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Abstract

Unsupervised image Anomaly Detection (UAD) aims to learn robust and discrimi-
native representations of normal samples. While separate solutions per class endow
expensive computation and limited generalizability, this paper focuses on build-
ing a unified framework for multiple classes. Under such a challenging setting,
popular reconstruction-based networks with continuous latent representation as-
sumption always suffer from the "identical shortcut" issue, where both normal and
abnormal samples can be well recovered and difficult to distinguish. To address
this pivotal issue, we propose a hierarchical vector quantized prototype-oriented
Transformer under a probabilistic framework. First, instead of learning the con-
tinuous representations, we preserve the typical normal patterns as discrete iconic
prototypes, and confirm the importance of Vector Quantization in preventing the
model from falling into the shortcut. The vector quantized iconic prototypes are
integrated into the Transformer for reconstruction, such that the abnormal data
point is flipped to a normal data point. Second, we investigate an exquisite hi-
erarchical framework to relieve the codebook collapse issue and replenish frail
normal patterns. Third, a prototype-oriented optimal transport method is proposed
to better regulate the prototypes and hierarchically evaluate the abnormal score.
By evaluating on MVTec-AD and VisA datasets, our model surpasses the state-of-
the-art alternatives and possesses good interpretability. The code is available at
https://github.com/RuiyingLu/HVQ-Trans.

1 Introduction

Anomaly detection is an essential task with increasingly wide applications in various areas, such as
video surveillance [1], industrial inspection [2], and medical image analysis [3]. Due to the scarcity
of anomalous samples, the unsupervised anomaly detection [4–7] methods gain wide attention by
modeling the distribution of normal data only, and then identify the samples deviates from the normal
profile as anomalies. Common approaches follow the one-for-one scheme [8, 9] by training separate
models for different classes of objects, which is time-memory-consuming for real application and
uncongenial to the object class with large intra-class diversity. Recently, a newly emerging one-for-all
scheme [10] tries to use a unified model to detect anomalies from all the different object classes
without any fine-tuning. Modeling high-dimensional data is notoriously challenging, and the problem
becomes even more difficult to capture the multi-class distribution in a unified model precisely.
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Under the unsupervised setting, a powerful approach to modeling data distribution follows the deep
autoencoding frameworks, reckoning that a well-trained model with normal data will always recon-
struct normal patterns regardless of the defects present in the input data. Thus, it is generally assumed
that the reconstruction error will be larger for the anomalous input, making them distinguishable from
the normal samples. However, this assumption may not always hold that sometimes the abnormal
inputs can also be well reconstructed, which is named as "identical shortcut" issue [9–11]. Intuitively,
compared to working extremely hard to learn the joint distribution, returning a direct copy of the
input disregarding its content appears as a far easier solution. This phenomenon has been observed in
existing researches [4, 9]. Furthermore, under the unified case, the "identical shortcut" issue becomes
even more severe as the distribution of multi-class data is more complex [10]. This motivates us to
enhance the discriminability of model encountering normal and anomalous samples.

Learning representations with continuous features have been the focus of many previous works [12–
14]. However, these methods lack a reliable mechanism to encourage the model to induce large
reconstruction error on the anomalies, restricting the performances by the under-designed represen-
tation of the latent space. In recent researches, a branch of approaches [8, 9, 15] investigate the
memory-augmented networks for mitigating the "identical shortcut" issue of AEs. Those approaches
augment the deep autoencoder with a memory module to record the normal patterns in the normal
training data, manifesting in different forms such as the memory set in the latent space [9], the fixed
Transformer value matrix in the attention layer [10], or neighborhood-aware patch-level memory
bank [8]. This kind of method hopes to obtain low reconstruction error for normal samples and
highlight the reconstruction error if the input is not similar to normal data, that is, an anomaly. The
most relevant items in the memory are retrieved and weighted averaging all the related memory
content are aggregated into the decoder for reconstruction. However, the discrete memory items are
recombined and weighted averaged, falling into an unknown continuous latent space which might be
distorted. Intuitively, some anomalous regions can not be reconstructed by the discrete latent memory
but could be decoded from the unknown latent space. To intrinsically mitigate the problems, we aim
to learn a representative and discriminative discrete latent space for anomaly detection.
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Figure 1: By replacing the continuous latent
features with the normal iconic prototypes of
corresponding category, the normal regions
are reconstructed as normal patterns (shown
in yellow boxes), while the anomalies are also
reconstructed as normal (shown in red boxes).

To preserve the typical normal patterns in the dis-
crete latent space, we hope to successfully model
critical features that usually span many dimensions
in the normal data space, as opposed to focusing or
spending capacity on noise and imperceptible details.
Incorporating ideas from vector quantization (VQ),
we model the discrete latent space as codebooks for
each category, consisting of iconic prototypes learned
from normal training data. During reconstruction, we
replace the original encoding features with the nearest
iconic prototypes, and then decoded with a VQ-based
transformer decoder to intensify the use of iconic
prototypes. As a result, the abnormal data point is
flipped to a normal data point, highlighted by large
reconstruction errors, as shown in Fig. 1. However,
the model may suffer from the codebook collapse is-
sue [16, 17]: At some point during training, a part of
latent codes in the codebook may no longer work and
the modeling capacity is limited by the discrete repre-
sentations, resulting in collapsed reconstruction [18].
Thus, we further investigate the hierarchical nature of images and propose a hierarchical VQ frame-
work by merging fine-grained and abstract features to prevent codebook collapse, which could also
reduce the decoding search time and retain high inference speeds. In addition, most abnormal scoring
methods are constrained to the observation space and can be fallible to complex data distributions.
Therefore, we have introduced a hierarchical prototype-oriented optimal transport (OT) based opti-
mization and anomaly detection scoring method to enhance the robustness and discriminability of
our model for normal and anomaly samples.

