
A Details on Introduction

A.1 Experimental motivation

1. Environment details of 2D goal reacher

• State space: S = R2. For (x, y) ∈ S, ∣x∣ ≤ 1, ∣y∣ ≤ 1.
• Action space: A = {(cos (π/4×k), sin (π/4×k)) ∣ k = 0,1, ...,7} (∣A∣ = 8)
• Reward function: if the agent’s state is in the Goal box, then it receives +6. Otherwise, it

receives -0.5 rewards for every step.
• Transition probability: sh+1 = sh + ah ⋅ ϵ, where sh+1 is the next state, sh is the current state,
ah is the current action, and ϵ ∈ R2 with ∣∣ϵ∣∣2 = 1 provides a stocasticity to the environment.

• Horizon length: H = 13
• Discounting factor: γ = 0.99
• Grid size: 10
• Goal box: The coordinates of the center of the time-varying goal box are (xg, yg)=
(0.9 cos (2π×k/2500),0.9 sin (2π×k/2500)), which changes for episode k ∈ [5000]. The
width and height of the box are equal to 0.05.

2. Experiment details

To motivate our proposed meta-framework via a simple experiment, we used Q-learning as a compo-
nent A of our meta-algorithm to update the policy. The three baselines (ProOLS, ONPG, FTML)
of Figure 1(c) were trained with four learning rates η ∈ {0.001,0.003,0.005,0.007} and the entropy
regularized parameter τ = 0.1, where the shaded area of the three baselines is 95 % confidence area
among 4 different learning rates. The PTM-T was trained with the model rollout length Ĥ ∈ {50,60},
policy update iteration number G ∈ {10,50}, entropy regularized parameter τ = 0.1, Q-learning
update parameter αQ ∈ {0.7,0.9,0.99}, and the learning rate η = 0.001. The shaded area of PTM-T is
95 % confidence area among the 12 different cases above. All four algorithms share the same agent’s
policy network structure.

B Related Works

Existing methods for non-stationary environments can be grouped into three categories: 1) shoehorn-
ing: directly using established frameworks for stationary MDPs by assuming no extra mechanisms
are needed since non-stationarity already exists in standard RL due to policy updates; 2) model-based
policy updates: updating models with new data, using short rollouts to prevent model exploitation
[24, 29], online model updates, or latent factor identification [4, 13–16]; and 3) anticipating future
changes by forecasting policy gradients or value functions [7, 30, 20, 10, 31].

The advantage of the model-free method is its computational efficiency, allowing for direct learning
of complex policies from raw data [32, 33], while the advantage of the model-based method is its
data efficiency, allowing one to learn fast by learning how the environment works [34, 35]. However,
both advantages are weakened in non-stationary environments since the optimizing non-stationary
loss function induced by time-varying data distribution makes the model-free method challenging to
adaptively obtain the optimal policy [36, 37] and the model-based method challenging to estimate
accurate non-stationary models [20, 10].

Model-free method in non-stationary RL. [8] uses meta-learning among the training tasks to find
initial hyperparameters of the policy networks that can be quickly fine-tuned when facing testing tasks
that have not been encountered before. However, access to a prior distribution of training tasks is not
available in real-world problems. To mitigate this issue, [9] proposed the Follow-The-Meta-Leader
(FTML) algorithm that continuously improves an initialization of parameters for non-stationary
input data. However, it internally entails a lag when tracking optimal policy as it maximizes the
current performance over all the past samples uniformly. To alleviate the lag problem, [7, 37] focused
on directly forecasting the non-stationary performance gradient to adapt the time-varying optimal
policies. However, it still has problems of showing empirical analysis on bandit settings or a low-
dimensional environment and lack of theoretical analysis which provides a bound on the adapted

14

policy’s performance. [30] proposed adaptive Q-learning with a restart strategy and established its
near-optimal dynamic regret bound. In addition, [36] proposed two model-free policy optimization
algorithms based on the restart strategy and showed that dynamic regret satisfies polynomial space
and time complexities. However, the provable model-free methods in [30, 36] still lack empirical
evidence and adaptability in complex environments. Furthermore, since the agent can execute a
policy in a fixed environment only once due to the non-stationarity of the environment, most existing
model-free methods only update the policy once for each environment, which prevents the tracking
of the time-varying optimal policies.

Model-based method in non-stationary RL. The work [14] learned the model change factors and
their representation in heterogeneous domains with varying reward functions and dynamics. However,
it has restrictions for use in non-stationary environments, meaning that it is applicable only for
constant change factors or the domain adaptation setting. [4] proposed a Bayesian optimal learning
policy algorithm by conditioning the action on both states and latent vectors that capture the agent’s
uncertainty in the environment. Also, [15] brought insights from recent causality research to model
non-stationarity as latent change factors across different environments, and learn policy conditioning
on latent factors of the causal graphs. However, learning an optimal policy conditioning on the latent
states [4, 13–16] makes the theoretical analysis intractable. The recent works [20, 10, 31] proposed
model-based algorithms with a provable guarantee, but their algorithms are not scalable for complex
environments and lack empirical evaluation for complex environments.

C Details on Problem Statement and Notations

C.1 Details on Notations

Environment Interaction. First, we denote the state and action at the wall-clock time tk of
step h as stkh and atkh , respectively. As mentioned in the main paper, we interchangeably use the
symbols s(k)h and a(k)h for stkh and atkh . At the wall-clock time tk, the agent starts from an initial
state stk0 ∼ ρ. At step h ∈ [H] of the episode k, the agent takes the action atkh = πtk(⋅∣stkh) from the
current state stkh . The agent then receives the reward rtkh ∼ Rtk(stkh , a

tk
h) and moves to the next state

stkh+1 ∼ Ptk(stkh+1∣s
tk
h , a

tk
h). The trajectory ends when the agent reaches stkH .

Future MDP M̂tk+1 . Our work creates a one-episode-ahead MDP M̂tk+1 based on the observed
data from the p lastest MDPs {Mtk−p+1 , ...,Mtk} when the agent is stated in episode k. We define
M̂tk+1 ∶= ⟨S,A,H, P̂tk+1 , R̂tk+1 , γ⟩, where P̂tk+1 and R̂tk+1 are the forecasted future transition
probability and reward function, respectively. As mentioned in the main paper, the agent also interacts
with the created future MDP M̂tk+1 in the same way as it did with the original MDPMtk . We denote
the state, action, and policy in M̂tk+1 as ŝtk+1h , âtk+1h , π̂tk+1 , or equivalently ŝ(k+1)h , â

(k+1)
h , π̂(k+1),

respectively. We elaborate our main methodology in Section 3.

State value and state-action value functions. For any given policy π and the MDPMtk , we denote
the state value function at the wall-clock time tk(episode k) as V π,tk ∶ S → R and the state-action
value function k as Qπ,tk ∶ S × A → R. We define

V π,tk(s) ∶= EMtk
,π [

H−1
∑
h=0

γhrtkh ∣ s
tk
0 = s] ,

Qπ,tk(s, a) ∶= EMtk
,π [

H−1
∑
h=0

γhrtkh ∣ s
tk
0 = s, a

tk
0 = a] .

Also, given the future MDP M̂tk+1 , we denote the forecasted state value as V̂ π,tk+1(s) ∶ S → R and
forecasted state-action value as Q̂π,tk+1 ∶ S × A → R. We define

V̂ π,tk+1(s) ∶= EM̂tk+1 ,π
[
H−1
∑
h=0

γhr̂tk+1h ∣ ŝtk+10 = s] ,

Q̂π,tk+1(s, a) ∶= EM̂tk+1 ,π
[
H−1
∑
h=0

γhr̂tk+1h ∣ ŝtk+10 = s, âtk+10 = a] .

15

As mentioned in the main paper, we simplify the symbols V π,tk ,Qπ,tk , V̂ π,tk+1 , Q̂π,tk+1 as
V π,(k),Qπ,(k), V̂ π,(k+1), Q̂π,(k+1).

Dynamic regret. Aside from stationary MDPs, the agent aims to maximize the cumulative expected
reward throughout the K episodes by adopting a sequence of policies {πtk}1∶K . In non-stationary
MDPs, the optimality of the policies is evaluated in terms of the dynamic regret R ({πtk}1∶K ,K)
defined as

R ({πtk}1∶K ,K) ∶=
K

∑
k=1
(V ˚,tk(ρ) − V πtk ,tk(ρ)) (C.1)

where V ˚,tk(= V π˚,tk ,tk) denotes the optimal state value function under the optimal policy π˚,tk

at the wall-clock time tk (episode k) and V πtk ,tk denotes the state value with agent’s kth episode’s
policy πk. Dynamic regret is a stronger evaluation than the standard static regret that considers the
optimality of a single policy over all episodes.

State value and state-action value functions at step h. We denote the state value function and the
state-action value function for any policy π at step h of the wall-clock time tk as V π,tk

h and Qπ,tk
h ,

respectively. We define

V π,tk
h (s) ∶= EMtk

,π[
H−1
∑
i=h

γi−hrtki ∣ s
tk
h = s],

Qπ,tk
h (s, a) ∶= EMtk

,π[
H−1
∑
i=h

γi−hrtki ∣ s
tk
h = s, a

tk
h = a].

Then, the corresponding Bellman equation is

Qπ,tk
h (s, a) = (Rtk + γPtkV

π,tk
h+1)(s, a), V

π,tk
h (s) = ⟨Qπ,tk

h (s, ⋅), π(⋅∣s)⟩A, V
tk,π
H (s) = 0 ∀s ∈ S

(C.2)
where (Ptkf) (s, a) ∶= Es′∼P tk (⋅∣s,a))[f(s′)] for every function f ∶ S → R.

We denote V ˚,tk
h (s) = V π˚,tk ,tk

h (s) as the optimal state value function at step h of episode k. We
omit the subscript h when h = 0, that is, V π,k = V π,k

0 , Qπ,k = Qπ,k
0 . Then, the corresponding

Bellman equation is

Q˚,tk
h (s, a) = (Rtk + γPtkV

˚,tk
h+1)(s, a), V

˚,tk
h (s) = ⟨Q˚,tk

h (s, ⋅), π˚,tk(⋅∣s)⟩A, (C.3)

π˚,tk(s) =max
a
Q˚,tk

h (s, a).

We also denote the forecasted state value at the wall-clock time tk+1 of step h when the agent is stated
at time tk as V̂ π,tk+1

h and the forecasted state-action value as Q̂π,tk+1
h in a forecasted MDP M̂tk+1 .

We define

V̂ π,tk+1
h (s) ∶= EM̂tk+1 ,π

[
H−1
∑
i=h

γi−hr̂tk+1i ∣ ŝtk+1h = s], (C.4)

Q̂π,tk+1
h (s, a) ∶= EM̂tk+1 ,π

[
H−1
∑
i=h

γi−hr̂tk+1i ∣ ŝtk+1h = s, âtk+1h = a]. (C.5)

Then, the Bellman equation is given by

Q̂π,tk+1
h (s, a) = (R̂tk+1+γP̂tk+1 V̂

π,tk+1
h+1)(s, a), V̂ π,tk+1

h (s) = ⟨Q̂π,tk+1
h (s, ⋅), π(⋅∣s)⟩A,

V̂ π,tk+1
H (s) = 0 ∀s ∈ S. (C.6)

We denote the future optimal policy of the future value function V̂ π,tk+1 as π̂˚,tk+1 . Then the Bellman
equation also holds for Q̂π,tk+1

h (s) and V̂ π,tk+1
h (s) as follows:

Q̂˚,tk+1
h (s, a) = (R̂tk+1+γP̂tk+1 V̂

˚,tk+1
h+1)(s, a), V̂ ˚,tk+1

h (s) = ⟨Q̂˚,tk+1
h (s, ⋅), π̂˚,tk+1(⋅∣s)⟩A,

π̂˚,tk+1(s) =max
a
Q̂˚,tk+1

h (s, a). (C.7)

16

As mentioned in the main paper, we simplify the notations V π,tk
h ,Qπ,tk

h , V̂ π,tk+1
h , Q̂π,tk+1

h as
V

π,(k)
h ,Q

π,(k)
h , V̂

π,(k+1)
h , Q̂

π,(k+1)
h .

Unnormalized (discounted) occupancy measure. We define the unnormalized (discounted)
occupancy measure νπ,tks0,a0

∈∆1/(1−γ)(S ×A) at wall-clock time tk (episode k) for a given policy π
together with an initial state s0 and the action a0 as

νπ,tks0,a0
(s, a) ∶=

∞
∑
h=0

γhP(sh = s, ah = a ∣ s0, a0 ; π,Ptk) , ∀(s, a) ∈ S ×A (C.8)

where P(sh = s, ah = a ∣ s0, a0 ; π,P tk) is the probability of visiting (s, a) at step h when following
policy π from (s0, a0) with the transition probability Ptk+1 .

We also define the unnormalized non-stationary (discounted) forecasted occupancy measure ν̂π,tk+1s0 ∈
∆1/(1−γ)(S × A) for a given policy π, an initial state s0, an action a0, and a forecasted future
transition probability P̂tk+1 :

ν̂π,tk+1s0,a0
(s, a) ∶=

∞
∑
h=0

γhP(sh = s, ah = a ∣ s0, a0, π, P̂tk+1) ,∀(s, a) ∈ S ×A (C.9)

where the probability is defined in a forecasted environment with P̂tk+1 .

Model prediction error. To measure how well our meta-function predicts the future environment,
we define two different model prediction errors ιtk+1∞ , ιtk+1h ∶ S × A → R, which denote the Bellman
equation error when using V̂ and Q̂ estimated in the future MDP instead of the true V and Q
functions:

ῑtk+1∞ (s, a) ∶= (Rtk+1 + γPtk+1 V̂
˚,tk+1
∞ − Q̂˚,tk+1

∞) (s, a), (C.10)

ιtk+1h (s, a) ∶= (Rtk+1 + γPtk+1 V̂
π̂tk+1 ,tk+1
h+1 − Q̂π̂tk+1 ,tk+1

h) (s, a). (C.11)

As mentioned in the main paper, we allow ῑtk+1∞ (s, a) and ιtk+1h (s, a) to be interchangeably expressed
by the symbols ῑ(k+1)∞ (s, a) and ι(k+1)h (s, a).
Local time-elapsing variation budget. Aside from the time-elapsing variation budget, we define the
local time-elapsing variation budgets B(k−w∶k)p and B(k−w∶k)r that quantifie how fast the environment
changes over wall-clock times {tk−w+1, tk+1, ..., tk} where k −w,k ∈ [K]:

B(k−w+1∶k)p (∆π) ∶=
k

∑
τ=k−w+1

sup
s,a
∣∣Ptτ+1(⋅ ∣s, a) − Ptτ (⋅ ∣s, a)∣∣1,

B(k−w+1∶k)r (∆π) ∶=
k

∑
τ=k−w+1

sup
s,a
∣Rtk+1(s, a) −Rtk(s, a)∣.

D Proof of Theoretical Analysis

D.1 Preliminary for ProST-T and theoretical analysis

In this subsection, we elaborate on the ProST-T’s environment setting and its components f, g.

D.1.1 Environment setting

We consider the tabular environment have the following properties:

1. First, P(k) and R(k) are represented by the inner products of the feature functions ψ ∶
S × S ×A → R∣S∣

2∣A∣, φ ∶ S × A → R∣S∣∣A∣ and the non-stationary variables op(k), o
r
(k) ∈ O,

respectively, where op(k) ∶ S × S × A → R∣S∣
2∣A∣ and or(k) ∶ S × A → R∣S∣∣A∣. That is,

P(k) =< ψ, op(k) > and R(k) =< φ, or(k) >.

17

2. Second, the agent estimates op(k) and or(k) rather than observing them. More specifically, we
consider the non-stationary variable set O to be the set {P(k)}1∶K ,{R(k)}1∶K . The agent
then attempts to estimate ok (denote P(k) as op(k) and R(k) as or(k)) through its w lastest
trajectories, where Assumption 2 does not need to be satisfied in this setting. That is, the
agent estimates P(k) by ôpk and R(k) by ôrk from observations of last w trajectories, i.e.,
τk−(w−1)∶k.

