A Details on Introduction

A.1 Experimental motivation
1. Environment details of 2D goal reacher

* State space: S = R?. For (z,y) € S, |z <1, |y| < 1.
* Action space: A = {(cos (7/4xk),sin (w/4xk)) | k=0,1,...,7} (A = 8)

* Reward function: if the agent’s state is in the Goal box, then it receives +6. Otherwise, it
receives -0.5 rewards for every step.

* Transition probability: s,.1 = S, + ap, - €, where sp,41 is the next state, sy, is the current state,
ay, is the current action, and € € R? with ||e||2 = 1 provides a stocasticity to the environment.

* Horizon length: H =13
* Discounting factor: v = 0.99
* Grid size: 10

* Goal box: The coordinates of the center of the time-varying goal box are (z4,y4)=
(0.9 cos (2mxk/2500), 0.9 sin (27xk/2500) ), which changes for episode k € [5000]. The
width and height of the box are equal to 0.05.

2. Experiment details

To motivate our proposed meta-framework via a simple experiment, we used Q-learning as a compo-
nent A of our meta-algorithm to update the policy. The three baselines (ProOLS, ONPG, FTML)
of Figure c) were trained with four learning rates 7 € {0.001, 0.003, 0.005,0.007} and the entropy
regularized parameter 7 = 0.1, where the shaded area of the three baselines is 95 % confidence area
among 4 different learning rates. The PTM-T was trained with the model rollout length He {50,60},
policy update iteration number G € {10,50}, entropy regularized parameter 7 = 0.1, Q-learning
update parameter ag € {0.7,0.9,0.99}, and the learning rate 1 = 0.001. The shaded area of PTM-T is
95 % confidence area among the 12 different cases above. All four algorithms share the same agent’s
policy network structure.

B Related Works

Existing methods for non-stationary environments can be grouped into three categories: 1) shoehorn-
ing: directly using established frameworks for stationary MDPs by assuming no extra mechanisms
are needed since non-stationarity already exists in standard RL due to policy updates; 2) model-based
policy updates: updating models with new data, using short rollouts to prevent model exploitation
[24, 29], online model updates, or latent factor identification [4} [13H16]; and 3) anticipating future
changes by forecasting policy gradients or value functions [7, 130, 20l [10} 31].

The advantage of the model-free method is its computational efficiency, allowing for direct learning
of complex policies from raw data [32} 133]], while the advantage of the model-based method is its
data efficiency, allowing one to learn fast by learning how the environment works [34} 35]. However,
both advantages are weakened in non-stationary environments since the optimizing non-stationary
loss function induced by time-varying data distribution makes the model-free method challenging to
adaptively obtain the optimal policy [36}137]] and the model-based method challenging to estimate
accurate non-stationary models [20 [10]].

Model-free method in non-stationary RL. [8] uses meta-learning among the training tasks to find
initial hyperparameters of the policy networks that can be quickly fine-tuned when facing testing tasks
that have not been encountered before. However, access to a prior distribution of training tasks is not
available in real-world problems. To mitigate this issue, [9] proposed the Follow-The-Meta-Leader
(FTML) algorithm that continuously improves an initialization of parameters for non-stationary
input data. However, it internally entails a lag when tracking optimal policy as it maximizes the
current performance over all the past samples uniformly. To alleviate the lag problem, [7}37] focused
on directly forecasting the non-stationary performance gradient to adapt the time-varying optimal
policies. However, it still has problems of showing empirical analysis on bandit settings or a low-
dimensional environment and lack of theoretical analysis which provides a bound on the adapted
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policy’s performance. [30] proposed adaptive Q-learning with a restart strategy and established its
near-optimal dynamic regret bound. In addition, [36] proposed two model-free policy optimization
algorithms based on the restart strategy and showed that dynamic regret satisfies polynomial space
and time complexities. However, the provable model-free methods in [30}[36] still lack empirical
evidence and adaptability in complex environments. Furthermore, since the agent can execute a
policy in a fixed environment only once due to the non-stationarity of the environment, most existing
model-free methods only update the policy once for each environment, which prevents the tracking
of the time-varying optimal policies.

Model-based method in non-stationary RL. The work [14]] learned the model change factors and
their representation in heterogeneous domains with varying reward functions and dynamics. However,
it has restrictions for use in non-stationary environments, meaning that it is applicable only for
constant change factors or the domain adaptation setting. [4] proposed a Bayesian optimal learning
policy algorithm by conditioning the action on both states and latent vectors that capture the agent’s
uncertainty in the environment. Also, [15] brought insights from recent causality research to model
non-stationarity as latent change factors across different environments, and learn policy conditioning
on latent factors of the causal graphs. However, learning an optimal policy conditioning on the latent
states [4} [13H16]] makes the theoretical analysis intractable. The recent works [20, 10, 31]] proposed
model-based algorithms with a provable guarantee, but their algorithms are not scalable for complex
environments and lack empirical evaluation for complex environments.

C Details on Problem Statement and Notations

C.1 Details on Notations

Environment Interaction. First, we denote the state and action at the wall-clock time t; of
step h as s;’“ and a}f, respectively. As mentioned in the main paper, we interchangeably use the
symbols s( ) gc) for sh and a;". At the wall-clock time {;, the agent starts from an initial
state s¢f ~ p. Atstep h € [H] of the episode k, the agent takes the action ay* = 7% (|s;*) from the
current state s;"“ The agent then receives the reward r; ~ Ry, (s; ,a) ,7) and moves to the next state
st wo~ Py, (sh +1|s Ny ,ah ). The trajectory ends when the agent reaches s}

and a

Future MDP M, . Our work creates a one-episode-ahead MDP M, , based on the observed
data from the p lastest MDPs {M;, ., ..., My, } when the agent is stated in episode k. We define

M., = (S, A, H,P,.,,Ry.,,7), where P, and Ry, are the forecasted future transition
probability and reward function, respectively. As mentioned in the main paper, the agent also interacts

with the created future MDP /T/l\t,m in the same way as it did with the original MDP M,, . We denote

the state, action, and policy in Mtk L as 5k, Zi%"“ Flk+1, or equivalently S 3k "(k”) k)

respectively. We elaborate our main methodology in SectronE}

State value and state-action value functions. For any given policy 7 and the MDP M, , we denote
the state value function at the wall-clock time t;(episode k) as V™' : S — R and the state-action
value function k as Q™ : S x A - R. We define

s;‘)"‘ = s] ,

t
80 =S, ao —a]

H-1
Vﬂ,tk(s) = EM%J |: Z ,Yh?,,;ﬁlk

Qﬁ,tk(s7a) — EM%,W |: Z ,Yh tk

Also, given the future MDP M. t,1» We denote the forecasted state value as Ptk (s):S—Rand
forecasted state-action value as Q™%+ : S x 4 — R. We define

m,t — hetprr | gtesr _
ve k+1(5) Mtk 17W|:27 ’ ’S()Jr _S:|7

h=0

H-1
Qﬂ-,tkﬂ(s,a) - E.K/T . Z ’Yh?;tlkﬂ ’g[f)ml =3, aélw—l =al.
tot1 =0
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As mentioned in the main paper, we simplify the symbols V™t Q™ Jmtee Qe ag
Vﬂ,(k‘)’Qﬂ',(k)’Vﬂ',(k‘+l)’@ﬂ',(k’+l).

Dynamic regret. Aside from stationary MDPs, the agent aims to maximize the cumulative expected
reward throughout the K episodes by adopting a sequence of policies {m* }1.xc. In non-stationary
MDPs, the optimality of the policies is evaluated in terms of the dynamic regret R ({wtk bk, K )
defined as

K o
R({r% b, K) = 3 (VS (p) - V™ () C.1)

k=1

EJR A . . . .
where V% (= V™ "% denotes the optimal state value function under the optimal policy 7*-t

at the wall-clock time t; (episode k) and V™% denotes the state value with agent’s k" episode’s
policy 7*. Dynamic regret is a stronger evaluation than the standard static regret that considers the
optimality of a single policy over all episodes.

State value and state-action value functions at step . We denote the state value function and the
state-action value function for any policy 7 at step h of the wall-clock time t;, as V, ' and Qy b
respectively. We define

=

M:

VI ) = By o 52 Lsft =],

{:s

-1
)t . h t t
QZ k(saa) ':EMlk,ﬂ'[ 'YZ Yk |Sh =S G,hk —a,]

i=h

Il
-

Then, the corresponding Bellman equation is

T (5,0) = (Ruy + 7P Vi) (5,0), Vi (s) = (@0 (5,0, m(1s)) o Vik™(5) =0 Vs €8
(C2)
where (P, f) (s,a) := By pui(s,a)) [ f(s")] for every function f: S — R.

We denote Vh*’t’c (s)=VS b () as the optimal state value function at step h of episode k. We

omit the subscript h when h = 0, that is, ymk = VO’T’k, Q’“k = Qg’k. Then, the corresponding
Bellman equation is

2 (s,a) = (Ry, +vPR Vi ) (s,0), Vit (s) = (QF ™ (s,), 7% ([s)) ., (C3)
¥t (s) = maxQ;‘;’{’“(&a).

We also denote the forecasted state value at the wall-clock time tx; of step h when the agent is stated

at time {y, as VTr "1 and the forecasted state-action value as QTr "+1 in a forecasted MDP M, .
We define

T

-1

’V‘vhmtkn (S) — EM\% I,Tr[ ,yz hAt/c+1 ‘Atml — S]’ (C4)
* i=h
H-1
Ntk =F i— h’¢k+1 1 _ o otk _ C5
Q" (s,a) = Moy, o ~ |5, = 5,a,f" =al. (C.5)
i=h

Then, the Bellman equation is given by

QZ’UHI(S,G) — (Rtk+1+’yptk+l h7r+1k+1)(8 a)’ 71' et (S) <Q‘Z,fk+1(s’.),7r(-|s))A
Vrte () =0 Vs e S. (C.6)

We denote the future 0pt1mal policy of the future value function V7™:t+1 as 7*:%+1_ Then the Bellman
equation also holds for Q7"+ (s) and V;"***1 () as follows:

Qi (5,0) = (B +7Poc B ) (5,0), V0 () = (@570 (5,0), 754 (45))
7l (5) = maxQ;k"t"“ (s,a). (C.7)
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As mentioned in the main paper, we simplify the notations V;''* Q% V1 Qrte+t ag
,(k (k) o, (k+1) Am,(k+1
Y, gr) pred) riken),

Unnormalized (discounted) occupancy measure. We define the unnormalized (discounted)

occupancy measure z/;‘(;fj;o € A1/(1-4)(S x A) at wall-clock time t;, (episode k) for a given policy

together with an initial state sg and the action aq as

$0,Q0

vt (s,a) = 3 7 P(sn = s,an = al sosa0: mPy)  ¥(s,a)eSx A (C8)
h=0

where P(sy, = s,a, = a | sg,aq ; m, P'*) is the probability of visiting (s, a) at step h when following
policy 7 from (s, ag) with the transition probability Py, _, .

We also define the unnormalized non-stationary (discounted) forecasted occupancy measure ﬁz,:;tkﬂ €

Aq/1--(S x A) for a given policy 7, an initial state sg, an action ag, and a forecasted future
1/(1-7) g policy

transition probability f’tk“ :

’D;T(;fg;l(s,a) = Z YP(sp = s,an = a | so,ao,w,ﬁtkH) ,V(s,a) e Sx A (C.9)
h=0

where the probability is defined in a forecasted environment with P, , .

Model prediction error. To measure how well our meta-function predicts the future environment,
we define two different model prediction errors Li’g” , L;‘l’“” : S x A — R, which denote the Bellman

equation error when using V and Q estimated in the future MDP instead of the true V and Q
functions:

21 (s,a) = (Rugyy + 7Py, VS = QY1) (s,a), (C.10)
L’;Lkﬂ (s,a) = (Rt,m + ,yptk+1‘7}jr:f+1,tk:+l B @’Z‘lk+l,fk+l) (s,a). (C.11)

As mentioned in the main paper, we allow 7% (s,a) and ¢;**' (s, a) to be interchangeably expressed
by the symbols ngﬂ)(s, a) and Lgﬁl)(s, a).

Local time-elapsing variation budget. Aside from the time-elapsing variation budget, we define the

local time-elapsing variation budgets B;k_w:k) and Bﬁk_w:k) that quantifie how fast the environment
changes over wall-clock times {tx_y+1, tk+1, .-, tx } Where k —w, k € [K]:

k
B;k,—uwl:k)(ATr) — Z sup ||Pt7+1(' |S,a) - Pt7(~ ‘Saa)Hla
r=k—w+1 $:@
k
B,Sk_w+1:k)(A7r) - Z sup |Rtk+1 (87 CL) - Rtk (87 a)'

T=k-w+1 5@
D Proof of Theoretical Analysis

D.1 Preliminary for ProST-T and theoretical analysis

In this subsection, we elaborate on the ProST-T’s environment setting and its components f, g.

