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Abstract

We propose Conditional Adapter (CODA), a parameter-efficient transfer learning
method that also improves inference efficiency. CODA generalizes beyond standard
adapter approaches to enable a new way of balancing speed and accuracy using
conditional computation. Starting with an existing dense pretrained model, CODA
adds sparse activation together with a small number of new parameters and a
light-weight training phase. Our experiments demonstrate that the CODA approach
provides an unexpectedly efficient way to transfer knowledge. Across a variety of
language, vision, and speech tasks, CODA achieves a 2x to 8x inference speed-up
compared to the state-of-the-art Adapter approaches with moderate to no accuracy
loss and the same parameter efficiency.

1 Introduction

Large pretrained models have achieved groundbreaking results but the main impediment to deploy
them has been the cost of adaptation and inference. Due to the ever growing size of the pretrained
models, for example, finetuning has become increasingly expensive as it requires a separate copy of
the full model and updates to all parameters for every downstream task. Parameter-efficient transfer
learning such as Adapter [Houlsby et al., 2019] and Prompt Tuning [Lester et al., 2021] have been
proposed to address this issue. These methods only update a small subset of parameters for each
downstream task, allowing the model to retain knowledge and avoid catastrophic forgetting [Vu et al.,
2022]. Noticeably, these methods can match the accuracy of a fully finetuned model, while achieving
better accuracy on out-of-domain data distributions [Lester et al., 2021, Awadalla et al., 2022].

Unfortunately, standard parameter-efficient transfer learning methods only bring parameter efficiency,
not inference efficiency. For example, while only a few small projection matrices are added into the
pretrained model in the Adapter approach, all the model inputs (such as tokens) still use all parameters
during inference. Therefore, the inference speed is the same (or slightly lower) with respect to the
full finetuning method. Moreover, prior studies have shown that these parameter-efficient learning
methods are most effective when the size of the pretrained model is large [Lester et al., 2021], making
many advantages of these methods difficult to realize in practice.

In this paper, we propose Conditional Adapter (CODA), a parameter-efficient transfer learning
method that offers both parameter and inference efficiency. CODA is a generalization of the adapter
approach, built with the following intuition – we can treat the pretrained model as a universal
source of knowledge but only query against it for necessary inputs. Figure 1 compares CODA with
finetuning and standard adapter approaches. Similar to standard adapter approaches, our model
adds and updates a small adapter in each layer, while fixing the pretrained Transformer blocks for
downstream adaptation. Unlike previous approaches, however, CODA assumes that many of input

∗Correspondence: taoleics@gmail.com, junwen@google.com

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Figure 1: Comparison between different ways to use pre-
trained Transformer models, including (1) standard finetun-
ing (left) where all parameters are tunable and computation
is dense, (2) standard adapters (center) where a small set
of new tunable parameters are added while the computation
remains dense, and (3) CODA (right) where the computation
is sparsely activated.

New param MNLI (text)

Acc ↑ Speedup

P-Adapter 0.4% 91.5 1.0x
CODA 0.4% 90.7 3.2x

New param OCR-VQA (vision)

EM ↑ Speedup

P-Adapter 2.8% 67.5 1.0x
CODA 2.8% 67.6 8.0x

New param Librispeech (speech)

WER ↓ Speedup

P-Adapter 2.5% 1.4/2.7 1.0x
CODA 2.5% 1.4/2.8 2.2x

Table 1: CODA significantly reduces
the inference time compared to the
Parallel Adapter approach [He et al.,
2021], while still maintaining param-
eter efficiency.

token representations (of each layer) are not important for the prediction task and therefore do not
require heavy computation. In such cases, the pretrained Transformer block can be skipped. Given
that many tokens are not processed by the Transformer block, CODA runs significantly faster than
previous methods.

While conditional activation has clear speed benefits, CODA must learn to select important tokens
for heavy computation in order to maintain model accuracy. To this end, we introduce a soft top-k
operation for computing the token selection decision. This soft top-k operation, which can be seen as
a generalization of softmax and a relaxation of hard top-k, utilizes entropy-regularized optimization
techniques similar to computational optimal transport [Cuturi, 2013]. As a result, its output can be
computed using fast and differentiable iterations, allowing token selection to be directly optimized
for model performance.