We elaborate on the above two settings below:

1. P(k),R(k) are inner products of ψ,φ and op(k), o
r
(k).

Let us define a set of one-hot reward vectors over all states and the action space, namely 1r ∶= {φy ∈
{0,1}∣S∣∣A∣ ∣ ∑∣S∣∣A∣i=1 φy

i = 1}, and similarly define a set of one-hot transition probability vectors,

namely 1p ∶= {ψy ∈ {0,1}∣S∣2∣A∣ ∣ ∑∣S∣
2∣A∣

i=1 ψy
i = 1}. We then define one-to-one functions φ and

ψ such that φ ∶ S × A → 1r and ψ ∶ S × S × A → 1p. Namely, φ(s, a)(ψ(s′, s, a)) is a one-hot
vector such that the (i)th entry equals 1. We use the notation φk

h = φ(s
(k)
h , a

(k)
h) for the observed

(s(k)h , a
(k)
h) on the trajectory τk, and similarly ψk

h = ψ(s
(k)
h+1, s

(k)
h , a

(k)
h).

Then, we set O = {P(k),R(k)}∞k=1 in ProST-T. Also, we set ok to consist of two parameters
as ok = (op(k), o

r
(k)). We define a function op(k) ∶= {o ∶ S × S × A → R∣S∣

2∣A∣ ∣ o(s′, s, a) =
P(k)(s′∣s, a), ∀(s′, s, a)} and a function or(k) ∶= {o ∶ S×A → R∣S∣∣A∣ ∣ o(s, a) = R(k)(s, a), ∀(s, a)}.
Then, the transition probability and reward value P(k) and R(k) can be constructed by the inner
products of the stationary functions φ and ψ and the unknown non-stationary parameters op(k) and
or(k) as follows,

P(k)(s′ ∣ s, a) ∶= < ψ(s′, s, a), op(k)(s
′, s, a) > for ∀(s′, s, a), (D.1)

R(k)(s, a) ∶= < φ(s, a), or(k)(s, a) > for ∀(s, a). (D.2)

For notational simplicity, we use < ψ, op(k) > and < φ, or(k) > to show the inner products of the
functions ψ, op(k) and φ, or(k), respectively. Therefore, P(k) =< ψ, op(k) > and R(k) =< φ, or(k) >.

To give an intuitive explanation, note that op(k) contains all transition probabilities for all (s′, s, a) in

a vector form with size R∣S∣
2∣A∣ and or(k) contains all rewards for all (s, a) in a vector form with size

R∣S∣∣A∣.
2. The agent estimates or(k) and op(k) rather than observing them

We have defined the functions op(k) and or(k) as the transition probability and reward functions at
episode k, respectively. Now, the agent strives to estimate op(k) and or(k), denoted as ôp(k) and ôr(k),
from the current trajectory τk:

ôp(k)(s
′, s, a) =

n(k)(s′, s, a)
λ + n(k)(s, a)

, ∀(s′, s, a) ∈ S × S ×A,

ôr(k)(s, a) =
∑H−1

h=0 1 [(s, a) = (s(k)h , a
(k)
h)] ⋅ r

(k)
h

nk(s, a)
, ∀(s, a) ∈ S ×A

where n(k)(s, a) denotes visitation count of state s under action a through trajectory τ(k) and
n(k)(s, a, s′) denotes visitation count of state s under action a and subsequent next state s′ through
trajectory. We denote ôpk,h = ô

p
(k)(s

(k)
h+1, s

(k)
h , a

(k)
h) and ôrk,h = r̂kh(s

(k)
h , a

(k)
h).

It can be verified that the following relations hold at episode k for the state and action pairs from the
kth trajectory {s(k)0 , a

(k)
0 , s

(k)
1 , a

(k)
1 , .., s

(k)
H−1, a

(k)
H−1, s

(k)
H }:

P(k)(s(k)h+1 ∣ s
(k)
h , a

(k)
h) = < ψ(s

(k)
h+1, s

(k)
h , a

(k)
h), o

p
(k)(s

(k)
h+1, s

(k)
h , a

(k)
h) > ,∀h ∈ [H], (D.3)

R(k)(s(k)h , a
(k)
h) = < φ(s

(k)
h , a

(k)
h), o

r
(k)(s

(k)
h , a

(k)
h) > ,∀h ∈ [H]. (D.4)

18

Note that the observed non-stationary parameters ôp(k) and ôr(k) can be interpreted partially observed
vectors.

D.1.2 Functions f and g

The function f estimates and the function g predicts as follows:

1. Function f : f forecasts one-episode-ahead non-stationary parameters ôp(k+1) and ôr(k+1) by
minimizing the following loss function Lf◇ with the regularization parameter λ ∈ R+:

Lf◇(ϕ ; ô◇(k−w+1∶k)) = λ∣∣ϕ∣∣2 +
k

∑
s=k−w+1

H−1
∑
h=0
((◻sh)⊺ϕ − ô◇s,h)

where ◇ = r, p and ◻ = φ if ◇ = r. We set ◻ = ψ if ◇ = p. We let ϕkf◇ =
argminϕLf◇(ô◇k−(w−1)∶k). We use ϕkf◇ as ô◇k+1 .

2. Function g: Then g predicts the functions P̂(k+1) and R̂(k+1), denoted as ĝP(k+1) and ĝR(k+1),

as P̂(k+1) = ĝP(k+1) ∶=< φ, ô
p
(k+1) > and R̂(k+1) = ĝR(k+1) ∶=< φ, ôrk+1 > +2Γ

(k)
w , where

Γ
(k)
w (s, a) ∶ S ×A → R is the exploration bonus term that adapts the counter-based bonus

terms in the literature.

We elaborate on above two procedures below:

1. The function f solves an optimization problem to obtain the future ô(k+1).

The function g ○ f forecasts the k + 1th episode’s non-stationary parameters as (ôp(k+1), ô
r
(k+1)) from

ô(k−w+1∶k), where w is the sliding window length (past reference length). The function f forecasts
op(k+1) and or(k+1) by minimizing the following two regularized least-squares optimization problems
[18].

ôp(k+1) = argmin
o∈R∣S∣2 ∣A∣

⎛
⎝
λ∣∣o∣∣2 +

k,H

∑
s=k−w+1,h=0

((ψs
h)⊺o − ôps,h)

⎞
⎠

(D.5)

õr(k+1) = argmin
o∈R∣S∣∣A∣

⎛
⎝
λ∣∣o∣∣2 +

k,H−1
∑

s=k−w+1,h=0
((φs

h)⊺o − ôrs,h)
⎞
⎠

(D.6)

2. The function g predicts P̂(k+1) and R̂(k+1) from ôk+1.

From the equations (17a) and (17b) of the paper [31], the explicit solutions of (D.5) and (D.6) are
given as

ôp(k+1)(s
′, s, a) = ∑

k
t=k−w+1 nt(s′, s, a)

λ +∑k
t=k−w+1 nt(s, a)

, õr(k+1)(s, a) =
∑k

t=k−w+1∑H−1
h=0 1 [(s, a) = (sth, ath)] ⋅ rth

λ +∑k
t=k−w+1 nt(s, a)

.

(D.7)

Then, the ProST-T predicts the future model using the functions ĝPk+1 and ĝRk+1 as follows:

ĝPk+1(s′, s, a) ∶=< φ(s′, s, a), ôp(k+1)(s
′, s, a) >,

g̃Rk+1(s, a) ∶=< φ(s, a), õr(k+1)(s, a) >,
ĝRk+1(s, a) ∶= g̃Rk+1(s, a) + 2Γ(k)w (s, a).

We utilize the exploration bonus Γ(k)w (s, a) ∶ S ×A → R to explore those state and action pairs that

are less visited. We define it as Γ(k)w (s, a) = β (∑k
t=k−w+1 nt(s, a) + λ)

−1/2
with β > 0. Then, we

use ĝPk+1 and ĝRk+1 to denote the future MDP’s P̂(k+1) and R̂(k+1), respectively. From the following
analysis, we write P̂(k+1) = ĝP(k+1), R̃(k+1) = g̃R(k+1), and R̂(k+1) = ĝR(k+1).

19

D.1.3 Baseline algorithms Alg and Algτ

The ProST-T utilizes softmax parameterization that naturally ensures that the policy lies in the
probability simplex. For any function that satisfies θ ∶ S × A → R, the policy π(k) is generated by
the softmax transformation of θ(k) at the wall-clock time tk. Furthermore, to promote exploration
and discourage premature convergence to suboptimal policies in a non-stationary environment, we
implement a widely used strategy known as entropy regularization. We augment the future state value
function with an additional π(k)(s) entropy term, denoted by τH(s, π(k)), where τ > 0. We perform
a theoretical analysis with two baseline algorithms : Natural Policy Gradient (NPG) Alg and Natural
Policy Gradient (NPG) with entropy regularization Algτ

Softmax parameterization. For any function that satisfies θ ∶ S × A → R, the policy π(k) is
generated by the softmax transformation of θ(k) at the wall-clock time tk. Using the notation
π(k) = πθ(k) , the soft parameterization is defined as

πθ(k)(a∣s) ∶=
exp (θ(k)(s, a))

∑a′∈A exp (θ(k)(s, a′)) ,∀(s, a) ∈ S ×A.

Under the softmax parameterization, the NPG update rule admits a simple form of update rule given
in line 17 of Algorithm 2 in Appendix F.1. This is elaborated in [21].

Entropy regularized value maximization. For any policy π, we define the forecasted entropy-
regularized state value function V̂

π,ttk+1
τ (s) as

V̂ π,tk+1
τ (s) ∶= V̂ π,tk+1(s) + τH(s, π)

where τ ≥ 0 is a regularization parameter andH(s, π) is a discounted entropy defined as

H(s, π) ∶= EM̂(k+1)
[
H−1
∑
h=0
−γh logπ(â(k+1)h ∣ŝ(k+1)h)∣ŝ(k+1)0 = s] .

Also, we define the forecasted regularized Q-function Q̂π,(k+1)
τ as

Q̂π,tk+1
τ (s, a) = r̂tk+1h + γEs′∼P̂tk+1(⋅∣s,a)

[V̂ π,tk+1
τ (s′)]

where (s′, s, a) = (ŝ(k+1)h+1 , ŝ
(k+1)
h , â

(k+1)
h).

D.2 Notation for theoretical analysis

This subsection introduces some notations that we will use in the proofs.

At the wall-clock time tk, we define the forecasting model error ∆r
tk
(s, a) and forecasting transition

probability model error ∆p
tk
(s, a) below:

∆r
tk
(s, a) ∶= ∣(R(k+1) − R̃(k+1)) (s, a)∣ , (D.8)

∆p
tk
(s, a) ∶= ∣∣(P(k+1) − P̂(k+1)) (⋅ ∣ s, a)∣∣1 . (D.9)

Recall that R̃(k+1) and P̂(k+1) estimate the future reward and transition probability by solving the
optimization problems (D.5) and (D.6).

We define a model error that considers the bonus term as

∆Bonus,r
tk

(s, a) ∶= ∣(R(k+1) − R̂(k+1)) (s, a)∣

where R̂(k+1)(s, a) = R̃(k+1)(s, a) + 2Γ(k)w (s, a).

We also define the empirical forecasting reward model error ∆̄r
tk,h

and the empirical forecasting
transition probability model error ∆̄p

tk,h
:

∆̄r
tk,h
∶= ∣(R(k+1) − R̃(k+1)) (s(k+1)h , a

(k+1)
h)∣ ,

∆̄p
tk,h
∶= ∣∣(P(k+1) − P̂(k+1)) (⋅ ∣ s(k+1)h , a

(k+1)
h)∣∣

1

20

as well as the empirical bonus based on the reward model error:

∆̄Bonus,r
tk,h

∶= ∣(R(k+1) − R̂(k+1)) (s(k+1)h , a
(k+1)
h)∣ .

Likewise, we define total empirical forecasting reward model error ∆̄r
K and the total empirical

forecasting transition probability model error ∆̄p
K :

∆̄r
K ∶=

K−1
∑
k=1

H−1
∑
h=0

∆̄r
tk,h

, (D.10)

∆̄p
K ∶=

K−1
∑
k=1

H−1
∑
h=0

∆̄p
tk,h

. (D.11)

We simplify the symbols ∆r
tk
(s, a),∆p

tk
(s, a),∆Bonus,r

tk
(s, a), ∆̄r

tk,h
, ∆̄p

tk,h
, ∆̄Bonus,r

tk,h
as

∆r
(k)(s, a),∆

p
(k)(s, a),∆

Bonus,r
(k) (s, a), ∆̄r

(k),h, ∆̄
p
(k),h, ∆̄

Bonus,r
(k),h , respectively.

We also define a variable Λtk
w (s, a) that quantifies the visitation:

Λtk
w (s, a) =

⎡⎢⎢⎢⎢⎣
λ +

k

∑
t=(1∧k−w+1)

nt(s, a)
⎤⎥⎥⎥⎥⎦

−1

. (D.12)

It can be verified that
Γtk
w (s, a) = β

√
Λtk
w (s, a). (D.13)

As before, we simplify the notations Λtk
w (s, a) and Γtk

w (s, a) as Λ(k)w (s, a) and Γ
(k)
w (s, a). We define

rmax, r̃max,R
max
(k+1), and R̃max

(k+1) as follows:

Rmax
(k+1) ∶=max

(s,a)
∣R(k+1)(s, a)∣,

rmax ∶= max
1≤k≤K−1

Rmax
(k+1),

R̃max
(k+1) ∶=max

(s,a)
∣R̃(k+1)(s, a)∣,

r̃max ∶= max
1≤k≤K−1

R̃max
(k+1)

and since ∣∣R̂(k+1)(s, a)∣∣∞ ≤ ∣∣R̃(k+1)(s, a)∣∣∞ + ∣∣2Γ(k)w (s, a)∣∣∞ = R̃max
(k+1) +

2β√
λ

, we define r̂k+1max as

r̂max
(k+1) ∶= R̃max

(k+1) +
2β√
λ
.

Also, since β and λ are hyperparameters independent of k, we have that

r̂max = r̃max +
2β√
λ
. (D.14)

D.3 Proofs

Proof of Theorem 1. Following the definition of the dynamic regret (Definition C.1), it can be
separated into three terms:

R ({π̂(k+1)}1∶K−1,K))

=
K−1
∑
k=1
(V ˚,(k+1)(s0) − V π̂(k+1),(k+1)(s0))

=
K−1
∑
k=1
(V ˚,(k+1)(s0) − V̂ ˚,(k+1)(s0))

´¹¹¹¸¹¹¹¶
1

+
K−1
∑
k=1
(V̂ ˚,(k+1)(s0) − V̂ π̂(k+1),(k+1)(s0))

´¹¹¸¹¹¶
2

+
K−1
∑
k=1
(V̂ π̂(k+1),(k+1)(s0) − V π̂(k+1),(k+1)(s0))

´¹¹¸¹¹¶
3

21

1. Upper bound on 1 . The gap between V π˚,(k+1),(k+1)(s0) and V̂ π̂˚,(k+1),(k+1)(s0) comes from
the gap between two optimal value functions evaluated for two different MDPs:M(k+1) and M̂(k+1).

We will first come up with an upper bound on the difference between Q
˚,(k+1)
h (s, a) and

Q̂
˚,(k+1)
h (s, a) for any (s, a) ∈ S × A. The difference can be separated into three terms as fol-

lows:

Q
˚,(k+1)
h (s, a) − Q̂˚,(k+1)

h (s, a) ≤ ∣∣Q˚,(k+1)
h (s, a) −Q˚,(k+1)

∞ (s, a)∣∣∞
´¹¹¹¸¹¹¹¶

1.1

+ (Q˚,(k+1)
∞ (s, a) − Q̂˚,(k+1)

∞ (s, a))
´¹¹¹¸¹¹¶

1.2

+ ∣∣Q̂˚,(k+1)
h (s, a) − Q̂˚,(k+1)

∞ (s, a)∣∣∞
´¹¹¹¸¹¹¹¶

1.3

1.1. Terms 1.1 and 1.3 .

First, the term 1.1 can be bounded as follows:

1.1 = ∣∣EM(k+1),π˚[
H−h−1
∑
i=0

γir
(k+1)
i+h −

∞
∑
i=0
γir
(k+1)
i ∣ s(k+1)h = s, a(k+1)h = a]∣∣

∞

≤ ∣
∞
∑

i=H−h
γirmax∣

= γ
H−h

1 − γ rmax

Through a similar process, we can also obtain the upper bound: 1.3 ≤ γH−h/(1 − γ)r̂max.