D.1.1 Environment setting

We consider the tabular environment have the following properties:

1. First, Py and Ry are represented by the inner products of the feature functions ) :
SxSxA- R'S‘QW, ¢ : 8 x A - RISIMI and the non-stationary variables ol()k), ofk) €O,
respectively, where ol(’k) : SxSx A - RSP and ozk) : S x A > RIS That is,

Py =< w7o€k) > and Rxy =< ¢, 0}, >.
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2. Second, the agent estimates 0( %) and ozk) rather than observing them. More specifically, we
consider the non-stationary variable set O to be the set { Py }1:x, { R(x) }1:x- The agent
then attempts to estimate oy, (denote Py as 0’(’ %) and Ry as 0?1«)) through its w lastest

trajectories, where Assumption [2]does not need to be satisfied in this setting. That is, the
agent estimates Py by ¢} and Ry by 6}, from observations of last w trajectories, i.e.,

Tk—(w-1):k-
We elaborate on the above two settings below:
1. Py, R(x) are inner products of ¢, ¢ and ofk), 021@)'

Let us define a set of one-hot reward vectors over all states and the action space, namely 1,. := {¢¥ €
{0,1}ISI41] ZL‘E!A‘ ¢! =1}, and similgrly define a set of one-hot transition probability vectors,
namely 1, = {¢)¥ € {0, 1}‘5|2‘A| | le‘i‘l Ml ¥? = 1}. We then define one-to-one functions ¢ and
psuchthat o : Sx A > 1, and ¢ : SxSxA— 1, Namely, o(s,a)(¥(s',8,a)) is a one-hot

vector such that the (i) entry equals 1. We use the notation ¢} = go(sflk)7 agk) ) for the observed

(sgf), a, )) on the trajectory 74, and similarly ¢ = z/z(sflﬁ)p ,(f), Elk))

Then, we set O = {Pyy, R()}pe; in ProST-T. Also, we set o to consist of two parameters
as o = (o(k),o(k)) We define a function O(k) {0: 8xSxA > RISPIA] | o(s',s,a) =
Piy(s's;a), ¥(s',5,a)} and a function ofy = {0: SxA > RIS o(s,a) = Ry (s,a), ¥(s,a)}.
Then, the transition probability and reward value P(;) and Ry can be constructed by the inner

products of the stationary functions ¢ and ¥ and the unknown non-stationary parameters 0’(’ %) and
ozk) as follows,

Puy(s' [ s,a) = < w(s',s,a),ofk)(s',s,a) > for V(s',s,a), (D.1)

Ray(s,a) = <¢(s,a),04,(s,a) > for V(s,a). (D.2)

For notational simplicity, we use < 1, o’(’ ) > and < ¢, o’gk) > to show the inner products of the
functions 1), Oj(jk) and @, o(,,, respectively. Therefore, Py =<1, Oj(jk) >and Rx) =< ¢, 00,y >

To give an intuitive explanation, note that 0’(7 5 contains all transition probabilities for all (s, s,a) in
. . 2 . . . .

a vector form with size RISI"MI and ozk) contains all rewards for all (s, a) in a vector form with size

RISIMAL

2. The agent estimates O?k) and 0’(’ %) rather than observing them

We have defined the functions 01(’ %)
episode k, respectively. Now, the agent strives to estimate o’(’

from the current trajectory 7:

and ofk) as the transition probability and reward functions at

and ofk), denoted as 5’(”

%) and ’0""("k),

k)
n(k) (8,7 S, a’)
A+ny(s,a)
H- k
T 1 (s0) = (5, af)] - it
ng (Sa (L)
where n;(s,a) denotes visitation count of state s under action a through trajectory 7(;y and
n(k)(8,a,s") denotes visitation count of state s under action a and subsequent next state s’ through
trajectory. We denote 0, , = b‘fk)(sgﬁ)l, sgf), agc)) and oy, , = ?fl(sflk), aj, )
It can be verified that the following relations hold at episode & for the state and action pairs from the
k™ trajectory {S(()k) a(k) S(k) o) (k) (k) (k)}:

bfk)(SI,S,a): , V(s',5,0) e SxSxA,

b\,(nk)(s’a): , V(s,a)eSxA

201 T SEI1 Qs
k k) (k k) (k k) (k) (k

Py (sey [s8,al?) = <op(si0 st a), o (s 58 al) > vhe[H], (D3
R(k)(sh ,ah)) = <g0(8h 7ah)) ok)(sék),ah))> ,Vhel[H]. (D.4)
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o

Note that the observed non-stationary parameters ()

vectors.

and 5?1@) can be interpreted partially observed

D.1.2 Functions f and g

The function f estimates and the function g predicts as follows:

1. Function f: f forecasts one-episode-ahead non-stationary parameters (’)’(’ k41 and 6’("k 1) by
minimizing the following loss function £ yo with the regularization parameter A € R.:

k  H-1
Lo (95 Opowerny) = Mol + 30 32 ((03)76-9%5)
s=k—w+1 h=0
where ¢ = mpand O = pif o = r. Weseto = ¢ if o = p. VVeletng";<> =
argmin, L o (’o‘]‘;_(w_l):k). We use ¢’}o as oy, .

2. Function g: Then g predicts the functions P41y and R(j.1), denoted as ’g‘ﬁc 41y and g‘ﬁ 1y

— - — oy — k
as Py = ggﬁl) =< <p,’o*’(7k+1) > and Ry = ggﬁl) =< p,0},, > +2r'®  where

Ffﬂk) (s,a) : S x A — R is the exploration bonus term that adapts the counter-based bonus
terms in the literature.

We elaborate on above two procedures below:
1. The function f solves an optimization problem to obtain the future o(;, ).

The function g o f forecasts the k + 1*" episode’s non-stationary parameters as (ﬁfml),’o“zk +1)) from

O(k—w+1:k)» Where w is the sliding window length (past reference length). The function f forecasts
01(’ k1) and ofk 1) by minimizing the following two regularized least-squares optimization problems
(18]

k,H
’o"z()k+1):argmin()\||o||2+ » ((wz)To—ajh)) (D.5)
0cRISIZIA| s=k-w+1,h=0
) k,H-1
Oeany =argmin | Alol*+ 3> ((¢i) 0-054) (D.6)
0eRISIIAl s=k—-w+1,h=0

2. The function g predicts P( k+1) and E( k+1) from 0.

From the equations (17a) and (17b) of the paper [31]], the explicit solutions of and (D.0) are
given as

k H-1
Zf:k—w-v-l nt(5,757a) ~r (S a) _ Zt:k:—w+1 Zh:O 1 [(S,Cl) = (827(11}51)] : TZ

, 0
A+ Zf:k:—w+1 nt(sv a) () A+ Zf:k—w+1 nt(sv CL)

5?]{;.'_1) (8,7 S, Cl) =
(D.7)

Then, the ProST-T predicts the future model using the functions fq‘,f +1 and :q‘,il as follows:

Tl (5,0) =< (s, 5.). 50,y (5 5,0) >,
i1 (s,0) =< go(s,a),?)'fkﬂ)(s,a) >,
T (5,0) = i (5,0) #2050 (s, ).
We utilize the exploration bonus FE,f“ ) (s,a) : S x A — R to explore those state and action pairs that
are less visited. We define it as Fq(uk)(s, a)=0 (Zfzk_wﬂ ne(s,a) + )\)_1/2 with 8 > 0. Then, we

use ’gf +1 and ’gf;rl to denote the future MDP’s ?( k+1) and R( k+1)» respectively. From the following
analysis, we write P(j.1) = ’9\5”1)7 Rri1) = ’gvgﬁl), and R(j1) = ’g‘gﬁl).

19



D.1.3 Baseline algorithms Alg and Alg,_

The ProST-T utilizes softmax parameterization that naturally ensures that the policy lies in the
probability simplex. For any function that satisfies  : S x A - R, the policy () is generated by
the softmax transformation of #(*) at the wall-clock time t;,. Furthermore, to promote exploration
and discourage premature convergence to suboptimal policies in a non-stationary environment, we
implement a widely used strategy known as entropy regularization. We augment the future state value

function with an additional 7(*) (s) entropy term, denoted by 7 (s, 7(¥)), where 7 > 0. We perform
a theoretical analysis with two baseline algorithms : Natural Policy Gradient (NPG) Alg and Natural
Policy Gradient (NPG) with entropy regularization Alg,

Softmax parameterization. For any function that satisfies 6 : S x A — R, the policy 7(®) is
generated by the softmax transformation of #(®) at the wall-clock time t,. Using the notation
k) = To(k), the soft parameterization is defined as

exp () (s, a))
Eareaexp (0 (s, a’))

Under the softmax parameterization, the NPG update rule admits a simple form of update rule given
in line 17 of Algorithm [2]in Appendix [F.I] This is elaborated in [21]].

Entropy regularized value maximization. For any policy 7, we define the forecasted entropy-

,V(s,a) e Sx A

T (als) =

i

regularized state value function V" fen (s) as
Vb (s) = VU (s) + 7H(s, )

where 7 > 0 is a regularization parameter and H (s, 7) is a discounted entropy defined as
& (k+1)) A(k+1)y [ (k+1)
H(s,7) = Efn, > =Alogm(a, 8 NS = 5.
h=0

Also, we define the forecasted regularized Q-function Q\:"(kﬂ) as

@;ﬁtk-n (s,a) = f,;lkﬂ i 7Es'~1’5¢k+1 o) [VTTr,tkH (S,)]

where (s, s,a) = (g%’:l), §§lk+1)’di(zk+1))'

D.2 Notation for theoretical analysis

This subsection introduces some notations that we will use in the proofs.

At the wall-clock time t, we define the forecasting model error AY, (s, a) and forecasting transition
probability model error AY (s, a) below:

AL (s,a) = |(R(k+1) - ﬁ(/m)) (s,a)], (D.8)
Afk(s,a) = ||(P(k+1) - ﬁ(k+1)) ( ‘ 8,0,)”1 . (D9)

Recall that ]3;( k+1) and P(j.q) estimate the future reward and transition probability by solving the
optimization problems and (D.6).

We define a model error that considers the bonus term as
AL (5,a) = |(Ripary — Rrsny) (5,0))|

where R(k+1)(s, a) = E(k+1)(s, a)+ 2I‘£Uk)(s, a).

We also define the empirical forecasting reward model error Afk ,, and the empirical forecasting
transition probability model error Afk A

Azk,h = ‘(R(ml) - R(kﬂ)) (82k+1),a2k+1))|’

St =P~ P e

e,
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as well as the empirical bonus based on the reward model error:

Bonus,r k+1 k+1
AZ = |(Regany - Raony) (551700l

Likewise, we define fotal empirical forecasting reward model error AZ( and the fotal empirical
forecasting transition probability model error A%

- K-1H-1
A=Y % Af (D.10)
k=1 h=0
- K-1H-1
Ab = Afk,h. (D.11)
k=1 h=0
We simplify the symbols Af (s,a),A} (s,a), ABO"“S’T(S a), Ay, A7 ,L,Aio;zus’r as
r Bonus,r Bonus,r .
A(k)(s,a),A’{k)(s,a) A(k) (s,a), A(k) h ,A(k) h,A(k) L, respectively.
We also define a variable A% (s, a) that quantifies the visitation:
. -1
A (s,a) = | X+ > ne(s,a)| . (D.12)
t=(1nk-w+1)
It can be verified that
T%(s,a) = B/ A (s,a). (D.13)

As before, we simplify the notations A% (s,a) and T'% (s, a) as AP (s,a) and ) (s,a). We define
T'maxs Tmax s Rl(nlélil), and R(Ij—il) as follows:

(134):1) —]EnaX|R(k+1)(S sa)l,

Pmax = max R}
M <K -1 (k+1)

R?/?L) = max|§(k+1)(s,a)|,

Tinax = Iekefo1 R(k+1)
and since || Rx1) (5, @)oo < [Rrin) (5, @)oo + 112757 (5, 0) oo = RIS, ) + 2%, we define st as
max . pmax |, 2B
Tk+1) = Dge1y T == N
Also, since § and )\ are hyperparameters independent of k, we have that
25 (D.14)

'Fmax = "Fmax + —=.
VA
D.3 Proofs

Proof of Theorem([I| Following the definition of the dynamic regret (Definition [C.I)), it can be
separated into three terms:

({"/T\(k+1)}1:K—1a K))

— £ (V* (k+1)(s ) Vﬂ'(kﬂ) (k+1) )
k=1
K-1 K-1 (k1)
_ (V* (k+1)(s ) V>l< (k+1)(s )+ (V* (k+1)(s ) V7r (k+1)(so))
k=1 k=1
) )
K-1

7‘_(}wr ) 7_r(lc+1)
4 (V (k+1)(s ) % (k:+1)(s ))
1

e
I

©)
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1. Upper bound on . The gap between V™" "7 :(5+1) (50) and V7" (++1) (1) comes from
the gap between two optimal value functions evaluated for two different MDPs: M .1y and M( k+1)-

We will first come up with an upper bound on the difference between Q;’;’(kﬂ)(s,a) and

@}T’(k+1)(s, a) for any (s,a) € S x A. The difference can be separated into three terms as fol-
lows:

Qi (5,0) - QF Y (5,0) <)|QF Y (5,0) - QEM (5,0) o

&

+(QEW D (5,0) -QEH Y (5,a))

&

Q%D (s,a) - QD) (5,0) |oo

&

1.1. Terms @ and @

First, the term @ can be bounded as follows:
_ i) (k1) = i (k+1) | (k+1) _  (k+1) _
@ - “EM(k+1)7W*[ Z Y Tivn 27 T | s, =5,4ay = a]

=0
(o)
%
> V' Tmax
1=H-h

) ’YH_h

-~

oo

rmax

Through a similar process, we can also obtain the upper bound: @ <AHE (1 = 4) Fiax.

