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Abstract

In generative compressed sensing (GCS), we want to recover a signal x∗ ∈ Rn
from m measurements (m≪ n) using a generative prior x∗ ∈ G(Bk2(r)), where
G is typically an L-Lipschitz continuous generative model and Bk2(r) represents
the radius-r ℓ2-ball in Rk. Under nonlinear measurements, most prior results are
non-uniform, i.e., they hold with high probability for a fixed x∗ rather than for all
x∗ simultaneously. In this paper, we build a unified framework to derive uniform
recovery guarantees for nonlinear GCS where the observation model is nonlinear
and possibly discontinuous or unknown. Our framework accommodates GCS
with 1-bit/uniformly quantized observations and single index models as canonical
examples. Specifically, using a single realization of the sensing ensemble and
generalized Lasso, all x∗ ∈ G(Bk2(r)) can be recovered up to an ℓ2-error at most ϵ
using roughly Õ(k/ϵ2) samples, with omitted logarithmic factors typically being
dominated by logL. Notably, this almost coincides with existing non-uniform
guarantees up to logarithmic factors, hence the uniformity costs very little. As part
of our technical contributions, we introduce the Lipschitz approximation to handle
discontinuous observation models. We also develop a concentration inequality that
produces tighter bounds for product processes whose index sets have low metric
entropy. Experimental results are presented to corroborate our theory.

1 Introduction

In compressed sensing (CS) that concerns the reconstruction of low-complexity signals (typically
sparse signals) [5, 6, 15], it is standard to employ a random measurement ensemble, i.e., a random
sensing matrix and other randomness that produces the observations. Thus, a recovery guarantee
involving a single draw of the measurement ensemble could be non-uniform or uniform — the non-
uniform one ensures the accurate recovery of any fixed signal with high probability, while the uniform
one states that one realization of the measurements works simultaneously for all structured signals
of interest. Uniformity is a highly desired property in CS, since in applications the measurement
ensemble is typically fixed and should work for all signals [17]. Besides, the derivation of a uniform
guarantee is often significantly harder than a non-uniform one, making uniformity an interesting
theoretical problem in its own right.
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Inspired by the tremendous success of deep generative models in different applications, it was recently
proposed to use a generative prior to replace the commonly used sparse prior in CS [2], which led to
numerical success such as a significant reduction of the measurement number. This new perspective
for CS, which we call generative compressed sensing (GCS), has attracted a large volume of research
interest, e.g., nonlinear GCS [29, 33, 45], MRI applications [24, 46], and information-theoretic
bounds [27, 34], among others. This paper focuses on the uniform recovery problem for nonlinear
GCS, which is formally stated below. Our main goal is to build a unified framework that can produce
uniform recovery guarantees for various nonlinear measurement models.

Problem: Let Bk2(r) be the ℓ2-ball with radius r in Rk. Suppose that G : Bk2(r) → Rn is an
L-Lipschitz continuous generative model, a1, ...,am ∈ Rn are the sensing vectors, x∗ ∈ K :=
G(Bk2(r)) is the underlying signal, and we have the observations yi = fi(a

⊤
i x

∗), i = 1, . . . ,m,
where f1(·), . . . , fm(·) are possibly unknown,2 possibly random non-linearities. Given a single
realization of {ai, fi}mi=1, under what conditions we can uniformly recover all x∗ ∈ K from the
corresponding {ai, yi}mi=1 up to an ℓ2-norm error of ϵ?

1.1 Related Work

We divide the related works into nonlinear CS (based on traditional structures like sparsity) and
nonlinear GCS.

Nonlinear CS: Beyond the standard linear CS model where one observes yi = a⊤
i x

∗, recent years
have witnessed rapidly increasing literature on nonlinear CS. An important nonlinear CS model is
1-bit CS that only retains the sign yi = sign(a⊤

i x
∗) [3,22,41,42]. Subsequent works also considered

1-bit CS with dithering yi = sign(a⊤
i x

∗ + τi) to achieve norm reconstruction under sub-Gaussian
sensing vectors [9, 14, 48]. Besides, the benefit of using dithering was found in uniformly quantized
CS with observation yi = Qδ(a

⊤
i x

∗ + τi), where Qδ(·) = δ
(
⌊ ·
δ ⌋+

1
2

)
is the uniform quantizer with

resolution δ [8, 48, 52]. Moreover, the authors of [16, 43, 44] studied the more general single index
model (SIM) where the observation yi = fi(a

⊤
i x

∗) involves (possibly) unknown nonlinearity fi.

While the restricted isometry property (RIP) of the sensing matrix A = [a1, ...,am]⊤ leads to uniform
recovery in linear CS [4,15,49], this is not true in nonlinear CS. In fact, many existing results are non-
uniform [9,16,21,41,43,44,48], and some uniform guarantees can be found in [7,8,14,17,41,42,52].
Most of these uniform guarantees suffer from a slower error rate.

The most relevant work to this paper is the recent work [17] that described a unified approach to
uniform signal recovery for nonlinear CS. The authors of [17] showed that in the aforementioned
models with k-sparse x∗, a uniform ℓ2-norm recovery error of ϵ could be achieved via generalized
Lasso using roughly k/ϵ4 measurements [17, Section 4]. In this work, we build a unified framework
for uniform signal recovery in nonlinear GCS. To achieve a uniform ℓ2-norm error of ϵ in the above
models with the generative prior x∗ ∈ G(Bk2(r)), our framework only requires a number of samples
proportional to k/ϵ2. Unlike [17] that used the technical results [36] to bound the product process,
we develop a concentration inequality that produces a tighter bound in the setting of generative prior,
thus allowing us to derive a sharper uniform error rate.

Nonlinear GCS: Building on the seminal work by Bora et al. [2], numerous works have investigated
linear or nonlinear GCS [1, 11, 12, 19, 20, 23, 25, 30, 39, 40, 51], with a recent survey [47] providing
a comprehensive overview. Particularly for nonlinear GCS, 1-bit CS with generative models has
been studied in [26, 31, 45], and generative priors have been used for SIM in [29, 32, 33]. In addition,
score-based generative models have been applied to nonlinear CS in [10, 38].

The majority of research for nonlinear GCS focuses on non-uniform recovery, with only a few
exceptions [33, 45]. Specifically, under a generative prior, [33, Section 5] presented uniform recovery
guarantees for SIM where yi = fi(a

⊤
i x

∗) with deterministic Lipschitz fi or fi(x) = sign(x).
Their proof technique is based on the local embedding property developed in [31], which is a
geometric property that is often problem-dependent and currently only known for 1-bit measurements
and deterministic Lipschitz link functions. In contrast, our proof technique does not rely on such

2In order to establish a unified framework, our recovery method (2.1) involves a parameter T that should
be chosen according to fi. For the specific single index model with possibly unknown fi, we can follow prior
works [33, 43] to assume that Tx∗ ∈ K, and recover x∗ without using T . See Remark 5 for more details.
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geometric properties and yields a unified framework with more generality. Furthermore, [33] did not
consider dithering, which limits their ability to estimate the norm of the signal.

The authors of [45] derived a uniform guarantee from dithered 1-bit measurements under bias-free
ReLU neural network generative models, while we obtain a uniform guarantee with the comparable
rate for more general Lipschitz generative models. Additionally, their recovery program differs
from the generalized Lasso approach (cf. Section 2.1) used in our work. Specifically, they minimize
an ℓ2 loss with ∥x∥22 as the quadratic term, while generalized Lasso uses ∥Ax∥22 that depends on
the sensing vector. As a result, our approach can be readily generalized to sensing vectors with
an unknown covariance matrix [33, Section 4.2], unlike [45] that is restricted to isotropic sensing
vectors. Under random dithering, while [45] only considered 1-bit measurements, we also present
new results for uniformly quantized measurements (also referred to as multi-bit quantizer in some
works [13]).

1.2 Contributions

In this paper, we build a unified framework for uniform signal recovery in nonlinear GCS. We
summarize the paper structure and our main contributions as follows:

• We present Theorem 1 as our main result in Section 2. Under rather general observation
models that can be discontinuous or unknown, Theorem 1 states that the uniform recovery of all
x∗ ∈ G(Bk2(r)) up to an ℓ2-norm error of ϵ can be achieved using roughly O

(
k logL
ϵ2

)
samples.

Specifically, we obtain uniform recovery guarantees for 1-bit GCS, 1-bit GCS with dithering,
Lipschitz-continuous SIM, and uniformly quantized GCS with dithering.

• We provide a proof sketch in Section 3. Without using the embedding property as in [33],
we handle the discontinuous observation model by constructing a Lipschitz approximation.
Compared to [17], we develop a new concentration inequality (Theorem 2) to derive tighter
bounds for the product processes arising in the proof.

We also perform proof-of-concept experiments on the MNIST [28] and CelebA [35] datasets for
various nonlinear models to demonstrate that by using a single realization of {ai, fi}mi=1, we can
obtain reasonably accurate reconstruction for multiple signals. Due to the page limit, the experimental
results and detailed proofs are provided in the supplementary material.

1.3 Notation

We use boldface letters to denote vectors and matrices, while regular letters are used for scalars. For
a vector x, we let ∥x∥q (1 ≤ q ≤ ∞) denote its ℓq-norm. We use Bnq (r) := {z ∈ Rn : ∥z∥q ≤ r}
to denote the ℓq ball in Rn, and (Bnq (r))c represents its complement. The unit Euclidean sphere
is denoted by Sn−1 := {x ∈ Rn : ∥x∥2 = 1}. We use C,Ci, ci, c to denote absolute constants
whose values may differ from line to line. We write A = O(B) or A ≲ B (resp. A = Ω(B) or
A ≳ B) if A ≤ CB for some C (resp. A ≥ cB for some c). We write A ≍ B if A = O(B) and
A = Ω(B) simultaneously hold. We sometimes use Õ(·) to further hide logarithmic factors, where
the hidden factors are typically dominated by logL in GCS, or log n in CS. We let N (µ,Σ) be the
Gaussian distribution with mean µ and covariance matrix Σ. Given K1,K2 ⊂ Rn, a ∈ Rn and
some a ∈ R, we define K1 ± K2 := {x1 ± x2 : x1 ∈ K1,x2 ∈ K2}, a + K1 := {a} + K1, and
aK1 := {ax : x ∈ K1}. We also adopt the conventions of a∧b = min{a, b}, and a∨b = max{a, b}.

2 Main Results

We first give some preliminaries.

Definition 1. For a random variable X , we define the sub-Gaussian norm ∥X∥ψ2
:= inf{t > 0 :

E exp(X2/t2) ≤ 2} and the sub-exponential norm ∥X∥ψ1 := inf{t > 0 : E exp(|X|/t) ≤ 2}. X
is sub-Gaussian (resp. sub-exponential) if ∥X∥ψ2 <∞ (resp. ∥X∥ψ1 <∞). For a random vector
x ∈ Rn, we let ∥x∥ψ2 := supv∈Sn−1 ∥v⊤x∥ψ2 .

Definition 2. Let S be a subset of Rn. We say that a subset S0 ⊂ S is an η-net of S if every point
in S is at most η distance away from some point in S0, i.e., S ⊂ S0 + Bn2 (η). Given a radius η, we
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define the covering number N (S, η) as the minimal cardinality of an η-net of S . The metric entropy
of S with respect to radius η is defined as H (S, η) = logN (S, η).

2.1 Problem Setup

We make the following assumptions on the observation model.

Assumption 1. Let a ∼ N (0, In) and let f be a possibly unknown, possibly random non-linearity
that is independent of a. Let (ai, fi)mi=1 be i.i.d. copies of (a, f). With a single draw of (ai, fi)mi=1,
for x∗ ∈ K = G(Bk2(r)), where G : Bk2(r) → Rn is an L-Lipschitz generative model, we observe{
yi := fi(a

⊤
i x

∗)
}m
i=1

. We can express the model more compactly as y = f(Ax∗), where A =

[a1, ...,am]⊤ ∈ Rm×n, f = (f1, ..., fm)⊤ and y = (y1, ..., ym)⊤ ∈ Rm.