1.2. Term 1.2 .

An upper bound on the term 1.2 can be obtained by utilizing ῑ(k+1)∞ (s, a) (Def (C.10)). Then, the

Q-function gap between Q˚,(k+1)
∞ and Q̂˚,(k+1)

∞ can be represented using the Bellman equation as
follows:

1.2 = (Q˚,(k+1)
∞ − Q̂˚,(k+1)

∞) (s, a) (D.15)

= (R(k+1) + γP(k+1)V ˚,(k+1)
∞)(s, a) − Q̂˚,(k+1)

∞ (s, a) (D.16)

= (R(k+1) + γP(k+1)V̂ ˚,(k+1)
∞ − Q̂˚,(k+1)

∞)(s, a) + γP(k+1) (V ˚,(k+1)
∞ − V̂ ˚,(k+1)

∞) (s, a)
≤ ῑk+1∞ (s, a) + γP(k+1) (V ˚,(k+1)

∞ − V̂ ˚,(k+1)
∞) (s, a)

= ῑk+1h (s, a) + γP(k+1) (⟨Q˚,(k+1)
∞ , π˚,(k+1)⟩A − ⟨Q̂˚,(k+1)

∞ , π̂˚,(k+1)⟩A) (s, a) (D.17)

= ῑk+1∞ (s, a) + γP(k+1)(⟨Q˚,(k+1)
∞ − Q̂˚,(k+1)

∞ , π˚,(k+1)⟩A
+ ⟨Q̂˚,(k+1)

∞ , π˚,(k+1) − π̂˚,(k+1)⟩A)(s, a)
≤ ῑk+1∞ (s, a) + γP(k+1) (⟨Q˚,(k+1)

∞ − Q̂˚,(k+1)
∞ , π˚,(k+1)⟩A) (s, a) (D.18)

where (D.16) and (D.17) hold by the definition of Bellman equation ((C.3) and (C.7)). Equation
(D.18) holds by ⟨Q̂˚,(k+1)

∞ , π˚,(k+1) − π̂˚,(k+1)⟩A(s, a) ≤ 0 since π̂˚,(k+1) is the optimal policy of
Q̂

˚,(k+1)
∞ . We now define the matrix operator (P ○π)(s, a) ∶ R∣S∣∣A∣ → R∣S∣∣A∣ as the transition matrix

22

that captures how the state-action pair transitions from (s, a) to (s′, a′) when following the policy π
in an environment with the transition probability P. Also, define the one-vector 1(s,a) ∈ R∣S∣A∣ such
that the (s, a)th entity is one and the remaining entries are zero. Then, the equation (D.15) becomes
the same as the (s, a)th entity of the vector 1(s,a) ⋅ (Q˚,(k+1)

∞ − Q̂˚,(k+1)
∞)(s, a). Also, the right-hand

side of equation (D.18) can be represented as

P(k+1) (⟨Q˚,(k+1)
∞ − Q̂˚,(k+1)

∞ , π˚,(k+1)⟩A) (s, a) = (P(k+1) ○ π˚,(k+1))
⋅ (1(s,a) ⋅ (Q˚,(k+1)

∞ − Q̂˚,(k+1)
∞)) (s, a)

= (Pk+1
π˚) (1(s,a) ⋅ (Q˚,(k+1)

∞ − Q̂˚,(k+1)
∞)) (s, a)

where we denote P(k+1) ○ π˚,(k+1) ∶= P(k+1)
π˚ for notational simplicity.

Then, we can reformulate the inequality (between (D.15) and (D.18)) into a vector form which holds
element-wise for all s, a:

(1(s,a) ⋅ (Q˚,(k+1)
∞ − Q̂˚,(k+1)

∞)) (s, a) ≤1(s,a) ⋅ ῑ(k+1)∞ (s, a)

+ γ(P(k+1)
π˚) (1(s,a) ⋅ (Q˚,(k+1)

∞ − Q̂˚,(k+1)
∞)) (s, a)

Then, rearranging the above inequality yields that

1(s,a) ⋅ (Q˚,(k+1)
∞ − Q̂˚,(k+1)

∞) (s, a) ≤ (I − γPk+1
π˚)−11(s,a) ⋅ ῑk+1∞ (s, a) (D.19)

= 1

1 − γ ῑ
k+1
∞ (s, a)

Now, note that (I − γP(k+1)
π˚)−1 can be expanded with an infinite summation of the matrix operator

P(k+1) ○ π˚,(k+1) as (I − γP(k+1)
π˚)−1 = I + γP(k+1)

π˚ + (γP(k+1)
π˚)2 + ...s. Since, 1(s,a) can be viewed

as the Dirac delta state-action distribution that always yields (s, a), it holds that νπ
˚,(k+1),(k+1)
(s,a) =

(I−γP(k+1)
π˚)−11(s,a), where ν is the unnormalized occupancy measure of (s, a) in light of Definition

(C.8). Then taking the l1 norm over the inequality (D.19) yields the that

∣∣1(s,a) ⋅ (Q˚,(k+1)
∞ − Q̂˚,(k+1)

∞) (s, a)∣∣
1
≤ ∣∣(I − γPk+1

π˚)−11(s,a) ⋅ ῑk+1∞ (s, a)∣∣1
= ∣∣(I − γPk+1

π˚)−11(s,a)∣∣1 ⋅ ∣ῑ
k+1
∞ (s, a)∣

= 1

1 − γ
∣ῑk+1∞ (s, a)∣ (D.20)

Equation (D.20) holds since νπ
˚,(k+1),(k+1)
(s,a) is an unnormalized probability distribution.

Then, for every (s, a, h) ∈ S ×A × [H], it follows from combining the terms 1.1 , 1.2 and 1.3 that

Q
˚,(k+1)
h (s, a) − Q̂˚,(k+1)

h (s, a) ≤ γ
H−h

1 − γ (rmax + r̂max) +
1

1 − γ
∣ῑ(k+1)∞ (s, a)∣

1.3. Combining the terms 1.1 , 1.2 and 1.3 .

Finally, an upper bound on 1 is derived as

1 =
K−1
∑
k=1
(V π˚,(k+1),(k+1)(s0) − V̂ π̂˚,(k+1),(k+1)(s0))

≤
K−1
∑
k=1
∣∣Q˚,(k+1) − Q̂˚,(k+1)∣∣∞

=
K−1
∑
k=1
⋅ γ

H

1 − γ (rmax + r̂max) +
1

1 − γ
K−1
∑
k=1
∣∣ῑk+1∞ ∣∣∞

= (K − 1) ⋅ γ
H

1 − γ (rmax + r̂max) +
1

1 − γ ῑ
K
∞ (D.21)

23

where we have defined ῑK∞ ∶= ∑K−1
k=1 ∣∣ῑ

(k+1)
∞ ∣∣

∞
in Theorem 1.

2. Upper bound on 2 .

The gap between V̂ ˚,(k+1)(s0) and V̂ π̂(k+1),(k+1)(s0) comes from the optimization error between the
optimal policy π̂˚,(k+1) and the policy π̂(k+1), which are both driven from the same MDP M̂(k+1) .
We also separate this gap into three terms:

2 ’s (k)th term = V̂ ˚,(k+1)(s0) − V̂ π̂(k+1),(k+1)(s0)

= (V̂ ˚,(k+1)(s0) − V̂ ˚,(k+1)
∞ (s0)) + (V̂ ˚,(k+1)

∞ (s0) − V̂ π̂(k+1),(k+1)
∞ (s0))+

+ (V̂ π̂(k+1),(k+1)
∞ (s0) − V̂ π̂(k+1),(k+1)(s0)) (D.22)

≤ (V̂ ˚,(k+1)
∞ (s0) − V̂ π̂(k+1),(k+1)

∞ (s0))
´¹¹¹¸¹¹¶

2.1

+2γ
H r̂max

1 − γ (D.23)

where the subscript∞ in the notations V̂ π,(k+1)
∞ (s0) and V̂ π,(k+1)

∞,τ (s0) indicate the forecasted value
function and the forecasted entropy-regularized value function when H = ∞ (infinite horizon MDPs).
Equation (D.22) holds since V̂ π,(k+1)(s)− V̂ π,(k+1)

∞ (s) = EM̂(k+1),π
[∑∞h=H γhr̂

(k+1)
h ∣ s = ŝ(k+1)0] ≤

γH

1−γ r̂max holds for all π ∈ Π.

2.1. Upper bound on 2 - NPG without entropy regularization (Alg). The term 2.1 in (D.23)
can be bounded as

2.1 =V̂ ˚,(k+1)
∞ (s0) − V̂ π̂(k+1),(k+1)

∞ (s0)

≤ log ∣A∣
ηG

+ 1

(1 − γ)2G (D.24)

due to Theorem 5.3 in [38]. Now, combining D.23 and D.24 offers an upper bound of the term 2 ’s
(k)th term as follows:

2 ’s (k)th term = V̂ π̂˚,(k+1),(k+1)(s0) − V̂ π̂(k+1),(k+1)(s0)

≤ 1

(1 − γ)2G +
log ∣A∣
ηG

+ 2γH r̂max

1 − γ

Hence,

2 =
K−1
∑
k=1
(V̂ π̂˚,(k+1),(k+1)(s0) − V̂ π̂(k+1),(k+1)(s0))

≤ (K − 1)(1

(1 − γ)2G +
log ∣A∣
ηG

+ 2γH r̂max

1 − γ) (D.25)

2.2. Upper bound on 2 - NPG with entropy regularization (Algτ).

24

The term 2.1 in (D.23) can be further bounded as follows:

2.1 =V̂ ˚,(k+1)
∞ (s0) − V̂ π̂(k+1),(k+1)

∞ (s0)

= (V̂ ˚,(k+1)
∞ (s0) − V̂ ˚,(k+1)

∞,τ (s0)) + (V̂ ˚,(k+1)
∞,τ (s0) − V̂ π̂(k+1),(k+1)

∞,τ (s0))

+(V̂ π̂(k+1),(k+1)
∞,τ (s0) − V̂ π̂(k+1),(k+1)

∞ (s0))

≤ ∣∣V̂ ˚,(k+1)
∞ (s0) − V̂ ˚,(k+1)

∞,τ (s0)∣∣∞ + ∣∣V̂
˚,(k+1)
∞,τ (s0) − V̂ π̂(k+1),(k+1)

∞,τ (s0)∣∣∞
+ ∣∣V̂ π̂(k+1),(k+1)

∞,τ (s0) − V̂ π̂(k+1),(k+1)
∞ (s0)∣∣∞

≤ ∣∣V̂ ˚,(k+1)
∞,τ (s0) − V̂ π̂(k+1),(k+1)

∞,τ (s0)∣∣∞
´¹¹¸¹¹¶

2.2

+2τ log ∣A∣
1 − γ (D.26)

where (D.26) holds since ∣∣V̂ π,(k+1)
∞ (s0) − V̂ π,(k+1)

∞,τ (s0)∣∣∞ = τ maxs ∣H(s, π)∣ ≤ τ log∣A∣
1−γ holds for

all π.

We now bound the term 2.2 in (D.26). With the policy-update rule of ProST-T (Algorithm 2 in
Appendix F.2), suppose that for a given g ∈ [∆π], we have obtained an inexact soft Q-function
value of the policy π̂(g) as Q̃

π̂(g)
τ , where Q̂

π̂(g)
τ denotes an exact soft forecated Q-function value and

g is the iteration index. The approximation gap ∣Q̃π̂(g)
τ − Q̂π̂(g)

τ ∣ results from computing Q using a
finite number of samples. For a hyperparameter δ, let the maximum of the approximation gap over
(s, a) is smaller than δ, namely ∣∣Q̃π̂(g)

τ − Q̂π̂(g)
τ ∣∣∞ ≤ δ holds. Then, for iteration g = 1,2, ..,∆π, the

policy-update rule of ProST-T can be written as

π̂(g+1)(⋅∣s) =
1

Z(g)
⋅ (π̂(g)(⋅∣s))

1− ητ
1−γ exp

⎛
⎝
ηQ̃

π̂(g)
τ (s, a)
1 − γ

⎞
⎠

where ∣∣Q̃π̂(g)
τ (s, a) − Q̂π̂(g)

τ (s, a)∣∣∞ ≤ δ for ∀(s, a) ∈ S ×A

where Z(g)(s) = ∑a∈A (π̂(g)(a∣s))
1− ητ

1−γ exp ((ηQ̂π̂(g)
τ (s, a))/(1 − γ)).

In light of Theorem 2 in [21], when the learning rate is such that 0 ≤ η ≤ (1 − γ)/τ , then the
approximate entropy-regularized NPG method satisfies the linear convergence theorem for every
g ∈ [∆π]:

∣∣Q̂˚,(k+1)
τ − Q̂π̂(g)

τ ∣∣∞ ≤ γ [(1 − ητ)g−1C1 +C2] (D.27)

∣∣ log π̂˚,(k+1) − log π̂(g)∣∣∞ ≤ 2τ−1 [(1 − ητ)g−1C1 +C2] (D.28)

where

C1 ∶= ∣∣Q̂˚,(k+1)
τ − Q̂π̂(0)

τ ∣∣∞ + 2τ (1 −
ητ

1 − γ) ∣∣ log π̂
˚,(k+1) − log π̂(0)∣∣∞

= ∣∣Q̂˚,(k+1)
τ − Q̂π(k)

τ ∣∣∞ + 2τ (1 −
ητ

1 − γ) ∣∣ log π̂
˚,(k+1) − log π̂(k)∣∣∞ (D.29)

C2 ∶=
2δ

1 − γ (1 +
γ

ητ
) (D.30)

The equation (D.29) holds since the policy that the agent executes at the wall-clock time tk (episode
k), i.e., π(k), is same as the initial policy of the policy iteration, i.e., π̂(0), at the wall-clock time tk.
Also, the policy that the agent executes at the wall-clock time tk+1, i.e., π̂(k+1), is same as the policy
after ∆π steps of the soft policy iteration, i.e., π̂(∆π) at the wall-clock time tk+1.

Now, the term 2.2 can be bounded as follows:

25

2.2 = ∣∣V̂ ˚,(k+1)
τ − V̂ π̂(k+1)

τ ∣∣∞
= ∣∣V̂ ˚,(k+1)

τ − V̂ π̂(∆π)
τ ∣∣∞

≤ ∣∣Q̂˚,(k+1)
τ − Q̂π̂(∆π)

τ ∣∣∞ + τ ∣∣ log π̂˚,(k+1) − log π̂(g)∣∣∞
≤ (γ + 2) [(1 − ητ)∆π−1C1 +C2] (D.31)

Combining (D.23,D.26 and D.31) offers an upper bound on the term 2 ’s k(th) term as follows,

2 ’s (k)th term = V̂ π̂˚,(k+1),(k+1)(s0) − V̂ π̂(k+1),(k+1)(s0)

≤ (γ + 2) [(1 − ητ)∆π−1C1 +C2] +
2γH r̂max

1 − γ + 2τ log ∣A∣
1 − γ (D.32)

Hence,

2 =
K−1
∑
k=1
(V̂ π̂˚,(k+1),(k+1)(s0) − V̂ π̂(k+1),(k+1)(s0))

≤ (K − 1)((γ + 2) [(1 − ητ)∆π−1C1 +C2] +
2γH r̂max

1 − γ + 2τ log ∣A∣
1 − γ) (D.33)

where (D.32) and (D.33) hold when 0 ≤ η ≤ (1 − γ)/τ
3. Upper bound on 3 .