1.2. Term @

An upper bound on the term @ can be obtained by utilizing 7" )(s a) (Def (C10)). Then, the

Q-function gap between Qfo’(kH) and Qi (k+l)

follows:

@ ( *,(k+1) _ o% (k+1))( a) (D.15)

= (Rgs1y + 7Py VEF D) (5,0) - Q) (s, a) (D.16)
= (Rerty + 1Prany VE ) - QEE) (5,a) + Py (VEED - 72E1) (5,a)

<TE 1 (s,0) + Y Pry (VE D - VEED) (5,0)
51 (s,0) + Y Pary ((QE KD o (a)y y (QE WD 784Dy 1) (s,0) (D7)

= 751 (s, a) + Y Py ((QE KD — @ (D) ok (hrl)y

4 <Q‘§Z,(k+1)77.r>l<,(k+1) —’ﬂ\’*’(lﬁl))A)(&a)

< (s,a) + Y Pgeery ((QE T - QEITD 2% (+1) 1) (s5,a) (D.18)

where ( and (D-17) hold by the definition of Bellman equation ((C3)) and (C.7)). Equation
(D13) holds by (QX D k. (k1) _ k. (k+1)) (5. a) < 0 since 7% 5+ s the opt1ma1 policy of
QE D We now define the matrix operator (Po7)(s,a) : RISIMI - RISIMI a5 the transition matrix

can be represented using the Bellman equation as
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that captures how the state-action pair transitions from (s, a) to (s’,a’) when following the policy 7
in an environment with the transition probability IP. Also, define the one-vector 1, 4y € RISMI such
that the (s,a)™ entity is one and the remaining entries are zero. Then, the equation becomes

the same as the (s, a)™ entity of the vector 1, ,)- (Qi’(kﬂ) - @i’(k+1))(s, a). Also, the right-hand
side of equation can be represented as

Pl ((Qi,<k+1) _ @i,(k+1),ﬂ*7(k+l))A) (s,a) = (p(lm) o 7T>|<,(k+1))
(Lo (@QEEV -QZHD)) (s,0)
= (PEY) (Lo - (QEHD - QEFD)) (5,0)

where we denote P,y o (k1) o Pf:f:l) for notational simplicity.

Then, we can reformulate the inequality (between (D.13)) and (D-I8)) into a vector form which holds
element-wise for all s, a:

(]]-(370,) : (Qfo’(kJrl) - Qi,(k+1))) (S,CL) S]]-(s a)’ Z(kJrl)(s7a)
% ~
+ ’V(P( +1)) (]l(s,a) : (Qi(k*’l) - szo’(kﬂ))) (s, a)
Then, rearranging the above inequality yields that
]]-(s,a) ! (Qi7(k+1) - Q\;ko’(k+l)) (Sva) < (H - FY]P)kJrl) ]]-(s a)’ Lk 1(5 CL) (D19)
1
=l (s,0)
L=y
Now, note that (I - ”y]}’gf:l) )~! can be expanded with an infinite summation of the matrix operator
Pjesry o D g (T - fy]P’(kJrl))‘1 =1+ V]P’(’”l) +(7y ]P’(’”l))2 +...s. Since, 1, 4 can be viewed
s, (o4 1)
as the Dirac delta state-action distribution that always yields (s, a), it holds that 1/( @) (k)

(I- ’yIP’(kH)) '1(s,a), where v is the unnormalized occupancy measure of (s, a) in light of Definition
(CB). Then taking the I, norm over the inequality (D.I9) yields the that

||]l(s,a) ' (Qi7(k+l) - Qi,(k+1)) (S,CL)H < ||(I[_ 7Pk+1)_ ]l(s a)’ 512:1(3 Cl)“
=[P L], - 7 (50
= % |Z’§:1(S,a)| (D.20)

*,(k+1)
Equation (D-:20) holds since 1/(Trg o) {(k+1) i5 an unnormalized probability distribution.

Then, for every (s,a,h) € S x A x [H], it follows from combining the terms @, @ and @ that

%, (k+1) = (k+1) ~Hh
Qh) (Sva)_Qh’ (S,CL)S 1—

1.3. Combining the terms @, @ and @

Finally, an upper bound on (1) is derived as

Bl s sk (1)
@ Z (V ,(k+1)(5 ) v (k+1)( ))
k=1

1
(Tmax + fmax) + 17 |Z£]:+1)(Sa a)|
-

< KZ: ||Q>l<.,(k+1) _ Q*,(k+l)||

=1
_ Zl ( + Kz: —k+1||
- = Tmax Tmax 1 7 ] [e<]
~vH 1
=(K-1)- 7(7«max+r,mx)+ 1_7& (D.21)
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where we have defined 7% := Zii_ll Hfgf +1)H in Theorem

2. Upper bound on 2).

— o (kt1) L.
The gap between V#(5+1) (s0) and V7 (%1 (5,) comes from the optimization error between the

optimal policy 7% (**1) and the policy #**1), which are both driven from the same MDP M (k+1) -
We also separate this gap into three terms:

@'s (k)th term = V*’(k+1)(80) - V?(kﬂ)’(kﬁ)(SO)
_ (‘7*$(k+1)(80) _ Vi’(kﬂ)(so)) + (V;lj,(ku)(s()) _ Vi(k+1),(k+1)(50)) +

(V25700 (50) - PR (5 (D:22)
> Salet 2 H/\m X
< (VD) (59) = TE 0D () ) ¢ T T (D.23)
1-v
where the subscript oo in the notations po (D) (s0) and VQ(TIHD (s0) indicate the forecasted value

function and the forecasted entropy-regularized value function when H = oo (infinite horizon MDPs).
. . o, (k+1 o, (k+1) _m oo h(k+1) _ (k+1)
Equation (D.22) holds since V7™ (**1) () -V (s) = ]EM(k+1)77T [thHy T ‘ 5=7, ] <

%?max holds for all 7 € II.

2.1. Upper bound on 2) - NPG without entropy regularization (A1g). The term @ in (D:23)
can be bounded as

(D) =T 4D () - PT0) ()
Slog|.A| N 1
nG  (1-7)*G

(D.24)

due to Theorem 5.3 in [38]]. Now, combining and offers an upper bound of the term 2)’s
(k)™ term as follows:

@'s (k)" term = P70 (5 ) - PR 0D ()
< 1 + 10g|.A| + 2'7H?max
(-G G L-vy

Hence,

K-1 7k, (ktl) Sa(k+l)
@ = Z (V ,(k+1)(80) v ,(k+1)(80))
k=1

IA

H~
1 . log |A| . 2~ rmax) (D.25)

(K_l)((l—'y)QG nG 1-y

2.2. Upper bound on (2) - NPG with entropy regularization (Alg_).
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The term @ in (D.23) can be further bounded as follows:
@) =T ) (59) ~ VI (50)
— (k+1)
:(V*,(k+1)(s ) _V*,(k+1)(80)) ( +1)(SO) (k+1)(30))
(TP 0 () TG )
[T D s0) = PEED o), [T (00) =TT Do)

[P0 (5) - DZH 0 )|

~ P 271
[P0 5p) - TR0 (5| 2208 (D.26)

22

where (D.26)) holds since HV ’<k+1)(s ) - Voo’(ml)(so)H = rmax, |H(s,m)| < TlolgflvAl holds for
all 7.

We now bound the term @ in l) With the policy-update rule of ProST-T (Algorithm [2]in
Appendix [E2), suppose that for a given g € [A,], we have obtained an inexact soft Q-function
value of the pOlle T(g) S QT , where QT(Q) denotes an exact soft forecated (Q-function value and

g is the iteration index. The approximation gap |QT(9 ) - T(‘" ’| results from computing () using a
finite number of samples. For a hyperparameter 9, let the maximum of the approximation gap over

(s, a) is smaller than &, namely |37 — 97|l < & holds. Then, for iteration g = 1,2, .., A, the
policy-update rule of ProST-T can be written as

~ 1 - nGr? (s,a)
7T(g+1)( |5) = Z(g) (71—(9)( |S)) ex ( 1-~
where ||@f(g>(s,a) - @f‘”(s,a)”w < for V(s,a)eSx A

where Z()(5) = Saea (Foy(als))' ™7 exp (nQ7 (s,))/(1-7)).

In light of Theorem 2 in [21]], when the learning rate is such that 0 < < (1 — v)/7, then the
approximate entropy-regularized NPG method satisfies the linear convergence theorem for every

gel[Ax]:

Q%D — QT |l <~ [(1-nr)9 7 Cy + Co] (D.27)

[log 75 *+1) —1og Ty [l < 277 [(1 = 77)9 7 C1 + O] (D.28)

where

Oy = ||Q‘;l<7(k+1) _ @‘f(o)Hoo +27 (1 - %) ||log’ﬂ>*,(k+1) = log @(0)l[eo

=@ Q2 (1 ) 10RO Sog 7D ©29)
25
Cy = (1 + l) (D.30)
1-~ % nT

The equation (D.29) holds since the policy that the agent executes at the wall-clock time t;, (episode
k), ie., 7T(k), is same as the initial policy of the policy iteration, i.e., T(0)- at the wall-clock time t;..

Also, the policy that the agent executes at the wall-clock time .1, i.e., #**1) | is same as the policy
after A, steps of the soft policy iteration, i.e., 7?( A, at the wall-clock time ..

Now, the term @ can be bounded as follows:
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— , k ~=(k+1)
@)= |70 - V7).
= [[FROD -PTe)

<QF D Q74 oo + 7| Log T Y —log (g |en

<(y+2)[(1L-nr)2'Cy + Co] (D.31)

Combining (D.23|D.26|and|D.31)) offers an upper bound on the term 2)’s k(") term as follows,

@,s (k)th term = V?*v(k+1)7(k+1)(80) _ V?(k+1)7(k+1)(50)

2vH T, 271
<(+2) [(1=nr)A=1Cy + Cp] + L Tmax 2T og | A (D.32)
1-7v 1-+v
Hence,
& (o 0 (he1) SERED (ki1)
@= 3 (V7D () - PR ()
k=1
2y, 271
<(K-1) ((7+2) [(1-n7)2 100+ Co] + 71 [max Tlogw) (D.33)
- -y

where (D.32)) and (D33) hold when 0 <7 < (1-7)/7
3. Upper bound on 3.