In this work, we consider the generalized Lasso as the recovery method [16, 33, 43], whose core idea
is to ignore the non-linearity and minimize the regular ℓ2 loss. In addition, we need to specify a
constraint that reflects the low-complexity nature of x∗, and specifically, we introduce a problem-
dependent scaling factor T ∈ R and use the constraint “x ∈ TK”. Note that this is necessary even
if the problem is linear; for example, with observations y = 2Ax∗, one needs to minimize the ℓ2
loss over “x ∈ 2K”. Also, when the generative prior is given by Tx∗ ∈ K = G(Bk2(r)), we should
simply use “x ∈ K” as constraint; this is technically equivalent to the treatment adopted in [33] (see
more discussions in Remark 5 below). Taken collectively, we consider

x̂ = arg min
x∈TK

∥y −Ax∥2. (2.1)

Importantly, we want to achieve uniform recovery of all x∗ ∈ K with a single realization of (A,f).

2.2 Assumptions

Let f be the function that characterizes our nonlinear measurements. We introduce several assump-
tions on f here, and then verify them for specific models in Section 2.3. We define the set of
discontinuities as

Df = {a ∈ R : f is discontinuous at a}.
We define the notion of jump discontinuity as follows.

Definition 3. (Jump discontinuity). A function f : R → R has a jump discontinuity at x0 if both
L− := limx→x−

0
f(x) and L+ := limx→x+

0
f(x) exist but L− ̸= L+. We simply call the oscillation

at x0, i.e., |L+ − L−|, the jump.

Roughly put, our framework applies to piece-wise Lipschitz continuous fi with (at most) countably
infinite jump discontinuities, which have bounded jumps and are well separated. The precise statement
is given below.

Assumption 2. For some (B0, L0, β0), the following statement unconditionally holds true for any
realization of f (specifically, f1, . . . , fm in our observations):

• Df is one of the following: ∅, a finite set, or a countably infinite set;
• All discontinuities of f (if any) are jump discontinuities with the jump bounded by B0;
• f is L0-Lipschitz on any interval (a, b) satisfying (a, b) ∩ Df = ∅.
• |a− b| ≥ β0 holds for any a, b ∈ Df , a ̸= b (we set β0 = ∞ if |Df | ≤ 1).

For simplicity, we assume f(x0) = limx→x+
0
f(x) for x0 ∈ Df .3

We note that Assumption 2 is satisfied by L-Lipschitz f with (B0, L0, β0) = (0, L,∞), 1-
bit quantized observation f(·) = sign(· + τ) (τ is the potential dither, similarly below) with
(B0, L0, β0) = (2, 0,∞), and uniformly quantized observation f(·) = δ

(
⌊ ·+τ
δ ⌋ + 1

2

)
with

(B0, L0, β0) = (δ, 0, δ).

3This is very mild because the observations are fi(a
⊤
i x), while P(a⊤x ∈ Dfi) = 0 (as Dfi is at most

countably infinite and a ∼ N (0, In)).
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Under Asssumption 2, for any β ∈ [0, β0

2 ) we construct fi,β as the Lipschitz approximation of
fi to deal with the potential discontinuity of fi (i.e., Dfi ̸= ∅). Specifically, fi,β modifies fi in
Dfi + [−β

2 ,
β
2 ] to be piece-wise linear and Lipschitz continuous; see its precise definition in (3.4).

We develop Theorem 2 to bound certain product processes appearing in the analysis, which produces
bounds tighter than [36] when the index sets have low metric entropy. To make Theorem 2 applicable,
we further make the following Assumption 3, which can be checked case-by-case by estimating the
sub-Gaussian norm and probability tail. Also, U (1)

g and U (2)
g can even be a bit crude because the

measurement number in Theorem 1 depends on them in a logarithmic manner.
Assumption 3. Let a ∼ N (0, In), under Assumptions 1-2, we define the Lipschitz approximation
fi,β as in (3.4). We let

ξi,β(a) := fi,β(a)− Ta, εi,β(a) := fi,β(a)− fi(a). (2.2)

For all β ∈ (0, β0

2 ), we assume the following holds with some parameters (A
(1)
g , U

(1)
g , P

(1)
0 ) and

(A
(2)
g , U

(2)
g , P

(2)
0 ):

• supx∈K ∥ξi,β(a⊤x)∥ψ2 ≤ A
(1)
g , P

(
supx∈K |ξi,β(a⊤x)| ≤ U

(1)
g

)
≥ 1− P

(1)
0 ;

• supx∈K ∥εi,β(a⊤x)∥ψ2
≤ A

(2)
g , P

(
supx∈K |εi,β(a⊤x)| ≤ U

(2)
g

)
≥ 1− P

(2)
0 .

To build a more complete theory we further introduce two useful quantities. For some x ∈ K, we
define the target mismatch ρ(x) as in [17, Definition 1]:

ρ(x) =
∥∥E[fi(a⊤

i x)ai
]
− Tx

∥∥
2
. (2.3)

It is easy to see that E
[
fi(a

⊤
i x)ai

]
minimizes the expected ℓ2 loss E

[
∥y −Ax∥22

]
, thus one can

roughly understand E
[
fi(a

⊤
i x)ai

]
as the expectation of x̂. Since Tx is the desired ground truth,

a small ρ(x) is intuitively an important ingredient for generalized Lasso to succeed. Fortunately,
in many models, ρ(x) with a suitably chosen T will vanish (e.g., linear model [2], single index
model [33], 1-bit model [31]) or at least be sufficiently small (e.g., 1-bit model with dithering [45]).

As mentioned before, our method to deal with discontinuity of fi is to introduce its approximation
fi,β , which differs from fi only in Dfi + [−β

2 ,
β
2 ]. This will produce some bias because the actual

observation is fi(a⊤
i x

∗) rather than fi,β(a⊤
i x

∗). Hence, for some x ∈ K we define the following
quantity to measure the bias induced by fi,β :

µβ(x) = P

(
a⊤x ∈ Dfi +

[
− β

2
,
β

2

])
, a ∼ N (0, In). (2.4)

The following assumption can often be satisfied by choosing suitable T and sufficiently small β1.

Assumption 4. Suppose Assumptions 1-3 hold true with parameters B0, L0, β0, A
(1)
g , A

(2)
g . For the

T used in (2.1), ρ(x) defined in (2.3) satisfies

sup
x∈K

ρ(x) ≲ (A(1)
g ∨A(2)

g )

√
k

m
. (2.5)

Moreover, there exists some 0 < β1 <
β0

2 such that

(L0β1 +B0) sup
x∈K

√
µβ1(x) ≲ (A(1)

g ∨A(2)
g )

√
k

m
. (2.6)

In the proof, the estimation error ∥x̂ − Tx∗∥ is contributed by a concentration term of scaling
Õ
(
(A

(1)
g ∨A(2)

g )
√
k/m

)
and some bias terms. The main aim of Assumption 4 is to pull down the

bias terms so that the concentration term is dominant.

2.3 Main Theorem and its Implications

We now present our general theorem and apply it to some specific models.
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Theorem 1. Under Assumptions 1-4, given any recovery accuracy ϵ ∈ (0, 1), if it holds that
m ≳ (A

(1)
g ∨ A(2)

g )2 kL
ϵ2 , then with probability at least 1 −m(P

(1)
0 + P

(2)
0 ) −m exp(−Ω(n)) −

C exp(−Ω(k)) on a single realization of (A,f) := (ai, fi)
m
i=1, we have the uniform signal recovery

guarantee ∥x̂− Tx∗∥2 ≤ ϵ for all x∗ ∈ K, where x̂ is the solution to (2.1) with y = f(Ax∗), and
L = log P̃ is a logarithmic factor with P̃ being polynomial in (L, n) and other parameters that
typically scale as O(L+ n). See (C.11) for the precise expression of L .

To illustrate the power of Theorem 1, we specialize it to several models to obtain concrete uniform
signal recovery results. Starting with Theorem 1, the remaining work is to select parameters that
justify Assumptions 2-4. We summarize the strategy as follows: (i) Determine the parameters in
Assumption 2 by the measurement model; (ii) Set T that verifies (2.5) (see Lemmas 8-11 for the
following models); (iii) Set the parameters in Assumption 3, for which bounding the norm of Gaussian
vector is useful; (iv) Set β1 to guarantee (2.6) based on some standard probability argument. We only
provide suitable parameters for the following concrete models due to space limit, while leaving more
details to Appendix E.

(A) 1-bit GCS. Assume that we have the 1-bit observations yi = sign(a⊤
i x

∗); then fi(·) = f(·) =
sign(·) satisfies Assumption 2 with (B0, L0, β0) = (2, 0,∞). In this model, it is hopeless to
recover the norm of ∥x∗∥2; as done in previous work, we assume x∗ ∈ K ⊂ Sn−1 [31, Remark
1]. We set T =

√
2/π and take the parameters in Assumption 3 as A(1)

g ≍ 1, U
(1)
g ≍

√
n, P

(1)
0 ≍

exp(−Ω(n)), A
(2)
g ≍ 1, U

(2)
g ≍ 1, P

(2)
0 = 0. We take β = β1 ≍ k

m to guarantee (2.6). With these
choices, Theorem 1 specializes to the following:
Corollary 1. Consider Assumption 1 with fi(·) = sign(·) and K ⊂ Sn−1, let ϵ ∈ (0, 1) be any given

recovery accuracy. If m ≳ k
ϵ2 log

(
Lr

√
mn

ϵ∧(k/m)

)
,4 then with probability at least 1 − 2m exp(−cn) −

m exp(−Ω(k)) on a single draw of (ai)mi=1, we have the uniform signal recovery guarantee
∥∥x̂−√

2
πx

∗
∥∥
2
≤ ϵ for all x∗ ∈ K, where x̂ is the solution to (2.1) with y = sign(Ax∗) and T =

√
2
π .

Remark 1. A uniform recovery guarantee for generalized Lasso in 1-bit GCS was obtained in [33,
Section 5]. Their proof relies on the local embedding property in [31]. Note that such geometric
property is often problem-dependent and highly nontrivial. By contrast, our argument is free of
geometric properties of this kind.

Remark 2. For traditional 1-bit CS, [17, Corollary 2] requires m ≳ Õ(k/ϵ4) to achieve uniform
ℓ2-accuracy of ϵ for all k-sparse signals, which is inferior to our Õ(k/ϵ2). This is true for all
remaining examples. To obtain such a sharper rate, the key technique is to use our Theorem 2 (rather
than [36]) to obtain tighter bound for the product processes, as will be discussed in Remark 8.

(B) 1-bit GCS with dithering. Assume that the a⊤
i x

∗ is quantized to 1-bit with dither5 τi
iid∼

U [−λ, λ]) for some λ to be chosen, i.e., we observe yi = sign(a⊤
i x

∗ + τi). Following [45] we
assume K ⊂ Bn2 (R) for some R > 0. Here, using dithering allows the recovery of signal norm
∥x∗∥2, so we do not need to assume K ⊂ Sn−1 as in Corollary 1. We set λ = CR

√
logm with

sufficiently large C, and T = λ−1. In Assumption 3, we take A(1)
g ≍ 1, U

(1)
g ≍

√
n, P

(1)
0 ≍

exp(−Ω(n)), A
(2)
g ≍ 1, U

(2)
g ≍ 1, and P (2)

0 = 0. Moreover, we take β = β1 = λk
m to guarantee

(2.6). Now we can invoke Theorem 1 to get the following.
Corollary 2. Consider Assumption 1 with fi(·) = sign(· + τi), τi ∼ U [−λ, λ] and K ⊂ Bn2 (R),
and λ = CR

√
logm with sufficiently large C. Let ϵ ∈ (0, 1) be any given recovery accuracy. If

m ≳ k
ϵ2 log

(
Lr

√
mn

λ(ϵ∧(k/m))

)
, then with probability at least 1− 2m exp(−cn)−m exp(−Ω(k)) on a

single draw of (ai, τi)mi=1, we have the uniform signal recovery guarantee ∥x̂− λ−1x∗∥2 ≤ ϵ for
all x∗ ∈ K, where x̂ is the solution to (2.1) with y = sign(Ax∗ + τ ) (here, τ = [τ1, ..., τm]⊤) and
T = λ−1.
Remark 3. To our knowledge, the only related prior result is in [45, Theorem 3.2]. However, their
result is restricted to ReLU networks. By contrast, we deal with the more general Lipschitz generative
models; by specializing our result to the ReLU network that is typically (nΘ(d))-Lipschitz [2] (d is

4Here and in other similar statements, we implicitly assume a large enough implied constant.
5Throughout this work, the random dither is independent of the {ai}mi=1.
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the number of layers), our error rate coincides with theirs up to a logarithmic factor. Additionally, as
already mentioned in the Introduction Section, our result can be generalized to a sensing vector with
an unknown covariance matrix, unlike theirs which is restricted to isotropic sensing vectors. The
advantage of their result is in allowing sub-exponential sensing vectors.