By recalling Definition (C.11), note that ι
(k+1)
h (ŝ(k+1)h , â

(k+1)
h) is an empirical estimated

model prediction error, measuring the gap between M(k+1) and M̂(k+1). Specifically, at
episode k, the ProST algorithm creates the future MDP M̂(k+1) and evaluates V̂ and Q̂ us-
ing π̂(k+1). Subsequently at episode k + 1, the agent uses π̂(k+1) to rollout a trajectory
{s(k+1)0 , a

(k+1)
0 , s

(k+1)
1 , a

(k+1)
1 , ..., s

(k+1)
H−1 , a

(k+1)
H−1 , s

(k+1)
H }. Based on this observation, one can write

ι
(k+1)
h (s(k+1)h , a

(k+1)
h) =R(k+1)(s(k+1)h , a

(k+1)
h) + γ(P(k+1)V̂ π̂(k+1),(k+1)

h+1)(s(k+1)h , a
(k+1)
h)

−Q̂π̂(k+1),(k+1)
h (s(k+1)h , a

(k+1)
h)

=R(k+1)(s(k+1)h , a
(k+1)
h) + γ(P(k+1)V̂ π̂(k+1),(k+1)

h+1)(s(k+1)h , a
(k+1)
h)

−Qπ̂(k+1),(k+1)
h (s(k+1)h , a

(k+1)
h) +Qπ̂(k+1),(k+1)

h (s(k+1)h , a
(k+1)
h)

− Q̂π̂(k+1),(k+1)
h (s(k+1)h , a

(k+1)
h)

=γP(k+1)(V̂ π̂(k+1),(k+1)
h+1 − V π̂(k+1),(k+1)

h+1)(s(k+1)h , a
(k+1)
h)

+Qπ̂(k+1),(k+1)
h (s(k+1)h , a

(k+1)
h) − Q̂π̂(k+1),(k+1)

h (s(k+1)h , a
(k+1)
h) (D.34)

Equation (D.34) holds due to (C.6). Now, we define the operator Î(k+1) for a function f ∶ S ×A → R
as follows:

(Î(k+1)f)(s) ∶= ⟨f(s, ⋅), π̂(k+1)(⋅∣s)⟩A

Recall that V̂
π̂(k+1),(k+1)
h (s) = ⟨Q̂π̂(k+1),(k+1)

h , π̂(k+1)⟩A and V
π̂(k+1),(k+1)
h (s) =

⟨Qπ̂(k+1),(k+1)
h , π̂(k+1)⟩A in light of (C.6) and (C.2). Then, the gap between V̂ π̂(k+1),(k+1)

h+1 (s(k+1)h)

26

and V π̂(k+1),(k+1)
h+1 (s(k+1)h) can be expanded as

V̂
π̂(k+1),(k+1)
h (s(k+1)h) − V π̂(k+1),(k+1)

h (s(k+1)h)

= (Î(k+1) (Q̂π̂(k+1),(k+1)
h −Qπ̂(k+1),(k+1)

h)) (s(k+1)h)

= (Î(k+1) (Q̂π̂(k+1),(k+1)
h −Qπ̂(k+1),(k+1)

h)) (s(k+1)h) − ι(k+1)h (s(k+1)h , a
(k+1)
h)

+ γP(k+1)(V̂ π̂(k+1),(k+1)
h+1 − V π̂(k+1),(k+1)

h+1)(s(k+1)h , a
(k+1)
h)

+ (Qπ̂(k+1),(k+1)
h − Q̂π̂(k+1),(k+1)

h) (s(k+1)h , a
(k+1)
h)

Now, we define two sequences {D(k+1)h,1 } and {D(k+1)h,1 } , where (k, h) = (0,0), (0,1), ..., (K−1,H).
We define D(k+1)h,1 and D(k+1)h,2 as

D
(k+1)
h,1 ∶=γh (Î(k+1) (Q̂π̂(k+1),(k+1)

h −Qπ̂(k+1),(k+1)
h)) (s(k+1)h)

− γh (Q̂π̂(k+1),(k+1)
h −Qπ̂(k+1),(k+1)

h) (s(k+1)h , a
(k+1)
h)

D
(k+1)
h,2 ∶=γh+1P(k+1)(V̂ π̂(k+1),(k+1)

h+1 − V π̂(k+1),(k+1)
h+1)(s(k+1)h , a

(k+1)
h)

− γh+1 (V̂ π̂(k+1),(k+1)
h+1 − V π̂(k+1),(k+1)

h+1) (s(k+1)h+1)

Therefore, we have the following recursive formula over h:

γh (V̂ π̂(k+1),(k+1)
h − V π̂(k+1),(k+1)

h) (s(k+1)h)

=D(k+1)h,1 +D(k+1)h,2 + γh+1 (V̂ π̂(k+1),(k+1)
h+1 − V π̂(k+1),(k+1)

h+1)(s(k+1)h+1) − γ
hι
(k+1)
h (s(k+1)h , a

(k+1)
h)

The summation over h = 0,1, ..,H − 1 yields that

V̂
π̂(k+1),(k+1)
0 (s(k+1)0) − V π̂(k+1),(k+1)

0 (s(k+1)0)

=
H−1
∑
h=0
(D(k+1)h,1 +D(k+1)h,2) −

H−1
∑
h=0

γhι
(k+1)
h (s(k+1)h , a

(k+1)
h).

Now, for every (k, h) ∈ [K] × [H], we define F(k)h,1 as a σ−algebra generated by state-action

sequences {(sτi , aτi)}(τ,i)∈[k−1]×[H] ∪ {(ski , aki)}i∈[h] and define F(k)h,2 as a σ-algebra generated by

{(sτi , aτi)}(τ,i)∈[k−1]×[H] ∪ {(ski , aki)}i∈[h] ∪ {s
(k)
h+1}. A filtration {F(k)h,m}(k,h,m)∈[K]×[H]×[2] is a

sequence of σ- algebras in terms of the time index t(k, h,m) = 2(k − 1)H + 2h +m such that
F(k)h,m ⊂ Fk′

h′,m′ for every t(k, h,m) ≤ t((k′), h′,m′). The estimates V̂ π,(k+1)
h and Q̂π,(k+1)

h are

F(k+1)1,1 measurable since they are forecasted from the past k historical trajectories. Now, since

D
(k+1)
h,1 ∈ F(k+1)h,1 and D(k+1)h,2 ∈ F(k+1)h,2 hold, E[D(k+1)h,1 ∣F(k+1)h−1,2] = 0 and E[D(k+1)h,2 ∣F(k+1)h,1] = 0.

Notice that t(k,0,2) = t(k − 1,H,2) and F(k)0,2 = F
(k−1)
H,2 for ∀k ≥ 2. Therefore, one can define a

martingale sequence adapted to the filtration {F(k)h,m}(k,h,m)∈[K]×[H]×[2]:

s
(k+1)
h,j =

k

∑
k′=1

H−1
∑
h′=0
(Dk′

h′,1 +Dk′

h′,2) +
h

∑
h′=0
(D(k+1)h′,1 +D

(k+1)
h′,2) + ∑

(k′,h′,j)∈[K]×[H]×[2]
Dk′

h′,j

Let
K−1
∑
k=1

H−1
∑
h=0
(D(k+1)h,1 +D(k+1)h,2) = SK−1

H,2

27

Since γhQ̂
π̂(k+1),(k+1)
h , γh+1V̂

π̂(k+1),(k+1)
h+1 ∈ [0, r̂max/(1 − γ)] and

γhQ
π̂(k+1),(k+1)
h , γh+1V

π̂(k+1),(k+1)
h+1 ∈ [0, rmax/(1 − γ)], it holds that ∣D(k+1)h,1 ∣, ∣D(k+1)h,s ∣ ≤

(rmax ∨ r̂max)/(1 − γ) for ∀(k, h) ∈ [K − 1] × [H]. Then, by the Azuma-Hoeffding inequlaity, the
following inequality holds:

P (∣SK−1
H,2 ∣ ≤ s) ≥ 2 exp

⎛
⎜⎜
⎝

−s2

16 (rmax∨r̂max
1−γ)

2
⋅ (K − 1)H

⎞
⎟⎟
⎠

For any p ∈ (0,1), if we set s = 4(rmax ∨ r̂max)(1 − γ)−1
√
(K − 1)H log(4/p), then the inequality

holds with probability at least 1 − p/2. The term 3 can be bounded as

3 =
K−1
∑
k=1

H−1
∑
h=0
(D(k+1)h,1 +D(k+1)h,2) −

K−1
∑
k=1

H−1
∑
h=0

γhι
(k+1)
h (s(k+1)h , a

(k+1)
h)

≤ 4(rmax ∨ r̂max)
1 − γ

√
(K − 1)H log(4/p) − ιKH (D.35)

4. Upper bound on dynamic regret.

4.1. Upper bound on dynamic regret - without entropy regularization.

For without entropy-regularized case, combining the equations (D.21), (D.25) and (D.35) leads to
the following upper bound on the dynamic regret for a future policy {π̂} that holds with probability
at least 1 − p/2:

R ({π̂(k+1)}1∶K−1,K))
= 1 + 2 + 3

≤ (K − 1) ⋅ γ
H

1 − γ (rmax + r̂max) +
1

1 − γ ῑ
K
∞

+ (K − 1)(1

(1 − γ)2∆π
+ log ∣A∣

η∆π
+ 2γH r̂max

1 − γ)

+ 4(rmax ∨ r̂max)
1 − γ

√
(K − 1)H log(4/p) − ιKH

Taking an upper bound on rmax and r̂max using (rmax ∨ r̂max) yields the following upper bound that
holds with probability at least 1 − p/2:

R ({π̂(k+1)}1∶K−1,K))

≤ (K − 1)(1

(1 − γ)2∆π
+ log ∣A∣

η∆π
+ 4γH(r̂max ∨ rmax)

1 − γ

+ 4(rmax ∨ r̂max)
1 − γ

√
H log(4/p)
K − 1) + 1

1 − γ ῑ
K
∞ − ιKH

4.2. Upper bound on dynamic regret - with entropy regularization.

For the entropy-regularized case, combining the equations (D.21), (D.33), (D.35) leads to the follow-
ing upper bound on the dynamic regret for a future policy {π̂} that holds with probability at least
1 − p/2:

28

R ({π̂(k+1)}1∶K−1,K))
= 1 + 2 + 3

≤ (K − 1) ⋅ γ
H

1 − γ (rmax + r̂max) +
1

1 − γ ῑ
K
∞

+ (K − 1)((γ + 2) [(1 − ητ)∆π−1C1 +C2] +
2γH r̂max

1 − γ + 2τ log ∣A∣
1 − γ)

+ 4(rmax ∨ r̂max)
1 − γ

√
(K − 1)H log(4/p) − ιKH

Then, the following holds with probability at least 1 − p/2:

R ({π̂(k+1)}1∶K−1,K))

≤ (K − 1)((γ + 2) [(1 − ητ)∆π−1C1 +C2] +
4γH(r̂max ∨ rmax)

1 − γ + 2τ log ∣A∣
1 − γ

+ 4(rmax ∨ r̂max)
1 − γ

√
H log(4/p)
K − 1) + 1

1 − γ ῑ
K
∞ − ιKH

4.3. Upper bound of Theorem 1.

Then, combining 4.1, 4.2 provides the expression,

R ({π̂(k+1)}1∶K−1,K)) ≤RI +RII

where RII = RAlg if we use Alg as the baseline algorithm and RII = Algτ if we use RAlgτ as the
baseline algorithm:

RI =
1

1 − γ ῑ
K
∞ − ι

(k)
H +Cp

√
K − 1

RAlg = CAlg(∆π) ⋅ (K − 1)
RAlgτ = CAlgτ (∆π) ⋅ (K − 1)

where the corresponding constants are

Cp =
4(rmax ∨ r̂max)

1 − γ
√
H log(4/p), CAlg(∆π) = (

1

(1 − γ)2 +
log ∣A∣
η
) ⋅ 1

∆π
+ 4γH(r̂max ∨ rmax)

1 − γ

CAlgτ (∆π) = (γ + 2) [(1 − ητ)∆π−1C1 +C2] +
4γH(r̂max ∨ rmax)

1 − γ + 2τ log ∣A∣
1 − γ

Lemma 1 (Conditions on ∆π andH to guarantee the optimal threshold 2ϵ of 2 without entropy
regularization). We decompose the term 2 as

2 ’s (k)th term = 1

(1 − γ)2∆π
+ log ∣A∣

η∆π
´¹¹¸¹¹¹¶

2 − a ≤ ϵ

+ 2γH r̂max

1 − γ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2 − b ≤ ϵ

To guarantee that the terms 2 − a and 2 − b are each less than or equal to ϵ, it suffices to satisfy
the following conditions for τ, η,∆π and H:

2 − a ∶∆π ≥ (
1

(1 − γ)2 +
log ∣A∣
η
) ⋅ 1

ϵ

2 − b ∶H ≥
log(1−γ

2r̂max
ϵ)

log(γ) or H ≥ 1

1 − γ log(2r̂max

(1 − γ)ϵ)

29

Lemma 2 (Conditions on τ,∆π,H to guarantee the optimal threshold 4ϵ of 2 with entropy
regularization). We decompose the term 2 as

2 ’s (k)th term = (γ + 2) [(1 − ητ)∆π−1C1]
´¹¹¹¸¹¹¶

2 − a ≤ ϵ

+(γ + 2)C2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2 − b ≤ ϵ

+ 2γ
H r̂max

1 − γ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2 − c ≤ ϵ

+ 2τ log ∣A∣
1 − γ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2 − d ≤ ϵ

To guarantee that the terms 2 − b , 2 − c and 2 − d are each less than or equal to ϵ, it suffices to
satisfy the following conditions for τ, η,∆π and H:

2 − b ∶ δ ≤ ϵ

(γ + 2) ⋅ 2
1−γ ⋅ (1 +

γ
ητ
)

(D.36)

2 − c ∶H ≥
log(1−γ

2r̂max
ϵ)

log(γ) or H ≥ 1

1 − γ log(2r̂max

(1 − γ)ϵ) (D.37)

2 − d ∶ τ ≤ 1 − γ
2 log ∣A∣ϵ (D.38)

and the term 2 − a offers the lower bound of iteration ∆π as follows.

2 − a ∶∆π ≥
log (ϵ

C1(γ+2))
log(1 − ητ) + 1 or ∆π ≥

1

ητ
log(C1(γ + 2)

ϵ
) + 1 (D.39)

The inequalities (D.37) and (D.39) results from applying the first-order Taylor series on log(γ) and
log(1 − ητ) since γ ∈ (0,1] and η ∈ (0, (1 − γ)/τ]. The inequalities (D.36) and (D.39) implies that
if the learning rate η is fixed in the admissible range, then the iteration complexity scales inversely
proportional to τ , and the upper bound on δ, which we will denote it as δmax, also scales proportional
to τ .

Now, the best guaranteed convergence can be achieved when η∗ = (1 − γ)/τ (associated with the
value of η that minimizes the equation (D.29)), for which conditions of hyperparameters ∆π,η∗ and
δη∗ are

2 − a ∶∆π,η∗ ≥
1

1 − γ log
⎛
⎝
∣∣Q̂˚,(k+1)

τ − Q̂π̂(0)

τ ∣∣∞(γ + 2)
ϵ

⎞
⎠
+ 1

2 − b ∶ δη∗ ≤
ϵ(1 − γ)2
2(γ + 2) .

When η∗ = (1 − γ)/τ , the iteration complexity is now proportional to the effective horizon 1/(1 − γ)
modulo some log factor, where the iteration complexity and δmax are now independent of the choice of
the regularization parameter τ .

Lemma 3 (Sample complexity to guarantee the optimal threshold 4ϵ of 2). We define δmax as
right-hand side of the equation (D.36). If we have the number of samples per state-action pairs is at
least the order of

1

(1 − γ)3δ2max

up to some logarithmic factor, then δ ≤ δmax holds with high probability and we can guarantee the
optimal threshold 4ϵ with high probability for the upper bound of 2 , provided (D.37), (D.38) and
(D.39) hold.

