on MCUs by 5.4%. Our contributions can be summarized as follows:

• To the best of our knowledge, we propose the first hardware-algorithm co-optimizations framework
that successfully deploys vision transformers on MCUs with the competitive performance in
challenging computer vision tasks

• We present the search space evolution framework for effective architecture search of vision trans-
formers within the memory limits, and construct a operator library with efficient memory scheduling
to enable practical deployment.

• We conduct extensive empirical studies to show the feasibility of deploying vision transformers on
MCUs with extremely limited memory.

2 Related Work

Efficient vision transformers: Vision transformers mine the global dependencies via self-attention
that outperform convolutional neural networks on a wide variety of tasks such as image classification
[22, 37], object detection [5, 40] and instance segmentation [35, 36]. To reduce the computational
and storage complexity, efficient architecture design, sparse attention and parameter quantization are
presented for efficiency enhancement. For efficient architecture design, Chen et al. [6] shared the
self-attention in consecutive layers to avoid redundant calculation in dependency discovering, and
Fan et al. [14] fused multiscale intermediate features to reduce the resolution of top layers. For sparse
attention, Rao et al. [26] dynamically pruned uninformative tokens during inference according to the
computation budget and sample features. For parameter quantization, Liu et al. [23] extended the
post-training quantization framework by mimicking the self-attention rank in the full-precision model.
However, existing methods usually focus on reducing the computational complexity measured by
FLOPs and the storage cost evaluated by the number of parameters, and ignore the memory limit in
inference that is the main resource bottleneck of MCUs.

Network architecture search: Network architecture search aims to discover the topology including
operators and connections to achieve the optimal trade-off between the accuracy and complexity,
which can be divided into two categories according to the search algorithms. Non-differentiable
methods [3, 7, 44] utilize reinforcement learning or evolutionary algorithms to update the selection
regarding the defined reward or fitness, where the candidates can be updated from scratch or from a
pre-trained supernet. Differentiable methods [21, 41, 42] construct a large supernet that contains all
possible choices represented by different parallel branches. By optimizing the importance weights
of different choices, the operators and connections with the highest importance weight are selected
to form the final architecture. In this paper, we focus on learning the supernet in the optimal search
space defined by the low-rank decomposition ratio and token numbers, which influence the inference
memory significantly.
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Figure 1: The pipeline of the network architecture search with memory constraint. We search the low-
rank decomposition ratio and the token numbers for search space evolution, where the evolutionary
process is decided according to regressed tendency between the defined score and the search space
factors. With the optimal search space, the architecture with the highest performance within the
memory limit is acquired from the trained supernet.

Deep learning on microcontrollers: Due to the low price and energy consumption, employing
microcontrollers for deep learning inference and training has been comprehensively researched in
recent years. Existing frameworks contain TensorFlow Lite Micro [1], CMSIS-NN [18], CMix-NN
[4], MicroTVM [10] and TinyEngine [20]. Nevertheless, these compiling libraries are designed for
convolutional neural networks and lack operators of vision transformers such as LayerNorm and
GeLU. Meanwhile, the layer-wise optimization of memory footprint cannot fully utilize the SRAM
budget of the microcontrollers and fails to deploy vision transformers with high task performance.
For the memory-efficient network architecture design, Lin et al. reduced the image resolution and the
width multiplier for peak memory reduction. Sun et al. leveraged the mixed-precision quantization
that assigned the optimal bitwidth for each layer to achieve the optimal accuracy-memory trade-off,
and Saha et al. [27] decreased the resolution of the activation after the proposed RNNPool layer.
However, the memory reduction techniques are designed for convolutional neural networks, which
are not feasible for vision transformers with different operators.

3 Approach

In this section, we detail the hardware-algorithm co-optimizations framework to deploy vision
transformers on microcontrollers. We first introduce the network architecture search of vision
transformers with limited memory constraint, and demonstrate the operator library construction for
vision transformer inference on microcontrollers.