In conclusion, we carefully tailor a variational autoencoding framework for unsupervised anomaly
detection, called hierarchical vector quantized Transformer (HVQ-Trans). Our work contributes
in the following ways: (1) We realize the learning of discrete normal representations by extracting
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Figure 2. The framework of the PUAD.

to represent one concrete MTS. Hence, the distribution over
global prototypes could be defined as an empirical distribu-
tion:

P�g =
PKg

i=1
1

Kg
�bi

g
, bi

g 2 Rdf (3)

where �g is the global prototypes. In this way, we can
acquiring the transport probability matrix M 2 RNj⇥Kg

>0

from P✓0 to P�g by Sinkhorn algorithm (Cuturi, 2013):

M⇤ = OT(P✓0 , P�g ) = min
M
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�0 is the transport cost matrix, we use
the Euclidean distance between embedding ✓0 and
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, where g = [ 1
Kg

] and

h = [ 1
Nj

] are two probability vectors defend in Eq. 2 and
Eq. 3. OT gives us an optimal transport plan from embed-
ding P✓0 to prototype P�g based on the cost matrix C, and
we could reconstruct ✓0 by the transport probability M and
prototypes �g:

✓0
0 = M ⇥ �g,✓0

0 2 RNj⇥df (4)

Compared with the original ✓0, ✓0
0 contains the diversity

dynamic information transmitted from the prototypes, thus
to cover various patterns of MTSs. Inspired by the existing
OT based prototype-oriented method (Guo et al., 2022; Tan-
wisuth et al., 2021), to learn the prototypes �, we adopt the
entropic constraint (Cuturi, 2013) and define the average
OT loss for all training sets as:
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(5)

F�(·) is the inference module that will be introduced below,
whose parameters are denoted by �, Dx is the training set
which consists of normal MTS data.

So far, the global prototypes can represent the diverse nor-
mal patterns within MTSs, and they are encouraged to cap-
ture the statistical temporal dependency shared by multiple
MTSs, which is similar as the transfer patterns in meta learn-
ing, thus to possess powerful capacity in adapting to the new
MTSs. But the specific information for new MTSs may
be ignored by the global prototypes. Therefore, we further
introduce the local prototypes �l to replenish the ignored in-
formation and enhance the capacity of model adaptation. �l

is summarized from a few samples from the new MTSs first,
then �g and �l are indexed together by OT when detecting
the anomaly on the new MTSs.

3.2.2. PROTOTYPE GUIDED PROBABILISTIC
GENERATIVE MODEL

With the prototypes of POT module, we formulate a hier-
archical probabilistic generative model for reconstruction-
based unsupervised anomaly detection, as shown in Fig. 1
(a). Unlike existing hierarchical VAEs (Vahdat & Kautz,
2020; Su et al., 2019), they store the information in the neu-
ral network between the random variables. We introduce a
hierarchical probabilistic generative model that generates
data with the direction of the related information stored
in the prototypes. Formally, the generative process can be
expressed as:

✓0 ⇠ N (0, 1)

✓1 ⇠ N
�
Fµ

1 (✓0
0), F

�
1 (✓0

0)
�

x0 ⇠ N (Fµ
2 (✓1), F

�
2 (✓1))

✓0
0 = M ⇥ �g, M = POT(✓0,�g)

(6)

Where x0 2 RT⇥V denotes the generated MTS vector for
the current time step, N (·, ·) is the Gaussian distribution
where the values in the parenthesis are the distribution coef-
ficient. Specifically, after sampling the latent representation
✓0, we incorporate the learned prototypes into ✓0 to get ✓0

0

by the POT module. Since the information indexed from the
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Figure 2: (a) The overall framework of our HVQ-Trans. (b) Each VQ-based Layer replaces continuous
features with iconic prototypes, equipped with the POT module to promote better learning and scoring.
(c) The codebook and expert network are switched for individual image. (d) The detailed structure of
each VQ-based Transformer decoder, where the prototypes are integrated via cross-attention.

prototypes and propose a VQ-based transformer to address the "identical shortcut" issue by inducing
large feature discrepancy for anomalies. (2) We develop a hierarchical VQ-based approach with
switching mechanism to overcome the "prototype collapse" problem and effectively use multi-
level feature representations to maximize the nominal information available. (3) A hierarchical
prototype-oriented learning and anomaly scoring method is developed to guide prototype learning and
dexterously measure the feature level anomaly score to robustly and accurately identify anomalies. (4)
Extensive experiments demonstrate our method achieves state-of-the-art performances for anomaly
detection and localization, and possesses enhanced interpretability through prototype visualization.

2 Methodology
2.1 Overview
Our proposed model is a Transformer-based reconstruction method that assumes normal and anomaly
cannot be reconstructed with comparable performances. In contrast to other Transformer-based
autoencoding [19] with continuous embeddings, we focus on compressing input images into discrete
representations and achieve discriminative reconstruction for anomaly detection and localization.
We denote the set of normal images available at training time as XN (∀x ∈ XN : yx = 0), with
yx ∈ {0, 1} denoting if an image x is normal (0) or anomalous (1). Accordingly, we define the
test sample as ∀x ∈ XT : yx = {0, 1}, including both the normal test images and abnormal
test images. The model pipeline, shown in Figure 2, can be summarized as follows: i) The input
image is fed into the pre-trained EfficientNet [20] to extract visual tokens by splitting 3-D feature
maps; ii) The extracted tokens are passed through the cascaded vanilla transformer encoder for
non-local multi-level feature aggregation; iii) Aggregated features at certain layer are hierarchically
fed into the corresponding VQ-based layer to select the most relevant iconic prototypes; iv) The
visual tokens are then successively fused with vector quantized embeddings via cascaded VQ-based
transformer decoder for reconstruction; v) Decoded tokens are passed through the switching experts
to reconstruct features, which possess flexibility in high diversity multi-class image scenarios; vi)
Finally, anomaly detection and localization are achieved through a calibrated anomaly score map
refined via prototype-oriented module by measuring the OT-based hierarchical feature discrepancy.