By recalling Definition (C.II), note that L£k+1)(§§Lk+1),6§Lk+l)) is an empirical estimated
model prediction error, measuring the gap between M;,1) and .//\/t\(kﬂ). Specifically, at
episode k, the ProST algorithm creates the future MDP /T/l\(kﬂ) and evaluates V and @ us-
ing k1), Subsequently at episode k + 1, the agent uses 7**1) to rollout a trajectory

{s(()k+1)’a8k+1)7s§k+1)7agk+l) S(k+1) a(k+1)

k+1 . . .
yees Sproq Qg ,sgq )}. Based on this observation, one can write

A;‘_\(lw-l)

k1), (k+1)  (k+1 k+l) (k41 (k41 k+1)  (k+1
o P ) =Ry (515 ) e (Pan Vil )

e (fo+1)
QZ kel ,(k+1)(52k+1),a2k+1))

A;‘_\(lﬂ-l)

k k J(k k k
=Ry (55,0l D) + 4Py Vi, ) (s 0l )

Q’ﬁ(k“),(k+1)(82k+1)7 aﬁf*l)) + Q’Z‘(k+1),(k+1)(32k+1)7 agm))

h
=7 (1) (k41 k+1 k+1
S (D D)

S7ED (1 wD) (pyq k+1 k+1
APy (Vi D =V I (s af )

=(k+1) i (k+1)
Qh ,(k+1)(8§1k+1)7a§1k+1)) _Qh ,(k+1) (S%kJrl),angH)) (D.34)

Equation (D-34) holds due to (C-6). Now, we define the operator 3**1) for a function f : S x A - R
as follows:

D)) = (5,0, 7ED(]s))a

o (kt1) (kt1) —~(k+1)
Recall that V" gy = (@ ’<k+1),7r‘(k+1))A and V)"
~=(k+1)

~(k+1)
(@ o ’(k+1),’ﬁ(k+1))A in light of (C:6) and (C2). Then, the gap between V", ’(kﬂ)(sgﬁl))

,(k+1)(s) _
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(k1)
and th ' Uﬁl)( (]”1)) can be expanded as

alady (k+1)( (k+1)) Fw(k+1) (k+1)( (k+1))

=

§(k+1) (AA(“” J(k+1) Q:‘(k+1>,(k+1))) (Szkn))
—~ AA< 1) ~(+1)
(j<k+1)( 1) (141) QZ k+1 ,(k+1))) (SEL]Hl)) (k+1)( ;lk-#l) (k+1))

w(k+1) (1 ,ﬁ(k+1)1 3 k 3
Ploy(Vr, B oy Dy (D) [ Gy

+
"(’”)kl ATED (k+1 k+1)  (k+1
( (keD) _ o7 ‘(”)Sﬁf)vaﬁ”)

Now, we define two sequences {D(k+1)} nd {D(k+1)} , where (k, h) = (0,0),(0,1),....,(K-1,H).
We define D(kﬂ) and D(k“)

— Aﬁ,(lwl)’ ,ﬁ(k+1)$
Df(ffl) o (j(lw-l) (Qh (k1) _ 7 (k+1))) (s+*D)

AA(k+1) k+1 ﬁ(k"l)) k k k
A (Q (k1) " ( H))(SZ ) EL +1))

k+1 7R+ (k1 FRHD (k k k
D( +1) —'Yh+1p(k+1)( - (k+ )_Vh+l ( +1))( ( +1) al +1))

h+l [ FED (k+1) FFED (k+1) (k+1)
- ’ (Vh+1 _Vh+1 ( Sha1 )

Therefore, we have the following recursive formula over h:

~=(k+1) —~(k+1) .
’Yh (‘7}? J(k+1) V}ZT 7(k+1)) (S;llw—l))
k+1 k+1 S7ED (4 7D (k41 k+1 k+1 k+1 k+1
D(+) D(Jr) 7h+1([h+1 () [h+1 (+))(§L+§)) 'YhLEL+)(S§L+)7a§L+))

The summation over b =0, 1, .., H — 1 yields that
Vbﬁ(k“),(k+1)(8(()k+1)) 3 Vﬁ<k+1>,(k+1)( (k+1))

H-1
k+1 k k k k+1
- T (D D7) = T A ),

Now, for every (k,h) € [K] x [H], we define ]—",E 1) as a o—algebra generated by state-action
sequences {(s7,a])}(r.iye(k-1]x(#] Y {(sF,aF)}ie[n) and define .7-'}5 as a o-algebra generated by

{(317 a; )}(T i)e[k-1]x[H] Y {(S“ Q; )}ze[h U {Sh+1} A filtration { }(k,h,m)E[K]x[H]x[Z] isa
sequence of o- algebras in terms of the time index t(k,h,m) = 2(k - 1)H + 2h + m such that

.7:}5]21 c FF . for every t(k,h,m) < t((k'),h',m’). The estimates V}:T’(kﬂ) and Q\Z’(kﬂ) are
fl(’kfl) measurable since they are forecasted from the past % historical trajectories. Now, since
DY e FEY and DSV e FUY hold, (DY VIFE D] = 0 and E[DJSV|F T = 0.
Notice that t(k,0,2) = t(k - 1, H, 2) and fé? = fgf;) for Vk > 2. Therefore, one can define a
martingale sequence adapted to the filtration {f}(lk%}(kﬁh m)e[K]x[H]x[2]:

4
,m

k+1 k+1 k+1 ’
st = Z Z (Dh,1+Dh, ) Z (D,ﬂ,*l) + DY) + Dk
=1h'= h'= (k',h',j)e[K]x[H]x[2]
Let
K-1H-1
(DhV+ DY) = s
k=1 h=0
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(k1) (k1) .
Since "Q; ’(kﬂ),*yh’fth+1 (k+1) € [0, "max /(1 = )] and
~(k+1) ~(k+1)
@y D ey T D e [0, /(1 - )], it holds that (DY, (DY) <

(Tmax V Tmax )/ (1 =) for V(k,h) € [K — 1] x [H]. Then, by the Azuma-Hoeffding inequlaity, the
following inequality holds:

Y

16 (i ). (K - 1) H

P(ISE3' <s) > 2exp

For any p € (0,1), if we set s = 4(Fmax V Fmax) (1 =) "/ () — 1) H log(4/p), then the inequality
holds with probability at least 1 — p/2. The term (3) can be bounded as

KLHSL o +1)\  SUVEL 1), (1) (kr)
®-Y % (Dh’1 + D}, )— Yoo sy )
k=1 h=0 k=1 h=0
< M\/(K_ 1)H log(4/p) - 115 (D.35)
-7

4. Upper bound on dynamic regret.
4.1. Upper bound on dynamic regret - without entropy regularization.

For without entropy-regularized case, combining the equations (D.21)), (D.23)) and (D.33)) leads to
the following upper bound on the dynamic regret for a future policy {7} that holds with probability
atleast 1 - p/2:

9‘{({77\(“1)}1:1(71,-;{))
—D+@+®
H 1

17_ ~ (Tmax + ”A‘max) + 1_

_K

LOO

1 . log |A| . 27 T
(1_7)2A7r nAw 1_7

N M\/(K - 1)Hlog(4/p) - 1y
-7

<(K-1)-

+(K—1)(

Taking an upper bound on 7,y and 7pax using (Tmax V #max ) yields the following upper bound that
holds with probability at least 1 — p/2:

R ({77\(]“1)}1:}(—17 K))

DYT N L | Il Y
(1-7)2Ax nA; 1-~
+ 4(Tmax Vv 'f‘max) Hlog(4/p) N 1 [g _ Lg
1-~ K-1 1-v

4.2. Upper bound on dynamic regret - with entropy regularization.

For the entropy-regularized case, combining the equations (D.21)), (D.33)), (D.33) leads to the follow-
ing upper bound on the dynamic regret for a future policy {7} that holds with probability at least
1-p/2:
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R ( 7D} ke, K))

=O+@+0
H
1
(K =1) L (rmax + Fmax) + X
1-v 1-v

H~
+(K-1) (w £ 2) [y O O] 4 T T QTlogiAl)

1-~ I-v

i Ao o) ST g (17p) -
-

Then, the following holds with probability at least 1 — p/2:
R ({%(kﬂ)}l:Kfla K))

4y (Frnax V Tmax) . 27log | A|
-~ -~

< (K - 1)( (r+2)[(1= 72101 + C] +

4(Tmax \ 'Fmax) HIOg(4/p) 1 K K
+ + loo =Ly
1-7v V. K-1 1-~

4.3. Upper bound of Theorem 1]
Then, combining 4.1, 4.2 provides the expression,
R ({ﬁ(kﬂ)}l:K—h K)) <R+ Rys

where Rrr = My, if we use Alg as the baseline algorithm and 9R;; = Alg_ if we use mﬂlgT as the
baseline algorithm:

1
mpi—4£%9+qu-1
-

%Alg = CAlg(Aﬂ-) . (K - 1)
9%AlgT = CAlg, (A‘ﬂ') : (K - 1)

where the corresponding constants are

4(Tmax V Pmax 1 log |A 1 4 H Tmax V Tmax
Cp:(l_w)w/Hlog(zl/p, CAlg(Aﬂ)=( + gl |).+7()

(1-7)? n Ax L-vy
_ Ay (Frax V rmax ) 27 log |A
Cuag, (Ax) = (v +2)[(1=nr)27C1 + Ca] + = ({“‘“;7 =) l_gv' |

O

Lemma 1 (Conditions on A and H to guarantee the optimal threshold 2¢ of (2) without entropy
regularization). We decompose the term Q) as
1 , log|A] 27 P

1-7)2A,  nA, | 1-4
N———

Q-@<- Q-® <«

To guarantee that the terms Q) — @ and (2) — (b) are each less than or equal to €, it suffices to satisfy
the following conditions for T,m, A, and H:

@_@:sz( 1 +log|./4|).1

Qs (k)" term =

(1-7)2 n €
log(5=L€) 1 o7,
Q-®:H>—2=" o H> log( s )
log(y) -« (T-7)e
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Lemma 2 (Conditions on 7, A, H to guarantee the optimal threshold 4¢ of 2) with entropy
regularization). We decompose the term 2) as

He
Qs (k)th term = (v +2) [(1 _ nT)AW—lcl] F(7+2)Cy+ 271 Trnax . 2Tllog |A|
— —

Q-@<- Q®<e o~ S

QD-©0<c Q-WD=<-

To guarantee that the terms ) — (), Q) — © and (2) - (d) are each less than or equal to €, it suffices to
satisfy the following conditions for T,m, A, and H:

®-®:6< ¢ (D.36)

(v+2) = -(1+55)
) log( 5= Do 6) 1 2 onax
@—@.HZW or Hzl—’ylog((l—’y)e) (D.37)
. -y
Q-@:7< 2log A (D.38)

and the term 2) — @ offers the lower bound of iteration /A as follows.

log ( —<—
@_@;A@MH or Az Slog[ 2, (D.39)
log(1-n7) nT €

The inequalities and (@) results from applying the first-order Taylor series on log(~y) and
log(1 - n7) since v € (0,1] and n € (0, (1 = v)/7]. The inequalities (D.36) and implies that
if the learning rate 1 is fixed in the admissible range, then the iteration complexity scales inversely
proportional to T, and the upper bound on §, which we will denote it as Oy, also scales proportional
toT.

Now, the best guaranteed convergence can be achieved when n* = (1 — )/ (associated with the
value of 1 that minimizes the equation (D.29)), for which conditions of hyperparameters Ay .+ and
O+ are

n

Ak, (k+1)  AFO
log(m & ||oo(7+2))+1

€

When n* = (1 —~)/7, the iteration complexity is now proportional to the effective horizon 1/(1 —~)
modulo some log factor, where the iteration complexity and 6, are now independent of the choice of
the regularization parameter .

Lemma 3 (Sample complexity to guarantee the optimal threshold 4¢ of 2) ). We define 6,4, as
right-hand side of the equation (D.36). If we have the number of samples per state-action pairs is at
least the order of

1

(]' 7)3 max

up to some logarithmic factor, then § < 0,4, holds with high probability and we can guarantee the
optimal threshold 4e with high probability for the upper bound of ), provided @ m and

hold.
()
Proof of Theorem 2] 1. ProST-T .}’ :
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The empirical estimated model prediction error szﬂ)(s}(fH) (k”))

(Definition (C.1T)):

is represented as follows

A(k+ )
_L2k+1)(sflk+1)’ a](—tk+1)) - _ R(k+1) (82k+1) (k‘+1)) ’Y(P(k+1) o (k+1))(sglk+1)’ a](—tk+1))
+ Q"T’r‘(k+1>,(k+1)(s(k+l) (k+1))

h ) Ay, (D.40)

A(k+ )
- _ R(k+1) (S(k+1) (k‘+1)) ’Y(P(k+1) o (k+1))(sflk+1) a(k+1))
w(k+1 )
(D.41)

= (E(k+1) - R(k+1)) (S]("Lk+1))a2k+1))

D ~a(kt1)
Y ((P(,M) - P(k+1)) V}:j ,(k+1)) 52k+1)7a(k+1))

Bonus,r 5) (k+1) (k+1) ""(“'1) ,(k+1)
A(k:)h +7H(P(k+1)_P(k+1))('|3h @ )” ’ h+l )
ABonus,r n ,}/Az]; hfy - _7:;nax (D.42)

H-h~
<Al p +20P (s afF D)+ Ay | I - _Tr;““* (D.43)

The equation (D-4T) holds due to the future Bellman equation (C.6), the equation (D-42) holds since

~=(k+1) ’

V}fo ’(k+1)(~) ’ <SH o < AH R /(1= ), and the equation (D-43) holds
since Ag:)"m "(s,a) < |(R(k+1) - ]Ai’j(kﬂ)) (s, a)| + |2F1(Uk)(s7 a)| = A?k)(s,a) +orik )(s,a) for all
(s,a). The summation of the empirical model prediction error over all episodes and all steps can be
bounded as

K-1H-1 K-1H-1 5
_ h (k+1) (k+1) (k+1)) < AT + QF(k)( (k+1) a(k+1))+’}’7“max AP
1;1 h=0 — kzl hz%) " 1-7 2K
) ®

@
(D.44)

We use Lemmalto bound the term (1), Lemma[9]and (D.13) to bound the term (2), and Lemma [11]
(or Lemma to bound the term 3):

®§wHBT(A,r)+x\7"max~(K—1)\/E log()\+wH) (D.45)
w A

@g%’(K—l)\/g\ /log()\+;\UH) (D.46)
OF (|S|\ / H; log (g) N )\) (K - 1)\/3\ /log()\ +A“’H) +wHB)(A:)  (DAT)
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where the inequality holds with probability at least 1 — §, where § € (0,1). Now, combining
(D.43)), (D.46) and (D.47) that