We apply CODA on encoder-heavy tasks and evaluate its effectiveness on three different domains –
natural language processing, computer vision and speech processing. Overall, CODA achieves 2 to 8
times inference speed-up over standard adapter approach with moderate to no accuracy loss. Table 1
showcases our results by selecting one of the best performing tasks in each domain. We also conduct
comprehensive ablation studies to analyze the effectiveness, efficiency and scalability of CODA. For
example, we found that with just a little to no router pretraining, existing dense pretrained models
such as T5 [Raffel et al., 2020] can be efficiently converted into CODA models to gain both parameter
efficiency and speed advantages.

2 Related Work

Parameter-efficient transfer learning methods Due to the ever-growing number of parameters
in the pretrained Transformer models, various methods have been proposed for transfer learning with
minimal parameter updates. Prompt tuning [Lester et al., 2021] and prefix tuning [Li and Liang,
2021] introduce new virtual token embeddings that can be finetuned as model parameters. Adapter
approaches [Houlsby et al., 2019, He et al., 2021] add a small number of new, learnable parameters
to each layer while keeping the pretrained parameters fixed. Another popular method, Low-Rank
Adaptation [LoRA; Hu et al., 2021], injects learnable low-rank decomposition matrices into pretrained
model parameters. In addition to requiring less storage cost, parameter-efficient methods have been
shown to be more sample-efficient and achieve better out-of-domain generalization than standard
finetuning. CODA is an adapter approach but can be easily combined with other parameter-efficient
methods such as LoRA to accelerate their inference.

Conditional computation The development of sparsely and conditionally activated models has
been a very active research area. For example, Mixture-of-Experts (MoE) models [Shazeer et al.,
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2017] and many recent advances [Du et al., 2022, Fedus et al., 2021] have been proposed to scale
up the size of language models without increasing the computation cost. Many recent works have
explored better token routing methods for MoE models, for example using random hashing [Roller
et al., 2021], balanced assignment [Lewis et al., 2021] and expert-choosing router [Zhou et al., 2022].
CODA applies conditional computation to both attention and feed-forward blocks of the model,
whereas MoE models only focus on sparse activation in the feed-forward blocks.

Similar to our approach, various recent methods have achieved computation efficiency by skipping
computation on a subset of input tokens. However, the selection mechanism can be very different,
such as using pooling [Nawrot et al., 2022], token merging [Bolya et al., 2023], token pruning [Rao
et al., 2021, Yin et al., 2022], learned sigmoid gates [Bapna et al., 2020] and early exiting [Schuster
et al., 2022]. While most of the token merging and pruning methods have been proposed for vision
tasks, we show that CODA is applicable to multiple domains including text, vision and speech. In
addition, token merging and our token selection method are built with different inductive biases and
intuition. Token merging leverages redundancies in visual tokens, while token selection assumes a
spike of token relevance. That is, only a few tokens are necessary for the prediction task. Another
major difference is that CODA dynamically routes and updates token representations in each layer,
whereas if a token is pruned (or merged), it will never be re-used by subsequent layers. We believe our
token routing mechanism is more suited for text and speech applications, such as question answering,
where different tokens might play important roles in different layers, or given different input queries.

Finally, CODA is closely related to a concurrent work, CoLT5 [Ainslie et al., 2023], which also
utilizes conditional activation (token selection) for inference efficiency. The focus of CoLT5 and
CODA are very different. CoLT5 specifically tailors its model architecture for long text (e.g. over
16k tokens), for example, by combining local attention with routed attention. The CoLT5 models
are pre-trained from scratch and all parameters are finetuned for downstream tasks. In comparison,
CODA is directly initialized and adapted from an already pretrained dense model, and we optimize
its performance on parameter-efficient transfer learning. The strengths of CODA and CoLT5 can be
combined for long text applications.

Efficient Transformer models Many efficient Transformer variants have been proposed to acceler-
ate model computation. Examples include creating fast attention variants [Wang et al., 2020a, Beltagy
et al., 2020, Guo et al., 2022, Hua et al., 2022], searching network architectures [Press et al., 2019,
So et al., 2021, Su et al., 2021] and utilizing non-attention neural modules for efficiency [Gulati et al.,
2020, Lei, 2021]. CODA utilizes conditional computation as an orthogonal approach for efficiency.