2.2 Improving Feature Reconstruction with Hierarchical Vector Quantization
Motivation: Normal memory augmentation was initially introduced by Gong et al. [9] and has
obtained wide interests in unsupervised anomaly localization and detection. To record the “normal”
appearance, image features are augmented by weighted averaging the similar patterns in the memory
matrix. This augmentation is, however, rebuilding a continuous latent space again which might
be distorted to contain abnormal patterns. Relied on the vector quantization, discrete variational
autoencoder[21] learns the discrete latent space, but suffers from the issue of codebook collapse.
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Therefore, to simultaneously learn the discrete representation and avoid codebook collapse, we
proposed the hierarchical VQ-based framework.

Hierarchical Vector Quantized (HVQ) Transformer: Our proposed HVQ-Trans can be viewed as
a communication system serving as an information bottleneck to better capture the normal patterns
during training, which could be further generalized to test unknown images with arbitrary anomalies.
We denote the input image as x ∈ RH×W×3, then the N visual tokens h0 = fϕ0(x) ∈ RN×C

are extracted by the pre-trained EfficientNet ϕ0 [20] to be fed into the Transformer encoder. As
shown in the graphical model of Fig. 3, HVQ-Trans comprises a cascaded vanilla Transformer
encoder (vanTrans-enc) parameterized by ϕl that encodes multi-layer patch embeddings as hl =
fϕl(hl−1) ∈ RN×C . To further enlarge the normality and suppress the anomaly, we subsequently
develop hierarchical VQ-based layers (VQLayer) to layer-wisely quantize the refined visual tokens
{hl}Ll=1 to the prototypes elk in the learnable codebooks El ∈ RK×C , as:

θ = Quantize
(
ΥL(hL)

)
= eLi , i = min

j
∥ΥL(hL)− eLj ∥22,

zl = Quantize
(
Υl

([
hl−1,θ

]))
= elk, k = min

r
∥Υl

([
hl−1, zL

])
− elr∥22, l ∈ [1, ..., L] ,

(1)
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Figure 3: Graphical model of our
HVQ-Trans.

where Υl(·) refers to the layer-wise embedding function, and [·]
denotes the concatenation operation. Intuitively, we hierarchi-
cally replace visual tokens hl with their most similar prototypes
in the codebook El as quantized vector zl (note that this process
can be lossy). Moreover, we find that merging fine-grained con-
crete information with abstraction-level semantics is critical for
robust anomaly detection. Hence, we fuse the multi-level visual
tokens with the global quantized vector θ to learn hierarchical
prototypes, maximizing the preserved nominal information.

To make full use of the quantized multi-level visual tokens zl

derived from by Eq. 1, we further developed a cascaded VQ-
based Transformer decoder (VQTrans-dec). As shown in Fig. 2
(d), given the quantized visual tokens zl of the lth layer and its
corresponding output dl+1 from the last VQTrans-dec layer, the operation in each VQTrans-dec layer
can be expressed as:

ql = MSA(query = Wqd
l+1, key = Wkd

l+1, value = Wvd
l+1) + dl+1,

d̃
l
= MCA(query = W′

qq
l, key = W′

kz
l, value = W′

vz
l) + ql, dl = FFN(d̃

l
) + d̃

l
,

(2)

where MSA(·) and MCA(·) share the same architecture as the standard multi-head self attention and
multi-head cross attention in vanilla Transformer [22]. An essential aspect of our method is that,
in the MCA(·) operation, the refined visual tokens from the previous layer ql crossly attend to the
prototypes of normal images zl. Hence, the values at abnormal regions of ql will be suppressed, and
the abnormal signals could be rarely transmitted to the output terminal for reconstruction. Namely,
the fewer reconstructed anomalies there are, the larger the reconstruction difference will be, which in
turn leads to better performance in localizing and detecting anomalies.

During training, the typical normal patterns are recorded in the discrete variables, i.e., iconic proto-
types. When encountering the anomalous during testing, the abnormal patterns will also be quantized
as the normal prototypes, leading to larger feature migration and information loss, highlighted by
higher reconstruction error. It is worth noting that while information loss triggered by VQ is exist
for normal images, it is significantly more pronounced for anomaly images. This discrepancy in
information loss serves as a key factor in effective anomaly detection. By investigating this difference,
we can enhance the accuracy of our model in distinguishing abnormal regions.

Switching Mechanism: We adopt the switching mechanism to make the proposed model more
suitable for multi-class anomaly detection. On the one hand, we develop the switching codebooks
by assembling the independent iconic prototypes for each class. On the other hand, we develop the
switching experts for flexible reconstruction of multi-classes, inspired by the Mixture of Experts
(MoE) models [23, 24] and its sparsely-activated version [25]. Here, we choose to reconstruct at the
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feature level rather than the pixel level, due to the invariance to subtle noise, rotation, and translation
at the pixel level.