(C) Lipschitz-continuous SIM with generative prior. Assume that any realization of f is uncon-
ditionally L̂-Lipschitz, which implies Assumption 2 with (B0, L0, β0) = (0, L̂,∞). We further
assume P(f(0) ≤ B̂) ≥ 1 − P ′

0 for some (B̂, P ′
0). Because the norm of x∗ is absorbed into the

unknown f(·), we assume K ⊂ Sn−1. We set β = 0 so that fi,β = fi. We introduce the quantities
µ = E[f(g)g], ψ = ∥f(g)∥ψ2

, where g ∼ N (0, 1). We choose T = µ and set parameters in
Assumption 3 as A(1)

g ≍ ψ + µ, U
(1)
g ≍ (L̂ + µ)

√
n + B̂, P

(1)
0 ≍ P ′

0 + exp(−Ω(n)), A
(2)
g ≍

ψ + µ, U
(2)
g = 0, P

(2)
0 = 0. Now we are ready to apply Theorem 1 to this model. We obtain:

Corollary 3. Consider Assumption 1 with L̂-Lipschitz f , suppose that P(f(0) ≤ B̂) ≥ 1 − P ′
0,

and define the parameters µ = E[f(g)g], ψ = ∥f(g)∥ψ2
with g ∼ N (0, 1). Let ϵ ∈ (0, 1) be any

given recovery accuracy. If m ≳ (µ+ψ)k
ϵ2 log

(
Lr

√
m[n(µ+ϵ)(L̂+µ)+

√
nµB̂+ψ]

(µ+ψ)ϵ

)
, then with probability

at least 1 − 2m exp(−cn) −mP ′
0 − c1 exp(−Ω(k)) on a single draw of (ai, fi)mi=1, we have the

uniform signal recovery guarantee ∥x̂− µx∗∥2 ≤ ϵ for all x∗ ∈ K, where x̂ is the solution to (2.1)
with y = f(Ax∗) and T = µ.
Remark 4. While the main result of [33] is non-uniform, it was noted in [33, Section 5] that a
similar uniform error rate can be established for any deterministic 1-Lipschitz f . Our result here is
more general in that the L̂-Lipschitz f is possibly random. Note that randomness on f is significant
because it provides much more flexibility (e.g., additive random noise).
Remark 5. For SIM with unknown fi it may seem impractical to use (2.1) as it requires µ = E[f(g)g]
where g ∼ N (0, 1). However, by assuming µx∗ ∈ K = G(Bk2(r)) as in [33], which is natural for
sufficiently expressive G(·), we can simply use x ∈ K as constraint in (2.1). Our Corollary 3 remains
valid in this case under some inessential changes of logµ factors in the sample complexity.

(D) Uniformly quantized GCS with dithering. The uniform quantizer with resolution δ > 0 is
defined as Qδ(a) = δ

(
⌊aδ ⌋ +

1
2

)
for a ∈ R. Using dithering τi ∼ U [− δ

2 ,
δ
2 ], we suppose that the

observations are yi = Qδ(a
⊤
i x

∗ + τi). This satisfies Assumption 2 with (B0, L0, β0) = (δ, 0, δ).
We set T = 1 and take parameters for Assumption 3 as follows: A(1)

g , U
(1)
g , A

(2)
g , U

(2)
g ≍ δ, and

P
(1)
0 = P

(2)
0 = 0. We take β = β1 ≍ kδ

m to confirm (2.6). With these parameters, we obtain the
following from Theorem 1.
Corollary 4. Consider Assumption 1 with f(·) = Qδ(·+ τ), τ ∼ U [− δ

2 ,
δ
2 ] for some quantization

resolution δ > 0. Let ϵ > 0 be any given recovery accuracy. If m ≳ δ2k
ϵ2 log

(
Lr

√
mn

ϵ∧[kδ/(m
√
n)]

)
, then

with probability at least 1 − 2m exp(−cn) − c1 exp(−Ω(k)) on a single draw of (ai, τi)mi=1, we
have the uniform recovery guarantee ∥x̂− x∗∥2 ≤ ϵ for all x∗ ∈ K, where x̂ is the solution to (2.1)
with y = Qδ(Ax+ τ ) and T = 1 (here, τ = [τ1, . . . , τm]⊤).
Remark 6. While this dithered uniform quantized model has been widely studied in traditional CS
(e.g., non-uniform recovery [8, 48], uniform recovery [17, 52]), it has not been investigated in GCS
even for non-uniform recovery. Thus, this is new to the best of our knowledge.

A simple extension to the noisy model y = f(Ax∗) + η where η ∈ Rm has i.i.d. sub-Gaussian
entries can be obtained by a fairly straightforward extension of our analysis; see Appendix F.

3 Proof Sketch

To provide a sketch of our proof, we begin with the optimality condition ∥y − Ax̂∥22 ≤ ∥y −
A(Tx∗)∥22. We expand the square and plug in y = f(Ax∗) to obtain∥∥∥∥ A√

m
(x̂− Tx∗)

∥∥∥∥2
2

≤ 2

m

〈
f(Ax∗)− TAx∗,A(x̂− Tx∗)

〉
. (3.1)

For the final goal ∥x̂ − Tx∗∥2 ≤ ϵ, up to rescaling, it is enough to prove ∥x̂ − Tx∗∥2 ≤ 3ϵ.
We assume for convenience that ∥x̂ − Tx∗∥2 > 2ϵ, without loss of generality. Combined with

7



x̂, Tx∗ ∈ TK, we know x̂ − Tx∗ ∈ K−
ϵ , where K−

ϵ := (TK−) ∩
(
Bn2 (2ϵ)

)c
, K− = K − K. We

further define
(K−

ϵ )
∗ :=

{
z/∥z∥2 : z ∈ K−

ϵ

}
(3.2)

where the normalized error lives, i.e. x̂−Tx∗

∥x̂−Tx∗∥2
∈ (K−

ϵ )
∗. Our strategy is to establish a uniform

lower bound (resp., upper bound) for the left-hand side (resp., the right-hand side) of (3.1). We
emphasize that these bounds must hold uniformly for all x∗ ∈ K.

It is relatively easy to use set-restricted eigenvalue condition (S-REC) [2] to establish a uniform lower
bound for the left-hand side of (3.1), see Appendix B.1 for more details. It is significantly more
challenging to derive an upper bound for the right-hand side of (3.1). As the upper bound must hold
uniformly for all x∗, we first take the supremum over x∗ and x̂ and consider bounding the following:

R :=
1

m

〈
f(Ax∗)− TAx∗,A(x̂− Tx∗)

〉
=

1

m

m∑
i=1

(
fi(a

⊤
i x

∗)− Ta⊤
i x

∗) · (a⊤
i [x̂− Tx∗]

)
≤ ∥x̂− Tx∗∥2 · sup

x∈K
sup

v∈(K−
ϵ )∗

1

m

m∑
i=1

(
fi(a

⊤
i x)− Ta⊤

i x
)
·
(
a⊤
i v
)
:= ∥x̂− Tx∗∥2 · Ru,

(3.3)

where (K−
ϵ )

∗ is defined in (3.2). Clearly, Ru is the supremum of a product process, whose factors
are indexed by x ∈ K and v ∈ (K−

ϵ )
∗. It is, in general, challenging to control a product process, and

existing results often require both factors to satisfy a certain “sub-Gaussian increments” condition
(e.g., [36, 37]). However, the first factor of Ru (i.e., fi(a⊤

i x
∗) − Ta⊤

i x
∗) does not admit such

a condition when fi is not continuous (e.g., the 1-bit model fi = sign(·)). We will construct the
Lipschitz approximation of fi to overcome this difficulty shortly in Section 3.1.
Remark 7. We note that these challenges stem from our pursuit of uniform recovery. In fact, a
non-uniform guarantee for SIM was presented in [33, Theorem 1]. In its proof, the key ingredient
is [33, Lemma 3] that bounds Ru without the supremum on x. This can be done as long as fi(a⊤

i x
∗)

is sub-Gaussian, while the potential discontinuity of fi is totally unproblematic.

3.1 Lipschitz Approximation

For any x0 ∈ Dfi we define the one-sided limits as f−i (x0) = limx→x−
0
fi(x) and f+i (x0) =

limx→x+
0
fi(x), and write their average as fai (x0) =

1
2 (f

−
i (x0)+f

+
i (x0)). Given any approximation

accuracy β ∈ (0, β0

2 ), we construct the Lipschitz continuous function fi,β as:

fi,β(x) =


fi(x) , if x /∈ Dfi + [−β

2 ,
β
2 ]

fai (x0)−
2[fa

i (x0)−fi(x0− β
2 )](x0−x)

β , if ∃x0 ∈ Dfi s.t. x ∈ [x0 − β
2 , x0]

fai (x0) +
2[fi(x0+

β
2 )−fa

i (x0)](x−x0)

β , if ∃x0 ∈ Dfi , s.t. x ∈ [x0, x0 +
β
2 ]

. (3.4)

We have defined the approximation error εi,β(·) = fi,β(·)− fi(·) in Assumption 3. An important
observation is that both fi,β and |εi,β | are Lipschitz continuous (see Lemma 1 below). Here, it is
crucial to consider |εi,β | rather than εi,β as the latter is not continuous; see Figure 1 for an intuitive
graphical illustration and more explanations in Appendix B.2.
Lemma 1. With B0, L0, β0 given in Assumption 2, for any β ∈ (0, β0

2 ), fi,β is
(
L0 +

B0

β

)
-Lipschitz

over R, and |εi,β | is
(
2L0 +

B0

β

)
-Lipschitz over R.

3.2 Bounding the product process

We now present our technique to bound Ru. Recall that ξi,β(a) and εi,β(a) were defined in (2.2). By
Lemma 1, ξi,β is

(
L0 + T + B0

β

)
-Lipschitz. Now we use fi(a)− Ta = ξi,β(a)− εi,β to decompose

Ru (in the following, we sometimes shorten “supx∈K supv∈(K−
ϵ )∗” as “supx,v”):

Ru ≤ sup
x,v

1

m

m∑
i=1

ξi,β(a
⊤
i x) ·

(
a⊤
i v
)

︸ ︷︷ ︸
Ru1

+sup
x,v

1

m

m∑
i=1

∣∣εi,β(a⊤
i x)

∣∣ ∣∣a⊤
i v
∣∣

︸ ︷︷ ︸
Ru2

.
(3.5)
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Figure 1: (Left): fi and its approximation fi,0.5; (Right): approximation error εi,0.5, |εi,0.5|.

It remains to control Ru1 and Ru2. By the Lipschitz continuity of ξi,β and |εi,β |, the factors of Ru1

and Ru2 admit sub-Gaussian increments, so it is natural to first center them and then invoke the
concentration inequality for product process due to Mendelson [36, Theorem 1.13], which we restate
in Lemma 5 (Appendix A). However, this does not produce a tight bound and would eventually
require Õ(k/ϵ4) to achieve a uniform ℓ2-error of ϵ, as is the case in [17, Section 4].