3.1 Network Architecture Search with Memory Constraint

Conventional architecture search methods usually consider the computational complexity (FLOPs)
and the storage cost (the number of parameters), while the peak memory obscures the deployment of
vision transformers on microcontrollers due to the extremely limited SRAM. We extend the one-shot
NAS to search the optimal architecture, where we first learn some of supernets randomly which
containing all possible topology choices and employ evolutionary algorithms to seek for the optimal
supernet given the resource budget. Figure 1 demonstrates the pipeline of the network architecture
search with memory constraint. To fully leverage the achievements of vision transformer NAS
methods, we build the search space of sub-networks on the basis of AutoFormer [8] which searches
the embedding dimension, QKV dimension, MLP ratio, head number and depth number with trained
hypernetworks. The search space of supernet is defined by the the low-rank decomposition ratio and
token numbers that can significantly influence the memory footprint. The token number impacts
the size of intermediate features during inference and can be modified by varying the receptive
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field in the patch embedding layers. Different from the multiply-accumulate (MAC) operations of
convolutional neural networks, the matrix multiplication in large sizes causes heavy memory burden.
To address this, we generalize low-rank decomposition for the multi-layer perceptron (MLP) layers
in the following form:

MLP (x) = UrV
T
r x+ b, (1)

where x ∈ Rn×d means the input features with n tokens and d elements of each token. Ur ∈ Rd×r

and Vr ∈ Rd×r are two low-rank matrices approximating the original weights in the MLP layer,
and b means the bias term. Since the dimension of low-rank matrices affects the trade-off between
memory footprint and task performance, we are required to find the optimal low-rank decomposition
ratio in our search space selection.

Directly integrating the token numbers and the low-rank decomposition ratio into the original search
space in AutoFormer causes convergence difficulties of supernets because of the large discrepancy
among optimal architectures of different low-rank decomposition ratios. Therefore, we first optimize
the search space of hypernetworks that is composed of the token numbers and the low-rank decompo-
sition ratio, and then performs architecture search in the updated search space of hypernetworks. The
above two steps are iteratively implemented until convergence or achieving the maximum search cost.
Enumerating all search space for architecture search is not feasible due to the extremely high training
cost for a single supernet in the given search space. Inspired by the observation in [9] that there is a
strong correlation between the task errors and the continuous choices, we evolve the search space
by considering the relation among the performance, memory footprint and the search space factors
including token number and the low-rank decomposition ratio. The score function S to evaluate the
optimality of different hypernetwork search space is defined as follows:

S(A,R) = A+ ηR, (2)

where A is the accuracy of the hypernetwork in the search space and η is a hyperparameter. R is the
ratio of sub-networks whose memory footprint is within the SRAM limit. Meanwhile, enumerating all
sub-networks in the supernet to acquire the average memory is prohibitive due to the extremely large
numbers of candidates in the subspace, and we randomly sample N sub-networks to approximately
evaluate the value of R for the given hypernetwork. The linear fitting functions are employed to
estimate the tendency between the score and the factors of the search space as S = wTx+ S0 with
the intercept S0, where x = [x1, x2] consists of low-rank decomposition ratio and token numbers.
The search space is updated with the following rules:

x
(t+1)
i = x

(t)
i −

[
wi

hi

]
·∆i, i = 1, 2, (3)

where x
(t)
i means the ith element in x at the tth step and wi represents the ith element in w. The

optimization step ∆i is set to the interval of adjacent factor values in our method, and the update
threshold hi are hyperparameters for the optimization. [x] demonstrates the largest integer smaller
than x.

Training the hypernetwork in the evolving search space until convergence requires unacceptable
optimization cost, and we fit the correlation between task performance and the continuous choices of
search space factors in the training process. For each evolved search space, we train the supernet for
t epochs from the resume points or scratch if pre-trained model does not exist. To fairly discover
the tendency between the task performance and the continuous choices, we fit the correlation weight
matrix w with the data points in the same total training epochs. Since the linear fitting function only
holds in a small local region for a given search space, we utilize the piecewise linear fitting function
that only considers top-k nearest neighbors for the search space factor x. The data point sampling
strategy for tendency fitting can be represented as follows:

Φ(x) = {z|z ∈ Nk(x), E(z) = E(x)}, (4)

where Φ(x) means the set of data points consisting of task accuracy with memory and continuous
choices of low-rank decomposition ratio and token numbers for fitting the linear function in the
evolving search space x. The neighborhood for x with k nearest neighbors is denoted as Nk(x), and
the total training epochs for the supernet in the search space x are represented by E(x). When the
neighborhood of the given search space x is empty, we construct the neighborhood by considering
the top-k nearest neighbors whose total training epochs are E(x) − t. We train hypernetworks in
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Figure 2: (a) The comparison between the conventional patch embedding operation and our decom-
position. We decompose the convolution operator with a large receptive field into multiple operators
with small receptive fields and utilize a temporary buffer to record the intermediate accumulations.
(b) Demonstration of token overwriting. The buffer for input features is re-used by the output features,
and the peak memory is reduced significantly.

these search space for t epochs for accuracy update to fairly estimate the correlation matrix w for the
given search space x.