Model compression Apart from building efficient model architectures, model compression meth-
ods such as pruning [Han et al., 2016, Zhu and Gupta, 2017, Wang et al., 2020b, Xia et al., 2022]
and distillation [Hinton et al., 2015, Kim and Rush, 2016, Turc et al., 2019, Lin et al., 2020] can
be adopted to speed up model inference. Compared to these methods, CODA retains all model
parameters of the pretrained large model, and therefore avoids retraining a new model from scratch
or knowledge forgetting caused by parameter removal. In addition, CODA can be seen as a dynamic
version of layer pruning because it can activate different Transformer layers for each token, and can be
further combined with distillation to reduce the loss of accuracy caused by conditional computation.

3 Method

3.1 Architecture

Throughout this and the experiment section, we build CODA on top of parallel adapters [He et al.,
2021]. However, note that our method can be generalized to other types of adapters such as sequential
adapters [Houlsby et al., 2019] and LoRA [Hu et al., 2021]. We present additional experimental
results using LoRA in Appendix B.3. Figure 2 illustrates our architecture and shows how CODA
computes its output by selecting only a small subset of input tokens to query against the pretrained
model. When parallel adapters are used, CODA introduces a small number of learnable parameters
in the parallel branches, while the vast majority of model parameters (associated with the pretrained
Transformer layers) remain fixed. In addition, CODA only sends k = dn/re tokens for heavy
processing. We define r > 1 as the reduction factor, a constant (such as 4) to control the computation
saving.
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Next, we briefly introduce our notations and describe the computation of CODA in detail. We use F ()
to denote a parameterized neural network and the corresponding function defined by the network. For
instance, a Transformer layer [Vaswani et al., 2017] consists of an attention sub-layer Fatt() followed
by a feed forward sub-layer Fffn(). Each layer also employs layer normalization [Ba et al., 2016],
namely LNatt() and LNffn(), before applying the attention and feed forward functions. We define
X ∈ Rn×d as the input of a Transformer encoder layer, where n is the number of input tokens and d
is the hidden size of the model.

Layer output

Layer input

k tokens
all tokens

Tunable & 
Fast adapter

FFN (     )
Pretrained & 

Expensive 
attention (      )

Pretrained & 
Expensive FFN 

(      )

Figure 2: Illustration of a sin-
gle CODA layer with parallel
adapter. k tokens are selected
and processed by the frozen
pretrained Transformer layer,
and all tokens are processed by
the fast adapter layer.

Given layer input X , we first apply layer normalization, namely
Xnorm = LNatt(X). The normalized input will be processed by
the adapter branch and the conditional Transformer branch. Their
outputs are then added and combined as the final output of the layer.

Adapter branch Let Fadapter() denote the transformation function
of the adapter branch. The output is defined as

Zadapter = Fadapter(Xnorm) (1)

Similar to the previous approaches, Fadapter() is realized using a
feed forward network with a small hidden size such as 64. As a
result, computing Zadapter only incurs a small number of floating
point operations and its cost is often negligible compared to the
cost of the heavy Transformer branch. The adapter branch does not
conditionally select tokens. In other words, Fadapter() is applied to
all input tokensX ∈ Rn×d.

Conditional branch The computation of the conditional branch
takes three steps. First, each CODA layer defines a router function
Frouter() to select k tokens for the conditional branch. The router
function in each layer returns two outputs

m,P = Frouter(Xnorm) (2)

where P ∈ {0, 1}k×n is a matrix consisting of k one-hot vectors indicating the selection of tokens.
Here P [i, j] = 1 if and only if the i-th selected token is the j-th input token from X̃ . m ∈ [0, 1]n is
a weight mask in whichm[j] is the selection weight for the j-th input token. m[j] = 0 if the token is
not selected. We will describe how the router learns the selection in more details later in this section.

After the routing decision is made, the input representations of the selected tokens can be collected
using a matrix multiplication,

Xrouted = PXnorm ∈ Rk×d (3)

where k rows in Xnorm are selected to construct the k-by-d matrix Xrouted. Similar to a standard
Transformer layer, the conditional branch applies attention and feed forward transformations to the
selected input:

Z̄routed = Fatt(Xrouted) (4)

Zrouted = Fffn(LNffn(Xrouted + Z̄routed)) (5)

where Z̄routed,Zrouted ∈ Rk×d denote the output of the attention network and the feed forward network
respectively.