In fact, Lemma 5 is based on Gaussian width and hence blind to the fact that K, (K−
ϵ )

∗ here have low
metric entropy (Lemma 6). By characterizing the low intrinsic dimension of index sets via metric
entropy, we develop the following concentration inequality that can produce tighter bound for Ru1

and Ru2. This also allows us to derive uniform error rates sharper than those in [17, Section 4].
Theorem 2. Let gx = gx(a) and hv = hv(a) be stochastic processes indexed by x ∈ X ⊂ Rp1 ,v ∈
V ⊂ Rp2 , both defined with respect to a common random variable a. Assume that:

• (A1.) gx(a), hv(a) are sub-Gaussian for some (Ag, Ah) and admit sub-Gaussian increments
regarding ℓ2 distance for some (Mg,Mh):

∥gx(a)− gx′(a)∥ψ2
≤Mg∥x− x′∥2, ∥gx(a)∥ψ2

≤ Ag, ∀ x,x′ ∈ X ;

∥hv(a)− hv′(a)∥ψ2 ≤Mh∥v − v′∥2, ∥hv(a)∥ψ2 ≤ Ah, ∀ v,v′ ∈ V.
(3.6)

• (A2.) On a single draw of a, for some (Lg, Ug, Lh, Uh) the following events simultaneously
hold with probability at least 1− P0:

|gx(a)− gx′(a)| ≤ Lg∥x− x′∥2, |gx(a)| ≤ Ug, ∀ x,x′ ∈ X ;

|hv(a)− hv′(a)| ≤ Lh∥v − v′∥2, |hv(a)| ≤ Uh, ∀ v,v′ ∈ V.
(3.7)

Let a1, ...,am be i.i.d. copies of a, and introduce the shorthand Sg,h = LgUh + MgAh and

Tg,h = LhUg + MhAg. If m ≳ H
(
X , AgAh√

mSg,h

)
+ H

(
V, AgAh√

mTg,h

)
, where H (·, ·) is the

metric entropy defined in Definition 2, then with probability at least 1 − mP0 − 2 exp
[
−

Ω
(
H (X , AgAh√

mSg,h
) + H (V, AgAh√

mTg,h
)
)]

we have I ≲ AgAh√
m

√
H (X , AgAh√

mSg,h
) + H (V, AgAh√

mTg,h
),

where I := supx∈X supv∈V
∣∣ 1
m

∑m
i=1

(
gx(ai)hv(ai)−E[gx(ai)hv(ai)]

)∣∣ is the supremum of a
product process.
Remark 8. We use Ru2 as an example to illustrate the advantage of Theorem 2 over Lemma 5. The
key step is on bounding the centered process

Ru2,c := sup
x∈K

sup
v∈(K−

ϵ )∗

{
|εi,β(a⊤

i x)||a⊤
i v| −E[|εi,β(a⊤

i x)||a⊤
i v|]

}
.

Let gx(ai) = |εi,β(a⊤
i x)| and hv(ai) = |a⊤

i v|, then one can use Theorem 2 or Lemma 5 to
bound Ru2,c. Note that ∥a⊤

i v∥ψ2
= O(1) justifies the choice Ah = O(1), and both H (K, η) and

H ((K−
ϵ )

∗, η) depend linearly on k but only logarithmically on η (Lemma 6), so Theorem 2 could
bound Ru2,c by Õ

(
Ag
√
k/m

)
that depends on Mg in a logarithmic manner. However, the bound

produced by Lemma 5 depends linearly on Mg; see term MgAhω(K)√
m

in (A.1). From (3.6), Mg should
be proportional to the Lipschitz constant of |εi,β |, which scales as 1

β (Lemma 1). The issue is that
in many cases we need to take extremely small β to guarantee that (2.6) holds true (e.g., we take
β ≍ k/m in 1-bit GCS). Thus, Lemma 5 produces a worse bound compared to our Theorem 2.
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4 Conclusion

In this work, we built a unified framework for uniform signal recovery in nonlinear generative
compressed sensing. We showed that using generalized Lasso, a sample size of Õ(k/ϵ2) suffices to
uniformly recover all x ∈ G(Bk2(r)) up to an ℓ2-error of ϵ. We specialized our main theorem to 1-bit
GCS with/without dithering, single index model, and uniformly quantized GCS, deriving uniform
guarantees that are new or exhibit some advantages over existing ones. Unlike [33], our proof is
free of any non-trivial embedding property. As part of our technical contributions, we constructed
the Lipschitz approximation to handle potential discontinuity in the observation model, and also
developed a concentration inequality to derive tighter bound for the product processes arising in the
proof, allowing us to obtain a uniform error rate faster than [17]. Possible future directions include
extending our framework to handle the adversarial noise and representation error.
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Supplementary Material
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Generative Compressed Sensing
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A Technical Lemmas

Lemma 2. (Lemma 2.7.7, [50]). Let X,Y be sub-Gaussian, then XY is sub-exponential with
∥XY ∥ψ1

≤ ∥X∥ψ2
∥Y ∥ψ2

.
Lemma 3. (Centering, [50, Exercise 2.7.10]). For some absolute constant C, ∥X − EX∥ψ1

≤
C∥X∥ψ1

.
Lemma 4. (Bernstein’s inequality, [50, Theorem 2.8.1]). Let X1, ..., XN be independent, zero-mean,
sub-exponential random variables. Then for every t ≥ 0, for some absolute constant c we have

P

(∣∣∣ N∑
i=1

Xi

∣∣∣ ≥ t

)
≤ 2 exp

(
−cmin

{ t2∑N
i=1 ∥Xi∥2ψ1

,
t

max1≤i≤N ∥Xi∥ψ1

})
Lemma 5. ( [36], statement adapted from [16, Theorem 8]). Let gx = gx(a) and hv = hv(a) be
stochastic processes indexed by x ∈ X ⊂ Rp1 , v ∈ V ⊂ Rp2 , both defined on some common random
variable a. Assume that (A1.) in Theorem 2 holds, and let a1, ...,am be i.i.d. copies of a. Then for
any u ≥ 1, with probability at least 1− 2 exp(−cu2) we have the bound

sup
x∈X
v∈V

∣∣∣∣∣ 1m
m∑
i=1

(
gx(ai)hv(ai)−E[gx(ai)hv(ai)]

)∣∣∣∣∣
≤ C

( (Mg · ω(X ) + u ·Ag) · (Mh · ω(V) + u ·Ah)
m

+
Ag ·Mh · ω(V) +Ah ·Mg · ω(X ) + u ·AgAh√

m

)
,

(A.1)

where ω(·) is the Gaussian width defined as ω(X ) = E supx∈X g⊤x where g ∼ N (0, Ip1).

The proofs of the remaining lemmas will be provided in Appendix D. (Some simple facts such as
Lemma 8 were already used in prior works; while we provide the proofs for completeness.)
Lemma 6. (Metric entropy of some constraint sets). Assume K = G(Bk2(r)) for some L-Lipschitz
generative model G. Let K− = K −K, for some T > 0, ϵ ∈ (0, 1) let K−

ϵ := (TK−) ∩
(
Bn2 (2ϵ)

)c
,

and further define (K−
ϵ )

∗ = { z
∥z∥2

: z ∈ K−
ϵ }. Then for any η ∈ (0, Lr), we have

H (K, η) ≤ k log
3Lr

η
, H (K−, η) ≤ 2k log

6Lr

η
,

H (K−
ϵ , η) ≤ 2k log

12TLr

η
, H

(
(K−

ϵ )
∗, η
)
≤ 2k log

12TLr

ϵη
,

where H (·, ·) is the metric entropy defined in Definition 2.

Lemma 7. (Bound the ℓ2-norm of Gaussian vector). If a ∼ N (0, In), then P
(
|∥a∥2 −

√
n| ≥ t

)
≤

2 exp(−Ct2). In particular, setting t ≍
√
n yields P(∥a∥2 ≥

√
n) ≤ 2 exp(−Ω(n)).

In the following, Lemmas 8-11 indicate suitable choices of T in the concrete models we consider.
These choices can make ρ(x) in (2.3) sufficiently small or even zero.
Lemma 8. (Choice of T in 1-bit GCS). If a ∼ N (0, In), then for any x ∈ Sn−1 it holds that

E[sign(a⊤x)a] =
√

2
πx.

Lemma 9. (Choice of T in 1-bit GCS with dithering). If a ∼ N (0, In) and τ ∼ U [−λ, λ] are
independent, and λ = CR

√
logm with sufficiently large C, then for any x ∈ Bn2 (R) it holds that

∥E[sign(a⊤x+ τ)a]− x
λ∥2 = O

(
m−9

)
.
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Lemma 10. (Choice of T in SIM). If a ∼ N (0, In), for some function f and any x ∈ Sn−1 it holds
that E[f(a⊤x)a] = µx for µ = E[f(g)g] with g ∼ N (0, 1).
Lemma 11. (Choice of T in uniformly quantized GCS with dithering). Given any δ > 0, let
τ ∼ U [− δ

2 ,
δ
2 ] and Qδ(·) = δ

(
⌊ ·
δ ⌋ +

1
2

)
. Then, for any a ∈ R, it holds that E[Qδ(a + τ)] = a.

In particular, let a ∈ Rn be a random vector satisfying E(aa⊤) = In, and τ ∼ U [− δ
2 ,

δ
2 ] be

independent of a, then we have E[Qδ(a
⊤x+ τ)a] = x.

Lemma 12 facilitates our analysis of the uniform quantizer.

Lemma 12. Let fi(·) = δ
(
⌊ ·+τi

δ ⌋+ 1
2

)
for τi ∼ U [− δ

2 ,
δ
2 ], and fi,β(·) be defined in (3.4) for some

0 < β < δ
2 . Moreover, let ξi,β(a) = fi,β(a) − a, εi,β(a) = fi,β(a) − fi(a), then for any a ∈ R,

|ξi,β(a)| ≤ 2δ, |εi,β(a)| ≤ δ holds deterministically.

More generally, the approximation error |εi,β(a)| can always be bounded as follows.

Lemma 13. Suppose that fi satisfies Assumption 2, and for any β ∈ [0, β0

2 ] we construct fi,β as in
(3.4). Then, for any a ∈ R, we have |εi,β(a)| ≤

(
3L0β

2 +B0

)
1(a ∈ Dfi + [−β

2 ,
β
2 ]).

B More Details of the Proof Sketch

B.1 Set-Restricted Eigenvalue Condition

Definition 4. Let S ⊂ Rn. For parameters γ, δ > 0, a matrix A ∈ Rm×n is said to satisfy
S-REC(S, γ, δ) if the following holds:

∥A(x1 − x2)∥2 ≥ γ∥x1 − x2∥2 − δ, ∀ x1,x2 ∈ S.

It was proved in [2] that 1√
m
A satisfies the S-REC with high probability if the entries of A are i.i.d.

standard Gaussian.
Lemma 14. (Lemma 4.1 in [2]). Let G : Bk2(r) → Rn be L-Lipschitz for some r, L > 0, and define
K = G(Bk2(r)). For any α ∈ (0, 1), if A ∈ Rm×n has i.i.d. N (0, 1) entries, andm = Ω

(
k
α2 log

Lr
δ

)
,

then 1√
m
A satisfies S-REC(K,1− α,δ) with probability at least 1− exp(−Ω(α2m)).

B.2 Lipschitz Approximation

The approximation error εi,β(·) can be expanded as:

εi,β(x) =


0 , if x /∈ Dfi + [−β

2 ,
β
2 ]

fai (x0)− fi(x)−
2[fa

i (x0)−fi(x0− β
2 )](x0−x)

β , if x ∈ [x0 − β
2 , x0], (∃x0 ∈ Dfi)

fai (x0)− fi(x) +
2[fi(x0+

β
2 )−fa

i (x0)](x−x0)

β , if x ∈ [x0, x0 +
β
2 ], (∃x0 ∈ Dfi)

.

Although |εi,β | is Lipschitz continuous, εi,β is not. In particular, given x0 ∈ Dfi we note that

ε−i,β(x0) = lim
x→x−

0

εi,β(x) = fai (x0)− f−i (x0) =
1

2

(
f+i (x0)− f−i (x0)

)
,

ε+i,β(x0) = lim
x→x+

0

εi,β(x) = fai (x0)− f+i (x0) =
1

2

(
f−i (x0)− f+i (x0)

)
.

Thus, it is crucial to include the absolute value for rendering the continuity.

C Proofs of Main Results

C.1 Proof of Theorem 1

Proof. Up to rescaling, we only need to prove that ∥x̂−Tx∗∥2 ≤ 3ϵ holds uniformly for all x∗ ∈ K.
We can assume ∥x̂− Tx∗∥2 ≥ 2ϵ; otherwise, the desired bound is immediate.
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(1) Lower bounding the left-hand side of (3.1).