The selected supernet in the optimal search space is used for subsequent training until full convergence
and is employed for the network architecture search of vision transformers. In this process, the
evolutionary algorithm is applied with the aim of maximizing accuracy while adhering to the memory
constraint.

3.2 Operator Library Construction for Vision Transformers

Deploying the vision transformer on microcontrollers for inference requires the operator library
to transform the model into executable functions. Existing operator libraries for deep learning
are comparable with convolutional neural networks, while fail to implement operations in vision
transformers such as the GeLU activation function and the layer normalization. Meanwhile, the
inference efficiency of the library cannot fully utilize the memory budget of microcontrollers to
achieve higher task performance with larger vision transformer models. Despite of the efficient
memory scheduling techniques that are general to all network architectures in [20], we present the
following memory utilization enhancement techniques to enable deployment of vision transformers
on microcontrollers.

Patch embedding decomposition: Images are patchified by the patch embedding layer in vision
transformers for inference. The input samples are transformed into patches by convolution operations,
where both the kernel size and stride are both equal to the patch size. Since the kernel size in the
patch embedding layer (larger than 16 × 16) is much larger than common convolutional neural
networks, most memory cost of the patch embedding layer results from the filter weights instead
of the input and output activation. In order to effectively address this challenge, we decompose
the patch embedding layer by transforming the convolution with large receptive field to multiple
convolution operations with a small receptive field. To add the results from multiple convolution
operations, we leverage a small memory buffer to record the intermediate value of accumulation,
effectively reducing the peak memory usage during image patchification. Figure 2a demonstrates the
comparison between the original patch embedding operation and that with our decomposition. As
decomposing the patch embedding layer into excess convolutional operators with small receptive
fields can obviously increase the inference latency due to the multiple forward passes, we select the
receptive field of the decomposed patch embedding layer as 4× 4 to achieve the satisfying trade-off
between the memory footprint and the inference latency.

Operator integration: Quantizing network parameters and substituting MAC operations with integer
arithmetics have been proven beneficial in reducing the memory of convolutional neural networks
without causing performance degradation. However, conventional operator library with quantized
operators is not feasible for vision transformer inference because of the specific operators including
the GeLU activation and layer normalization. Since GeLU requires the cumulative distribution
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function (CDF) of Gaussian distribution, we approximate the activation function with quantization by
multiplication and softmax function which can both implemented with int8 arithmetics. Similarly,
the square root operators in the layer normalization is not supported by int8 arithmetics in operator
library. We construct surrogate equations with fixed-point iterative methods to calculate the output
of the square root operators. Considering the inference latency of layer normalization operator, we
only iterate the surrogate equation for 3 times with balance between the inference latency and the
prediction precision. We detail the pseudo algorithm of integer-only square root operation in the
supplementary material.

Token overwriting: The matrix multiplication in vision transformer inference that results in high
memory consumption impose element interaction only within tokens, and the interaction among
tokens is enabled in self-attention computation whose memory cost is far less than the SRAM limit.
Therefore, we can overwrite the intermediate features during inference of fully-connected layers
because the input activation of each token will no longer be used after acquiring the output features
of the corresponding token. Figure 2b illustrates the memory scheduling of matrix multiplication in
existing inference operator libraries and our token overwriting techniques, where our method writes
the output of matrix multiplication for each token in the same memory space as the input activation.
Since the peak memory usage occurs in the matrix multiplications, we assign the maximum memory
size M for vision transformer inference based on the network architecture, according to the following
criteria:

M = sup
l

hl
fw

l
f +max(hl

iw
l
i, h

l
ow

l
o), (5)

where hl
f , hl

i and hl
o represent the height of weights, input features, output features in the lth fully-

connected layers, and wl
f , wl

i and wl
o demonstrate the width of the above tensors. Since the memory

consumed by the input activation can be overwritten by the output features, we only assign the
memory buffer with the same size as the larger one between input and output tensors.