_ Kzl Z_: (zm) (k+1) (k+1))
= ,ay
k=1 h=0
o IS k+1)  (k+1)y . Y max
<A+ Z Z oD (R) (1) 1)y TTmax Ap
k=1 h=0 1- ——
(D

@
SWHBr(Aw)+Mmax-(K—1)\/E\/W+2ﬁ(K_1)\/E log ’\“"H)
’W’max ((|S|\/log(6)\ +>\) (K- 1)\/7\/W+wHB (Ar ))

<wH(B (Ay) + 77"““‘:B,)(Aﬂ))
P max H? H 1 A H
+ (K = DVH | Ay + 28 + L0 |S|\/—10g(—)+)\ - log( W )
1—~ 2 3 w X\
(D.48)
2. ProST-T :X
Recall that 7% = Z _(ofH) For the same § that we used in the previous proof of [1.ProST-T L(k)]
(see equation M) #® can be bounded as follows with probability at least 1 — §:
(k+1) _R(k 1) +,YP(k+1)V>l<,(k+1) _ Q\Z:(k+1)
=R (1) + WP(k+1>V§’(kH) = (Resr) + vPlreny VE D) (D.49)
=R(1) + YPrsny VE D — (Ripany + 200 (5,0) + yPpany VEEHD) (D.50)
=R(je1y + YPosny VE D — (Ripany + 2B(AL (5,0)) V% + 4Py VIERHD) (D.51)

=(Rekry = Repiny) = BAP (s,0)) 2 + 7 (Pgsny = Pgany) VIE D

- AP (s,a))*2 (D.52)
<R(ps1) = Ripsny| - BAL) (s,a))!? + Py = ﬁ(k+1)\|1||‘7§’(k+1)||oo - B(AP (s,a))H?
< (BF R (ALY + AP (5,0) rman ) = BAD (5,a)) /2 (D.53)

- (B;‘“‘w“””mw) (A (5,)) 7218\ 2 o (51 ) + A, a>) e

- BAP (s,a))'? (D.54)
<(BEHER (ALY + XAP (5,0)) 2 rimax ) = B (5,a) )2 (D.55)

> .
f [ B A + (A0 ) 2151 T Tog (57 ) + MAR (s, )2 | L
P 2 oA 1-7~

- BAY (s,0))'? (D.56)
SB7(Ak—w+1:k) (Aﬂ-) 4 ,)/B(k—uwlzk)(Aﬂ)

N (Armax eS| log( g ) ; 17’7‘“ _ 5)(A§f>(s, )2 (D.57)

-
<0
SB£k7w+1:k) (Aﬂ') 4 ,YBZ()k—qu:k) (Aﬂ) (D58)
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The equation (D-49) holds by the future Bellman equation (C.7) when H = oo, the equations (D.50)
and (D-3T) hold by the definition of R(j,1) together with (D-T3). The inequalities (D.53) and (59

hold by Lemma [7| Lemma [0} (D-8) and (D.9). The inequalities (D.33) and (D.56) hold since
0 < A% (s,a) < 1. Now, the inequality (D-38) holds if the under-brace term of equation (D.37) is
equal or smaller than zero. That gives us an additional condition on § to obtain the final inequality

(D:38). Since Fmax is defined as Fmax + \2F where T,y is a constant and p,y is still function of 3, A
(equation (D.14)), the condition is

H? H
Amax — B +7|S]| - —log( )

_ 2
A —V'Gh“+v5)_ﬂgo

-1
52(2{_@) ()\rmax+'y|8|- log(H)) (D.59)

Since (D-38) holds for all (s, a) if 3 satisfies (D.39), Y1;' 7% = ||7%||oo is bounded as

or equivalently,

K-1
K < Z (Bﬁk—w+1:k)(Aﬂ)+7Bz()k7w+1:k)(Aﬂ-)) Sw(Br(Aﬂ)+'7Bp(A7r))

because Y15 BT (AL )_.zglrjzk(gjwwz#k“”lm(A ) < wBy(Ay) holds and in
the same way ¥R ' B (A ) <wB, (A,) holds.

Then, the model prediction errors —Lg, X when utilizing the forecaster f as SW-LSE are

K cwH (BT(AW) + Z’t“:‘ B,,(A,r))

+(K-1)VH )\Tmax+2ﬁ+m S| H—log(H)+)\ \/T log(A+wH),
1-7v P w A

L{.g Sw(Br(Aﬂ) + 'VBp(Aﬂ'))

Finally, the term $R; can be bounded as

1
Ry = KoKy VK -1
v

1-

1-

(K - 1)\/_(Armax+23+wm“ (|3|\/1og A +)\)) ““’H

+CVK -1

(72 ) - om0

(K - 1)¢_(Armax+25+%“(l">’| HQlog(H)“)) v log(MwH)
+CVK -1

Now, let B(A) be a conic combination of B,.(A) and B, (A, ) as

B(A”):(l

—(
<
1—

= Cp, A% +Cp A% (D.60)

<L — (0B, (Ar) +7By(Ar )))+wH(B (Ay) + 7’”““*B (A ))

1 +H) Br(Ay) + MBP(AW)
- -y

(1+ Hmax)
1_

+H) A% B, (1) + T A% B (1)
Y
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where Cp_. = (ﬁ + H) B,(1) and Cp, = WBP(D are constants related to the total
variation budget with reward and transition probability.

Recall the definitions of B, (A, ) and B,(A;), as well as the inequalities B, (A,) < A% B,(1)
and B,(Ay) < A?B,(1). We denote B, (1) and B,.(1) as time-elapsing variation budgets for one
policy iteration. We also let the constant C, be defined as

(|s Ifmg(g)m)).

Cr= (K - 1)@(Armax +28+ Z“‘“X
-7

Then, an upper bound on R; can be obtained as

Rr < B(A)w+C, llog(/\+wH
w A

)+Cp K-1

O

Proof of Proposition 2] Now, we set the sliding window length w that is adaptive to A as follows:

o 2/3
B (Aﬂ))

B(AR)W(Ax) +Cry [ 117(1A )\j log()w{)

, ( I c 2/3
=P B(A)Y + P B(AL) log(1+( u ) )

{E(Aﬂ) = (

Then,

Z\ By

Since (Y}, is linear to K — 1, the function R satisfies that

%I:O(B(Aﬂ)l/?ﬁ (K -1)*?. 1og(B[iI))). (D.61)

Now, by utilizing (D-60), if B(Az)< Cp, A% + Cp, AZ" = o(K) holds, then $R; is sublinear to K.
The corresponding condition is B, (1) + f‘j—“}pr(l) = o(K) with A, < K since

Cp, A7 +Cp, AYr = o(K)

(Ch, + Ci, ) AR™(er2) —o(E)

(( - L, H) B.(1)+ (lzﬂq Bp(1)) L AmX(ran) - o)
-

(L (B, (1) + B,(1)) + H(Br(l) +

T'max Bp(l))).Aﬁax(ar,ap) :O(K).
1-v Y

1-

This completes the proof. O

Proof of Theorem 3| We first prove multiple statements below. We denote the upper bound on R;
as BT, and that of Ry as R

1. The upper bound on %, (A, ) (i.e., RT) is a non-increasing function, the upper bound
on R;(Ay) (ie., RT™) is a non-decreasing function , and both are convex in the region A €
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NIQN][

T 2 (@ -n6en[a-m>))

=log (1-n7)C1 (K -1)(y+2) [(1-n7)? '] <0
a2mmax Aﬂ— ('}2 1
T (kR -De D) [ ))
= (log (1-n7))* C1(K = 1)(y +2) [(1=nr)* '] 20

since A, € NynNy; satisfies A, > 1 and log(1-77) < 0 holds under the hyperparameter assumption
0<n<(1-~)/7, it follows from the Proposition (1| that

ORTN(AL) 0
oA,  OA,
=a,Cp, A +0,Cp, A2 >0

PRMN(AL) 2
2N, BA,
=a(a, - 1)CB,,,A§:T_2 +ap(ap — 1)CBPA$”_2 >0

(CBT Aﬁ’" + CBPA?:Z’)

(Cp, A2 +Cp, A2P)

when o, a, > 1.

2. Suboptimal A’

We slightly relax the upper bound R;(Ar) < Cp A2 + Cp A7" to Ri(A;) =
(Cp, +Cp,) AZ™ (@r-22) and obtain A in the worst case by optimizing RT** (A ) + RTP(Ax).

1. max (o, p) = 0 : this means that RT* (A ) = Cp, + Cp,, where RT™ is now indepen-
dent of A. Then, an infinite number A, guarantees a small dynamic regret $R;, which also
leads to a small fR. It can be checked that 9i;; without entropy regularization decreases
with the scale of 1/A, and %R ; with entropy regularization decreases with the scale of
exp (A, ). This also matches with the existing results on achieving a faster convergence
with an entropy regularization.

For the remaining case, we first compute the gradient of the term RT* (A ;) + RT¥ (A, ) when
RTF (A ) comes from entropy-regularized case:
0 (RT™(Ar) + KT (AR))

0A,

1
= max (o, o) (aTCBT + apCBp) Aﬁfax(o‘"’ap)’l —log (W)Cl(K -1)(v+2) [(1 - nT)A"fl]

- kIA;nax(ar,ap)—l — kg [(1 _ T]T)A"il]

when RTF (A, ) is for the case without entropy regularization, the gradient of the dynamic regret
upper bound is given as

0 (RT™(Ax) + R (Ar))

0A,
max (&« « - 1 log |A| 1
- () (a0, + 0, ) g onen (LTt ) L
_ 1
_ kIA;l:lax(ar,ap) 1 _ kIIF

2. max (@, ap) = 1: The relation (1-77)27~! = k7 /kr; should be satisfied for the entropy
regularized case and A2 = kr/k;r should be satisfied in the case without entropy regulariza-
tion, respectively. Then, it holds that A} =log;_, - (k1/krr) + 1 for the entropy regularized

case and A¥ = \/ky/k; without regularization.
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Now, for the case of the entropy regularized case, if k;y = (1 — n7)kr is satisfied,

0 (R (AL) + R (A,)) /oA, = 0 is equal to solving AZ™ (re»)™h — (1 _ pryAs - Now,
we use the Lambert W function to find A, as follows:

Aglax(a“ap)—l _ (1 _ UT)A,\.
(max (a, op) —1)log Ay = Az log (1 -n7)
log (1 -
max (a, ap) — 1
_logAﬂ.e—logA,,:_ 10g(1_777)
max (o, ap) =1
log (1 -

W[_logAﬂ__e—IOgAﬂ] :W[— Og( 777—) ]

max (o, ap) — 1

W[—lOgA .e—logG]:W _ IOg(l‘m')
" max (ay, ap) -1
log (1 -n1) :|

max (o, ap) — 1

—log A, :W|:—

A% - exp(—w[-log(l‘m)]) — exp (=W [])

max (o, ap) — 1

3. 0 <max (a,,op)<1:

* Without Entropy-regularization: A* = (kj/ky)/ (max (arap)+1)

log (1-17)
max (ay,ap)—1

large —-W (z) > 0 value, which leads to a large AX.

* With Entropy-regularization: Since z = — < 0, a small |z| will have a

4. max (ap,ap) >1:

1/(max (o ,0p)+1)

» Without Entropy-regularization: A% = (kr/krr)

 With Entropy-regularization: It holds that « > 0 and -W (z) < 0. Then A% < 1, which
means that one iteration is enough.