Proof of Theorem 2. 1. ProST-T ι
(k)
H :

30

The empirical estimated model prediction error ι(k+1)h (s(k+1)h , a
(k+1)
h) is represented as follows

(Definition (C.11)):

−ι(k+1)h (s(k+1)h , a
(k+1)
h) = −R(k+1)(s(k+1)h , a

(k+1)
h) − γ(P(k+1)V̂ π̂(k+1),(k+1)

h+1)(s(k+1)h , a
(k+1)
h)

+ Q̂π̂(k+1),(k+1)
h (s(k+1)h , a

(k+1)
h) (D.40)

= −R(k+1)(s(k+1)h , a
(k+1)
h) − γ(P(k+1)V̂ π̂(k+1),(k+1)

h+1)(s(k+1)h , a
(k+1)
h)

+ R̂(k+1)(s(k+1)h , a
(k+1)
h) + γ(P̂(k+1)V̂ π̂(k+1),(k+1)

h+1)(s(k+1)h , a
(k+1)
h)

(D.41)

=(R̂(k+1) −R(k+1)) (s(k+1)h , a
(k+1)
h)

+ γ ((P̂(k+1) − P(k+1)) V̂ π̂(k+1),(k+1)
h+1) (s(k+1)h , a

(k+1)
h)

≤∆̄Bonus,r
(k),h + γ ∣∣(P̂(k+1) − P(k+1)) (⋅ ∣ s(k+1)h , a

(k+1)
h)∣∣

1
∣∣V̂ π̂(k+1),(k+1)

h+1 (⋅)∣∣
∞

≤∆̄Bonus,r
(k),h + γ∆̄p

k,h

γH−hr̂max

1 − γ (D.42)

≤∆̄r
(k),h + 2Γ(k)w (s

(k+1)
h , a

(k+1)
h) + γ∆̄p

(k),h
γH−hr̂max

1 − γ (D.43)

The equation (D.41) holds due to the future Bellman equation (C.6), the equation (D.42) holds since

∣∣V̂ π̂(k+1),(k+1)
h+1 (⋅)∣∣

∞
≤ ∑H

h′=h+1 γ
h′−(h+1)r̂max ≤ γH−hr̂max/(1 − γ), and the equation (D.43) holds

since ∆Bonus,r
(k) (s, a) ≤ ∣(R(k+1) − R̃(k+1)) (s, a)∣ + ∣2Γ(k)w (s, a)∣ =∆r

(k)(s, a) + 2Γ
(k)
w (s, a) for all

(s, a). The summation of the empirical model prediction error over all episodes and all steps can be
bounded as

−ιKH =
K−1
∑
k=1

H−1
∑
h=0
−γhι(k+1)h (s(k+1)h , a

(k+1)
h) ≤ ∆̄r

K
°

1

+
K−1
∑
k=1

H−1
∑
h=0

2Γ(k)w (s
(k+1)
h , a

(k+1)
h)

´¹¹¹¸¹¹¶
2

+γr̂max

1 − γ ∆̄p
K
°

3

(D.44)

We use Lemma 8 to bound the term 1 , Lemma 9 and (D.13) to bound the term 2 , and Lemma 11
(or Lemma 10) to bound the term 3 :

1 ≤ wHBr(∆π) + λrmax ⋅ (K − 1)
√

H

w

√
log (λ +wH

λ
) (D.45)

2 ≤ 2β(K − 1)
√

H

w

√
log (λ +wH

λ
) (D.46)

3 ≤
⎛
⎝
∣S∣
√

H2

2
log (H

δλ
) + λ

⎞
⎠
(K − 1)

√
H

w

√
log (λ +wH

λ
) +wHBp(∆π) (D.47)

31

where the inequality (D.47) holds with probability at least 1 − δ, where δ ∈ (0,1). Now, combining
(D.45), (D.46) and (D.47) that

−ιKH = −
K−1
∑
k=1

H−1
∑
h=0

ι
(k+1)
h (s(k+1)h , a

(k+1)
h)

≤ ∆̄r
K
°

1

+
K−1
∑
k=1

H−1
∑
h=0

2Γ(k)w (s
(k+1)
h , a

(k+1)
h)

´¹¹¹¸¹¹¶
2

+γr̂max

1 − γ ∆̄p
K
°

3

≤wHBr(∆π) + λrmax ⋅ (K − 1)
√

H

w

√
log (λ +wH

λ
) + 2β(K − 1)

√
H

w

√
log (λ +wH

λ
)

+ γr̂max

1 − γ
⎛
⎝
⎛
⎝
∣S∣
√

H2

2
log (H

δλ
) + λ

⎞
⎠
(K − 1)

√
H

w

√
log (λ +wH

λ
) +wHBp(∆π)

⎞
⎠

≤wH (Br(∆π) +
γr̂max

1 − γ Bp(∆π))

+ (K − 1)
√
H
⎛
⎝
λrmax + 2β +

γr̂max

1 − γ
⎛
⎝
∣S∣
√

H2

2
log (H

δλ
) + λ

⎞
⎠
⎞
⎠

√
1

w

√
log (λ +wH

λ
)

(D.48)

2. ProST-T ῑK∞ :

Recall that ῑK∞ = ∑K−1
k=1 ῑ

(k+1)
∞ . For the same δ that we used in the previous proof of [1.ProST-T ι(k)H]

(see equation (D.48)), ῑk∞ can be bounded as follows with probability at least 1 − δ:

ῑ(k+1)∞ =R(k+1) + γP(k+1)V̂ ˚,(k+1)
∞ − Q̂˚,(k+1)

∞

=R(k+1) + γP(k+1)V̂ ˚,(k+1)
∞ − (R̂(k+1) + γP̂(k+1)V̂ ˚,(k+1)

∞) (D.49)

=R(k+1) + γP(k+1)V̂ ˚,(k+1)
∞ − (R̃(k+1) + 2Γ(k)w (s, a) + γP̂(k+1)V̂ ˚,(k+1)

∞) (D.50)

=R(k+1) + γP(k+1)V̂ ˚,(k+1)
∞ − (R̃(k+1) + 2β(Λ(k)w (s, a))1/2 + γP̂(k+1)V̂ ˚,(k+1)

∞) (D.51)

=(R(k+1) − R̃(k+1)) − β(Λ(k)w (s, a))1/2 + γ (P(k+1) − P̂(k+1)) V̂ ˚,(k+1)
∞

− β(Λ(k)w (s, a))1/2 (D.52)

≤∣R(k+1) − R̃(k+1)∣ − β(Λ(k)w (s, a))1/2 + γ∣∣P(k+1) − P̂(k+1)∣∣1∣∣V̂ ˚,(k+1)
∞ ∣∣∞ − β(Λ(k)w (s, a))1/2

≤(B(k−w+1∶k)r (∆π) + λΛ(k)w (s, a)rmax) − β(Λ(k)w (s, a))1/2 (D.53)

+ γ ⋅
⎛
⎝
B(k−w+1∶k)p (∆π) + (Λ(k)w (s, a))1/2 ⋅ ∣S∣ ⋅

√
H2

2
log (H

δλ
) + λΛ(k)w (s, a)

⎞
⎠
⋅ r̂max

1 − γ

− β(Λ(k)w (s, a))1/2 (D.54)

≤(B(k−w+1∶k)r (∆π) + λ(Λ(k)w (s, a))1/2rmax) − β(Λ(k)w (s, a))1/2 (D.55)

+ γ ⋅
⎛
⎝
B(k−w+1∶k)p (∆π) + (Λ(k)w (s, a))1/2 ⋅ ∣S∣ ⋅

√
H2

2
log (H

δλ
) + λ(Λ(k)w (s, a))1/2

⎞
⎠
⋅ r̂max

1 − γ

− β(Λ(k)w (s, a))1/2 (D.56)

≤B(k−w+1∶k)r (∆π) + γB(k−w+1∶k)p (∆π)

+
⎛
⎝
λrmax − β + γ∣S∣ ⋅

√
H2

2
log (H

δλ
) + λr̂max

1 − γ − β
⎞
⎠

´¹¹¸¹¹¶
≤0

(Λ(k)w (s, a))1/2 (D.57)

≤B(k−w+1∶k)r (∆π) + γB(k−w+1∶k)p (∆π) (D.58)

32

The equation (D.49) holds by the future Bellman equation (C.7) when H = ∞, the equations (D.50)
and (D.51) hold by the definition of R̂(k+1) together with (D.13). The inequalities (D.53) and (D.54)
hold by Lemma 7, Lemma 10, (D.8) and (D.9). The inequalities (D.55) and (D.56) hold since
0 ≤ Λ(k)w (s, a) < 1. Now, the inequality (D.58) holds if the under-brace term of equation (D.57) is
equal or smaller than zero. That gives us an additional condition on β to obtain the final inequality
(D.58). Since r̂max is defined as r̃max + 2β√

λ
where r̃max is a constant and r̂max is still function of β,λ

(equation (D.14)), the condition is

λrmax − β + γ∣S∣ ⋅
√

H2

2
log (H

δλ
) + λ

1 − γ ⋅ (r̃max +
2β√
λ
) − β ≤ 0

or equivalently,

β ≥ (2 + 2
√
λ

1 − γ)
−1 ⎛
⎝
λrmax + γ∣S∣ ⋅

√
H2

2
log (H

δλ
)
⎞
⎠

(D.59)

Since (D.58) holds for all (s, a) if β satisfies (D.59), ∑K−1
k=1 ῑK∞ = ∣∣ῑk∞∣∣∞ is bounded as

ῑK∞ ≤
K−1
∑
k=1
(B(k−w+1∶k)r (∆π) + γB(k−w+1∶k)p (∆π)) ≤ w(Br(∆π) + γBp(∆π))

because ∑K−1
k=1 B

(k−w+1∶k)
p (∆π) = ∑

⌊K−1
w
⌋

E=1 ∑Ewk=(E−1)wB
(k−w+1∶k)
p (∆π) ≤ wBp(∆π) holds and in

the same way ∑K−1
k=1 B

(k−w+1∶k)
p (∆π) ≤ wBr(∆π) holds.

Then, the model prediction errors −ιKH , ῑK∞ when utilizing the forecaster f as SW-LSE are

−ιKH ≤wH (Br(∆π) +
γr̂max

1 − γ Bp(∆π))

+ (K − 1)
√
H
⎛
⎝
λrmax + 2β +

γr̂max

1 − γ
⎛
⎝
∣S∣
√

H2

2
log (H

δλ
) + λ

⎞
⎠
⎞
⎠

√
1

w

√
log (λ +wH

λ
),

ῑK∞ ≤w(Br(∆π) + γBp(∆π))

Finally, the term RI can be bounded as

RI =
1

1 − γ ῑ
K
∞ − ιKH +Cp

√
K − 1

≤ 1

1 − γ (w(Br(∆π) + γBp(∆π))) +wH (Br(∆π) +
γr̂max

1 − γ Bp(∆π))

+ (K − 1)
√
H
⎛
⎝
λrmax + 2β +

γr̂max

1 − γ
⎛
⎝
∣S∣
√

H2

2
log (H

δλ
) + λ

⎞
⎠
⎞
⎠

√
1

w

√
log (λ +wH

λ
)

+Cp

√
K − 1

≤ ((1

1 − γ +H)Br(∆π) +
(1 +Hr̂max)γ

1 − γ Bp(∆π))w

+ (K − 1)
√
H
⎛
⎝
λrmax + 2β +

γr̂max

1 − γ
⎛
⎝
∣S∣
√

H2

2
log (H

δλ
) + λ

⎞
⎠
⎞
⎠

√
1

w

√
log (λ +wH

λ
)

+Cp

√
K − 1

Now, let B(∆π) be a conic combination of Br(∆π) and Bp(∆π) as

B(∆π) = (
1

1 − γ +H)Br(∆π) +
(1 +Hr̂max)γ

1 − γ Bp(∆π)

≤(1

1 − γ +H)∆
αr
π Br(1) +

(1 +Hr̂max)γ
1 − γ ∆αp

π Bp(1)

= CBr∆
αr
π +CBp∆

αp
π (D.60)

33

where CBr = (1
1−γ +H)Br(1) and CBp =

(1+Hr̂max)γ
1−γ Bp(1) are constants related to the total

variation budget with reward and transition probability.

Recall the definitions of Br(∆π) and Bp(∆π), as well as the inequalities Br(∆π) ≤ ∆αr
π Br(1)

and Bp(∆π) ≤ ∆
αp
π Bp(1). We denote Bp(1) and Br(1) as time-elapsing variation budgets for one

policy iteration. We also let the constant Ck be defined as

Ck = (K − 1)
√
H
⎛
⎝
λrmax + 2β +

γr̂max

1 − γ
⎛
⎝
∣S∣
√

H2

2
log (H

δλ
) + λ

⎞
⎠
⎞
⎠
.

Then, an upper bound on RI can be obtained as

RI ≤ B(∆π)w +Ck

√
1

w
log (λ +wH

λ
) +Cp

√
K − 1.

Proof of Proposition 2. Now, we set the sliding window length w that is adaptive to ∆π as follows:

w̃(∆π) = (
Ck

B(∆π)
)
2/3

.

Then,

B(∆π)w̃(∆π) +Ck

√
1

w̃(∆π)

¿
ÁÁÀlog(λ + w̃(∆π)H

λ
)

=C2/3
k B(∆π)1/3 +C2/3

k B(∆π)1/3
¿
ÁÁÁÀlog

⎛
⎝
1 + H

λ
(Ck

B(∆π)
)
2/3⎞
⎠
.

Since Ck is linear to K − 1, the function RI satisfies that

RI = O
⎛
⎜
⎝
B(∆π)1/3 (K − 1)2/3 ⋅

¿
ÁÁÀlog(K − 1

B(∆π)
)
⎞
⎟
⎠
. (D.61)

Now, by utilizing (D.60), if B(∆π)≤ CBr∆
αr
π +CBp∆

αp
π = o(K) holds, then RI is sublinear to K.

The corresponding condition is Br(1) + r̂max
1−γBp(1) = o(K) with ∆π <K since

CBr∆
αr
π +CBp∆

αp
π = o(K)

(CBr +CBp
) ⋅∆max(αr,αp)

π = o(K)

((1

1 − γ +H)Br(1) + (
1 +Hr̂max

1 − γ +)Bp(1)) ⋅∆max(αr,αp)
π = o(K)

(1

1 − γ (Br(1) +Bp(1)) +H (Br(1) +
r̂max

1 − γBp(1))) ⋅∆max(αr,αp)
π = o(K).

This completes the proof.

Proof of Theorem 3. We first prove multiple statements below. We denote the upper bound on RI

as Rmax
I , and that of RII as Rmax

II .

1. The upper bound on RII(∆π) (i.e., Rmax
II) is a non-increasing function, the upper bound

on RI(∆π) (i.e., Rmax
I) is a non-decreasing function , and both are convex in the region ∆π ∈

34

NI ∩NII

BRmax
II (∆π)
B∆π

= B

B∆π

(C1(K − 1)(γ + 2) [(1 − ητ)∆π−1])

= log (1 − ητ)C1(K − 1)(γ + 2) [(1 − ητ)∆π−1] ≤ 0
B2Rmax

II (∆π)
B2∆π

= B2

B2∆π

(C1(K − 1)(γ + 2) [(1 − ητ)∆π−1])

= (log (1 − ητ))2C1(K − 1)(γ + 2) [(1 − ητ)∆π−1] ≥ 0

since ∆π ∈ NI ∩NII satisfies ∆π > 1 and log(1−ητ) ≤ 0 holds under the hyperparameter assumption
0 ≤ η ≤ (1 − γ)/τ , it follows from the Proposition 1 that

BRmax
I (∆π)
B∆π

= B

B∆π

(CBr∆
αr
π +CBp∆

αp
π)

= αrCBr∆
αr−1
π + αpCBp∆

αp−1
π ≥ 0

B2Rmax
I (∆π)

B2∆π
= B2

B2∆π

(CBr∆
αr
π +CBp∆

αp
π)

= αr(αr − 1)CBr∆
αr−2
π + αp(αp − 1)CBp∆

αp−2
π ≥ 0

when αr, αp ≥ 1.

2. Suboptimal ∆∗π
We slightly relax the upper bound RI(∆π) ≤ CBr∆

αr
π + CBp∆

αp
π to RI(∆π) =

(CBr +CBp
)∆max (αr,αp)

π and obtain ∆∗π in the worst case by optimizing Rmax
I (∆π) +Rmax

II (∆π).

1. max (αr,αp) = 0 : this means that Rmax
I (∆π) = CBr +CBp , where Rmax

I is now indepen-
dent of ∆π . Then, an infinite number ∆π guarantees a small dynamic regret RI , which also
leads to a small R. It can be checked that RII without entropy regularization decreases
with the scale of 1/∆π, and RII with entropy regularization decreases with the scale of
exp (∆π). This also matches with the existing results on achieving a faster convergence
with an entropy regularization.

For the remaining case, we first compute the gradient of the term Rmax
I (∆π) +Rmax

II (∆π) when
Rmax

II (∆π) comes from entropy-regularized case:

B (Rmax
I (∆π) +Rmax

II (∆π))
B∆π

=max (αr, αp) (αrCBr + αpCBp
)∆max (αr,αp)−1

π − log (1

1 − ητ)C1(K − 1)(γ + 2) [(1 − ητ)∆π−1]

= kI∆max (αr,αp)−1
π − kII [(1 − ητ)∆π−1]

when Rmax
II (∆π) is for the case without entropy regularization, the gradient of the dynamic regret

upper bound is given as

B (Rmax
I (∆π) +Rmax

II (∆π))
B∆π

=max (αr, αp) (αrCBr + αpCBp
)∆max (αr,αp)−1

π − (1

(1 − γ)2 +
log ∣A∣
η
) ⋅ 1

∆2
π

= kI∆max (αr,αp)−1
π − kII

1

∆2
π

2. max (αr,αp) = 1: The relation (1− ητ)∆π−1 = kI/kII should be satisfied for the entropy
regularized case and ∆−2π = kI/kII should be satisfied in the case without entropy regulariza-
tion, respectively. Then, it holds that ∆∗π = log1−ητ(kI/kII) + 1 for the entropy regularized
case and ∆∗π =

√
kII/kI without regularization.