We use S-REC to find a lower bound for
∥∥ A√

m
(x̂ − Tx∗)

∥∥2
2
. Specifically, we invoke Lemma 14

with α = 1
2 and δ = ϵ

2T , which gives that under m = Ω
(
k log LTr

ϵ

)
, with probability at least

1− exp(−cm), the following holds:∥∥∥∥ A√
m
(x1 − x2)

∥∥∥∥
2

≥ 1

2
∥x1 − x2∥2 −

ϵ

2T
, ∀ x1,x2 ∈ K. (C.1)

Recall that we assume ∥x̂− Tx∗∥2 ≥ 2ϵ, T−1x̂ ∈ K, and x∗ ∈ K, so we set x1 = x̂
T ,x2 = x∗ in

(C.1) to obtain ∥∥∥∥ A√
m

( x̂
T

− x∗
)∥∥∥∥

2

≥ 1

2

∥∥∥∥ x̂T − x∗
∥∥∥∥
2

− ϵ

2T
≥ 1

4T

∥∥x̂− Tx∗∥∥
2
.

Thus, the left-hand side of (3.1) can be lower bounded by Ω
(
∥x̂− Tx∗∥22

)
.

(2) Upper bounding the right-hand side of (3.1).

As analysed in (3.3) and (3.5), the right-hand side of (3.1) is bounded by 2∥x̂−Tx∗∥2 ·
(
Ru1+Ru2

)
,

so all that remains is to bound Ru1,Ru2. In the rest of the proof, we simply write supx,v :=
supx∈K,v∈(K−

ϵ )∗ and recall the shorthand ξi,β(a) = fi,β(a) − Ta. Thus, the first factor of Ru1 is
given by ξi,β(a⊤

i x). By centering, we have

Ru1 ≤ sup
x,v

1

m

m∑
i=1

{
[ξi,β(a

⊤
i x)](a

⊤
i v)−E

[
[ξi,β(a

⊤
i x)](a

⊤
i v)

]}
︸ ︷︷ ︸

Ru1,c

+sup
x,v

E
[
[ξi,β(a

⊤
i x)](a

⊤
i v)

]
︸ ︷︷ ︸

Ru1,e

,

(C.2)
and

Ru2 ≤ sup
x,v

{
1

m

m∑
i=1

∣∣εi,β(a⊤
i x)

∣∣∣∣a⊤
i v
∣∣−E[∣∣εi,β(a⊤

i x)
∣∣∣∣a⊤

i v
∣∣]}

︸ ︷︷ ︸
Ru2,c

+sup
x,v

E
[∣∣εi,β(a⊤

i x)
∣∣∣∣a⊤

i v
∣∣]︸ ︷︷ ︸

Ru2,e

.

(C.3)
We will invoke Theorem 2 multiple times to derive the required bounds.

(2.1) Bounding the centered product process Ru1,c.

We let gx(ai) = ξi,β(a
⊤
i x) and hv(ai) = a⊤

i v, and write

Ru1,c = sup
x,v

1

m

m∑
i=1

{
gx(ai)hv(ai)−E[gx(ai)hv(ai)]

}
.

We verify conditions in Theorem 2 as follows:

• For any x,x′ ∈ K, because ξi,β is
(
L0 +

B0

β + T
)
-Lipschitz continuous (Lemma 1), we have

∥gx(ai)− gx′(ai)∥ψ2 ≤ (L0 + T +
B0

β
)∥a⊤

i x− a⊤
i x

′∥ψ2

= O
(
L0 + T +

B0

β

)
∥x− x′∥2.

• Since ai ∼ N (0, In), by Lemma 7, with probability 1 − 2 exp(−Ω(n)) we have ∥ai∥2 =
O(

√
n). On this event, we have

|gx(ai)− gx′(ai)| ≤ (L0 + T +
B0

β
)|a⊤

i x− a⊤
i x

′|

≤ (L0 + T +
B0

β
)∥ai∥2∥x− x′∥2

= O
(√

n
[
L0 + T +

B0

β

])
∥x− x′∥2.
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• Recall (K−
ϵ )

∗ in (3.2). Since (K−
ϵ )

∗ ⊂ Sn−1, for any v,v′ ∈ (K−
ϵ )

∗, we have ∥a⊤
i v −

a⊤
i v

′∥ψ2
= O(1)∥v − v′∥2, and when ∥ai∥ = O(

√
n) we have |a⊤

i v − a⊤
i v

′| ≤ ∥ai∥2∥v −
v′∥2 = O(

√
n)∥v − v′∥2. Moreover, because (K−

ϵ )
∗ ⊂ Bn2 , for any v ∈ (K−

ϵ )
∗ we have

∥a⊤
i v∥ψ2 = O(1), |a⊤

i v| ≤ ∥ai∥2 = O(
√
n).

Combined with Assumption 3 and its parameters (A(1)
g , U

(1)
g , P

(1)
0 ) and (A

(2)
g , U

(2)
g , P

(2)
0 ), Ru1,c

satisfies the conditions of Theorem 2 with the following parameters

Mg ≍ L0 + T +
B0

β
, Ag = A(1)

g , Mh ≍ 1, Ah ≍ 1

Lg ≍
√
n
(
L0 + T +

B0

β

)
, Ug = U (1)

g , Lh ≍
√
n, Uh ≍

√
n

and P0 = P
(1)
0 + 2 exp(−Ω(n)). Now suppose that we have

m ≳ H

(
K, A

(1)
g√

mn[L0 + T + B0

β ]

)
+ H

(
(K−

ϵ )
∗,

A
(1)
g

√
m(

√
nU

(1)
g +A

(1)
g )

)
, (C.4)

and note that by using Lemma 6, (C.4) can be guaranteed by

m ≳ k log

(
Lr

√
m

A
(1)
g

[
n(L0 + T +

B0

β
) +

T (
√
nU

(1)
g +A

(1)
g )

ϵ

])
. (C.5)

Then Theorem 2 yields that the following bound holds with probability at least 1 − mP
(1)
0 −

C exp(−Ω(k))−m exp(−Ω(n)):

|Ru1,c| ≲
A1
g√
m

√√√√H

(
K, A

(1)
g√

mn[L0 + T + B0

β ]

)
+ H

(
(K−

ϵ )∗,
A

(1)
g

√
m(

√
nU

(1)
g +A

(1)
g )

)

≲ A(1)
g

√√√√ k

m
log

(
Lr

√
m

A
(1)
g

[
n(L0 + T +

B0

β
) +

T (
√
nU

(1)
g +A

(1)
g )

ϵ

])
.

(C.6)

(2.2) Bounding the centered product process Ru2,c.

We let gx(ai) = |εi,β(a⊤
i x)| and hv(ai) = |a⊤

i v|, and write

Ru2,c = sup
x,v

1

m

m∑
i=1

{
gx(ai)hv(ai)−E[gx(ai)hv(ai)]

}
.

We verify the conditions in Theorem 2 as follows:

• For any x,x′ ∈ K, because |εi,β | is (2L0 +
B0

β )-Lipschitz continuous (Lemma 1), we have

∥gx(ai)− gx′(ai)∥ψ2
≤ (2L0 +

B0

β
)∥a⊤

i x− a⊤
i x

′∥ψ2

= O
(
L0 +

B0

β

)
∥x− x′∥2.

• By Lemma 7, with probability at least 1− 2 exp(−Ω(n)) we have ∥ai∥2 = O(
√
n). On this

event, we have

|gx(ai)− gx′(ai)| ≤ (2L0 +
B0

β
)|a⊤

i x− a⊤
i x

′|

≤ (2L0 +
B0

β
)∥ai∥2∥x− x′∥2

= O
(√
n
[
L0 +

B0

β

])
∥x− x′∥2.
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• For any v,v′ ∈ (K−
ϵ )

∗ we have
∥∥|a⊤

i v| − |a⊤
i v

′|
∥∥
ψ2

≤ ∥a⊤
i (v − v′)∥ψ2 = O(1)∥v − v′∥2.

Similarly as before, we assume ∥ai∥2 = O(
√
n), which gives |a⊤

i v − a⊤
i v

′| ≤ ∥ai∥2∥v −
v′∥2 = O(

√
n)∥v − v′∥2. Moreover, (K−

ϵ )
∗ ⊂ Bn2 implies

∥∥|a⊤
i v|
∥∥
ψ2

= O(1) and |a⊤
i v| ≤

∥ai∥2∥v∥2 = O(
√
n) holds for all v ∈ (K−

ϵ )
∗.

Combined with Assumption 3, Ru2,c satisfies the conditions of Theorem 2 with

Mg ≍ L0 +
B0

β
, Ag = A(2)

g , Mh ≍ 1, Ah ≍ O(1)

Lg ≍
√
n
(
L0 +

B0

β

)
, Ug = U (2)

g , Lh ≍
√
n, Uh ≍

√
n

and P0 = P
(2)
0 + 2 exp(−Ω(n)). Suppose we have

m ≳ H

(
K, A

(2)
g√

mn[L0 +
B0

β ]

)
+ H

(
(K−

ϵ )
∗,

A
(2)
g

√
m(A

(2)
g +

√
nU

(2)
g )

)
,

which can be guaranteed (from Lemma 6) by

m ≳ k log

(
Lr

√
m

A
(2)
g

[
n
(
L0 +

B0

β

)
+
T (A

(2)
g +

√
nU

(2)
g )

ϵ

])
. (C.7)

Then, we can invoke Theorem 2 to obtain that the following bound holds with probability at least
1−mP

(2)
0 − 2m exp(−Ω(n))− C exp(−Ω(k)):

|Ru2,c| ≲
A

(2)
g√
m

√√√√H

(
K, A

(2)
g√

mn[L0 +
B0

β ]

)
+ H

(
(K−

ϵ )∗,
A

(2)
g

√
m(A

(2)
g +

√
nU

(2)
g )

)

≲ A(2)
g

√√√√ k

m
log

(
Lr

√
m

A
(2)
g

[
n
(
L0 +

B0

β

)
+
T (A

(2)
g +

√
nU

(2)
g )

ϵ

])
.

(C.8)

(2.3) Bounding the expectation terms Ru1,e,Ru2,e.

Recall that ξi,β(a) = fi,β(a)−Ta and εi,β(a) = fi,β(a)−fi(a), and so ξi,β(a) = εi,β(a)+fi(a)−
Ta. Hence, by using E[aia⊤

i ] = In and ∥v∥2 = 1, we have

Ru1,e ≤ sup
x,v

E
[(
fi(a

⊤
i x)− Ta⊤

i x
)
(a⊤
i v)

]
+ sup

x,v
E
[
[εi,β(a

⊤
i x)]a

⊤
i v
]

≤ sup
x∈X

∥∥E[fi(a⊤
i x)ai]− Tx

∥∥
2
+ sup

x,v
E
[
|εi,β(a⊤

i x)||a⊤
i v|
]

≤ sup
x∈X

ρ(x) + Ru2,e,

(C.9)

where ρ(x) is the model mismatch defined in (2.3), and Ru2,e is defined in (C.3). It remains to bound
Ru2,e, for which we first apply Cauchy-Schwarz (with ∥v∥2 ≤ 1) and then use Lemma 13 to obtain

Ru2,e = sup
x,v

E
[
|εi,β(a⊤

i x)||a⊤
i v|
]

≤ sup
x,v

√
E[|εi,β(a⊤

i x)|2]
√
E[|a⊤

i v|2]

≤ sup
x∈K

√
E

[
|εi,β(a⊤

i x)|21
(
a⊤
i x ∈ Dfi +

[
− β

2
,
β

2

])]
≤
(3L0β

2
+B0

)
sup
x∈K

√
P

(
a⊤
i x ∈ Dfi +

[
− β

2
,
β

2

])
≤
(3L0β

2
+B0

)
sup
x∈K

√
µβ(x),

(C.10)
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where we use Lemma 13 in the third and fourth line, and µβ(x) is defined in (2.4).

(3) Combining everything to conclude the proof.