Specifically, the switching mechanism contains a multi-category classifier, M codebooks, and M
reconstruction experts. The multi-category classifier takes the image feature as input and outputs
the classification probability over the M category. In order to fit the data diversity property in
the one-for-all setting, we switch the specific codebook (including a group of prototypes) from
M codebooks according to the classification probability. Furthermore, we switch the individual
reconstruction network (dubbed as expert) for feature reconstruction. The visual tokens from the last
VQTrans-dec layer are depicted as d0 ∈ RN×C , which is expected to reconstruct the input patch
features h0 ∈ RN×C as:

h̃
0
= Ψm(d0), m = argmax

j
pj(x), pj(x) =

exp(Ω(x)j)∑M
j=1 exp(Ω(x)j)

, (3)

where Ω(·) is a classifier for producing logits, which are then normalized via a Softmax function
over the total M experts. pj(·) is the probability of selecting the codebook and reconstruction expert,
as shown in Fig. 2 (c). The codebook and expert Ψm with the highest probability are employed for
reconstruction. The switching mechanism under the one-for-all setting will classify each input image
into a single category and choose the corresponding codebook and expert for reconstruction. For
the normal images, it is highly likely to be classified into the correct category and thus switch the
proper reconstruction expert and codebook. For the abnormal images, there remains big uncertainty
that which reconstruction expert and codebook will be switched, because the anomalies are unseen
during training. Thus, the reconstruction uncertainty of the abnormal image is increased. Noting
that the difference between normal and abnormal is the key factor deciding the anomaly detection
performance. To this end, the uncertainty during anomalous sample switching could facilitate
multi-class anomaly detection.

2.3 Prototype-oriented Learning and Scoring for Anomaly Detection

Motivation: During training with normal data, the HVQ-Trans enhances the point-wise correlations
of the selected iconic prototypes from codebooks and the continuous visual features of normal images.
However, it may despise the global relations between the above two sets. Motivated by previous
efforts on OT theory and applications [26–29], we propose a hierarchical prototype-oriented optimal
transport (POT) for anomaly detection, which is a transport solver defined within the scope of the
basic distance between two unknown sampling sets to improve the tightness between the codebooks
and the normal features. Meanwhile, at the testing stage, it is worth noting that the anomaly score
adopted in the existing methods [10, 17] mainly concern the most significant difference of the score
map between the input features and the reconstructed ones, as measured by the Euclidean distance.
However, the importance of hierarchical differences at multiple feature levels is neglected. To this end,
we also proposed a hierarchical POT-based anomaly scoring method to reinforce the identification of
the score map and further boost the anomaly detection performance.

Learning Iconic Prototypes with POT: Each POT module, included within each VQLayer as shown
in Fig. 2 (b), is responsible for enhancing consistency between codebooks and normal image features
per layer. This enables the prototypes in codebooks to be more representative of normal patterns and
less so of anomalous patterns. At the l-th layer, the codebook of each category contains a group of
prototypes el = [el1, ..., e

l
K ] ∈ RK×C . We omit the index l in the following for simplicity without

causing ambiguity. To assemble the normal patterns conveyed by images, we represent N patches
per image as an empirical distribution Ph =

∑N
i=1

1
N δhi , where h ∈ RN×C is the features sampled

from the latent variables of the HVQ-Trans. The prototypes serve to represent normal patterns across
different classes. As a result, when attempting to identify suitable prototypes to reconstruct a specific
normal image, each prototype is given equal importance. Thus, the distribution over normal prototypes
can also be expressed as an empirical distribution Pe =

∑K
j=1

1
K δej . In this way, the transport matrix

M∗ ∈ RN×K from Ph to Pe can be estimated by M∗ = min
M

∑N
i=1

∑K
j=1 M i,jCi,j , where the

transport matrix M should satisfy Π([ 1K ], [ 1N ]) = {M |M1K = [ 1K ],MT 1N = [ 1N ]}. [ 1K ] and [ 1N ]

are two uniform distributed prior defined in Ph and Pe, respectively. The cost matrix C ∈ RN×K is
defined as Ci,j =

√
(hi − ej)2. In order to learn the prototypes of normal codebook at certain layer,
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we define the average POT loss inspired by Sinkhorn algorithm [30] as:

LPOT = min
E

Eh∼Fϕ(x)

N∑

i=1

K∑

j=1

M∗
i,jCi,j +

N∑

i=1

K∑

j=1

M∗
i,j lnM

∗
i,j . (4)

Calibrating Anomaly Score with POT: The anomaly score computed via Transformer-based
methods always suffers from the sub-optimal distance measurement, which is usually calculated as
the point-wise L2 norm of the reconstruction differences as sorg = ∥forg − frec∥22. In this paper, on
the one hand, we alleviate the mismatch by restricting the distance of prototypes and visual features
during training. On the other hand, we further calibrate the anomaly score with multi-level POT
at test time. Accordingly, in our proposed method, we note that the anomaly degree could also be
reflected by the dissimilarity between visual features and normal iconic prototypes in the codebooks.
As for the l-th layer, the dissimilarity is evaluated by slPOT = M∗C. The transport matrix M∗ acts
as a probability to re-weight the cost with different prototypes C, which measures the importance of
different distances between image features and the normal prototypes. Therefore, we calibrate the
multi-level anomaly score as scab = sorg + λ

∑L
l=1 s

l
POT for better anomaly detection.