35

Now, for the case of the entropy regularized case, if kII = (1 − ητ)kI is satisfied,
B (Rmax

I (∆π) +Rmax
II (∆π)) /B∆π = 0 is equal to solving ∆

max (αr,αp)−1
π = (1 − ητ)∆π . Now,

we use the Lambert W function to find ∆π as follows:

∆max (αr,αp)−1
π = (1 − ητ)∆π

(max (αr, αp) − 1) log∆π =∆π log (1 − ητ)

∆−1π ⋅ log∆π =
log (1 − ητ)

max (αr, αp) − 1

− log∆π ⋅ e− log∆π = − log (1 − ητ)
max (αr, αp) − 1

W [− log∆π ⋅ e− log∆π] =W [− log (1 − ητ)
max (αr, αp) − 1

]

W [− log∆π ⋅ e− logG] =W [−
log (1 − ητ)

max (αr, αp) − 1
]

− log∆π =W [−
log (1 − ητ)

max (αr, αp) − 1
]

∆∗π = exp(−W [−
log (1 − ητ)

max (αr, αp) − 1
]) = exp (−W [x])

3. 0 <max (αr,αp) < 1 :

• Without Entropy-regularization: ∆∗π = (kI/kII)1/(max (αr,αp)+1)

• With Entropy-regularization: Since x = − log (1−ητ)
max (αr,αp)−1 < 0, a small ∣x∣ will have a

large −W (x) > 0 value, which leads to a large ∆∗π .

4. max (αr,αp) > 1 :

• Without Entropy-regularization: ∆∗π = (kI/kII)1/(max (αr,αp)+1)

• With Entropy-regularization: It holds that x > 0 and −W (x) < 0. Then ∆∗π < 1, which
means that one iteration is enough.

From the proof of Theorem 2, we will develop Lemma 4, Lemma 5 and Lemma 6 to upper-bound
two model prediction errors −ι(k)h and ῑk∞.

Lemma 4 (Upper bound on −ι(k+1)h (s(k+1)h , a
(k+1)
h) by ∆̄r

k,h, ∆̄
p
k,h). It holds that

−ι(k+1)h (s(k+1)h , a
(k+1)
h) ≤ ∆̄r

k,h + 2Γ(k)w (s, a) + γ∆̄p
k,h

γH−hr̂max

1 − γ

Proof of Lemma 4. It follows from (D.40), (D.41), (D.42) and (D.43).

Lemma 5 (Upper bound on −ι(k+1)h (s, a) by ∆r
(k), ∆

p
(k)). For every (s, a) ∈ S ×A, it holds that

−ι(k+1)h (s, a) ≤∆r
(k)(s, a) + γ∆

p
(k)(s, a)

γH−hr̂max

1 − γ + 2Γ(k)w (s, a)

36

Proof of Lemma 5.

−ι(k+1)h (s, a) = −R(k+1)(s, a) − γ(P(k+1)V̂ π̂(k+1),(k+1)
h+1)(s, a) + Q̂π̂(k+1),(k+1)

h (s, a)

= −R(k+1)(s, a) − γ(P(k+1)V̂ π̂(k+1),(k+1)
h+1)(s, a)

+ R̂(k+1)(s, a) + γ(P̂(k+1)V̂ π̂(k+1),(k+1)
h+1)(s, a)

= (R̂(k+1) −R(k+1)) (s, a) + γ ((P̂(k+1) − P(k+1)) V̂ π̂(k+1),(k+1)
h+1) (s, a)

≤∆r
(k)(s, a) + 2Γ(k)w (s, a) + γ ∣∣(P̂(k+1) − P(k+1)) (⋅ ∣ s, a)∣∣1 ∣∣V̂

π̂(k+1),(k+1)
h+1 (⋅)∣∣

∞

≤∆r
(k)(s, a) + 2Γ(k)w (s, a) + γ∆p

(k)(s, a)
γH−hr̂max

1 − γ

Lemma 6 (Upper bound on ῑk∞ by ∆r
(k), ∆

p
(k)). For every (s, a) ∈ S ×A, it holds that

ῑk+1∞ (s, a) ≤∆r
(k)(s, a) +∆

p
(k)(s, a)

γr̂max

1 − γ − 2Γ
(k)
w (s, a)

Proof of Lemma 6. It results from (D.52),

ῑk+1∞ = (R(k+1) − R̃(k+1)) − β(Λ(k)w (s, a))1/2 + γ (P(k+1) − P̂(k+1)) V̂ ˚,(k+1)
∞ − β(Λ(k)w (s, a))1/2

≤ ∣R(k+1) − R̃(k+1)∣ − β(Λ(k)w (s, a))1/2 + γ ∣∣P(k+1) − P̂(k+1)∣∣1 ∣∣V̂
˚,(k+1)
∞ ∣∣∞ − β(Λ

(k)
w (s, a))1/2

≤∆r
(k)(s, a) − β(Λ(k)w (s, a))1/2 + γ∆p

(k)(s, a)
r̂max

1 − γ − β(Λ
(k)
w (s, a))1/2

=∆r
(k)(s, a) +∆

p
(k)(s, a)

γr̂max

1 − γ − 2Γ
(k)
w (s, a)

Lemma 7 (Upper bound on ∆r
(k)(s, a)). For every (s, a) ∈ S ×A, it holds that

∆r
(k)(s, a) ≤ B(k−w∶k)r (∆π) + λΛ(k)w (s, a)rmax

37

Proof of Lemma 7. We directly utilize the proof of Lemma 35 in [31]. For every (s, a) ∈ S × A,
∆r
(k)(s, a) can be represented as

∆r
(k)(s, a) (D.62)

= ∣R(k+1)(s, a) − R̃(k+1)(s, a)∣ (D.63)

= ∣or(k+1)(s, a) − õr(k+1)(s, a)∣ (D.64)

=
RRRRRRRRRRR

∑k
t=(1∧k−w+1)∑H−1

h=0 1 [(s, a) = (sth, ath)] ⋅ rth
λ +∑k

t=(1∧k−w+1) nt(s, a)
− or(k+1)(s, a)

RRRRRRRRRRR
(D.65)

= Λ(k)w (s, a)
RRRRRRRRRRRR

k

∑
t=(1∧k−w+1)

H−1
∑
h=0

1 [(s, a) = (sth, ath)] ⋅ rth −
⎛
⎝
λ +

k

∑
t=(1∧k−w+1)

nt(s, a)
⎞
⎠
or(k+1)(s, a)

RRRRRRRRRRRR
(D.66)

= Λ(k)w (s, a)
RRRRRRRRRRRR

k

∑
t=(1∧k−w+1)

H−1
∑
h=0
(1 [(s, a) = (sth, ath)] (rth − or(k+1)(s, a))) − λ ⋅ or(k+1)(s, a)

RRRRRRRRRRRR
(D.67)

≤ Λ(k)w (s, a)
⎛
⎝

k

∑
t=(1∧k−w+1)

H−1
∑
h=0

1 [(s, a) = (sth, ath)] ⋅ ∣rth − or(k+1)(s, a)∣
⎞
⎠
+ λΛ(k)w (s, a) ∣or(k+1)(s, a)∣

(D.68)

≤ Λ(k)w (s, a)
⎛
⎝

k

∑
t=(1∧k−w+1)

nt(s, a) (∣rt(s, a) − or(k+1)(s, a)∣)
⎞
⎠
+ λΛ(k)w (s, a)rmax (D.69)

≤ max
(1∧k−w+1)≤t≤k

(∣rt(s, a) − or(k+1)(s, a)∣)Λ(k)w (s, a)
⎛
⎝

k

∑
t=(1∧k−w+1)

nt(s, a)
⎞
⎠
+ λΛ(k)w (s, a)rmax

≤ max
(1∧k−w+1)≤t≤k

(∣rt(s, a) − or(k+1)(s, a)∣) + λΛ(k)w (s, a)rmax

≤ B(k−w∶k)r (∆π) + λΛ(k)w (s, a)rmax (D.70)

Equations (D.64) and (D.65) hold by the definition of ork+1, õ
r
k+1 (definition (D.7)), equation (D.66)

holds by the definition (D.12), equation (D.67) holds since nt(s, a) ∶= ∑H−1
h=0 1 [(s, a) = (sth, ath)],

and inequality (D.70) holds since max(1∧k−w+1)≤t≤k (∣rt(s, a) − or(k+1)(s, a)∣) ≤ ∣r(1∧k−w+1)(s, a)−
r(1∧k−w+1)+1(s, a)∣ + ⋅ ⋅ ⋅ + ∣rk(s, a) − rk+1(s, a)∣ = B(k−w∶k)r (∆π).

Lemma 8 (Upper bound on ∆̄r
K). For every (s, a) ∈ S ×A, it holds that

∆̄r
K ≤ wHBr(∆π) + λrmax ⋅ (K − 1)

√
H

w

√
log (λ +wH

λ
)

38

Proof of Lemma 8. The total empirical forecasting model error up to K − 1 is given as

∆̄r
K =

K−1
∑
k=1

H−1
∑
h=0

∆̄r
k,h

=
K−1
∑
k=1

H−1
∑
h=0

∆r
(k)(s

(k+1)
h , a

(k+1)
h)

≤
K−1
∑
k=1

H−1
∑
h=0
(B(k−w∶k)r (∆π) + λΛ(k)w (s

(k+1)
h , a

(k+1)
h)rmax) (D.71)

= wHBr(∆π) + λrmax ⋅
K−1
∑
k=1

H−1
∑
h=0
(Λ(k)w (s

(k+1)
h , a

(k+1)
h)) (D.72)

≤ wHBr(∆π) + λrmax ⋅
K−1
∑
k=1

H−1
∑
h=0
(
√

Λ
(k)
w (s(k+1)h , a

(k+1)
h))

≤ wHBr(∆π) + λrmax ⋅ (K − 1)
√

H

w

√
log (λ +wH

λ
) (D.73)

The inequality (D.71) holds by Lemma 7, the equation (D.72) holds since ∑K−1
k=1 B

(k−w∶k)
r (∆π) =

∑⌊
K−1
w
⌋

E=1 ∑Ewk=(E−1)wB
(k−w∶k)
r (∆π) ≤ wBr(∆π), and the inequality (D.73) holds by Lemma 9.

Lemma 9 (Upper bound on the term ∑K−1
k=1 ∑H−1

h=0

√
Λ
(k)
w (s(k+1)h , a

(k+1)
h)). It holds that

K−1
∑
k=1

H−1
∑
h=0
(
√

Λ
(k)
w (s(k+1)h , a

(k+1)
h)) ≤ (K − 1)

√
H

w

√
log (λ +wH

λ
)

Proof of lemma 9. We denote Λ̄k
w = λI+∑k

t=(1∧k−w+1)∑H−1
h=0 φ(sth, ath)φ(sth, ath)⊺. Also, we denote

(Λ̄k
w)(1) = λI + φ(s

(1∧k−w+1)
h , a

(1∧k−w+1)
h)φ(s(1∧k−w+1)h , a

(1∧k−w+1)
h)⊺ Then, for every (s, a) ∈

S ×A, Λ(k)w (s, a) = φ(s, a)(Λ̄k
w)−1φ(s, a)⊺ holds. Now, the following term can be bounded as

K−1
∑
k=1

H−1
∑
h=0

√
Λ
(k)
w (s(k+1)h , a

(k+1)
h)

=
K−1
∑
k=1

H−1
∑
h=0

√
φ(s(k+1)h , a

(k+1)
h)(Λ̄k

w)−1φ(s
(k+1)
h , a

(k+1)
h)⊺

=
⌊K−1

w
⌋

∑
E=1

Ew
∑

k=(E−1)w+1

H−1
∑
h=0

√
φ(s(k+1)h , a

(k+1)
h)(Λ̄k

w)−1φ(s
(k+1)
h , a

(k+1)
h)⊺

≤
⌊K−1

w
⌋

∑
E=1

√
Hw

¿
ÁÁÁÀ

Ew
∑

k=(E−1)w+1

H−1
∑
h=0

φ(s(k+1)h , a
(k+1)
h)(Λ̄k

w)−1φ(s
(k+1)
h , a

(k+1)
h)⊺ (D.74)

≤
⌊K−1

w
⌋

∑
E=1

√
Hw

¿
ÁÁÁÁÀlog

⎛
⎜
⎝

det (ΛEw+1w)
det ((Λ(E−1)w+2w)(1))

⎞
⎟
⎠

(D.75)

≤ ⌊K − 1
w
⌋
√
Hw

√
log (λ +wH

λ
) (D.76)

≤ (K − 1)
√

H

w

√
log (λ +wH

λ
)

The inequality (D.74) holds by the Cauchy–Schwarz inequality, (D.75) holds by Lemmas (D.1) and
(D.2) in [39], and (D.76) holds since (Λ(E−1)w+2w)(1) ≥ λ and ΛEw+1w ≤ λ +wH .

39

Lemma 10 (Upper bound on ∆p
(k)(s, a)). For every (s, a) ∈ S×A and given δ ∈ (0,1), the following

holds with probability at least 1 − δ:

∆p
(k)(s, a) ≤ B

(k−w+1∶k)
p + (Λ(k)w (s, a))1/2 ⋅ ∣S∣ ⋅

√
H2

2
log (H

δλ
) + λΛ(k)w (s, a)

Proof of lemma 10. For every (s, a) ∈ S ×A, one can write:

∆p
(k)(s, a)

= ∣∣P(k+1)(⋅∣s, a) − P̂(k+1)(⋅∣s, a)∣∣1
= ∣∣op(k+1)(⋅, s, a) − ô

p
(k+1)(⋅, s, a)∣∣1

= ∑
s′∈S
∣ ∑

k
t=k−w+1 nt(s′, s, a)

λ +∑k
t=k−w+1 nt(s, a)

− op(k+1)(s
′, s, a)∣

= Λ(k)w (s, a) ∑
s′∈S
∣

k

∑
t=k−w+1

nt(s′, s, a) − (λ +
k

∑
t=k−w+1

nt(s, a)) op(k+1)(s
′, s, a)∣

≤ Λ(k)w (s, a) ∑
s′∈S
(∣

k

∑
t=k−w+1

(nt(s′, s, a) − nt(s, a)op(k+1)(s
′, s, a))∣ + ∣λop(k+1)(s

′, s, a)∣)

≤ Λ(k)w (s, a) ∑
s′∈S
∣

k

∑
t=k−w+1

(nt(s′, s, a) − nt(s, a)op(k+1)(s
′, s, a))∣ + λΛ(k)w (s, a) (D.77)

Recall that nt(s′, s, a), nt(s, a) is defined as

nt(s′, s, a) =
H−1
∑
h=0

1 [(s′, s, a) = (sth+1, sth, ath)]

=
H−1
∑
h=0

1 [(s, a) = (sth, ath)] ⋅ 1 [s′ = sth+1] (D.78)

nt(s, a) =
H−1
∑
h=0

1 [(s, a) = (sth, ath)] (D.79)

where 1[⋅] is an indicator function. Substituting (D.78) and (D.79) into (D.77) yields that

Λ(k)w (s, a) ∑
s′∈S
∣

k

∑
t=k−w+1

(nt(s′, s, a) − nt(s, a)op(k+1)(s
′, s, a))∣

= Λ(k)w (s, a) ∑
s′∈S
∣

k

∑
t=k−w+1

(
H−1
∑
h=0

1 [(s, a) = (sth, ath)] ⋅ 1 [s′ = sth+1]

−
H−1
∑
h=0

1 [(s, a) = (sth, ath)] ⋅ op(k+1)(s
′, s, a))∣

= Λ(k)w (s, a) ∑
s′∈S
∣

k

∑
t=k−w+1

(
H−1
∑
h=0

1 [(s, a) = (sth, ath)] (1 [s′ = sth+1] − op(k+1)(s
′, s, a)))∣

≤ Λ(k)w (s, a) ∑
s′∈S
∣

k

∑
t=k−w+1

(
H−1
∑
h=0

1 [(s, a) = (sth, ath)] (1 [s′ = sth+1] − opt (s′, s, a))) ∣

´¹¹¸¹¹¹¶
2.1

+Λ(k)w (s, a) ∑
s′∈S
∣

k

∑
t=k−w+1

(
H−1
∑
h=0

1 [(s, a) = (sth, ath)] (opt (s′, s, a) − o
p
(k+1)(s

′, s, a))) ∣

´¹¹¹¸¹¹¹¶
2.2

40

The term 2.1 can be upperbounded by utilizing the Lemmas (34) and (43) in [31]. For every t ∈ [K]
and s′ ∈ S, we define the random variable ηt(s′) ∶= ∑H−1

h=0 (1 [s′ = sth+1] − o
p
t (s′, sth, ath)). Given

s′ ∈ S, the sequence {ητ(s′)}∞τ=1 is a zero-mean and H/2-sub Gaussian random variable. From the
Lemma 43 in [31], we set Y = λI and Xt = ∑H−1

h=0 1 [(s, a) = (sth, ath)]. Then, for a given δ ∈ (0,1),
the following holds with probability at least 1 − δ for all (s, a) ∈ S ×A:

∣(Λ(k)w (s, a))1/2
k

∑
t=k−w+1

(
H−1
∑
h=0

1 [(s, a) = (sth, ath)] ⋅
H−1
∑
h=0

1[s′ = sth+1] − opt (s′, s, a))∣

≤

¿
ÁÁÁÀH2

2
log
⎛
⎝
(Λ(k)w (s, a))−1/2 ⋅ λ−1/2

δ/H
⎞
⎠

=

¿
ÁÁÁÀH2

2
log
⎛
⎝
H

δ
⋅ 1

(Λ(k)w (s, a))1/2 ⋅ λ1/2
⎞
⎠

≤
√

H2

2
log (H

δ
⋅ 1
λ
) (D.80)

As a result, the following inequality holds with probability at least 1 − δ:

2.1

=(Λ(k)w (s, a))1/2 ∑
s′∈S
∣(Λ(k)w (s, a))1/2

k

∑
t=k−w+1

(
H−1
∑
h=0

1 [(s, a) = (sth, ath)] ⋅
H−1
∑
h=0

1[s′ = sth+1]

− opt (s′, s, a))∣

≤(Λ(k)w (s, a))1/2 ⋅ ∣S∣ ⋅
√

H2

2
log (H

δλ
)

The term 2.2 can be bounded as

2.2 ≤ Λ(k)w (s, a) ∑
s′∈S

k

∑
t=k−w+1

H−1
∑
h=0

1 [(s, a) = (sth, ath)] ∣opt (s′, s, a) − o
p
(k+1)(s

′, s, a)∣

= Λ(k)w (s, a)
k

∑
t=k−w+1

H−1
∑
h=0

1 [(s, a) = (sth, ath)] ∑
s′∈S
∣opt (s′, s, a) − o

p
(k+1)(s

′, s, a)∣

= Λ(k)w (s, a)
k

∑
t=k−w+1

H−1
∑
h=0

1 [(s, a) = (sth, ath)] ∣∣opt (⋅, s, a) − o
p
(k+1)(⋅, s, a)∣∣

1

≤ max
t∈[k−w+1,k]

(∣∣opt (⋅, s, a) − o
p
(k+1)(⋅, s, a)∣∣

1

) ⋅ (Λ(k)w (s, a)
k

∑
t=k−w+1

H−1
∑
h=0

1 [(s, a) = (sth, ath)])

≤ max
t∈[k−w+1,k]

(∣∣opt (⋅, s, a) − o
p
(k+1)(⋅, s, a)∣∣

1

) ⋅ 1

≤ B(k−w+1∶k)p (∆π) (D.81)

Then, by combining (D.77), (D.80) and (D.81), the term ∆p
(k)(s, a) can be expressed as

∆p
(k)(s, a) ≤ B

(k−w+1∶k)
p (∆π) + (Λ(k)w (s, a))1/2 ⋅ ∣S∣ ⋅

√
H2

2
log (H

δλ
) + λΛ(k)w (s, a).

Lemma 11 (Upper bound on ∆̄p
K). Given δ ∈ (0,1), the following inequality holds with probability

at least 1 − δ:

∆̄p
K ≤
⎛
⎝
∣S∣
√

H2

2
log (H

δλ
) + λ

⎞
⎠
(K − 1)

√
H

w

√
log (λ +wH

λ
) +wHBp(∆π)

41

Proof of lemma 11. The total empirical forecasting transition probability model error ∆̄p
K can be

represented as follows,

∆̄p
K =

K−1
∑
k=1

H−1
∑
h=0

∆̄p
k,h

=
K−1
∑
k=1

H−1
∑
h=0

∆p
(k)(s

(k+1)
h , a

(k+1)
h)

≤
K−1
∑
k=1

H−1
∑
h=0

⎛
⎝
(Λ(k)w (s

(k+1)
h , a

(k+1)
h))1/2∣S∣

√
H2

2
log (H

δλ
)
⎞
⎠

+
K−1
∑
k=1

H−1
∑
h=0
(max
t∈[k−w+1,k]

∣∣opt (⋅, s
(k+1)
h , a

(k+1)
h) − op(k+1)(⋅, s

(k+1)
h , a

(k+1)
h)∣∣

1

)

+
K−1
∑
k=1

H−1
∑
h=0
(λΛ(k)w (s

(k+1)
h , a

(k+1)
h))

≤
⎛
⎝
∣S∣
√

H2

2
log (H

δλ
) + λ

⎞
⎠

K−1
∑
k=1

H−1
∑
h=0
((Λ(k)w (s

(k+1)
h , a

(k+1)
h))1/2)

+
K−1
∑
k=1

H−1
∑
h=0
(max
t∈[k−w+1,k]

∣∣opt (⋅, s
(k+1)
h , a

(k+1)
h) − op(k+1)(⋅, s

(k+1)
h , a

(k+1)
h)∣∣

1

)

≤
⎛
⎝
∣S∣
√

H2

2
log (H

δλ
) + λ

⎞
⎠
(K − 1)

√
H

w

√
log (λ +wH

λ
) +wHBp(∆π)

Proof of Theorem 4 . Before introduing the proof, we first go over some details about Theorem 4 in
the following paragraph.

The W-LSE involves solving the following joint optimization problem over ϕrf ∈ R∣S∣∣A∣, ϕ
p
f ∈ R∣S∣

2∣A∣

and q ∈ RN to obtain a minimum upper bound on the dynamic regret:

min
ϕ◇
f
,q
L(ϕ◇f , q ; ◻1∶N) where L(ϕ◇f , q ; ◻1∶N) =

N

∑
t=1
qt (◻̂k+1ϕ◇

f
− ◻t)

2
+ disc(q) + 1

wH
⋅ λ∣∣ϕ◇f ∣∣2

(D.82)

where ◇ = r or p. If ◇ = r, then ◻ = R(s, a) and if ◇ = p, then ◻ = P (s′, s, a). Moreover,
◻ϕ◇

f
means that ◻ is parameterized by ϕ◇f , and ◻1∶N are observed data of ◻, and the disc(q) ∶=

supf∈F (E[f(◻̂
k+1 ∣ ◻1∶N] − ∑N

t=1 qtE[◻̂
t∣◻1∶t−1]) measures the non-stationarity of the environment.

disc(q) could be measured and upper-bounded by the observed data. For example, if ◇ = r and
◻ = R, then ϕrf parameterizes the future reward function R̂k+1

ϕr
f

, N is the total number of visits of
(s, a) up to episode k, R1∶N(s, a) is the set of reward values {R1(s, a),R1(s, a), . . . ,RN(s, a)}
that the agent has received when visiting (s, a). We demonstrate a modified upper bound on
RI when utilizing W-LSE. To do so, we define the forecasting reward model error ∆1

r,k(s, a) =
∣(R(k+1) − R̃(k+1)) (s, a)∣ and the forecasting transition probability model error as ∆p

(k)(s, a) =
∣∣(P(k+1) − P̂(k+1)) (⋅ ∣ s, a)∣∣1 where R̃(k+1) and P̂(k+1) are predicted reward,transition probability
from function g ○ f (Appendix D.2).

We now brought the Theorem 7 of [22] to offer an upper bound on the l2-norm of the reward gap
between R(k+1)(s, a) and R̃(k+1)(s, a) as follows. To this end, we denote Xk,h = (s(k)h , a

(k)
h) ∈

S ×A, Yk,h = R(k)(s(k)h , a
(k)
h) ∈ R and assume that the environment provides the agent with a noisy

reward Ŷk,h = Yk,h + η, where η is sampled from a zero-mean Gaussian. Define the kernel Ψ(x) =
φ(x) ∈ R∣S∣∣A∣, where φ(x) is the one-hot vector that we have defined in Section D.1.1. Now, we set
r(x) = c⊺φ(x) where the vector c ∈ R∣S∣∣A∣ is the same as the estimated future reward vector R̃(k+1) ∈

42

R∣S∣∣A∣ and r(x) is the same as the estimated future reward when x = (s, a), namely R̃(k+1)(s, a).
Then, for data until episode k, i.e., Ddata = {(X1,0, Ŷ1,0), (X1,1, Ŷ1,1), .., (Xk,H−1, Ŷk,H−1)}, we
denoteD(s,a)data ∶= {(Xk,h, Ŷk,h) ∣Xk,h = (s, a) such that (Xk,h, Ŷk,h) ∈ Ddata}. We relabelD(s,a)data as
{((s, a), Ŷ1) , ((s, a), Ŷ2) , ..., ((s, a), ŶN)} such that N(s, a) = ∑k

t=1 nt(s, a) is the total number
of visitations of (s, a) until episode k (Definition (D.79)). We use the shorthand notation N as
N(s, a), and ∑N

t=1 qt = 1. For every (s, a) ∈ S ×A, the following inequalities hold with probability
at least 1 − δ for all functions r ∈ {x→ c⊺Ψ(x) ∶ ∣∣c∣∣2 ≤ Λ}:

E[(r(s, a) − ŶN+1)
2 ∣D(s,a)data] ≤

N

∑
t=1
qt (r(s, a) − Ŷt)

2 + disc(q) + 1

wH
⋅ λ∣∣r̄∣∣2 (D.83)

Take the expectation over η on both inequailty.

Eη [E [(r(s, a) − ŶN+1)
2 ∣D(s,a)data]] ≤ Eη [

N

∑
t=1
qt (r(s, a) − Ŷt)

2 + disc(q) + 1

wH
⋅ λ∣∣r̄∣∣2] ,

E [(r(s, a) − ŶN+1)
2 ∣D(s,a)data] ≤

N

∑
t=1

Eη [qt (r(s, a) − Ŷt)
2] + disc(q) + 1

wH
⋅ λ∣∣r̄∣∣2.

The left-hand side of (D.83) can be expressed as

E [(r(s, a) − ŶN+1 − η)2] = Eη [(r(s, a) − YN+1)2] +Eη [η2]
= (r(s, a) − YN+1)2 +E [η2] (D.84)

Also, the term ∑N
t=1Eη [qt (r(s, a) − Ŷt)

2] of the right-hand side of equation (D.83) can be written
as

N

∑
t=1

Eη[qt (r(s, a) − Ŷt)
2] =

N

∑
t=1

Eη[qt ((r(s, a) − Yt)2 + η2)]

=
N

∑
t=1

Eη [qt ((r(s, a) − Yt)2)] +
N

∑
t=1

Eη [qtη2]

=
N

∑
t=1
qt ((r(s, a) − Yt)2) +Eη [η2]

By eliminating Eη[η2] from both sides, we obtain that

(r(s, a) − YN+1)2 ≤
N

∑
t=1
qt ((r(s, a) − Yt)2) + disc(q) + 1

wH
⋅ λ∣∣r̄∣∣2 (D.85)

Recall the definition of r(s, a) = R̃(k+1)(s, a), Yt = Rt(s, a). Since t matches one of (k, h) ∈
[K] × [H] pairs, we can rewrite

N

∑
t=1
qt (r(s, a) − Ŷt)

2 =
k−1
∑
k′=1

H−1
∑
h=0

q(k′,h) (r(s, a) − Y(k,h))
2

=
k−1
∑
k′=1

H−1
∑
h=0

q(k′,h) (R̃(k+1)(s, a) −Rk′

h (s, a))
2

=
k−1
∑
k′=1

H−1
∑
h=0

q(k′,h) (R̃(k+1)(s, a) −Rk′(s, a))
2

where if (s, a) is not visited at step h of episode k, then the corresponding q(k′,h) is zero. As a result,

∆r
(k)(s, a) ≤

¿
ÁÁÀmin

q,r̄
(
k−1
∑
k′=1

H−1
∑
h=0

q(k′,h) (R̃(k+1)(s, a) −Rk′(s, a))2 + disc(q) + 1

wH
⋅ λ∣∣r̄∣∣2)

≤

¿
ÁÁÀmin

q,r̄
((max

1≤k′≤k
(R̃(k+1)(s, a) −Rk′(s, a)))

2

(
k−1
∑
k′=1

H−1
∑
h=0

q(k′,h)) + disc(q) + 1

wH
⋅ λ∣∣r̄∣∣2)

43

A similar analysis for ∆p
(k) leads to the following inequality for all (s′, s, a) ∈ S × S ×A:

∣P(k+1)(s′ ∣ s, a) − P̂(k+1)(s′ ∣ s, a)∣

≤

¿
ÁÁÀmin

q,p̄
(
k−1
∑
k′=1

H−1
∑
h=0

q(k′,h) (P̂(k+1)(s′∣s, a) − P k′(s′∣s, a))2 + disc(q) + 1

wH
⋅ λ∣∣p̄∣∣2)

On the other hand,

∆p
(k)(s, a) ≤ ∑

s′∈S

¿
ÁÁÀmin

q,p̄
(
k−1
∑
k′=1

H−1
∑
h=0

q(k′,h) (P̂(k+1)(s′∣s, a) − P k′(s′∣s, a))2 + disc(q) + 1

wH
⋅ λ∣∣p̄∣∣2)

≤ ∣S∣

¿
ÁÁÀmin

q,p̄
(
k−1
∑
k′=1

H−1
∑
h=0

q(k′,h) ∣∣P̂(k+1)(⋅∣s, a) − P k′(⋅∣s, a)∣∣2∞ + disc(q) + 1

wH
⋅ λ∣∣p̄∣∣2)

Recall the Corollary 5, Corollary6 and RI definition. Aftering fixing (s, a), the term RI(s, a) can
be expressed as

RI =
1

1 − γ
K−1
∑
k=1

ῑk+1∞ +
K−1
∑
k=1

H−1
∑
h=0
−ι(k+1)h +Cp

√
K − 1

≤ 1

1 − γ
K−1
∑
k=1
(∆r
(k)(s, a) +∆

p
(k)(s, a)

γr̂max

1 − γ − 2Γ
(k)
w (s, a))

+
K−1
∑
k=1

H−1
∑
h=0
(∆r
(k)(s, a) +∆

p
(k)(s, a)

γr̂max

1 − γ + 2Γ
(k)
w (s, a))

+Cp

√
K − 1

≤ 1

1 − γ
K−1
∑
k=1
(∆r
(k)(s, a) +∆

p
(k)(s, a)

γ

1 − γ
(r̃max +max(2Γ(k)w (s, a))) − 2Γ(k)w (s, a))

+H
K−1
∑
k=1
(∆r
(k)(s, a) +∆

p
(k)(s, a)

γ

1 − γ
(r̃max +max(2Γ(k)w (s, a))) + 2Γ(k)w (s, a))

+Cp

√
K − 1

≤
K−1
∑
k=1
((1

1 − γ +H)∆
r
(k)(s, a) +

γr̃max

1 − γ (
1

1 − γ +H)∆
p
(k)(s, a)

´¹¹¸¹¹¹¶
1

+

+ γ

1 − γ (
1

1 − γ +H)max(2Γ(k)w (s, a))∆p
(k)(s, a))

+
K−1
∑
k=1

2(− 1

1 − γ +H)Γ
(k)
w (s, a)

+Cp

√
K − 1

We set the term 1 to be 2(1
1−γ +H)Γ

(k)
w (s, a), which requires redefining the exploration bonus term

as

Γ(k)w (s, a) =
1

2
∆r
(k)(s, a) +

γr̃max

2(1 − γ)∆
p
(k)(s, a).