O

From the proof of Theorem 2] we will develop Lemmad] Lemma [5]and Lemma 6] to upper-bound
two model prediction errors —L;Lk) and 7% .
Lemma 4 (Upper bound on —¢\" " (s a{**V) by A7 . AP ). It holds that

H-h 2

_L2k+1)(8}(1k+1)7a1(1k+1)) < A7+ 200 (s,a) +75Z,h%:mx
Proof of Lemmald] 1t follows from (D.40), (D.41), (D.42)) and (D.43). O

Lemma 5 (Upper bound on —ijﬁl) (s,a) by Al A?k)). For every (s,a) € S x A, it holds that

(k+1) FYH_hrmax k
-y, (s,a) <Af,y(s,a) +7Afk)(3’a)ﬁ +2I' ¥ (s,a)
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Proof of Lemma 3]

A,ﬁ(kwl)’ (k1)
~F(s5,0) = = Ry (5,0) =y (P Vi, N (s,0)+ @y * D (s,0)
TR (k+1)
== Ry (s,a) = y(Pes1) Visq )(s,a)
— — ~7(k+l)
+ Ry (s,a) + Y (Plresry Viyy D (5,a)

—_ — A’ﬁ(’”l)
=(Rrs1) — Rgery) (s,a) + ((P(k+1) - Pony) Vi 7(k+1)) (s,a)

<Afy(s:a) + 20 (s, a) + || (Pesry = Pasny) | s,a)l|,

S7ED (L11)
Vh+1 ()

[e)

_hoa
<A (s,0) + 200 (5 a) + 4 AP (s,a) 7 o
> (k) ) w 9 ’Y (k:) b 1_7

Lemma 6 (Upper bound on 7, by Al Afk)). For every (s,a) € S x A, it holds that

’Yfmam
1-~

1 (s,a) < Alyy(s,a) + A’(’k)(s,a) — oM (5, a)

Proof of Lemmal6] 1t results from (D.32),

fo:l = (R(k+1) - E(k+1)) - 5(A$uk)(3»a))l/2 + (P(k+1) - ﬁ(k+1)) v£7(k+1) - B(Aq(vk)(&a))m
< |R(k+1) - E(k+1)| - 5(A§uk)($,a))l/2 +’Y||P(k+1) - p(k+1)||1 ||‘7§ff’(k+1)||oo - 5(/\55)(57@))1/2

T ’ﬁmam
< Aty (5,0) = BAL (5,0)) 2 + 78 (5, 0) 7 — HAL (5, ))

r ’ngaa: :
= A(k)(s,a) + Al()k)(s,a)ﬁ - ZFSU]‘)(S,Q)

Lemma 7 (Upper bound on Azk)(sy a)). Forevery (s,a) € S x A, it holds that

A7y (s,a) < BF B (AL) + A (s, a)ar

37



Proof of Lemma(7] We directly utilize the proof of Lemma 35 in [31]. For every (s,a) € S x A,
Ay, (s, a) can be represented as

Afk) (s,a) (D.62)
= [R(rs1)(5,a) = R(e1y(s,a)| (D.63)
= [0(k+1) (8, ) = 01y (8, 0)] (D.64)

_ Zf:(l/\k—uﬂrl) Z:hH:_O1 1 [(57 (I) = (Sl;z’ al}fl)] ’ 7‘2

A+ Ei (ks 1) (8, )

= 0(1s1)(8,0) (D.65)

k H-1 k
=AD(s,0) | Y Y 1[(sa) = (sf.ap)] 'TZ—(AJr > nt(S,a))O?k+1)($7a)
t=(1Ak-w+1) h=0 t=(1Ak—w+1)
(D.66)
k - & t ot t oy -
=AM (s,a) > > (]l[(s,a):(sh,ah)] (rh—ozkﬂ)(s,a)))—/\-ozkﬂ)(s,a)
t=(1nk-w+1) h=0
(D.67)

H-1

k
< Agf)(& a) t=(1/\; o hZ:;) 1 [(s, a) = (s’,i7 afl)] . |7“Z - of,ﬁl)(s7 a)|) + )\A,(Uk)(s,a) |07("k+1)(8, a)|

(D.68)
k
SAff)(S,a)( Z ne(s,a) (|rt(s,a) —ofk+1)(s,a)|)) +)\Afﬂk)(s,a)rmaX (D.69)
t=(1Ak-w+1)
k
: (1/\1@—%%)1()931@- (|Tt(8’ a) - Ozk*l)(s’ a)|) Agc)(s’ ) (t=(1/\%—:w+l) s a)) : )\A"Evk) (5 i
< (lAk—r{lu%)l()stsk (|rt(s’ a) - O€k+1)(5’ a)|) + )‘Aw(f)(sv @)Tmax
< B (AL) + AN (5,0) rmax (D.70)

Equations (D.64) and (D.63) hold by the definition of o}, ,, 9}, (definition (D.7)), equation (D.66)
holds by the definition (D-12), equation (D-67) holds since n;(s,a) = X55" 1[(s,a) = (s4.a3,)],

and inequality (D-70) holds since max 1 —u+1)<t<k (‘rt(s, a) = 0,1 (5, a)‘) < [r(Ak=w) (5 ) -

p(rk=wsD+1 (g g) 1ot |rkh (s a) - r5*1(s,a)| = BE UM (A,). O

Lemma 8 (Upper bound on A%.). For every (s,a) € S x A, it holds that

A < wHB(Ar) + A - (K 1)1/ 224 /1og()\ +;”H)
w
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Proof of Lemma|8| The total empirical forecasting model error up to K — 1 is given as

A}( = Z A;c,h
k=1 h=0
:K_lH 1A (8(k+1) 2k+1))
k=1 h=0
K-1H-1 kil bil
< (B9 (Ar) + 2B (55, Y ) (D.71)
k=1 h=0
S k), (k+1)  (k+1)
=wHB,(Ar) + A\rmax - Z Z (Aq(v)(sh ,ay )) (D.72)
k=1 h=0
S k), (k+1 k+1
<SWHB (A7) + M- 3. 3 (\/A( ) (st g0 )))
k=1 h=0
H A H
<wHB, (Ar) + M - (K — 1)y /E log( +A“’ ) (D.73)

The inequality (D:71)) holds by Lemma the equation (D.72) holds since Y1 BF#) |§|A7r) =

Z[g 0 ‘] Y (E-1)w BF R (AL) <wB,(A,), and the inequality (D.73) holds by Lemma O

Lemma 9 (Upper bound on the term ¥ 1! 701 \/ AR (sgﬁl)7 azkﬂ) ). It holds that

K-1H-1
(\/Aq(ﬂk)(SZkH)’aELkH)))S(K_l) | H 1Og(/\+/\wH)
w

k=1 h=0

Proof of lemmal[9] We denote A% = A+ Zf:(nkfwu) S (st at)o(st, at)T. Also, we denote
(AZ)(I) AL+ (p(sfll/\k—uwl),azlf\k—w+1))(p(s;tl/\k—w+1)7azl/\k—uwl))r Then, for every (S,a) c
Sx A, AP (s,a) = ¢(s,a) (A% )o(s,a)T holds. Now, the following term can be bounded as

K-1H-
E: }: \/Aﬂk)( (k+1) (k+1))
=1

1H-
\/¢(8$+D,a#ﬁlh(ﬁﬁ)_lw(éf+n’aﬁHle

EM“

h=0
[554] ew \/ (k1) (k+D\ 7 kN1 g (k1) (k+1)ng

=) X Z e(sy T AE) (s, a )
E=1 k=(£-1)w+1 h=0
[“5]

Sy VHL| YT e ) ) e ey o)
£=1 \ k=(E-1)w+1 h=0
l%J det(A8w+1)

< VHw |log RS (D.75)
£ \ det ((AGD2)m)

l J VHuwn [log ( A+ wH ) (D.76)

<(K - 1)\/7\/10 )\+wH

The inequality (D.74) holds by the Cauchy—Schwarz inequality, (D.73)) holds by Lemmas (D.1) and
(D.2) in [39], and (D.76) holds since (A V"**)(1) > X and AE¥* < A+ wH. O
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Lemma 10 (Upper bound on A(k) (s,a)). Forevery (s,a) € Sx.Aand given ¢ € (0,1), the following
holds with probability at least 1 - §:

AP

H> (H
(k) (

(s.0) < BI04 (A0 (s,)) V2 18] |- log (1) + M 5.0)

Proof of lemmal(I0] For every (s,a) € S x A, one can write:
A’(’k)(&a)
= [|Ptis1y (s, @) = Py (s, @)l
= ”Oz()lﬁl)('v 5,a) —54()k+1)('78,a)||1

_ Z Zf:lcfuﬂrl nt(5,7 5 a)

A+ Zf:k:—w+l nt(sa a)

- 01()k+1)(8,7 S, a’)

s'eS
k k
=AW (s,a) Y1 DY n(ssa)- ()\+ > nt(s7a))ofk+1)(s',s,a)
s'eS lt=k—w+1 t=k—w+1
k
<AP(s,0) 25( X (i) =i )ofy ) (5500 |+ ofy s,a>|)
k 5 k
<A (s,a) Zs t kz 1(nt(s',s,a) —nt(s,a)ofml)(s',s,a)) + M) (5,a) (D.77)
s’e =k—-w+

Recall that n,(s', s,a), ni(s,a) is defined as

H-1
ng(s',s,a) = Z 1 [(s',s,a) = (szﬂ,sz,afb)]

H-
ZO [(s,a) = (s}, a4)] - 1[s" = s}11] (D.78)
ni(s,a) = Z [(s,a) = (sh,ap,)] (D.79)

where 1[-] is an indicator function. Substituting (D-78) and (D.79) into (D.77) yields that

k
AP (s,0) S Y (nt(s',s,a)—nt(s,a)ol(’kﬂ)(s',s,a))’

s’'eS lt=k—w+1
k  (H-1
=AP(s,0) Y| D (Z 1[(s,a) = (sh.ap)] - 1[s" = s}41]
s'eS lt=k-w+1

H-1
- > 1[(s,a) = (s}, a},) (k+1)(s s a))‘
h=0

o
eo x| v (3

,_.

]l (s,a) = (SZ,CLZ)] (]l [3, = S;L+1:| - Ol(7k+1)(5,7 s,a)))’
s’eS lt=k—-w+1
1

< Afuk)(&a) Z Zk:

s'ed | t=k—w+1 ( h=0

1[(5.0) = () (1 = ] - o55.0) )|
%)

k H-

AP L[ P (F 10 - )] (450 - Gy s0) |

s'ed | t=k—
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The term @ can be upperbounded by utilizing the Lemmas (34) and (43) in [31]]. For every ¢ € [ K|
and s" € S, we define the random variable n'(s’) = Y70 (1[s" = s%,,] - 0} (s, s%,at,)). Given
s’ € S, the sequence {17 (s')}22, is a zero-mean and H /2-sub Gaussian random variable. From the
Lemma 43 in [31], we set Y = Al and X; = 335" 1 (s, a) = (s}, a},)]. Then, for a given § € (0, 1),
the following holds with probability at least 1 — § for all (s,a) € S x A:

k H-1 H-1
APE™ 3 (T 160 ()] T 1 = sh] (o)

t=k—w+1 \ h=0 h=0

H2 : (Aﬁ,k)(& a))-1/2 . \-1/2
\ 2 8 5/H

H21 H 1

| e 2.

\ 2 7 Al

(D.80)

As a result, the following inequality holds with probability at least 1 — §:

2

=(AL) (s,a))2 3

s'ed

k H-1 H-1
AP (s,a)? 3 (Zn[<s,a>:<sz,az>]~ S [ = sh]

t=k-w+1 \ h=0 h=0

- of(s',s,a))‘

H2 H
AP (a2 18] /e (55
The term @ can be bounded as

k H-1
2)<AP(s0) Y Y Y 1[(s.a) = (shra})]

s'eS t=k—-w+1 h=0

ol (s',s,a) - oz(’kﬂ)(s', s,a)

k H-1
= Afuk)(s,a) Z Z 1 [(s,a) = (Szva%)] Z

(s s,a) - olgkﬂ)(s', s,a)

t=k—w+1 h=0 s’'eS
k H-1
=AM (s,a) ooy [(s,a) = (s%,a%)] of (-, s,a) - ol(’k+1)(~, s,a)
t=k—w+1 h=0 1

<  max (Of(-,s,a)—of(’kﬂ)(-,s,a)

te[k-w+1,k]

k H-1
)-(Aﬁf><s,a> 5 21[(s,a>=<sz,az>])
1 t=k—w+1 h=0
I

< B;l()k—erl:k)(Aﬂ') (D.81)
Then, by combining (D.77), (D.80) and (D.8T)), the term Af(’k) (s,a) can be expressed as

< max
te[k-w+1,k]

(- s,a)- 0’(7k+1)(-, s,a)

. H? H
Al()k)(sa a) < B;(;k_wﬂ'k)(Arr) + (AP (s,0)) % 18] - 5 log (5) + A (s, ).

O

Lemma 11 (Upper bound on Ai{). Given § € (0, 1), the following inequality holds with probability
at least 1 - 9:

AP < (|3|\ /H;log(g) . )\) (K - 1)\/? /log()\ +A“’H) +wHB,(Ay)
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Proof of lemma The total empirical forecasting transition probability model error Aﬂ’{ can be
represented as follows,

(S(k+1) (k+1))

H
< (DS, afl D)) sl [ 10g (1 ))

oA
K-1H-1
+ ( max

h=o \te[k-w+1,k]
RS 1(AA(1€>( (41) 4 D))

log( ) )KZ HZ ((A(k) (k+1) (k+1)))1/2)
KZ_: HZ_: ( max (k+1))

te[k-w+1,k]

(k+1) (k+1)

(k o) (k 1)
CACE " )_O(k+1)( Sp 0y

)

IN
—_
i)

vo|

( S(k+1) (k+1) (k+1))

)

)

- 0(k+1)( Sh

O

Proof of Theorem ). Before introduing the proof, we first go over some details about Theorem 4] in
the following paragraph.
The W-LSE involves solving the following joint optimization problem over ¢ € RISIMAL qf)’f’ e RISPIAI

and ¢ € R” to obtain a minimum upper bound on the dynamic regret:

N 2 1
min £ (¢%,q; O1.n) where £ (9%, q; OuLy) = gt —o,) +dise(q) + — - \||¢S
o (6%,q; D1:n) (6%,q; D1n) t;(lt( 9 t) (9) oI 9%l
(D.82)
where o = rorp. If o = r, then O = R(s,a) and if o = p, then O = P(s’,s,a). Moreover,
Oge means that O is parameterized by ¢%, and Oy.n are observed data of O, and the disc(g) =
SUp e r (E[ FE oen] - N, nt[ﬁt|D1;t_1]) measures the non-stationarity of the environment.

disc(q) could be measured and upper-bounded by the observed data. For example, if ¢ = r and
O = R, then qb; parameterizes the future reward function lejl, N is the total number of visits of

(s,a) up to episode k, Ry.n(s,a) is the set of reward Values {R1(s,a),R1(s,a),...,Rn(s,a)}
that the agent has received when visiting (s,a). We demonstrate a modified upper bound on
R when utilizing W-LSE. To do so, we define the forecasting reward model error Ai, p(s,a) =

|(R(k+1) - E(;ﬁl)) (s, a)’ and the forecasting transition probability model error as A](”k)(s, a) =
||(P(k+1) - ﬁ(kﬂ)) (s, a)||1 where E(k+1) and ﬁ( k+1) are predicted reward,transition probability
from function g o f (Appendix[D.2).