2.4 Overall Optimization
Noting that there is no real gradient defined for equation 1, following [17, 21, 31, 32], we approximate
the gradient by copying gradients from the refined visual tokens zl to the visual tokens hl for
l = 0, ..., L. Thus, our proposed HVQ-Trans incorporates five terms into its objective, specified as:

LHV Q−Trans = ||h0−h̃
0||22+

L∑
l=1

[
||sg(hl)− el||22 + βl||hl − sg(el)||22 + αlLl

POT

]
−

M∑
j=1

pj(x) logPx,

(5)
where the sg(·) refers to the stop-gradient operation and Px the category label. βl and αl are
hyperparameters. The first term refers to the reconstruction loss. The second one in the scope of
summation along L layers is the hierarchical prototypical loss, pushing the selected prototype el

closer to the visual token hl. The third term denotes the hierarchical commitment loss, optimizing the
encoder by encouraging the output of the encoder hl to stay close to the chosen prototype and prevent
it from fluctuating too frequently from one prototype to another. The fourth term is the POT loss
defined in Eq. 4. The last term is the cross entropy loss for training the classifier to adaptively switch
the proper reconstruction expert and codebook. Following [21], we use the exponential moving
average updates for codebooks. More details can be found in Appendix.

3 Connection with previous works
In unsupervised anomaly detection, only normal samples are available at the training stage. Unsuper-
vised anomaly detection methods can be roughly categorized into density-based and reconstruction-
based methods. Density-based methods estimate the distribution of normal data points to identify
anomalous data points [4–6]. Our HVQ-Trans method adheres to the probabilistic variation frame-
work but refrains from assuming a specific distribution of normal data. Therefore, the image prior is
learned dynamically rather than relying on a static distribution. On the other hand, reconstruction-
based methods assume that the model trained on normal data only can well reconstruct normal regions,
but fail in anomalous regions [33–35]. Typical approaches include Auto-Encoder (AE) [36–38],
Variational Auto-Encoder (VAE) [39, 40], and Generative Adversarial Net (GAN) [41–43]. However,
most of these methods do not incorporate a reliable mechanism for encouraging the model to induce
large reconstruction error on the anomalous region.

Adopting a memory matrix for unsupervised anomaly detection has proven to be an effective solution.
The idea was first proposed in MemAE [9] by injecting an extra memory matrix to assemble normal
patterns during training. Based on this paradigm, the memory-based models have attracted attentions
in recent years [15, 35, 44]. These methods always record the normal patterns into the memory,
then recombine and re-weight the relevant patterns for reconstruction. However, if anomalous
representations can be recovered through the re-weighting of normal patterns, the discriminating
process may collapse. In contrast, our method compresses images into a discrete latent space, inspired
by the vector quantization technology [21, 32], referring to ideas from lossy compression to relieve
the model from modeling negligible information. Additionally, our hierarchical framework allows us
to increase the size of the codebooks without incurring the codebook collapse problem, achieving
meticulous anomaly detection at multiple levels with our prototype-oriented scoring method.
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Table 1: Anomaly detection/localization results with AUROC metric on MVTec-AD. All methods
are evaluated under the one-for-all settings. The learned model is applied to detect anomalies for all
categories without fine-tuning. The best results are bold with black.

Category US[46] PSVDD[47] PaDiM[48] MKD[49] DRAEM[50] SimpleNet[51] PatchCore[8] RD4AD[52] UTRAD[33] UniAD[10] Ours
O

bj
ec

t
Bottle 84.0 / 67.9 85.5 / 86.7 97.9 / 96.1 98.7 / 91.8 97.5 / 87.6 97.7 / 91.2 100 / 97.4 98.7 / 97.7 100 / 96.4 99.7 / 98.1 100 ± 0.00 / 98.3 ± 0.04
Cable 60.0 / 78.3 64.4 / 62.2 70.9 / 81.0 78.2 / 89.3 57.8 / 71.3 87.6 / 88.1 95.3 / 93.6 85.0 / 83.1 97.8 / 97.1 95.2 / 97.3 99.0 ± 0.29 / 98.1 ± 0.04

Capsule 57.6 / 85.5 61.3 / 83.1 73.4 / 96.9 68.3 / 88.3 65.3 / 50.5 78.3 / 89.7 96.8 / 98.0 95.5 / 98.5 82.0 / 97.2 86.9 / 98.5 95.4 ± 0.21 / 98.8 ± 0.01
Hazelnut 95.8 / 93.7 83.9 /97.4 85.5 / 96.3 97.1 / 91.2 93.7 / 96.9 99.2 / 95.7 99.3 / 97.6 87.1 / 98.7 99.8 / 98.2 99.8 / 98.1 100 ± 0.08 / 98.8 ± 0.02
Metal Nut 62.7 /76.6 80.9 / 96.0 88.0 / 84.8 64.9 / 64.2 72.8 / 62.2 85.1 / 90.9 99.1 / 96.3 99.4 / 94.1 94.7 / 96.4 99.2 / 94.8 99.9 ± 0.02 / 96.3 ± 0.09

Pill 56.1 / 80.3 89.4 / 96.5 68.8 / 87.7 79.7 / 69.7 82.2 / 94.4 78.3 / 89.7 86.4 / 90.8 52.6 / 96.5 89.7 / 95.7 93.7 / 95.0 95.8 ± 0.49 / 97.1 ± 0.04
Screw 66.9 / 90.8 80.9 / 74.3 56.9 / 94.1 75.6 / 92.1 92.0 / 95.5 45.5 / 93.7 94.2 / 98.9 97.3 / 99.4 75.1 / 95.2 87.5 / 98.3 95.6 ± 0.60 / 98.9 ± 0.05

Toothbrush 57.8 / 86.9 99.4 / 98.0 95.3 / 95.6 75.3 / 88.9 90.6 / 97.7 94.7 / 97.5 100 / 98.8 99.4 / 99.0 89.7 / 97.5 94.2 / 98.4 93.6 ± 0.66 / 98.6 ± 0.04
Transistor 61.0 / 68.3 77.5 / 78.5 86.6 / 92.3 73.4 / 71.7 74.8 / 64.5 82.0 / 86.0 98.9 / 92.3 92.4 / 86.4 92.0 / 91.5 99.8 / 97.9 99.7 ± 0.12 / 97.9 ± 0.04