4 Experiments

In this section, we first introduce our hardware configuration, dataset and the implementation details
of our hardware-algorithm co-optimizations framework, and then we conduct thorough performance
analysis including the task performance and the memory consumption with respect to the presented
techniques in network architecture search and operator library construction. Finally, we compare
the performance in accuracy and efficiency with existing network architecture search methods and
operator libraries for deep model deployment on microcontrollers.

4.1 Setups

Hardware configuration: We deploy the vision transformers with our hardware-algorithm co-
optimizations framework in different microcontrollers with various resource constraint including
STM32F427 (Cortex-M4/256KB memory/1MB flash), STM32F746 (Cortex-M7/320KB mem-
ory/1MB flash) and STM32H743 (Cortex-M7/512KB memory/2MB flash). In the performance
analysis, we evaluate our framework on STM32F746 to acquire the accuracy and memory.

Dataset: We conduct the experiments on ImageNet for image classification, which contains 1.2
million training images and 50k validation images from 1000 classes. All images are scaled and
biased into the range [-1,1] for normalization. For the training process, we resize the images with the
shorter side as 256 and randomly crop a 240×240 region. For inference, we utilize the central crop
with the size of 240×240.

Implementation details: For the network architecture search of vision transformers, our choices for
the search space consisting of low-rank decomposition ratio r and the token size c can be selected
from r ∈ [0.4 : 0.05 : 0.95] and c ∈ {16, 20, 24, 28, 32}. The supernet design and the evolutionary
search in the learned hypernetwork keep the same with those in [8] to fully leverage the potential
in architecture search with high degrees of freedom. During the search space evolution, we only
select 5 nearest neighbors with the same total training epochs to fit the piecewise linear function for
acquiring the slope. For each time of evolving, the supernet in the selected search space is trained for
30 epochs from the resumed points if existed or from scratch. If the neighborhood set for learning
the tendency function is empty, we select the top-5 nearest neighbors whose training epochs are 30
less than the given hypernetwork. Then we train hypernetworks in these search space to acquire the
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Table 1: Comparison of flash, memory and top-1
accuracy variation across different search space
selection method.

Search Space Flash Memory Top-1
Random 1.03MB 332kB 65.2%
Maximal 1.11MB 271kB 69.2%

Composition 0.96MB 218kB 68.6%
Ours 0.89MB 218kB 71.1%

Table 2: The effects of different neighborhood
sizes in tendency fitting, where we report the
inference efficiency and the top-1 accuracy.

Neighborhood Flash Memory Top-1
2 0.79MB 207kB 65.4%
3 0.84MB 231kB 68.2%
5 0.89MB 218kB 71.1%
8 0.89MB 218kB 71.1%

Figure 3: The peak memory reduction is achieved through the operator library with memory schedul-
ing techniques, including patch embedding decomposition, Operator integration, and token overwrit-
ing. The peak memory of the final model adheres to the SRAM constraint, which is 256kB.

accuracy for tendency fitting. The initialized data points for tendency fitting are randomly sampled
continuous choices. For operator library construction, we utilize int8 quantization for all tensors in
the vision transformer during inference. The filter size of the decomposed patch embedding layer is
set to 4× 4 with multiple forward passes to reduce the peak memory, and we iterate the surrogate
assignment from the fixed-point iterative methods for 4 times to calculate the square root in the layer
normalization operators. The hyperparameter assignment and approximation method is listed in the
supplementary material.

4.2 Performance Analysis

Figure 4: Visualization of search space
evolution.

Effects of search space evolution: Low-rank decompo-
sition ratio and token number influence the memory sig-
nificantly for vision transformer deployment. In order to
discover the optimal search space with satisfying trade-
off between task performance and memory, we evolve the
search space efficiently according to the estimated tendency.
We compare our search space evolution method with other
selection criteria including randomly sampled search space,
the maximal search space and composing the search space
selection into the supernet learning. Table 1 shows the top-
1 accuracy, the memory footprint and the flash of different
methods, where our approach outperforms others in both
the accuracy and efficiency. Randomly selecting the search
space fails to discover the optimal trade-off between the
task performance and the efficiency of storage and memory,
while choosing the search space with the highest complex-
ity underperforms the evolution methods because of the
low ratio of sub-networks within the memory limit. Di-
rectly composing the search space selection in supernet training amplifies the search complexity by
15-16 orders of magnitude, and the search deficiency prevents the acquisition of the optimal network
architectures.