We consider two attention variants which differ in how they compute key-value vectors. One variant
applies a k-to-k attention usingXrouted as both the query vectors and key-value vectors. The other
variant applies a k-to-all attention using the entire input vectors Xnorm as the attention keys and
values. The k-to-all variant runs slower but obtains higher quality close to the full model. We compare
the performance of the two variants in Section 5.

The attention and feed-forward output Z̄routed and Zrouted are combined and projected back to the
same shape of the original input

Zcond = P>(Z̄routed +Zrouted) ∈ Rn×d (6)
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Finally Zcond merges with the adapter output and the original input of the current layer to produce the
output of the layer:

Y = X +Zadapter +m�Zcond (7)

m � Zcond is an element-wise multiplication that scales the rows of Zcond using weight m. This
operation can be seen as a gating operation, where the hidden state Zcond[i] of the i-th token is
weighted by the token selection scorem[i] assigned by the router. This enables gradient propagation
fromm to the router parameters, such that the token selection can be jointly optimized with other
model components during training.

Learned router An important ingredient of CODA is the router function Frouter() that is learned to
select a subset of tokens for favorable model performance. Given the token representation Xnorm,
our router first computes dot-product score s = wX>norm, where w ∈ Rd is a parameter vector
associated with the router in this layer. The dot-product score s is further normalized by a function
f() : Rn → [0, 1]n, and clipped to produce the selection scorem:

λ = f(s) (8)
m = λ� Top(λ, k) ∈ Rn (9)

Here Top(λ, k) ∈ {0, 1}n is an indicator function which returns a binary mask indicating the top-k
values in λ. The one-hot matrix P defined in (2) can be created according to Top(λ, k). In short, the
highest values of λ will be selected by the router.

Function f() must remain differentiable with respect to its input (s in this case) such that we can
update the router parameters w during training. One possible choice for f() is the sigmoid activation
function which normalizes the values in s independently. However, this does not explicitly model
the constraint that we need to select k tokens from n available tokens. Consider a simple case where
k = 1, a natural choice for f() would be the softmax function. Since softmax provides global
normalization over the input scores, a gradient update to increase one of the scores would also
decrease the other scores, a desirable effect for learning top-1 selection.

We hypothesize that a soft top-k operator that generalizes softmax should be used for general k > 1.
This is indeed possible by formalizing soft top-k as the following optimization problem:

f(s) := arg max
λ

s>λ+ εH(λ)

s.t. 1>λ = k, λ[i] ∈ [0, 1] ∀i = 1, . . . , n (10)

Here H(λ) =
∑n
i=1−λ[i] logλ[i] is a generalized entropy function (applied to any positive vector

λ instead of a distribution), and ε > 0 is a small coefficient.

This optimization problem is closely related to the softmax and top-k operation. Specifically, when
ε = 0, it becomes a linear program which returns Top(s, k) as the solution. In addition, when k = 1,
it can be shown that its solution is softmax(s/ε). Broadly speaking, (10) will return a soft top-k mask
and the smoothness is controlled by ε (and hence ε must be positive to act as a temperature).

Problem (10) does not have a closed-form solution for an arbitrary ε > 0 and k > 1, but its solution
can be obtained using an iterative algorithm. Specifically, let a ∈ R and b ∈ Rn be two auxiliary
variables (which can be initialized to zeros). The solution takes the form λ = exp(s+b+aε ). The
values of a and b can be obtained using the following iterative updates:

a′ = ε ln(k)− ε ln

(
n∑
i=1

exp

(
s[i] + b[i]

ε

))
b′ = min(−s− a′, 0) (11)

In practice, we use T = 20 iterations and the function f(s) returns exp(s+b+aε ) using a and b from
the last iteration. The function f(s) remain differentiable with respect to s using these iterative
updates, so we can train the router jointly with other model parameters. We provide additional
discussion and the derivation of the updates in Appendix §C.
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Base Large XL

Model Reduction r MNLI RTE BoolQ MNLI RTE BoolQ MNLI RTE BoolQ ∆ Avg

Parallel Adapter - 87.1 71.5 77.9 90.3 84.8 85.8 91.5 89.9 88.4 ±0.0(w/o conditional computation)