Zipper 78.6 / 84.2 77.8 / 95.1 79.7 / 94.8 87.4 / 86.1 98.8 / 98.3 99.1 / 97.0 97.1 / 95.7 99.6 / 98.1 95.5 / 97.3 95.8 / 96.8 97.9 ± 0.15 / 97.5 ± 0.10

Te
xt

ur
e

Carpet 86.6 / 88.7 63.3 / 78.6 93.8 / 97.6 69.8 / 95.5 98.0 / 98.6 95.9 / 92.4 97.0 / 98.1 97.1 / 98.8 80.3 / 94.4 99.8 / 98.5 99.9 ± 0.03 / 98.7 ± 0.03
Grid 69.2 / 64.5 66.0 / 70.8 73.9 / 71.0 83.8 / 82.3 99.3 / 98.7 49.8 / 46.7 91.4 / 98.4 99.7 / 99.2 93.9 / 95.2 98.2 / 96.5 97.0 ± 0.69 / 97.0 ± 0.06

Leather 97.2 / 95.4 60.8 / 93.5 99.9 / 84.8 93.6 / 96.7 98.7 / 97.3 93.9 / 96.9 100 / 99.2 100 / 99.4 99.8 / 98.4 100 / 98.8 100 ± 0.00 / 98.8 ± 0.02
Tile 93.7 / 82.7 88.3 / 92.1 93.3 / 80.5 89.5 / 85.3 99.8 / 98.0 93.7 / 93.1 96.0 / 90.3 97.5 / 95.6 98.8 / 94.2 99.3 / 91.8 99.2 ± 0.32 / 92.2 ± 0.42

Wood 90.6 / 83.3 72.1 / 80.7 98.4 / 89.1 93.4 / 80.5 99.8 / 96.0 95.2 / 84.8 93.8 / 90.8 99.2 / 96.0 99.7 / 89.4 98.6 / 93.2 97.2 ± 0.40 / 92.4 ± 0.16

Mean 74.5 / 81.8 76.8 / 85.6 84.2 / 89.5 81.9 / 84.9 88.1 / 87.2 85.1 / 88.9 96.4 / 95.7 93.4 / 96.0 92.6 / 95.6 96.5 / 96.8 98.0 ± 0.11 / 97.3 ± 0.05

Normal Anomaly Recon-Sing GT Pred-Sing

tr
an
si
st
or

ha
ze
ln
ut

ca
rp
et

le
at
he
r

Recon-Hier Pred-Hier Normal Anomaly Recon-Sing GT Pred-SingRecon-Hier Pred-Hier

Figure 4: Qualitative results for anomaly localization on MVTec-AD. ‘Recon/Pred-Sing’ and
‘Recon/Pred-Hier’ are reconstructions/score maps with single/hierarchical VQLayer, respectively.

4 Experiment
4.1 Datasets and Metrics
MVTec-AD [2] is a wildly-used industrial anomaly detection dataset with 15 classes, it covers more
than 5k high-resolution images including objects and textures. For each class, the training samples
are normal while the test samples can be either normal or anomalous. For each anomalous sample,
the ground-truths of image label and segmentation are available for evaluation. In this paper, we
investigate the unified case following [10], where only one model is used to handle all categories.

VisA [45] is a recently published large dataset, which consists of 9,621 normal and 1,200 anomalous
high-resolution images. The dataset includes images with complex structures, objects placed in
sporadic locations, and various types of objects. Anomalies encompass scratches, dents, color spots,
cracks, and structural defects. All images are spatially resized to 224× 224 to facilitate training.

CIFAR-10 [45] is a classical image classification dataset of 10 categories. We adopt the challenging
many-versus-many setting as in [10], where 5 classes are viewed as normal while the rest 5 classes
are viewed as anomalies that remain unseen during training.

Evaluation metrics: We report the Area Under the Receiver Operator Curve (AUROC) on image-
level anomaly detection and pixel-wise anomaly localization following the previous works [2, 10, 46].

4.2 Anomaly detection and localization performance on MVTec-AD
Implementation details: The input image size of MVTec-AD is 224 × 224 × 3, after being fed
into the pre-trained EfficientNet [20], the feature maps become 14 × 14 × 272, namely, the patch
size is 16. Then we reduce the channel dimension of each patch into 256, followed by feeding them
into a 4-layer vanTrans-enc followed by the corresponding and a 4-layer VQTrans-dec. We use
AdamW [53] with weight decay 0.0001 for optimization. Our model is trained for 1000 epochs on
2 GPUs (NVIDIA GeForce RTX 3080 10GB) with batch size 16. The learning rate is initialized
as 1 × 10−4 and dropped by 0.1 after 800 epochs. Our model is trained from scratch besides the
pre-trained EfficientNet. For more details, please refer to the Appendix.

Quantitative results of anomaly detection on MVTec-AD: As shown in Table 1, the proposed
HVQ-Trans generally outperforms all the competitive baselines. Specifically, our model surpasses
PatchCore and UniAD by 1.6% and 1.5% on average. The former is a SOTA method under the one-
for-one setting, the latter is a SOTA method under the one-for-all setting. Especially, in the one-for-all
case, our model far exceeds UniAD by 8.5% and 8.1% on Capsule and Screw, respectively. We
attribute this to that our model is more robust for identical shortcuts thanks to our well-designed
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Table 2: Anomaly detection/location results (image AUROC, pixel AUROC) on VisA. Our model is applied to
all categories without specific parameter-tuning on each category.