Effects of memory scheduling in the operator library: To enforce the vision transformers to
be executable on microcontrollers, we construct an operator library to include the lack functions
required by transformers. Moreover, we also reschedule the memory during inference to fully utilize
the memory constraints of microcontrollers through patch embedding decomposition, Operator
integration and token overwriting. Figure 3 illustrates the comparison of peak memory for the
operator library with different memory scheduling techniques. Operator integration makes the most
significant contribution to memory reduction (23.8%) because the memory to represent the int8 tensor
only costs 25% of that for a float one. Patch embedding decomposition is necessary because the large
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convolutional kernels requires large memory space for the MAC operation in convolution. Token
overwriting also decreases the memory cost by reusing the buffer for each step of multiplication, since
the memory for both input and output can be replaced by that only represents the larger one of them.
In conclusion, integrating all above techniques into the operator library reduces the memory cost by
9% and enables deployment of large-scale vision transformers on microcontrollers with satisfying
task performance.

Influence of tendency fitting: The search space evolves according to the fitted tendency between
the continuous choices and the task performance and memory, and effective tendency estimation
is important to acquiring the optimal network architectures. Considering both the simplification
and the fitting precision, we leverage the piecewise linear function to fit the tendency with the
neighboring data points near the given search space. Large neighborhoods are more robust to outliers
of task performance and continuous choices, while small neighborhoods generate more precise fitting
functions for the selected search space. We investigate the influences of the neighborhood size on
tendency fitting, and Table 2 depicts the results for data point sampling with different numbers of
nearest neighbors. The assignment of moderate numbers of data points in the neighborhood results in
the architecture with the highest accuracy within the memory constraints due to effective search space
evolution. We also provide a visualization of a search space evolution example in Figure 4, where
the search space that is selected more frequently during evolution is verified to be more optimal.
Different colors represent the evolutionary paths of various candidates, and the arrows indicate the
direction of evolution. Double arrows signify that the candidates after evolution are trained with t
more times than current total training epochs.

Influence of hyperparameters in search space evolution: Crucial hyperparameters in search space
evolution contains the update threshold h1 and h2, which are varied in the ablation study to investigate
the influence. Figure 5 demonstrates the top-1 accuracy for different value assignment of thresholds,
where both medium thresholds result in the highest performance. Large thresholds cause frequent
search space change without sufficient confidence, while the small ones enforce the evolution process
to stuck at the local optimum. Meanwhile, the performance is more sensitive to the update threshold
for low-rank decomposition ratio, which significantly changes the optimal architecture.

4.3 Evaluation on Large-scale Image Classification

Figure 5: The performance variation
with respect to the threshold h1 and
h2 in search space evolution.

In this section, we compare the network architecture search
techniques in MCUFormer with state-of-the-art architecture
design methods including the vision transformer based NAS
methods including AutoFormer [8].We also compare our op-
erator library with existing ones designed for convolutional
neural network inference. Since the conventional operator
library such as CMSIS-NN [18] and TinyEngine [20] cannot
be directly utilized for vision transformer inference due to the
lack of executable functions for specific design such as GeLU
and layer normalization, we supplemented the missing func-
tions to the conventional library to ensure a fair comparison
of memory scheduling in vision transformer inference.

Image classification on ImageNet is highly challenging, primarily because of its large scale and high
diversity, particularly when using lightweight models deployed on microcontrollers. Table 3 illustrates
the top-1 classification accuracy, the memory footprint and flash of different deep neural networks
including CNN based and transformer based architectures and various operator libraries. The gray
number in the table indicates the the required memory or flash exceeds the memory constraints or
flash constraints. For the combination of architectures and operator libraries that exceeds the memory
constraint of the microcontrollers, we report the accuracy achieved during inference with GPUs. For
the CNN based architectures[28, 30], we employ the TinyEngine [20] for compilation. MCUFormer-
A and MCUFormer-T respectively represent our method that replaces the network architecture search
with AutoFormer and utilizes the TinyEngine with supplemented layers of vision transformers for
compilation. Except for MCUFormer-T, we employ our proposed engine for compilation to evaluate
all transformer based architectures.

Since vision transformers outperform CNNs by a sizable margin on large-scale vision tasks, deploying
transformers on microcontrollers is very desirable for practical applications. Compared with the
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Table 3: The flash, memory and top-1 accuracy on ImageNet for different network architecture
methods and deep learning libraries for microcontrollers, where we utilize three MCUs with various
SRAM limits for evaluation.