Recall that in Assumption 4, we assume that

sup
x∈X

ρ(x) ≲ (A(1)
g ∨A(2)

g )

√
k

m
,

and we take sufficiently small β1 such that

(L0β1 +B0) sup
x∈K

√
µβ1

(x) ≲ (A(1)
g ∨A(2)

g )

√
k

m
,

then by setting β = β1, the derived bound of Ru1,c + Ru2,c (see (C.6) and (C.8)) dominates that of
Ru1,e + Ru2,e (see (C.9) and (C.10)), and so Ru1 + Ru2 ≲ Ru1,c + Ru2,c.

Recall that (C.6) and (C.8) are guaranteed by the sample size of (C.5) and (C.7), while (C.5) and
(C.7) hold as long as

m ≳ k log

(
Lr

√
m

A
(1)
g ∧A(2)

g

[
n
(
L0 + T +

B0

β1

)
+
T (

√
n(U

(1)
g ∨ U (2)

g ) + (A
(1)
g ∨A(2)

g ))

ϵ

])
:= kL (here we use L to abbreviate the log factors)

(C.11)
with probability at least 1−m(P

(1)
0 + P

(2)
0 )−m exp(−Ω(n))− C exp(−Ω(k)) we have

Ru1,c + Ru2,c ≲ (A(1)
g ∨A(2)

g )

√
kL

m
.

Therefore, the right-hand side of (3.1) can be uniformly bounded by

O

(
∥x̂− Tx∗∥2 · (A(1)

g ∨A(2)
g )

√
kL

m

)
. (C.12)

Combining with the uniform lower bound for the left-hand side of (3.1), i.e., Ω(∥x̂− Tx∗∥22), we
obtain the following bound uniformly for all x∗:

∥x̂− Tx∗∥2 ≲ (A(1)
g ∨A(2)

g )

√
kL

m
.

Hence, as long as

m ≳
(
A(1)
g ∨A(2)

g

)2 kL
ϵ2

,

we again obtain ∥x̂− Tx∗∥2 ≤ 3ϵ, which completes the proof.

C.2 Proof of Theorem 2

Proof. Step 1. Control the process over finite nets.

Recall that X and V are the index sets of x and v, as stated in Theorem 2. We first establish
the desired concentration for a fixed pair (x,v) ∈ X × V . By Lemma 2, ∥gx(ai)hv(ai)∥ψ1

≤
∥gx(ai)∥ψ2∥hv(ai)∥ψ2 ≤ AgAh. Furthermore, centering (Lemma 3) gives

∥gx(ai)hv(ai)−E[gx(ai)hv(ai)]∥ψ1
= O(AgAh).

Thus, for fixed (x,v) ∈ X × V we define

Ix,v =
1

m

m∑
i=1

gx(ai)hv(ai)−E[gx(ai)hv(ai)].

Then, we can invoke Bernstein’s inequality (Lemma 4) to obtain for any t ≥ 0 that

P
(
|Ix,v| ≥ t

)
≤ 2 exp

(
−cmmin

{( t

AgAh

)2
,

t

AgAh

})
. (C.13)
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We construct G1 as an η1-net of X , and G2 as an η2-net of V , with both nets being minimal in that
log |G1| = H (X , η1), log |G2| = H (V, η2), and where η1, η2 are to be chosen later. Then, we take
a union bound of (C.13) over (x,v) ∈ G1 × G2 to obtain

P

 sup
x∈G1
v∈G2

|Ix,v| ≥ t

 ≤ 2 exp

(
H (X , η1) + H (V, η2)− cmmin

{( t

AgAh

)2
,

t

AgAh

})
.

(C.14)

Now we set t ≍ AgAh

√
H (X ,η1)+H (V,η2)

m for a sufficiently large hidden constant. Then, if
m ≥ C(H (X , η1) + H (V, η2)) for large enough C so that t

AgAh
≤ 1 (we assume this now and

will confirm it in (C.21) after specifying η1, η2), (C.14) gives

P

 sup
x∈G1
v∈G2

|Ix,v| ≳ AgAh

√
H (X , η1) + H (V, η2)

m

 ≤ 2 exp
(
−Ω
(
H (X , η1) + H (V, η2)

))
Hence, from now on we proceed with the proof on the event

sup
x∈G1
v∈G2

|Ix,v| ≲ AgAh

√
H (X , η1) + H (V, η2)

m
, (C.15)

which holds within the promised probability.

Step 2. Control the approximation error of the nets.

We have derived a bound for supx∈G1,v∈G2
|Ix,v|, while we want to control I = supx∈X ,v∈V |Ix,v|,

so we further investigate how close these two quantities are. We define the event as

E1 =
{

the events in (3.7) hold for all ai, i ∈ [m]
}
,

then by assumption (A2.) in the theorem statement, a union bound gives P(E1) ≥ 1 − mP0.
In the following, we proceed with the analysis of the event E1. Combining with (C.15) we now
bound |Ix,v| for any given x ∈ X ,v ∈ V . Specifically, we pick x′ ∈ G1,v

′ ∈ G2 such that
∥x′ − x∥2 ≤ η1, ∥v′ − v∥2 ≤ η2, and thus we have

|Ix,v| ≤ |Ix′,v′ |+|Ix,v−Ix′,v′ | ≤ O

(
AgAh

√
H (X , η1) + H (V, η2)

m

)
+|Ix,v−Ix′,v′ |. (C.16)

Moreover, we have

|Ix,v − Ix′,v′ |

=
1

m

∣∣∣∣∣
m∑
i=1

(
gx(ai)hv(ai)− gx′(ai)hv′(ai)

)
−m ·E

(
gx(ai)hv(ai)− gx′(ai)hv′(ai)

)∣∣∣∣∣
≤ 1

m

m∑
i=1

|gx(ai)hv(ai)− gx′(ai)hv′(ai)|︸ ︷︷ ︸
err1

+E |gx(ai)hv(ai)− gx′(ai)hv′(ai)|︸ ︷︷ ︸
err2

(C.17)
We bound err1 using the event E1 as follows:

err1 ≤ 1

m

m∑
i=1

∣∣∣|gx(ai)− gx′(ai)| · |hv(ai)|+ |hv(ai)− hv′(ai)| · |gx′(ai)|
∣∣∣

≤ 1

m

m∑
i=1

∣∣∣Lg · ∥x− x′∥2 · Uh + Lh · ∥v − v′∥2 · Ug
∣∣∣

≤ 1

m

m∑
i=1

∣∣∣LgUhη1 + LhUgη2

∣∣∣ = LgUhη1 + LhUgη2.

(C.18)
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On the other hand, we bound err2 using assumption (A1.)in the theorem statement. Noting that
E|X| = O(∥X∥ψ1) [50, Proposition 2.7.1(b)], and further applying Lemma 2 we obtain

err2 ≲ ∥gx(ai)hv(ai)− gx′(ai)hv′(ai)∥ψ1

≤ ∥(gx(ai)− gx′(ai))hv(ai)∥ψ1
+ ∥gx′(ai)(hv(ai)− hv′(ai))∥ψ1

≤ ∥gx(ai)− gx′(ai)∥ψ2
∥hv(ai)∥ψ2

+ ∥gx′(ai)∥ψ2
∥hv(ai)− hv′(ai)∥ψ2

≤Mg · ∥x− x′∥2 ·Ah +Ag ·Mh · ∥v − v′∥2 ≤MgAhη1 +AgMhη2.

(C.19)

Note that the bounds (C.18) and (C.19) hold uniformly for all (x,v) ∈ X × V , and hence, we can
substitute them into (C.16) and (C.17) to obtain

sup
x∈X
v∈V

|Ix,v| ≤ O

(
AgAh

√
H (X , η1) + H (V, η2)

m

)
+(LgUh+MgAh)η1 +(LhUg +MhAg)η2.

(C.20)
Recall that we use the shorthand Sg,h := LgUh +MgAh and Tg,h := LhUg +MhAg. We set
η1 ≍ AgAh√

mSg,h
, η2 ≍ AgAh√

mTg,h
so that the right-hand side of (C.20) is dominated by the first term.

Overall, with a sample size satisfying

m = Ω

(
H
(
X , AgAh√

mSg,h

)
+ H

(
V, AgAh√

mTg,h

))
, (C.21)

we can bound I = supx∈X supv∈V |Ix,v| (defined in the theorem statement) as

I ≲ AgAh

√
H (X , AgAhm−1/2S−1

g,h) + H (V, AgAhm−1/2T−1
g,h)

m
(C.22)

with probability at least

1−mP0 − 2 exp

[
−Ω

(
H
(
X , AgAh√

mSg,h

)
+ H

(
V, AgAh√

mTg,h

))]
.

This completes the proof.

D Other Omitted Proofs

D.1 Proof of Lemma 1 (Lipschitz continuity of fi,β and εi,β).

Proof. It is straightforward to check that fi,β and |εi,β | are piece-wise continuous functions; hence,
it suffices to prove that they are Lipschitz with the claimed Lipschitz constant over each piece.
In any interval contained in the part of x /∈ Dfi + [−β

2 ,
β
2 ], fi,β = fi and |εi,β | = 0 trivially

satisfy the claim. In any interval contained in [x0 − β
2 , x0] for some x0 ∈ Dfi , fi,β is linear with

slope 2
β

(
fai (x0) − fi(x0 − β

2 )
)
, combined with the bound |fai (x0) − fi(x0 − β

2 )| ≤ |fai (x0) −

f−i (x0)| + |f−i (x0) − fi(x0 − β
2 )| ≤

|f+
i (x0)−f−

i (x0)|
2 + L0β

2 ≤ 1
2

(
B0 + L0β

)
, we know that fi,β

is
(
L0 +

B0

β

)
-Lipschitz. Further, |εi,β | = |fi,β − fi|, and fi is L0-Lipschitz over this interval, so

|εi,β | is
(
2L0 +

B0

β

)
-Lipschitz continuous. A similar argument applies to an interval contained in

[x0, x0 +
β
2 ].

D.2 Proof of Lemma 6 (Metric entropy of constraint sets).

Proof. Bounding H (K, η).

By [50, Corollary 4.2.13], there exists an
(
η
Lr

)
-net G1 of Bk2 such that

log |G1| ≤ k log
(2Lr
η

+ 1
)
≤ k log

3Lr

η
,

where we use η ≤ Lr. Note that rG1 is an
(
η
L

)
-net of Bk2(r), and because G is L-Lipschitz, G(rG1)

is an η-net of K, thus yielding H (K, η) ≤ k log 3Lr
η .
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Bounding H (K−, η) and H (K−
ϵ , η).

We construct G2 as an
(
η
2

)
-net of K satisfying log |G2| ≤ k log 6Lr

η . Then, it is easy to see that
G2 − G2 is an η-net of K− = K −K, showing that

H (K−, η) ≤ log |G2|2 ≤ 2k log
6Lr

η
.

For a given T > 0, this directly implies H (TK−, η) ≤ 2k log 6TLr
η . Moreover, because K−

ϵ ⊂
TK−, by [50, Exercise 4.2.10] (which states that H (K1, r) ≤ H (K2,

r
2 ) holds for any r > 0 if

K1 ⊂ K2) we obtain

H (K−
ϵ , η) ≤ H

(
TK−,

η

2

)
≤ 2k log

12TLr

η
.

Bounding H
(
(K−

ϵ )
∗, η
)
.

We construct G3 as an
(
ϵη
)
-net of K−

ϵ satisfying log |G3| ≤ 2k log 12TLr
ϵη , then we consider (G3)

∗ :=

{ z
∥z∥2

: z ∈ G3}. We aim to prove that (G3)
∗ is an η-net of (K−

ϵ )
∗. Note that any x1 ∈ (K−

ϵ )
∗ can

be written as z1

∥z1∥2
for some z1 ∈ K−

ϵ and recall that ∥z1∥2 ≥ 2ϵ. Moreover, by construction, there
exists some z2 ∈ G3 such that ∥z1 − z2∥2 ≤ ϵη. Note that z2

∥z2∥2
∈ (G3)

∗, and moreover we have∥∥∥∥ z1
∥z1∥2

− z2
∥z2∥2

∥∥∥∥
2

≤
∥∥∥∥ z1
∥z1∥2

− z2
∥z1∥2

∥∥∥∥
2

+

∥∥∥∥ z2
∥z1∥2

− z2
∥z2∥2

∥∥∥∥
2

=
∥z1 − z2∥2

∥z1∥2
+

|∥z2∥2 − ∥z1∥2|
∥z1∥2

≤ 2∥z1 − z2∥2
∥z1∥2

≤ 2ϵη

2ϵ
= η.