44

Also, note that ∆p
(k)(s, a) = ∑s′∈S ∣(P̂(k+1) − P(k+1)) (s′∣s, a)∣ ≤ ∣S∣. Therefore,

RI ≤
K−1
∑
k=1
(4HΓ(k)w (s, a) +

2γ

1 − γ (
1

1 − γ +H)max(Γ(k)w (s, a)) ∣S∣)

≤
K−1
∑
k=1
(4H + 2γ

1 − γ (
1

1 − γ +H))max(Γ(k)w (s, a))

= (4H + 2γ ∣S∣
1 − γ (

1

1 − γ +H))
K−1
∑
k=1

max(Γ(k)w (s, a))

≤ (4H + 2γ ∣S∣
1 − γ (

1

1 − γ +H))
K−1
∑
k=1
(1
2
max(∆r

(k)(s, a)) +
γr̃max

2(1 − γ) max(∆p
(k)(s, a)))

= (4H + 2γ ∣S∣
1 − γ (

1

1 − γ +H))
K−1
∑
k=1
(1
2
∆r
(k)(s, a) +

γr̃max

2(1 − γ)∆
p
(k)(s, a))

= (4H + 2γ ∣S∣
1 − γ (

1

1 − γ +H))(
1

2

K−1
∑
k=1

∆r
(k)(s, a) +

γr̃max

2(1 − γ)
K−1
∑
k=1

∆p
(k)(s, a))

Note that above upper bound on RI holds under the following conditions for ∆r
(k)(s, a) and

∆p
(k)(s, a):

∆r
(k)(s, a) ≤

¿
ÁÁÀmin

q,r̄
(
k−1
∑
k′=1

H−1
∑
h=0

q(k′,h) (R̃(k+1)(s, a) −Rk′(s, a))2 + disc(q) + 1

wH
⋅ λ∣∣r̄∣∣2),

∆p
(k)(s, a) ≤ ∑

s′∈S

¿
ÁÁÀmin

q,p̄
(
k−1
∑
k′=1

H−1
∑
h=0

q(k′,h) (P̂(k+1)(s′∣s, a) − P k′(s′∣s, a))2 + disc(q) + 1

wH
⋅ λ∣∣p̄∣∣2).

Proof of Remark 1. The proof starts with (D.85). Define

qswt = {
1

wH
if t ∈ (k −w,k]

0 otherwise
,

rsw = argmin
r̄
(λ∣∣r̄∣∣2 +

N

∑
t=1
(r(s, a) − Ŷt)

2) . (D.86)

where rsw is the same reward estimation as in (D.7). Then the minimum of (D.83) yields that

min
r̄,q
(

N

∑
t=1
qt (r(s, a) − Ŷt)

2 + disc(q) + 1

wH
⋅ λ∣∣r̄∣∣2) (D.87)

≤min
r̄
(

N

∑
t=1
qswt (r(s, a) − Ŷt)

2 + disc(qsw) + 1

Hw
⋅ λ∣∣r̄∣∣2)

≤ 1

Hw
min
r̄
(

N

∑
t=1
(Hw) ⋅ qswt (r(s, a) − Ŷt)

2 + λ∣∣r̄∣∣2)
´¹¹¹¸¹¹¶

1

+ disc(qsw). (D.88)

The term 1 is the optimization problem in (D.86) whose minimizer is rsw. An inspection of (D.87)
and (D.88) concludes that the optimal solution (q∗, r̄∗), namely the minimizer of (D.87) provides a
smaller value than (qsw, rsw). Since the right-hand side (D.85) is same as (D.87), (q∗, r̄∗) provides
a tighter upper bound on the left-hand side term of equation (D.83) than qsw, rsw. Therefore, (D.84)
implies that the optimal solution (q∗, r̄∗) gives a tighter upper bound on ∆r

(k) than using (qsw, r̄sw).
One can repeat the above argument for the upper bound on ∆p

(k). Then, by Corollary 5 and 6, the

tighter upper bounds on ∆r
(k)(s, a) and ∆p

(k)(s, a) provide smaller upper bounds on −ι(k)H , ῑK∞ and
lead to a tighter upper bound on RI .

45

E Experimental design and results

E.1 Environment setting details

Reward function design.

All three environments share the same reward function structure and have an identical goal. The
reward function R consists of three parts R = Rh + Rf − Rc, where Rh is the healthy reward,
Rf = kf(xt+1 − xt)/∆t, kf > 0 is the forward reward, and Rc is the control cost. The agents have a
goal to run faster in the +x direction, and therefore the faster they run, the higher the forward reward
Rf is. We modify the environment to make the agent’s desired directions change as the episode goes
by. To be specific, we design the forward reward Rf to change as episodes progress in the form of
Rk

f = ok ⋅ kf(xt+1 − xt)/∆t where ok = asin(wbk) and k is a episode where a, b > 0 are constants.
A positive ok causes the agent to desire a forward +x direction as an optimal policy, and a negative
ok causes it to desire a backward −x direction. We generate different speeds of non-stationarity by
changing the frequency variable w ∈ {1,2,3,4,5}.
Non-stationary variable ok generator.

1. Sine function: The non-stationary parameter ok is designed as ok = sin (2πwk/37), wherew
is the integer speed of the environment change and k is the episode number. We change w in
the set [1,2,3,4,5]. We divide 2πwk by 37, a prime number, to ensure that the environment
has various non-stationary modes and to avoid certain non-stationary parameters appearing
frequently.

2. Real data: we bring the stock price data to model a non-stationary real dataset.

Figure 4: Nonstationary parameter from real data A,B

Non-stationary parameter ok generator (ablation study). B(G) satisfies the property of the time-
elapsing variation budget that B(G) increases as G increases. For the ablation study, we generate
ok = sin (2π ⋅G ⋅ k/37), where G ∈ {38,76,114,152,190}. We estimated B(G) as∑150

k=1 ∣ok+1 −ok ∣:

G = 38 G = 76 G = 114 G = 152 G = 190
B(G) 15.98 31.85 47.49 62.79 77.64

E.2 Hyperparameters and implementation details

Training Details.

For the ARIMA model that serves as a forecatser f , we use the auto_arima function of pmdarima
python package to find the optimal p, q, d. To compare the results between ProST-G and MBPO,
we train the MBPO and ProST-G with the initial learning rate lr = 0.0003 with the decaying
parameter 0.999. For ProST-G, We add the uniform noise η ∼ Unif([−b, b]) to the non-stationary
parameter ok to generate the noisy non-stationary parameter ôk = ok + η with different noise bounds
b ∈ {0.01,0.03,0.05}. We denote Unif([−b, b]) as continuous uniform distributions over the interval
[−b, b].
To compare the results between ProST-G and ProOLS, ONPG, FTML, we train these three baselines
with eight different initial learning rates lr ∈ {0.001,0.003,0.005,0.007,0.01,0.03,0.05,0.07}.
Hyper parameters.

46

Letter hyper parameters Swimmer-v2 Half cheetah-v2 Hopper-v2

K episodes 100 150 150

H environment steps per episodes 100

G policy updates per epochs 50

Ĥ model rollout length 1→ 15 over episodes 20→150

N iteration of policy update and policy evaluation 1

M model rollout batch size (Dsyn) 1e5

τ entropy regularization parameter 0.2

γ reward discounting factor 0.99

Note that Ĥ increases linearly within a certain range as episode goes by. We denote hmin → hmax

over episodes kmin → kmax as Ĥ(k) = min(max(hmin + (k − kmin)/(kmax − kmin) ⋅ (hmax −
hmin), hmin), hmax).

47

E.3 Full results

E.3.1 Non-stationarity: sine wave

(1) Swimmer-v2

Figure 5: (a) ∼ (e) the average rewards of ProST-G, and the three baselines: ProOLS, ONPG, FTML
for 5 different speeds (x-axis indicates the episode). The shaded area of ProST-G is 95% confidence
area among 3 different noise bounds, and the shaded areas of three baselines are the 95 % confidence
area among 8 different learning rates.

Figure 6: (a) ∼ (e) the average rewards of ProST-G and MBPO. The shaded area of ProST-G is 95%
confidence area among 3 different noise bounds.

48

(2) Halfcheetah-v2

Figure 7: (a) ∼ (e) the average rewards of ProST-G, and the three baselines: ProOLS, ONPG, FTML
for 5 different speeds (x-axis indicates the episode). The shaded area of ProST-G is 95% confidence
area among 3 different noise bounds, and the shaded ares of three baselines are the 95% confidence
areas among 8 different learning rates.

Figure 8: (a) ∼ (e) the average rewards of ProST-G and MBPO (x-axis indicates the episode). The
shaded area of ProST-G is 95% confidence area among 3 different noise bounds.

49

(3) Hopper-v2

Figure 9: (a) ∼ (e) the average rewards of ProST-G, and the three baselines : ProOLS, ONPG, FTML
for 5 different speeds (x-axis indicates the episode). The shaded area of ProST-G is 95% confidence
area among 3 different noise bounds, and the shaded areas of three baselines are the 95% confidence
areas among 8 different learning rates.

Figure 10: (a) ∼ (e) the average rewards of ProST-G and MBPO (x-axis indicates the episode). The
shaded area of ProST-G is 95% confidence area among 3 different noise bounds.

50

E.3.2 Non-stationarity : real data

The shaded area of ProST-G is 95% confidence area among 3 different noise bounds, and the shaded
ares of three baselines are the 95% confidence area among 8 different learning rates.

(1) Swimmer-v2

Figure 11: (a) average reward with ProST-G and MBPO on real data A,B (x-axis is episode). (b)
average reward with ProST-G and three baselines on realdata A. (c) average reward with ProST-G
and three baselines on realdata B.

(2) Halfcheetah-v2

Figure 12: (a) average reward with ProST-G and MBPO on real data A,B (x-axis is episode). (b)
average reward with ProST-G and three baselines on realdata A. (c) average reward with ProST-G
and three baselines on realdata B.

(3) Hopper-v2

Figure 13: (a) average reward with ProST-G and MBPO on real data A,B (x-axis is episode). (b)
average reward with ProST-G and three baselines on realdata A. (c) average reward with ProST-G
and three baselines on realdata B.

51

F Algorithms

F.1 ProST framework

Algorithm 1: ProST framework
1 Set : kf = 1
2 Init : policy π0, forecaster fϕ0

f
, model estimator gϕ0

g
, two dataset Denv,Dsyn

3 for episode k do
4 Execute the agent with πk in a environmentMk and add a trajectory to Denv .

/* MDP forecaster g ○ f */
/* (1) Observe and forecast: */

5 Observe a noisy non-stationary parameter ôk
6 Update fϕf

, gϕg using Denv and ôk−(w−1)∶k.
7 Use fϕk

f
, gϕk

g
to predict the future P̂k+1, R̂k+1 and construct future MDP M̂k+1

/* Baseline A */
/* (2) Optimize: */

8 Roll out synthetic trajectories in M̂k+1 and add them to Dsyn

9 Use Dsynto evaluate and update πk to π̂k+1

10 end for

F.2 ProST-T algorithm

Algorithm 2: ProST-T
1 Set : kf = 1
2 Init : policy πk , forecaster fϕk

f
, tabular reward model gRk , tabular transition probability model

gPk , forecasted state-action value Q̂⋅,k+1, empty dataset Denv,Dsyn

3 Explore w episodes and add (τ−k, ô−k) to Denv where k ∈ [w] before starts
4 for episodes k = 1, ..,K do
5 Rollout a trajectory τk using πkand Denv = Denv ∪ {τk}
6 Observe a noisy non-stationary parameter ôk

/* MDP forecaster g ○ f: (1) update f, g */
7 Update fϕf

: ϕkf ← argminϕLf(ôk−(w−1)∶k;ϕ)
8 Update gPk (s′, s, a, o)
9 Update gRk (s, a, o)

/* MDP forecaster g ○ f: (2) predict P̂k+1, R̂k+1 */
10 Forecast 1 episode ahead non-stationary parameter: ôk+1 = fϕk

f
(ôk−(w−1)∶k)

11 Forecast transition probability function: ĝPk+1 = gPk (⋅, ôk+1)
12 Forecast reward function: ĝRk+1 = gRk (⋅, ôk+1)
13 Reset Dsyn to empty.

/* Baseline A: NPG with entropy regularization */
14 Set π̂(0) ← πk

15 for g = 0, ..,G − 1 do
16 Evaluate Qπ̂(g)

τ using the rollouts from the future model ĝPk+1, ĝ
R
k+1

17 Update π̂ : π̂(g+1) ← 1/Z(t) ⋅ (π̂(g))1−
ητ
1−γ exp ((ηQ̂π̂(g)

τ)/(1 − γ))

18 where Z(t) = ∑a∈A (π̂(g))
1− ητ

1−γ exp ((ηQ̂π̂(g)

τ)/(1 − γ))
19 end for
20 Set πk+1 ← π̂(G)

21 end for

52

F.3 ProST-G algorithm

(1) Forecaster f . We adopt the ARIMA model to forecast ôk+1 from the noisy observation ôk−(w−1)∶k.
The ARIMA model is one of the most general classes of models for forecasting a time series, which
can be made to be stationary by taking a difference among the data. For given time series data Xt, we
define ARIMA(p, d, q) as given by Xt − α1Xt−1 − ⋅ ⋅ ⋅ − αpXt−p = ϵt + θ1ϵt−1 +⋯ + θqϵt−q, where
αi’s are the parameters of the autoregressive part of the model, the θi’s are the parameters of the
moving average part, and ϵt’s are the error terms that take d times difference between Xts, which we
assume to be independent and follow a normal distribution with a zero mean.

(2) Model predictor g. We use a bootstrap ensemble of dynamic models {g1ϕg
, g2ϕg

, ..., gMϕg
}. Each

ensemble model is a probabilistic neural network whose output is parameterized by the mean vector
µ and the diagonal vector of the standard deviation Diag(Σ) of a Gaussian distribution, namely
giϕg
(sh+1, rh∣sh, ah, ôk+1) = N(µi

ϕg
(sh, ah),Σi

ϕg
(sh, ah)). To efficiently handle uncertainty due

to the non-stationary environment, we design each neural network to be a probabilistic model to
capture the aleatoric uncertainty, i.e. the noise of the output, and learn multiple models as bootstrap
ensemble to handle the epistemic uncertainty, i.e. the uncertainty in the model parameters. Then we
predict sh+1 and rh from a model uniformly chosen from its ensemble randomly that admits different
transitions along a single model rollout to be sampled from different dynamics modes.

(3) Baseline algorithm A. We adopt soft-actor critic (SAC) as our policy optimization algorithm.
SAC alternates the policy evaluation step and the policy optimization step. For a given policy
π̂, it estimates the forecasted Q̂π̂,k+1 value using the Bellman backup operator and optimizes the
policy that minimizes the expected KL-divergence between π and the exponential of the difference
Q̂π̂,k+1 − V̂ π̂,k+1 : Es∼Dsyn[DKL(π̂∣∣ exp (Q̂π̂,k+1 − V̂ π̂,k+1)].

Algorithm 3: ProST-G
1 Set : kf = 1
2 Init : policy πk, forecaster fϕk

f
, model estimator gϕk

g
, two dataset Denv,Dsyn

3 Explore w episodes and add (τ−k, ô−k) to Denv where k ∈ [w] before starts
4 for episodes k = 1, ..,K do
5 Execute the agent with πk in a environmentMk and add a trajectory to Denv .

/* MDP forecaster g ○ f: (1) update f, g */
6 Observe a noisy non-stationary variable ôk
7 Optimize fϕk

f
on ôk−(w−1)∶k

8 Optimize gϕk
g

on Denv

/* MDP forecaster g ○ f: (2) predict f, g */
9 Forecast ôk+1 = fϕk

f
(ôk−(w−1)∶k)

10 Forecast model : ĝk+1 = gϕk
g
(⋅, ôk+1)

11 Reset Dsyn to empty.
/* Baseline A: SAC */

12 Set π̂k+1 ← πk

13 for epochs n = 1, ...,N do
14 for model rollouts m = 1, ..,M do
15 Sample ŝm0 uniformly from Denv .
16 Perform a Ĥ-step model rollout using âmh = π̂k+1(ŝmh), ŝmh+1 = ĝk+1(ŝmh , âmh) and

add a rollout to Dsyn .
17 end for
18 for updates g = 1, ..,G do
19 Evaluate and update forecasted policy π̂k+1 on Dsyn

20 end for
21 end for
22 Set πk+1 ← π̂k+1

23 end for

53

G Experiment Platforms and Licenses

G.1 Platforms

All experiments are done on 12 Intel Xeon CPU E5-2690 v4 and 2 Tesla V100 GPUs.

G.2 Licenses

We have used the following libraries/ repos for our python codes:

• Pytorch (BSD 3-Clause "New" or "Revised" License).
• OpenAI Gym (MIT License).
• Numpy (BSD 3-Clause "New" or "Revised" License).
• Official codes distributed from the paper [7]: to compare the four baselines.
• Official codes distributed from the paper [24]: to build PMT-G.

54