Model
STM32F4 256KB STM32F7 320KB STM32H7 512KB

Mem. Fla. Acc. Mem. Fla. Acc. Mem. Fla. Acc.
MBV2+CMSIS - - - 308kB 0.72MB 49.0% - - -

MCUNetV1 238kB 0.70MB 60.3% 293kB 0.70MB 61.8% 452kB 1.65MB 68.5%
MCUNetV2 233kB 0.67MB 62.0% 282kB 0.67MB 63.5% 498kB 1.56MB 70.7%

EMQ 253kB 0.73MB 66.5% 308kB 0.71MB 68.2% 507kB 1.67MB 72.8%
AutoFormer - - - 681kB 1.24MB 74.7% - - -

MCUFormer-A 328kB 0.86MB 70.4% 411kB 0.98MB 69.3% 842kB 2.11MB 72.7%
MCUFormer-T 816kB 3.81MB 73.3% 872kB 3.90MB 75.4% 1.5MB 7.45MB 76.4%
MCUFormer 218kB 0.89MB 71.1% 319kB 0.90MB 73.6% 505kB 1.95MB 74.0%

state-of-the-art CNN based model EMQ on microcontrollers, our method achieves 5.4% higher top-1
accuracy (68.2% vs. 73.6%) with the 320KB memory limit. Both the search space evolution in
architecture search and the memory scheduling in the constructed operator library contribute to
deploying vision transformers on microcontrollers with high accuracy by comparing MCUFormer-T,
MCUFormer-A and MCUFormer, because the redundant representation that consumes the memory
of MCUs in the inference is removed. Although the state-of-the art NAS methods AutoFormer
[8] effectively discover the topology of vision transformers with the optimal accuracy-complexity
trade-offs, they fail to consider the extremely memory constraints of microcontrollers which are not a
concern for GPUs. Directly supplementing the low-rank decomposition ratio and token numbers to
the original search space usually causes search deficiency because of the convergence problems in
the supernet training. Meanwhile, TinyEngine optimizes the memory scheduling for general deep
network deployment while still ignores the specific architectures in vision transformers for further
memory utilization ratio enhancement. Generally speaking, the presented search space evolution in
network architecture search and memory scheduling in library construction respectively boost the
top-1 accuracy by 4.3% (69.3% vs. 73.6%) and reduce the peak memory by 63% (319kB vs. 872kB)
with the STM32F746 which get better result.

We also deploy our hardware-algorithm co-optimizations framework in different controllers with
various resource constraint, and Table 3 also demonstrates the top-1 accuracy for various methods.
With 256KB memory and 1MB flash, our vision transformer still achieves 71.1% top-1 accuracy
on ImageNet and outperforms the EMQ method by 6.9%. The task performance is boosted with
the increase of the constraint of memory and flash, where the acquired the 74.0% top-1 accuracy on
STM32H743 with 512KB memory and 2MB flash even outperforms the Deit [32] 1.8% inferenced on
GPUs. Hence, our vision transformer can be applied in practical applications with high requirement
of accuracy.

5 Conclusion

In this paper, we have presented MCUFormer for hardware-algorithm co-optimizations that suc-
cessfully deploys the vision transformer on microcontrollers with satisfying task performance. We
generalize the network architecture search with enlarged search space considering the low-rank
decomposition ratio of weight matrix and token number. The search space evolves for supernet
training to discover the model topology with the highest accuracy given the resource constraints,
where the evolution leverages the tendency between task performance and the continuous choices
with enhanced search efficiency. Meanwhile, we construct the operator library for vision transformer
inference that converts the model into executable functions, and fully utilize the memory by patch
embedding decomposition, Operator integration and token overwriting. Extensive experiments on
image classification, person presence identification and key word spotting shows that our MCUFormer
achieves competitive performance on microcontrollers with the state-of-the-art vision transformer
models. Our work currently contains the following limitation. Considering transformer deployment
on MCUs in more diverse vision tasks such as DETR [5] for object detection is important in realistic
applications including autonomous driving[38, 25] and robot navigation[15, 13].
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Broader Impacts

Deploying transformer on a microcontroller is particularly beneficial for applications that require
quick decision-making or operate in resource-constrained environments. Unlike the traditional CNN,
the peak memory of the transformer will not change with the number of channels, so it is relatively
difficult to reduce the peak memory. The MCUFormer we designed reduces the peak memory from
the structural design and improves the accuracy at the same time.
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