We now brought the Theorem 7 of [22] to offer an upper bound on the [5-norm of the reward gap
between R(j.1)(s,a) and R(k+1)(s a) as follows. To this end, we denote X}, ;, = (sh ,ay )) €
SxA, Yin =Ry (sflk) ,ay )) € R and assume that the environment provides the agent with a noisy
reward Yy, , = Yy, », + 7, where 1) is sampled from a zero-mean Gaussian. Define the kernel ¥(z) =

o(z) € RISIMI where () is the one-hot vector that we have defined in Section Now, we set
r(z) = ¢"¢(x) where the vector ¢ € RISIM! is the same as the estimated future reward vector Rjs1 €
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RISIMI and () is the same as the estimated future reward when z = (s,a), namely E(k+1) (s,a).
Then, for data until episode k, i.e., Dgara = {(X1, 0,}71 0), (X1, 1,}71 1)sees (Xie - 1,?k H-1)}> We
denote Dfista) {(Xp.n, Yin) | Xip = (s, a) such that (X, V. h) € Dgata }. We relabel DL({Z’ZL) as
{((s,a),Yl) , ((s,a)7Y2) N ((s7a),YN)} such that N (s, a) = thl n¢(s,a) is the total number
of visitations of (s,a) until episode &k (Definition (D.79)). We use the shorthand notation N as
N(s,a),and ¥, g; = 1. For every (s,a) € S x A, the following inequalities hold with probability
at least 1 — ¢ for all functions 7 € {z — ¢"U(z) : ||c[|2 < A}:

N
o s,a . 1 ,
E[(r(s,a) - Vns1) D] < Z c (r(s,a) = %3)” + dise(q) + — Al (D.83)
Take the expectation over 1 on both inequailty.
ey 2 s,a N . ]- _
E, [E [(T(S,G) - Yni1) |D((1a’m)]] <E, t;% (r(s t) +disc(q) + wi “AllFl2 |

- (s, N S\21 . 1 _
E[(r(ss0) =) D5 | € L [a0 (o) = T0) e disela) + i A7l
The left-hand side of can be expressed as
E [(7"(5, a) - ?N+1 - 77)2] =K, [(’I‘(S, a) - YN+1)2] +E, [772]
= (r(s,a) = Ynu1)? +E[7?] (D.84)

=12
Also, the term th\il E, [qt (r(s, a) - Yt) of the right-hand side of equation (D.83)) can be written

as

M= =~

i Qt (7’(5 a) - Yt) ]

=1

Eyla ((r(s,a) - YD) +77)]

~+

~+
Il

[

£, [a (5.0~ 10?) |+ 5, ]

t=1

M=

~+
Il
—

M=

gt ((r(&a) - Yt)Q) +E, [772]

~
I
Ju

By eliminating E, [?] from both sides, we obtain that
2 o 2 1
(r(s,0) = Yive1)* < 2 e ((r(s5,0) = ¥2)*) + disc(g) + — - [z (D.85)
t=1 wH

Recall the definition of 7(s,a) = ﬁ(k+1)(s,a), Y; = Ri(s,a). Since t matches one of (k,h) €
[K] x [ H] pairs, we can rewrite

th (r(s,a) - Yt) Z e,y (7(s,a) = Y, h))2

k=1 h=0
k-1 H-1 , 2
= q(k',h) (R(k+1)(5 a)- R} (Saa'))
k=1 h=0
k-1 H-1 , 2
=3 3 awn (B (5,0) - B (5,0))
E=1 h=0

where if (s, a) is not visited at step & of episode k, then the corresponding q( 1) is zero. As a result,

) = _ , . 1 -
Al (5,a) <\ ml_n( > 2 .y (Besny (s,a) = R¥ (s,a))” +disc(q) + wH-AII?"Ilz)

D" \k’=1 h=0

k-1 H-1 ) 1
<\ lglp((le;afk(R<k+l><s 0 - (5.0)) (Z b qw,h)) dise(q) + — -Anfnz)
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A similar analysis for A? (i leads to the following inequality for all (s',8,a) e SxSx A:

|Piri1)(s' | s,a) - P(ku)(sl |'s,a)|

q9,p -1 h=0

k-1 H-1 ‘ 1 -
< \} mm( Z Z 4(k’,h) (P(k+1)(5 |s,a) = P¥(s']s, a)) +disc(q) + wH >\||p||2)

On the other hand,

k-1 H-1 - , 2 ) 1 ~
(k)(s a mln( Ak ) (P(k+1)(s’|s,a) — Pk (s’|s,a)) +disc(q) + —= - \|Dl]2
DP \g'=1 h=0 wH

-1 H-1 - , 2 ) 1 B
|3|\j mln( d(k’,h) ||P(k+1)('|3»a) - P* ('|5’a)||°° +disc(q) + wH Al[pll2

Recall the Corollary [5] Corollary6|and 9/ definition. Aftering fixing (s, a), the term $R;(s, a) can
be expressed as

1 K-l KolH-L
Ry=—— > s (k) L VK — 1
L=~ ia k=1 h=0
S (A(k)(s a)+ AT, (s,a) 21 () (5 a))
K-1H-1 - i
+ ) (A(k)(s a) + A7, (s, a) 2F1(U)(s,a))
k=1 h=0 -7
+CpVK -1

IN
—_

—
AR
NN
—

Ay (s.a) + AT, (s, )% (e + max(205) (5, a))) - 20 (s, a))

K-1
+H Py (A(k)(s a) +A(k)(s a) (rmax+max(2Fg€)(s,a))) +2F5Uk)(s,a))
+CpVK -1
Al 1 yT 1
< +H)A s,a) + max( +H)Ap s,a)+
k—l((l 7 S A pug S ()
@
+ 7 ( 1 +H)max(2f(k)(s,a))Ap (s,a)
1_7 1_'7 w (k)
K-1
+ 2 +H)F(k)(s a)
k=1 -7
+CpVK -1

We set the term (D) to be 2( ﬁ + H)T¥ (s, a), which requires redefining the exploration bonus term
as

1 T
% (s a) = §A7("k)(s,a) + 2(1‘ja:) A’(’k)(s,a).
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Also, note that A?

(k)(s,a) =Y ies |(}3(k+1) - P(k+1)) (s'|s,a)| < |S]. Therefore,

5 (k) 2y (1 (k)
R < (4HFw (s,a) + +H)max(Fw (s,a))|8|)
k=1 1- L-v
K-1
< (4H+2—7( ! +H))max(r$f)(s,a))
k=1 L=y \1l-vy
K-1
= (4H+ 2719 (L H)) max (T (s, a))
-y \1-v k=1
29[S 1 =1 , Y Fmax
< (4H+ T (1_7 +H) 2 §max(A(k)(s,a))+W ax(A(k)(s a))
_ 2v1S| 1 &1 r YTmax A p
_(4H+1_7(1_7+H) (580 60+ 5 )A(k)( a)
_ 2’Y|S| 1 1K ! ’Yrmdx
_(4H+1_7(1_7+H) ikzlA(k)(s a)+2(1 )ZA(k)sa

Note that above upper bound on R; holds under the following conditions for A7 k)(s a) and
(k)(37a)-

) k-1 H-1 . , 9 ) 1 ~
Al (s,a) < \' ml_n( qw,ny (Rerer)(s,a) = R¥ (s,a))" + disc(q) + e /\|T||2)7

k'=1 h=0
k-1 H-1 1
M50 < 3| min( 325 daeny (Pa(slos0) = PV (ls.))” +disela) + Aol
O
Proof of Remark[I] The proof starts with (D.85)). Define
o L ifte (k-w,k]
K 0  otherwise ’
_argmm()\||r||2 + Z( (s,a)-Y;) ) (D.86)
where 7., is the same reward estimation as in (D.7). Then the minimum of (D.83) yields that
3 > 1
min (Z a: (r(s,a) - Yt)2 +disc(q) + — - /\||7‘||2) (D.87)
ma \i3 wH
. y sw T\ 2 . sw 1 =
<min| Y ¢ (r(s,a) - ¥3)" +disc(¢®) + — - A|7[|2
To\t=1 Huw
1 N § =\2
< 77— min S (Hw) - g;* (r(s,a) - Y2)" + |72 | + disc(gsw)- (D.88)
woT\¢=1

)

The term (D is the optimization problem in whose minimizer is 7°*. An inspection of
and (D.88) concludes that the optimal solution (¢*,7*), namely the minimizer of provides a
smaller value than (¢°*,r*"). Since the right-hand side is same as (D.87), (¢*,7*) provides
a tighter upper bound on the left-hand side term of equation (D.83) than ¢°*,r*". Therefore, (D.84)
implies that the optimal solution (¢*,7*) gives a tighter upper bound on Af}, than using (g®v, ™).
Then, by Corollary I and @ the

(k)
tighter upper bounds on Af, | (s,a) and A( ) (s,a) provide smaller upper bounds on —qu), 7 and

lead to a tighter upper bound on fR;. O

One can repeat the above argument for the upper bound on A?
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E Experimental design and results

E.1 Environment setting details

Reward function design.

All three environments share the same reward function structure and have an identical goal. The
reward function I consists of three parts R = R), + Ry — IR, where R}, is the healthy reward,
Ry = kg(xp1 — ) /At kg > 0 is the forward reward, and R, is the control cost. The agents have a
goal to run faster in the +z direction, and therefore the faster they run, the higher the forward reward
R is. We modify the environment to make the agent’s desired directions change as the episode goes
by. To be specific, we design the forward reward Iy to change as episodes progress in the form of
R’Jﬁ =0y - k(@1 — x¢) /At wWhere oy, = asin(wbk) and k is a episode where a,b > 0 are constants.
A positive o causes the agent to desire a forward +x direction as an optimal policy, and a negative
0, causes it to desire a backward —z direction. We generate different speeds of non-stationarity by
changing the frequency variable w € {1,2,3,4,5}.

Non-stationary variable o, generator.
1. Sine function: The non-stationary parameter oy, is designed as oy, = sin (2rwk/37), where w
is the integer speed of the environment change and k is the episode number. We change w in
the set [1,2,3,4,5]. We divide 2wk by 37, a prime number, to ensure that the environment

has various non-stationary modes and to avoid certain non-stationary parameters appearing
frequently.

2. Real data: we bring the stock price data to model a non-stationary real dataset.

A B
. P 1
I
]

10—
1

non-stationary variable

non-stationary variable
2 8 =

¥ {

3

54

£

4 &0 50 100 120 130 Y

epis'odes episodes

Figure 4: Nonstationary parameter from real data A,B

Non-stationary parameter o, generator (ablation study). B(G) satisfies the property of the time-
elapsing variation budget that B(G) increases as G increases. For the ablation study, we generate

or = sin (27 - G- k/37), where G € {38,76,114,152,190}. We estimated B(G) as 332} [ox11 — ox|:

H ‘G:38 G=7 G=114 G=152 G:IQOH
H B(G) ‘ 1598  31.85 47.49 62.79 77.64 H

E.2 Hyperparameters and implementation details

Training Details.

For the ARIMA model that serves as a forecatser f, we use the auto_arima function of pmdarima
python package to find the optimal p, ¢, d. To compare the results between ProST-G and MBPO,
we train the MBPO and ProST-G with the initial learning rate Ir = 0.0003 with the decaying
parameter 0.999. For ProST-G, We add the uniform noise 1 ~ Unif([-b,b]) to the non-stationary
parameter o” to generate the noisy non-stationary parameter 6y, = o}, + 17 with different noise bounds
b €{0.01,0.03,0.05}. We denote Unif([-b, b]) as continuous uniform distributions over the interval
[-b,b].

To compare the results between ProST-G and ProOLS, ONPG, FTML, we train these three baselines
with eight different initial learning rates I € {0.001,0.003, 0.005,0.007,0.01,0.03,0.05,0.07}.