Hence, we obtain

H
(
(K−

ϵ )
∗, η
)
≤ log |(G3)

∗| ≤ log |G3| ≤ 2k log
12TLr

ϵη
,

which completes the proof.

D.3 Proof of Lemma 8 (Choice of T in 1-bit GCS).

Proof. Since x ∈ Sn−1, for some orthogonal matrix P we have Px = e1 (the first column of In).
Since ã := Pa = [ãi] has the same distribution as a, we have

E[sign(a⊤x)a] = E[sign(ã⊤e1)P
⊤ã] = P⊤

E[sign(ã1)ã]

= P⊤
√

2

π
e1 =

√
2

π
x.

D.4 Proof of Lemma 9 (Choice of T in 1-bit GCS with dithering).

Proof. We first note that∥∥∥E[sign(a⊤x+ τ)a]− x

λ

∥∥∥
2
=

1

λ
sup

v∈Sn−1

(
E
[
λ · sign(a⊤x+ τ)a⊤v

]
− x⊤v

)
. (D.1)

We first fix a and expect over τ ∼ U [−λ, λ] to obtain

Eτ

[
λ sign(a⊤x+ τ)a⊤v

]
=(λa⊤v)

(
1(|a⊤x| > λ) sign(a⊤x) + 1(|a⊤x| ≤ λ) ·

(λ+ a⊤x

2λ
− λ− a⊤x

2λ

))
=(a⊤x)(a⊤v)1(|a⊤x| ≤ λ) + (λa⊤v) sign(a⊤x)1(|a⊤x| > λ).
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We plug this into (D.1), and note that x⊤v = E[(a⊤x)(a⊤v)], which gives∥∥∥E[sign(a⊤x+ τ)a]− x

λ

∥∥∥
2

=
1

λ
sup

v∈Sn−1

E

([
(λa⊤v) sign(a⊤x)− (a⊤x)(a⊤v)

]
1(|a⊤x| > λ)

)
≤ 1

λ
sup

v∈Sn−1

E
(
[λ|a⊤v|+ |a⊤x||a⊤v|]1(|a⊤x| > λ)

) (D.2)

For any x ∈ Bn2 (R) and v ∈ Sn−1, we have ∥a⊤x∥ψ2
= O(R) and ∥a⊤v∥ψ2

= O(1). Applying
the Cauchy-Schwarz inequality, we obtain

E
(
[λ|a⊤v|+ |a⊤x||a⊤v|]1(|a⊤x| > λ)

)
≤
√
E[(λ|a⊤v|+ |x⊤aa⊤v|)2]

√
P(|a⊤x| > λ)

≤
√
2
(
λ2E[|a⊤v|2] +E[(a⊤x)2(a⊤v)2]

)√
2 exp(−cλ2/R2)

≲λ exp
(
− cλ2

R2

)
≲

λ

m9

Note that in the third line, we use the probability tail bound of the sub-Gaussian |a⊤x|, and in the last
line, we use λ = CR

√
logm with some sufficiently large C. The proof is completed by substituting

this into (D.2).

D.5 Proof of Lemma 10 (Choice of T in SIM).

Proof. This lemma slightly generalizes that of Lemma 8. We again choose an orthogonal matrix
P such that Px = e1, where e1 represents the first column of In. Since a and Pa have the same
distribution, we have

E[f(a⊤x)a] = P⊤
E[f((Pa)⊤e1)Pa]

=P⊤
E[f(a⊤e1)a] = P⊤(µe1) = µx.

D.6 Proof of Lemma 11 (Choice of T in uniformly quantized GCS with dithering).

Proof. In the theorem, the statement before “In particular” can be found in [18, Theorem 1]. Based
on this, we have E[Qδ(a

⊤x+ τ)a] = EaEτ [Qδ(a
⊤x+ τ)a] = Ea(aa

⊤x) = x.

D.7 Proof of Lemma 12. (Bounds on |ξi,β | and |εi,β | for the uniform quantizer).

Proof. By the definition of fi,β in (3.4), we have |εi,β(a)| = |fi,β(a)− fi(a)| ≤ δ. It follows that
fi(·) = Qδ(·+ τ) with Qδ(a) = δ

(
⌊aδ ⌋+

1
2

)
, and |Qδ(a)− a| ≤ δ

2 holds for any a ∈ R. Hence, we
have |fi(a)−a| = |Qδ(a+τ)−(a+τ)+τ | ≤ |Qδ(a+τ)−(a+τ)|+|τ | ≤ δ

2+
δ
2 = δ. To complete

the proof, we use the inequalities |ξi,β(a)| ≤ |fi,β(a)− fi(a)|+ |fi(a)− a| ≤ δ + δ = 2δ.

D.8 Proof of Lemma 13. (Bound on the approximation error |εi,β |)

Proof. For any a /∈ Dfi +[−β
2 ,

β
2 ], by the definition in (3.4) we have εi,β(a) = 0. If a ∈ [x0− β

2 , x0]
for some x0 ∈ Dfi , then we have

|εi,β(a)| =|fi,β(a)− fi(a)|
≤|fi,β(a)− fi,β(x0)|+ |fi,β(x0)− f−i (x0)|+ |f−i (x0)− fi(a)|

≤
(
2L0 +

B0

β

)
|a− x0|+ |fai (x0)− f−i (x0)|+ L0|x0 − a|

≤
(
3L0 +

B0

β

)
· β
2
+

1

2
|f+i (x0)− f−i (x0)| ≤

3L0β

2
+B0,

where we use Lemma 1 and Assumption 2 in the third line, and use |a − x0| ≤ β
2 and fai (x0) =

1
2

(
f−i (x0) + f+i (x0)

)
in the fourth line.
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E Parameter Selection for Specific Models

E.1 1-bit GCS

To specialize Theorem 1 to this model, we select the parameters as follows:

• Assumption 2. Under the 1-bit observation model yi = sign(a⊤
i x

∗), the function fi(·) =
f(·) = sign(·) satisfies Assumption 2 with (B0, L0, β0) = (2, 0,∞).

• (2.5) in Assumption 4. Recall that K ⊂ Sn−1. Under the assumption ∥x∗∥2 = 1, we set
T =

√
2/π so that ρ(x) = 0 holds for all x ∈ X (Lemma 8), which provides (2.5).

• Assumption 3. By Lemma 7, we have P(∥a∥2 = O(
√
n)) ≥ 1 − 2 exp(−Ω(n)), and we

suppose that this high-probability event holds. Also note that |fi,β | ≤ 1. Hence, we have

∥ξi,β(a⊤x)∥ψ2
≤ ∥fi,β(a⊤x)∥ψ2

+ ∥Ta⊤x∥ψ2
= O(1),

sup
x∈K

|ξi,β(a⊤x)| ≤ |fi,β(a⊤x)|+ |Ta⊤x| ≤ 1 + T∥a∥2 = O(
√
n).

Because εi,β = fi,β − fi, we have ∥εi,β(a⊤x)∥ψ2 = O(1), and |εi,β(a⊤x)| ≤ 2 holds
deterministically. Hence, regarding the parameters in Assumption 3, we can take

A(1)
g ≍ 1, U (1)

g ≍
√
n, P

(1)
0 ≍ exp(−Ω(n)), A(2)

g ≍ 1, U (2)
g ≍ 1, P

(2)
0 = 0.

• (2.6) in Assumption 4. It remains to pick β1 that satisfies (2.6). Note that Dfi = {0}, and for
any x ∈ K, a⊤x ∼ N (0, 1), so we have

µβ(x) = P

(
a⊤x ∈

[
− β

2
,
β

2

])
= O(β).

Thus, we take β = β1 ≍ k
m to guarantee (2.6).

E.2 1-bit GCS with dithering

To specialize Theorem 1 to this model, we select the parameters as follows:

• Assumption 2. The observation function can be written as f(·) = sign(· + τ) with τ ∼
U [−λ, λ], which satisfies Assumption 2 with (B0, L0, β0) = (2, 0,∞).

• (2.5) in Assumption 4. We set λ = CR
√
logm with C large enough, so that Lemma 9 justifies

(2.5).
• Assumption 3. By Lemma 7, we have P(∥a∥2 = O(

√
n)) ≥ 1− 2 exp(−Ω(n)). Assume this

event holds, and note that fi,β is still bounded by 1, we have

∥ξi,β(a⊤x)∥ψ2
≤ ∥fi,β(a⊤x)∥ψ2

+ ∥λ−1a⊤x∥ψ2
= O(R/λ) +O(1) = O(1),

sup
x∈K

|ξi,β(a⊤x)| ≤ 1 + sup
x∈K

|λ−1a⊤x| ≤ 1 + sup
x∈K

λ−1∥a∥2∥x∥2 = O(
√
n).

Moreover, because εi,β = fi,β − fi, the following hold deterministically: ∥εi,β(a⊤x)∥ψ2
=

O(1), supx∈K |εi,β(a⊤x)| = O(1). Thus, regarding the parameters in Assumption 3 we can
take

A(1)
g ≍ 1, U (1)

g ≍
√
n, P

(1)
0 ≍ exp(−Ω(n)), A(2)

g ≍ 1, U (2)
g ≍ 1, P

(2)
0 = 0.

• (2.6) in Assumption 4. It remains to confirm (2.6) for suitable β1. For any β, note that
Dfi + [−β

2 ,
β
2 ] = [τ − β

2 , τ +
β
2 ], and hence for any x ∈ K ⊂ Bn2 (R) we have

µβ(x) = P

(
a⊤x ∈

[
− τ − β

2
,−τ + β

2

])
= P

(
a⊤x+ τ ∈

[
− β

2
,
β

2

])
≤ β

λ
,

which can be seen by conditioning on a. Hence, we can take β = β1 = λk
m to guarantee (2.6).
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E.3 Lipschitz-continuous SIM with generative prior

To specialize Theorem 1 to this model, we select the parameters as follows:

• Assumption 2. Since f is L̂-Lipschitz by assumption, it satisfies Assumption 2 with
(B0, L0, β0) = (0, L̂,∞).

• (2.5) in Assumption 4. Recall that we have defined the quantities µ = E[f(g)g], ψ =
∥f(g)∥ψ2

, where g ∼ N (0, 1). Then, we choose T = µ so that ρ(x) = 0 holds for any x
(Lemma 10), thus justifying (2.5).

• Assumption 3. Because fi is L̂-Lipschitz and does not contain any discontinuity, there is no
need to construct the Lipschitz approximation fi,β for some β > 0, while we simply use β = 0,
which implies fi,β = fi and εi,β = 0. Note that ξi,β(a) = fi(a)− µa, and so we have

∥fi(a⊤x)− µa⊤x∥ψ2
≤ ∥fi(a⊤x)∥ψ2

+ ∥µa⊤x∥ψ2
= O(ψ + µ).

We suppose ∥a∥2 = O(
√
n), which holds with probability at least 1− 2 exp(−Ω(n)) (Lemma

7); we also suppose fi(0) ≤ B̂, which holds with probability at least 1 − P ′
0 by assumption.

On these two events, we have

|fi(a⊤x)− µa⊤x| ≤ |fi(a⊤x)− fi(0)|+ |fi(0)|+ µ∥a∥2∥x∥2
≤ L̂∥a∥2 + B̂ + µ∥a∥2 ≲ (L̂+ µ)

√
n+ B̂.

Combined with εi,β = 0, we can set the parameters in Assumption 3 as follows:

A(1)
g ≍ ψ + µ, U (1)

g ≍ (L̂+ µ)
√
n+ B̂, P

(1)
0 ≍ P ′

0 + exp(−Ω(n)),

A(2)
g ≍ ψ + µ, U (2)

g = 0, P
(2)
0 = 0.

• (2.6) in Assumption 4. Because β = 0 and Dfi = ∅, (2.6) is trivially satisfied.