Category DRAEM[50] JNLD[55] OmniAL[54] UniAD[10] Ours

Complex structure

PCB1 83.9 / 94.0 82.9 / 98.0 77.7 / 97.6 95.4 / 99.3 96.7 / 99.4
PCB2 81.7 / 94.1 79.1 / 95.0 81.0 / 93.9 93.6 / 97.8 93.4 / 98.0
PCB3 87.7 / 94.1 90.1 / 98.5 88.1 / 94.7 88.6 / 98.3 92.0 / 98.3
PCB4 87.1 / 72.3 96.2 / 97.5 95.3 / 97.1 99.4 / 97.9 99.5 / 97.7

Multiple instances

Macaroni 1 68.6 / 89.8 90.5 / 93.3 92.6 / 98.6 92.2 / 99.3 93.1 / 99.4
Macaroni 2 60.3 / 83.2 71.3 / 92.1 75.2 / 97.9 85.9 / 98.0 86.2 / 98.5
Capsules 89.6 / 96.6 91.4 / 99.6 90.6 / 99.4 72.0 / 98.3 77.1 / 99.0
Candles 70.2 / 82.6 85.4 / 94.5 86.8 / 95.8 96.8 / 99.2 96.8 / 99.2

Single instance

Cashew 67.3 / 68.5 82.5 / 94.1 88.6 / 95.0 92.4 / 98.7 94.9 / 99.2
Chewing gum 90.0 / 92.7 96.0 / 98.9 96.4 / 99.0 99.4 / 99.2 99.4 / 98.8

Fryum 86.2 / 83.2 91.9 / 90.0 94.6 / 92.1 89.8 / 97.7 90.4 / 97.7
Pipe fryum 87.1 / 72.3 87.5 / 92.5 86.1 / 98.2 97.4 / 99.2 98.5 / 99.4

Mean 80.5 / 87.0 87.1 / 95.2 87.8 / 96.6 91.9 / 98.6 93.2 / 98.7

architecture and algorithm. Notably, the performance of various categories are significantly different
(Toothbrush), which might due to the data distribution of each category is different, corresponding to
different requests for representation ability. The switching mechanism learns individual codebooks
and experts for each class, decreasing the distortion between multiple classes. To sum up, our model
is proven to be effective and efficient for one-for-all anomaly detection applications.

Quantitative results of anomaly localization on MVTec-AD: Anomaly localization aims to detect
the anomalous regions given anomalous samples. The localization results under the one-for-all
setting are shown in Table 1. As we can see, our model outperforms all the competitive baselines
on average. Specifically, as a strong SOTA baseline, UniAD is also left behind by our model by
0.5% on both settings averagely speaking. We attribute this to that the hierarchical VQ also plays
an important role in precise localization besides the learnable query embeddings verified by UniAD
since our HVQ-Trans only employs the traditional query embeddings. Moreover, localization requires
more precise position information compared with its detection counterpart, a proper measurement
alignment to enhance the real anomalous regions may be important, which is exactly what our POT is
good at. Another interesting finding is reported in Appendix that although there exists information
loss in reconstructing normal images, such information loss is even more significant in reconstructing
anomalous images. Hence, the actual anomaly localization performance is improved.

Qualitative results of anomaly localization on MVTec-AD: As shown in Fig. 4, our method can
successfully recover the anomalous regions with their corresponding normal patterns for both object
anomalies (Left) and texture damages (Right). It can be seen that the model with hierarchical VQ
layers could better generate normal patterns at abnormal regions, resulting in more accurate anomaly
localization. More qualitative results are given in Appendix.

4.3 Anomaly detection on VisA

Quantitative results on VisA: Compared to MVTecAD, VisA poses greater difficulty due to its
more complex structures and scenes with multiple misaligned instances. Table 2 demonstrates the
superior performance of our model in comparison to the other three reconstruction-based methods
under the unified setting. Our proposed model surpasses the best of the comparison methods, i.e.,
UniAD, by 1.3% on image-AUROC, leading to significantly superior performances than the modest
recent unified model OmniAL [54] (5.4% and 2.1% on detection and localization).

Qualitative results on VisA: Figure 5 illustrates the impressive performance of our reconstruction
and localization in various categories. Even in multi-instance scenes, Our model effectively restores
the anomaly region to its normal state. The reconstructed images exhibit a high level of fidelity,
closely matching the appearance of normal regions and meeting expectations in recovering anomalies.
More qualitative results are given in Appendix.

8



Normal Anomaly Recon-UniAD Recon-Ours GT Pred-UniAD Pred-Ours

ca
sh

ew

ca
p

su
le

s

Normal Anomaly Recon-UniAD Recon-Ours GT Pred-UniAD Pred-Ours

p
cb

1

p
cb

4

Figure 5: Qualitative results for anomaly localization on VisA.
Table 3: Anomaly detection results with AUROC metric on CIFAR-10 under the one-for-all setting.
Normal indices indicate the names of normal classes. The best results are bold with black.