Hyper parameters.
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H Swimmer-v2 ‘ Half cheetah-v2 ‘ Hopper-v2 H

H Letter ‘ hyper parameters
K episodes 100 ‘ 150 ‘ 150
H environment steps per episodes 100
G policy updates per epochs 50
H model rollout length 1 — 15 over episodes 20 —150
N iteration of policy update and policy evaluation 1
M model rollout batch size (Dsyr) le5
entropy regularization parameter 0.2
0% reward discounting factor 0.99

Note that H increases linearly within a certain range as episode goes by. We denote A5 = Rmaz

over episodes Kiin = Kmae s ﬁ(k) = min(max(hoin + (K = kmin )/ (Kmaz

hmin ) ) hvmn ) 9 hm,am ) .
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E.3 Full results
E.3.1 Non-stationarity: sine wave

(1) Swimmer-v2

5 ®— ProST-G 5 ®— ProST-G 3
®— ProOLS ®— ProOLS

N ® - - ONPG ) ® - - ONPG 5
@ - FTML @ - FTML

-1 0 20 40 60 80 100 -1 0 20 40 60 80 100 -1 0 20 40 60 80 100
(o) Speed =1 (b) Speed =2 (c) Speed =3
3 ®— ProST-G 3 ®— ProST-G
®— ProOLS ®— ProOLS

@ - - ONPG ® ' - ONPG
o -

1o 20 40 60 80 100 o 20 40 60 80 100

(d) Speed =4 (e) Speed =5

Figure 5: (a) ~ (e) the average rewards of ProST-G, and the three baselines: ProOLS, ONPG, FTML
for 5 different speeds (z-axis indicates the episode). The shaded area of ProST-G is 95% confidence
area among 3 different noise bounds, and the shaded areas of three baselines are the 95 % confidence
area among 8§ different learning rates.

3 @— ProSTG 3 @— ProSTG 3 @— ProST-G
@ - MBPO & - MBPO & - MBPO

(o) Speed =1 (b) Speed =2 (c) Speed =3
3 @— ProST-G 7 @— ProsTG
, @ - MBPO 5 @ - MBPO
1 1
o 0
oy 20 4 6 8 100 Lo 20 40 60 80 100
(d) Speed =4 (e) Speed =5

Figure 6: (a) ~ (e) the average rewards of ProST-G and MBPO. The shaded area of ProST-G is 95%
confidence area among 3 different noise bounds.
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(2) Halfcheetah-v2

30
/ ®— ProSTG

®— ProST-G 0 N

-40 o

ProOLS ._ Aol
-50 - ONPG ® - - ONPG
eo e 0 o - FTML

0 25 50 75 100 125 150 0 25 50 75 100 125 150 0 25 50 75 100 125 150
(a) Speed =1 (b) Speed =2 (c) Speed =3
-20 =20
—30 / -30
®— ProST-G @— ProST-G
TN -0 N\
N \ ®— ProOLS
-50 ® - - ONPG
& - FTML

0 25 50 75 100 125 150 0 25 50 75 100 125 150

(d) Speed =4 (e) Speed =5

Figure 7: (a) ~ (e) the average rewards of ProST-G, and the three baselines: ProOLS, ONPG, FTML
for 5 different speeds (z-axis indicates the episode). The shaded area of ProST-G is 95% confidence
area among 3 different noise bounds, and the shaded ares of three baselines are the 95% confidence
areas among 8 different learning rates.

-20 -225 —22.5
—25.0 —-25.0
-25 275 -27.5
-30.0 —-30.0
-0 -32.5 -325
- -35.0
. 35.0
-375 —=37.5
0 50 100 150 0 50 100 150 0 50 100 150
(o) Speed =1 (b) Speed =2 (c) Speed =3
@— ProST-G 7 T225 @ ProST-G
& - MBPO A ~25.0 & - MBPO
—25
=27.5
_30 -30.0
# -325
-35 :;"' —-35.0
—-37.5
0 50 100 150 0 50 100 150
(d) Speed =4 (e) Speed =5

Figure 8: (a) ~ (e) the average rewards of ProST-G and MBPO (z-axis indicates the episode). The
shaded area of ProST-G is 95% confidence area among 3 different noise bounds.
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(3) Hopper-v2

110
105
100

95

92
0 25 50 75 100 125 150 0 25 50 75 100 125 150 0 25 50 75 100 125 150

(o) Speed =1 (b) Spéed =2 (c) Speed =3

106 @ ProST-G
106 ®— ProOLS
104 @ .- ONPG

104
102
100 100

98 98

96 96

0 25 50 75 100 125 150 0 25 50 75 100 125 150

(d) Speed =4 (e) Speed =5

Figure 9: (a) ~ (e) the average rewards of ProST-G, and the three baselines : ProOLS, ONPG, FTML
for 5 different speeds (z-axis indicates the episode). The shaded area of ProST-G is 95% confidence
area among 3 different noise bounds, and the shaded areas of three baselines are the 95% confidence
areas among 8 different learning rates.
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104 102.5
100.0
102 100.0
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100 973
95.0
o8 95.0
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104
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100

98

96
75 100 125 150

(d) Speed =4 (e) Speed =5

Figure 10: (a) ~ (e) the average rewards of ProST-G and MBPO (z-axis indicates the episode). The
shaded area of ProST-G is 95% confidence area among 3 different noise bounds.
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E.3.2 Non-stationarity : real data

The shaded area of ProST-G is 95% confidence area among 3 different noise bounds, and the shaded
ares of three baselines are the 95% confidence area among 8 different learning rates.

(1) Swimmer-v2

3 @®— ProST-G/A 3 ®&—— ProST-G 3 ®&—— ProST-G
o - MBPO/A &— - ProOLS o— - ProOLS
®— ProST-G/B 2 ® - ONPG 2 ® - ONPG

MBPO /B o - FTML o - FTML

(@) (o) ()

Figure 11: (a) average reward with ProST-G and MBPO on real data A,B (z-axis is episode). (b)
average reward with ProST-G and three baselines on realdata A. (c) average reward with ProST-G
and three baselines on realdata B.

(2) Halfcheetah-v2

&— ProST-G/A 0 ®—— ProST-G

20 - MBPO/A 2 e— - ProOLS
»— ProST-G /B 20 o - ONPG
-~ MBPO/B o— ProST-G Coo PUlglL

0

N -20
40 N o— ~ ProOLS :
, g ® - ONPG  —40 "Ny
—-20 ) R o - - FTML B

S
N
S
<G
~~~~~
mmmmmmm
.....

—40 A N— 80
0 50 100 150 0 25 50 75 100 125 150 0 25 50 75 100 125 150

(a) (o) (c)

Figure 12: (a) average reward with ProST-G and MBPO on real data A,B (z-axis is episode). (b)
average reward with ProST-G and three baselines on realdata A. (c) average reward with ProST-G
and three baselines on realdata B.

(3) Hopper-v2
140
g, 140 ProST-G 60 ProST-G
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= 1 N T E
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100 — ] B
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0 50 100 150 0 50 100 150 0 0 10 =
(a) © -

Figure 13: (a) average reward with ProST-G and MBPO on real data A,B (z-axis is episode). (b)
average reward with ProST-G and three baselines on realdata A. (c) average reward with ProST-G
and three baselines on realdata B.
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F Algorithms

F.1 ProST framework

Algorithm 1: ProST framework

1 Set: ky=1

2 Init : policy 70, forecaster f¢<}, model estimator 90 » tWO dataset Deyos Dsyn

3 for episode k do

4 Execute the agent with 7% in a environment M, and add a trajectory to D, .
/* MDP forecaster go f */

/* (1) Observe and forecast: */

5 Observe a noisy non-stationary parameter Oy

6 Update fy,, ge, using Deny and Op_(y-1):k-

7 | Use fyr, gy to predict the future Pk RE+L and construct future MDP M,
/* Baseline A */

/* (2) Optimize: */

8 Roll out synthetic trajectories in M, x+1 and add them to Dy,
9 Use D,y to evaluate and update 7k to
10 end for

F.2 ProST-T algorithm

Algorithm 2: ProST-T

-

Set: k=1

[ 8]

gt, forecasted state-action value Q**!, empty dataset Dy, Dsyn

3 Explore w episodes and add (77%,6_1) to D,,,, where k € [w] before starts
4 for episodes k=1,.., K do

5 Rollout a trajectory 74 using 7°and De,,y = Doy U {71}

6 Observe a noisy non-stationary parameter oy,

/* MDP forecaster go f: (1) update f,g */

7 Update fy, : qb’;- < argming L (0x—(w-1):k; P)

8 | Update g (s',s,a,0)

9 Update g*(s, a,0)

/* MDP forecaster go f: (2) predict PrHL RFL %/

10 Forecast 1 episode ahead non-stationary parameter: Og.1 = f¢;; (Ok—(w-1):k)
11 Forecast transition probability function: G}, = g& (-, 6x+1)
12 | Forecast reward function: G, | = g7 (-, 6p41)

13 Reset Dy, to empty.
/* Baseline A: NPG with entropy regularization */

14 Set #(0) « 7k

15 forg=0,..,G-1do

16 Evaluate Qf(g) using the rollouts from the future model g7, |, 3%, |

17 Update 7 : 70 < 1/20 - (7)) exp (nQF ) /(1= 7))
_nT o

18 where (1) = 4 (79) 7 exp (@7 ) /(1 -7))

19 end for

20 | Set7rFl « 7(&)

21 end for

Init : policy 7* , forecaster f¢l;, tabular reward model g%, tabular transition probability model
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F.3 ProST-G algorithm

(1) Forecaster f. We adopt the ARIMA model to forecast oy.1 from the noisy observation 0y, _ (y—1):-
The ARIMA model is one of the most general classes of models for forecasting a time series, which
can be made to be stationary by taking a difference among the data. For given time series data X;, we
define ARIMA(p, d,q) as given by X; — a1 X1 — - —pXy—p = € + 01641 + - + 04644, Where
«;’s are the parameters of the autoregressive part of the model, the 6;’s are the parameters of the
moving average part, and €,’s are the error terms that take d times difference between X;s, which we
assume to be independent and follow a normal distribution with a zero mean.

(2) Model predictor g. We use a bootstrap ensemble of dynamic models {g} , g3 ,--., g4, }. Each
ensemble model is a probabilistic neural network whose output is parameterized by the mean vector
 and the diagonal vector of the standard deviation Diag(¥) of a Gaussian distribution, namely
g;g(sh+1,rh|sh, an,Ok+1) = /\/(,u;g (sn,an), Z;g (sn,ap)). To efficiently handle uncertainty due
to the non-stationary environment, we design each neural network to be a probabilistic model to
capture the aleatoric uncertainty, i.e. the noise of the output, and learn multiple models as bootstrap
ensemble to handle the epistemic uncertainty, i.e. the uncertainty in the model parameters. Then we
predict sp+1 and 7, from a model uniformly chosen from its ensemble randomly that admits different
transitions along a single model rollout to be sampled from different dynamics modes.

(3) Baseline algorithm A. We adopt soft-actor critic (SAC) as our policy optimization algorithm.
SAC alternates the policy evaluation step and the policy optimization step. For a given policy
7, it estimates the forecasted Q7**! value using the Bellman backup operator and optimizes the
policy that minimizes the expected KL-divergence between 7 and the exponential of the difference
QR+l _ Tkt Es.p,,, [Dk (7| exp (QTE+L - Y™k,

Algorithm 3: ProST-G
Set : kf =1
Init : policy 7% forecaster fd:’;’ model estimator ok » two dataset Depy, Doyn

Explore w episodes and add (77, 6_1) to D, where k € [w] before starts
for episodes k=1, .., K do

Execute the agent with 7% in a environment M, and add a trajectory to D, -
/* MDP forecaster go f: (1) update f,g */
Observe a noisy non-stationary variable 0y,
Optimize f¢1; on 6k—(u}—1):k‘
Optimize goi ON Denv
/* MDP forecaster go f: (2) predict f,g */
Forecast 641 = f¢;; (Ok—(w-1):k)
Forecast model : Gy, = ok (-, 0k+1)
Reset Dy, to empty.
/* Baseline A: SAC */
Set TF+1 « 7k
for epochs n=1,...,N do
for model rollouts m =1, .., M do
Sample 53 uniformly from D,,.
Perform a H-step model rollout using 4} = 7%+ (81), 87 | = Gis1 (81", a}") and
add a rollout to Dy, .
end for
for updates g=1,..,G do
Evaluate and update forecasted policy 7°*! on Doyn
end for
end for
Set w1 < Fh+l
end for
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G Experiment Platforms and Licenses

G.1 Platforms
All experiments are done on 12 Intel Xeon CPU E5-2690 v4 and 2 Tesla V100 GPUs.

G.2 Licenses
We have used the following libraries/ repos for our python codes:

* Pytorch (BSD 3-Clause "New" or "Revised" License).

* OpenAl Gym (MIT License).

* Numpy (BSD 3-Clause "New" or "Revised" License).

* Official codes distributed from the paper [7]: to compare the four baselines.
Official codes distributed from the paper [24]: to build PMT-G.
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