E.4 Uniformly quantized GCS with dithering

To specialize Theorem 1 to this model, we select the parameters as follows:

• Assumption 2. The uniform quantizer with resolution δ > 0 is defined as Qδ(a) = δ
(
⌊aδ ⌋+

1
2

)
for a ∈ R. We consider this quantizer with dithering τi ∼ U [− δ

2 ,
δ
2 ]. Specifically, we observe

yi = Qδ(a
⊤
i x

∗ + τi), so the observation function is f(·) = Qδ(· + τ) with τ ∼ U [− δ
2 ,

δ
2 ].

Hence, Assumption 2 is satisfied with (B0, L0, β0) = (δ, 0, δ).
• (2.5) in Assumption 4. The benefit of dithering is to whiten the quantization noise. With T = 1,

for any x ∈ K, Lemma 11 implies ρ(x) = ∥E[Qδ(a
⊤
i x+ τi)ai]− x∥2 = 0, thus justifying

(2.5).
• Assumption 3. Note that for any β ∈ (0, δ2 ), by Lemma 12, we can take the parameters for

Assumption 3 as follows:

A(1)
g , U (1)

g , A(2)
g , U (2)

g ≍ δ, P
(1)
0 = P

(2)
0 = 0.

• (2.6) in Assumption 4. All that remains is to pick β = β1 that satisfies (2.6). Because
Dfi = −τi + δZ, hence for any x ∈ K we have

µβ(x) = P

(
a⊤x ∈ −τ + δZ+

[
− β

2
,
β

2

])
= P

(
a⊤x+ τ ∈ δZ+

[
− β

2
,
β

2

])
= O

(β
δ

)
,

which can be seen by using the randomness of τ ∼ U [− δ
2 ,

δ
2 ] conditionally on x. Hence, we

take β = β1 ≍ kδ
m , which provides (2.6).

F Handling Sub-Gaussian Additive Noise

In this appendix, we describe how our results can be extended to the noisy model y = f(Ax∗) + η,
where η ∈ Rm is the noise vector that is independent of (A,f) and has i.i.d. sub-Gaussian
entries ηi satisfying ∥ηi∥ψ2

= O(1). Along similar lines as in (3.1)-(3.3), we find that η gives
rise to an additional term 2

m ⟨η, A(x̂− Tx∗)⟩ to the right-hand side of (3.1), which is bounded by
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2∥x̂− Tx∗∥2 · supv∈(K−
ϵ )∗

1
m ⟨η,Av⟩, with the constraint set (K−

ϵ )
∗ defined in (3.2). Thus, in (3.3),

in addition to Ru, in the noisy setting we need to bound the additional term

R′
u := sup

v∈(K−
ϵ )∗

1

m
⟨η,Av⟩ = sup

v∈(K−
ϵ )∗

1

m

m∑
i=1

ηia
⊤
i v.

This can be done by the following lemma, which indicates that the sharp (uniform) rate in Theorem 1
can be retained in the presence of noise η.
Lemma 15. (Bounding the additional term R′

u). In the noisy setting described above, with probability

at least 1− C1 exp(−Ω(k log TLr
ϵ ))− C2 exp(−Ω(m)), we have R′

u ≲
√

k log TLr
ϵ

m .

Proof. Conditioning on η, the randomness of ai’s gives 1
m

∑m
i=1 ηiai ∼ N (0,

∥η∥2
2

m2 In), and so
∥( 1
m

∑m
i=1 ηiai)

⊤v1 − ( 1
m

∑m
i=1 ηiai)

⊤v2∥ψ2 ≤ C0∥η∥2∥v1−v2∥2

m holds for any v1,v2 ∈ Rn. Let
ω(·) be the Gaussian width as defined in Lemma 5. Then, using the randomness of ai’s, Talagrand’s
comparison inequality [50, Exercise 8.6.5] yields that for any t ≥ 0, we have

P

(
R′
u ≤ C1∥η∥2 · [ω((K−

ϵ )
∗) + t]

m

)
≥ 1− 2 exp(−t2). (F.1)

Next, we bound the Gaussian width ω((K−
ϵ )

∗). Recall that (K−
ϵ )

∗ is defined in (3.2), and Lemma 6
bounds its metric entropy as H ((K−

ϵ )
∗, η) ≤ 2k log 12TLr

ϵη . Thus, we can invoke Dudley’s integral
inequality [50, Theorem 8.1.3] to obtain

ω((K−
ϵ )

∗) ≤ C2

∫ 2

0

√
2k log

12TLr

ϵη
dη ≲

√
k log

TLr

ϵ
.

Now, we further let t =
√
k log TLr

ϵ in (F.1) to obtain that R′
u ≲

∥η∥2

√
k log TLr

ϵ

m holds with

probability at least 1− 2 exp(−k log TLr
ϵ ). It remains to deal with the randomness of η and bound

∥η∥2. Because η has i.i.d. entries with ∥ηi∥ψ2
= O(1), by [50, Theorem 3.1.1] we can obtain

that ∥η∥2 ≤ C3
√
m with probability at least 1 − 2 exp(−c3m). Substituting this bound into

R′
u ≲

∥η∥2

√
k log TLr

ϵ

m , the result follows.

To close this appendix, we briefly state how to adapt the proof of Theorem 1 to explicitly include the
additive noise η. Specifically, the left-hand side of (3.1) and its uniform lower bound Ω(∥x̂−Tx∗∥22)
remain unchanged, while the right-hand side of (3.1) is now bounded by 2∥x̂ − Tx∗∥2 · (Ru1 +
Ru2 +R′

u) (with 2∥x̂− Tx∗∥2R′
u being the additional term); thus, combining the bound (C.12) on

2∥x̂− Tx∗∥2 · (Ru1 + Ru2) and Lemma 15, we establish a uniform upper bound

O

∥x̂− Tx∗∥2 ·
[
(A(1)

g ∨A(2)
g )

√
kL

m
+

√
k log TLr

ϵ

m

]
for the right-hand side of (3.1). Therefore, to ensure uniform recovery up to the ℓ2-norm accuracy of
ϵ under the sub-Gaussian noise η, it suffices to have a sample complexity

m ≳ (A(1)
g ∨A(2)

g )2
kL

ϵ2
+
k log TLr

ϵ

ϵ2
. (F.2)

Since the logarithmic factors L in (C.11) dominates log TLr
ϵ , (F.2) indeed coincides with the sample

complexity m ≳ (A
(1)
g ∨A(2)

g )2 kL
ϵ2 in Theorem 1 under the mild condition of A(1)

g ∨A(2)
g = Ω(1).

G Experimental Results for the MNIST dataset

G.1 Details of the Settings

In this section, we conduct experiments on the MNIST dataset [28] to support our theoretical
framework. We use various nonlinear measurement models, including 1-bit, dithered 1-bit, ReLU,
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Figure 2: Reconstructed images of the MNIST dataset for the noiseless 1-bit measurements with
m = 150.

and uniformly quantized CS with dithering (UQD). We select 30 images from the MNIST testing set,
ensuring that there are three images from each of the 10 classes for maximum variability. A single
measurement matrix A is generated and used for all 30 test images. All the experiments are repeated
for 10 random trials. All the experiments are run using Python 3.10.6 and PyTorch 2.0.0, with an
NVIDIA RTX 3060 Laptop 6GB GPU.

We train a variational autoencoder (VAE) on the training set of the MNIST dataset, which has 60,000
images, each of size 784. The decoder of the VAE is a fully connected neural network with ReLU
activations, with input dimension k = 20 and output dimension n = 784, and two hidden layers with
500 neurons each. We train the VAE using the Adam optimizer with a mini-batch size of 100 and a
learning rate of 0.001.

Since our contributions are primarily theoretical, we only provide simple proof-of-concept exper-
imental results. In particular, since (2.1) is intractable to solve exactly, to estimate the underlying
signal, we choose to use the algorithm proposed in [2] (referred to as CSGM) to approximate it. CSGM
performs a gradient descent algorithm in the latent space in Rk with random restarts. In addition, we
compare with the Lasso program that is solved by the iterative shrinkage thresholding algorithm.

For CSGM, we follow the setting in [2] and perform 10 random restarts with 1000 gradient descent
steps per restart and pick the reconstruction with the best measurement error.

G.2 Experimental Results for Noiseless 1-bit Measurements and Uniformly Quantized
Measurements with Dithering

In this subsection, we present the numerical results for 1-bit measurements and uniformly quantized
measurements with dithering, while the results for dithered 1-bit measurements and the Lipschitz
SIM where the nonlinear link function is ReLU are similarly provided in Appendix G.3. For 1-bit
measurements, since the underlying signal is assumed to be a unit vector and we aim to recover
the direction of the signal, we use cosine similarity that is calculated as x̂Tx∗/(∥x̂∥2 · ∥x∗∥2) with
x̂ being the estimated vector to measure the reconstruction performance. For uniformly quantized
measurements with dithering, we use the relative ℓ2-norm distance between the underlying signal and
the estimated vector, i.e., ∥x̂− x∗∥/∥x∗∥2, to measure the reconstruction performance.

Since this paper is concerned with uniform recovery performance, in each trial, we record the worst-
case reconstruction performance (i.e., the smallest cosine similarity or the largest relative error) over
the 30 test images, and the worst-case cosine similarity or relative error is averaged over 10 trials.

Figures 2, 3, and 4 show that for noiseless 1-bit measurements and uniformly quantized measurements
with dithering with δ = 3, the CSGM approach can produce reasonably accurate reconstruction for all
the test images when the number of measurements m is as small as 150 and 100 respectively.

G.3 Experimental Results for ReLU and Dithered 1-bit Measurements

We present the experimental results for the ReLU link function and dithered 1-bit measurements
in Figures 5, 6, and 7. For dithered 1-bit measurements, we set λ = R

√
logm with R > 0 being

a tuning parameter. For the case of using the ReLU link function, similarly to noiseless 1-bit
measurements, we calculate the cosine similarity to measure the reconstruction performance. For
dithered 1-bit measurements, similarly to uniformly quantized measurements with dithering, we
calculate the relative ℓ2-norm distance. We observe that for these two nonlinear measurement models
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Figure 3: Reconstructed images of the MNIST dataset for UQD with m = 100 and δ = 3.
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(a) 1-bit with varying m (b) UQD with fixed δ = 3 (c) UQD with fixed m = 200

Figure 4: Quantitative results of the performance of CSGM for 1-bit and UQD measurements on the
MNIST dataset.

with a single realization of the random measurement ensemble, CSGM can also lead to reasonably
good reconstruction for all the test images when the number of measurements is small compared to
the ambient dimension.

H Experimental Results for the CelebA dataset

In this section, we present numerical results for the CelebA dataset [35], which contains more
than 200,000 face images for celebrities with an ambient dimension of n = 12288. We train
a deep convolutional generative adversarial network (DCGAN) following the settings in https:
//pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html. The latent dimension
of the generator is k = 100 and the number of epochs for training is 20. Since the experiments for
CelebA are more time-consuming than those of MNIST, we select 20 images from the test set of
CelebA and perform 5 random trials. Other settings are the same as those for the MNIST dataset.

Since we have observed from the numerical results for MNIST that the experiments for the ReLU
link function and dithered 1-bit measurements are similar, we only present the results for noiseless
1-bit measurements and uniformly quantized observations with dithering.

From Figures 8 and 10, we observe that for noiseless 1-bit measurements with 1500 samples, a single
measurement matrix A can lead to reasonably accurate reconstruction for all the 20 test images.
In addition, from Figures 9 and 10, we observe that for uniformly quantized measurements with
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Figure 5: Reconstructed images of the MNIST dataset for the ReLU link function with m = 150 and
σ = 0.2.
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Figure 6: Examples of reconstructed images of the MNIST dataset for dithered 1-bit measurements
with m = 250 and R = 5.
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Figure 7: Quantitative results of the performance of CSGM for the ReLU link function and dithered
1-bit measurements on the MNIST dataset.

dithering, a single realization of the measurement matrix and random dither is sufficient for the
reasonably accurate recovery of the 20 test images when m = 1000 and δ = 20.
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Figure 8: Reconstructed images of the CelebA dataset for the noiseless 1-bit measurements with
m = 1500.
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Figure 9: Reconstructed images of the CelebA dataset for UQD with m = 1000 and δ = 20.
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Figure 10: Quantitative results of the performance of CSGM for 1-bit and UQD measurements on the
CelebA dataset.
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