Normal Indices US[46] FCDD[56] FCDD+OE[56] PANDA[57] MKD[49] UniAD[10] Ours

{01234} 51.3 55.0 71.8 66.6 64.2 84.4 82.6 ± 0.02
{56789} 51.3 50.3 73.7 73.2 69.3 80.9 84.3 ± 0.03
{02468} 63.9 59.2 85.3 77.1 76.4 93.0 92.4 ± 0.10
{13579} 56.8 58.5 85.0 72.9 78.7 90.6 91.9 ± 0.06

Mean 55.9 55.8 78.9 72.4 72.1 87.2 87.8 ± 0.04

Table 4: Ablation studies with AUROC metric on MVTec-AD. w/o VQ means without VQ.

w/o VQ with VQ Switching POT Detection Localization
Single Hierarchical Codebook-Switching Expert-Switching

✓ - - - - - 70.5 81.4
- ✓ - - - - 96.2 96.8
- ✓ - ✓ - - 96.4 96.8
- - ✓ - - - 97.1 96.9
- - ✓ ✓ - - 97.2 97.0
- - ✓ - - ✓ 97.4 97.2
- - ✓ ✓ ✓ - 97.6 97.2
- - ✓ ✓ ✓ ✓ 98.0 97.3

4.4 Anomaly detection on CIFAR-10

Implementation details: In order to implement many-versus-many anomaly detection, we select 5
normal classes while the rest classes are viewed as anomalies. As shown in Table 3, {01234} means
the normal samples include images from classes 0, 1, 2, 3, and 4, while the images from 5, 6, 7, 8,
and 9 are anomalies. For statistical robustness, we repeat the splitting and obtain four combinations.

Quantitative results on CIFAR-10: As shown in Table 3, the performance of our model surpasses all
the other competitors under many-versus-many setting with each dataset splitting. Besides, CIFAR-10
dataset itself is more complex than MVTec-AD because of its poor shooting conditions. Hence, the
one-for-all setting on CIFAR-10 imposes stricter requirements for the model to exactly distinguish
normal patterns from anomalous interference. Therefore, the substantial improvement further verifies
the superiority of our method.

4.5 Ablation studies

Component study: To verify the effectiveness of the proposed modules, including single VQLayer,
hierarchical VQLayers, switching mechanism for codebooks and reconstruction experts, and POT
scoring, we implement extensive ablation studies on MVTec-AD. As shown in Table 4, we have
the following observations: (i) The performance of the model without VQ drops by nearly 26%
(96.4 to 70.5), which demonstrates that VQ plays the key role in anomaly detection and the vanilla
Transformer is powerful to well reconstruct both the normal and anomaly. Our VQ module acts
as the information bottleneck where only the normal information is allowed to pass through, thus
degrading the reconstruction of anomalous; (ii) The hierarchical structure also presents performance
gain since it provides local access to multi-level codebooks, thus reducing the search complexity per
layer and releasing the codebook collapse issue; (iii) The switching brings slight improvements on
MVTec-AD, while it achieves significant gains up to 3.2% on CIFAR-10, as shown in the Appendix.
We attribute this to the different degrees of difficulty posed by the two dataset distributions. Our
switching mechanism plays a more critical role for the complex datasets, i.e., CIFAR-10 in this
case; (iv) The POT module is effective in detecting and localizing anomalies due to its cascade
measurement alignment property.

9



Table 5: Different hierarchical structures.
Structure Detection Localization

hl → zl 94.9 96.5
hl−1 ⊕ hl → zl 97.2 97.0
hl−1 ⊕ θ → zl 98.0 97.3

Table 6: Different prototype numbers K.
K Detection Localization

1024 97.1 97.2
512 98.0 97.3
256 97.0 97.1

Different hierarchies: We demonstrate experiments to investigate the impact of various hierarchies,
as shown in Table 5, where the different information is encoded in different layers. While the
multi-level features hl are concatenated with the global prototypes θ, the joint performance over
anomaly detection and localization increases. One possible explanation is that the global prototypes
θ at much higher abstraction levels may result in efficient latent representation for anomaly detection.

Robustness to prototype number: We conduct the experiments by using different prototype numbers
K and show the AUC values in Table 6. Given different numbers of prototypes, our HVQ-Trans can
still surpass most of the competitors in Table 1, proving the robustness of our method.

Visualizing how the prototypes works: In order to investigate what exactly the prototypes have
learned, we further train a mapping function from the reconstructed feature to the observation space
and present the visualization results in Fig. 6. We compulsively instructed the model to reconstruct
the patches within the red box using prototypes from the codebook of a different, irrelevant category.
As demonstrated in the figure, the reconstructed region is highly correlated to the prototypes, e.g.. the
centering region in the ‘Cable’ image is reconstructed as ‘Grid’. The observations confirm that our
iconic prototypes accurately represent typical normal patterns of each category, and only reconstruct
the corresponding normal appearances as intended.

Grid Prototypes

Cable	Prototypes
Reconstruction Bottle

Tile Prototypes

Bottle Prototypes
Reconstruction

( a ) Image of Cable ( b ) Image of Bottle

Cable

Figure 6: The top row illustrates the images can be well reconstructed with switched prototypes. The
bottom row displays when the patches in the red box are forced to be reconstructed with irrelevant
prototypes, the reconstructed region is in accordance with the given prototypes.

5 Conclusion
We introduce a unified model, HVQ-Trans, for multi-class Unsupervised Anomaly Detection under
the one-for-all setting. The latent space is modeled as hierarchical discrete prototypes learned
from normal training data. We vector quantize visual features to reconstruct normal patterns and
employ a switching mechanism for codebook selection and exquisite reconstruction. Our hierarchical
designation incorporates multi-level normative information and encourages the model to reconstruct
anomalous images as normal. Furthermore, we propose the hierarchical prototype-oriented optimal
transport module to regulate the prototypes and calibrate the anomaly score. Under the one-for-all
setting, our model significantly surpasses competitors on MVTec-AD and VisA datasets, and provides
visualization and interpretability for both anomaly localization and detection.

Discussion: In this work, the category labels are assumed to be available during the training stage.
How to incorporate the model with clustering methods rather than category labels should be further
studied. In practice, our model can assemble the normal iconic prototypes which may facilitate
domain adaption for real scenes, and be potentially applied to time series, text, and video data.
However, anomaly detection for video surveillance or social multimedia may raise privacy concerns.
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