CODA, k-to-all attention 3 86.6 72.6 76.6 90.2 85.9 85.1 91.4 91.3 89.4 +0.2
CODA, k-to-k attention 86.3 72.2 76.2 89.8 87.0 83.7 91.4 89.5 88.2 −0.3

CODA, k-to-all attention 5 86.0 70.8 76.0 89.7 85.2 84.3 91.0 91.3 87.2 −0.6
CODA, k-to-k attention 82.5 70.8 75.4 88.1 87.0 81.8 89.9 87.7 84.8 −2.1

Table 2: Results of applying CODA to T5 v1.1 models. CODA achieves significant computation
savings while retaining accuracy close to the dense baseline. We compare CODA to a corresponding
parallel adapter method that processes all tokens without conditional computation. We report accuracy
on the development set on 3 tasks × 3 model sizes, and set the number of selected tokens k = dn/re.
The last column shows the change on average accuracy with respect to the parallel adapter method.
We select the k-to-all version as our default (shown in bold).

3.2 Training

CODA can be directly initialized from an existing Transformer model. Given a pretrained model such
as T5 [Raffel et al., 2020], the Transformer layers are directly re-used and copied in the conditional
branches of CODA, and only the adapter and router parameters are randomly initialized. Because
pretraining a large dense model can be expensive, our method reduces the overall training cost.

The routers and neural network components in CODA must co-operate and be optimized for accurate
model predictions. When the available finetuning data is limited, a random initialization for the
router (and adapter) parameters can be sub-optimal. We demonstrate that CODA can be further
pretrained using the same pretraining objective as the dense model, in order to enhance downstream
performance. Importantly, CODA requires significantly fewer training steps during pretraining, since
most of its parameters are taken from an already pretrained model. We show that the cost of CODA
pretraining can be 10-30x lower than the pretraining of its original dense model. We present this
analysis in Section 5.

Finally, we train CODA on downstream tasks by only updating the adapter, router and layer nor-
malization parameters. The size of the adapters is small (e.g. 5M parameters), and each router and
layer normalization block only introduces d parameters, where d is the model dimension. As a result,
CODA remains parameter-efficient similar to previous adapter and prompt-tuning methods.

4 Experimental setup

CODA is evaluated on three domains including natural language processing (NLP), computer vision
and speech processing, and on a range of applications such as classification, question answering, sum-
marization and speech recognition. The experiments are organized as follows: We first demonstrate
the effectivenss of CODA conduct analyses on its design choices using the publicly available T5
models (§5). In our final results (§6), we pretrain Transformer models from scratch and extend our
evaluation to vision and speech domains.

Datasets We use the C4 corpus [Raffel et al., 2020] for pretraining text models. For speech models,
we use the LibriLight corpus [Kahn et al., 2020] for pretraining. Our vision Transformer models use
the same data and training procedure in Pix2Struct [Lee et al., 2022]. Our finetuning datasets for
text models include the MNLI [Williams et al., 2018], RTE [Dagan et al., 2005, Haim et al., 2006,
Giampiccolo et al., 2007, Bentivogli et al., 2009], BoolQ [Clark et al., 2019], SQuAD [Rajpurkar
et al., 2016] and XSum [Narayan et al., 2018] datasets. The speech models are evaluated on the
speech recognition task using the LibriSpeech dataset [Panayotov et al., 2015]. Finally, we use the
OCR-VQA [Mishra et al., 2019], DocVQA [Mathew et al., 2021], and Screen2Words [Wang et al.,
2021] datasets for vision models.
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Base Large XL

Model Reduction r MNLI RTE BoolQ MNLI RTE BoolQ MNLI RTE BoolQ ∆ Avg

Soft top-k
3

86.3 72.2 76.2 89.8 87.0 83.7 91.4 89.5 88.2 ±0.0
Sigmoid gate as f(s) 85.7 70.8 72.8 89.2 82.3 81.0 90.6 88.1 86.2 −2.0
Truncation – selecting first k 81.1 70.8 72.7 84.9 77.3 82.3 85.6 84.5 85.4 −4.4

Soft top-k
5

82.5 70.8 75.4 88.1 87.0 81.8 89.9 87.7 84.8 ±0.0
Sigmoid gate as f(s) 82.9 71.5 72.1 86.7 82.3 80.1 88.3 87.0 82.4 −1.6
Truncation – selecting first k 62.2 64.6 71.1 64.9 70.4 75.4 66.6 76.2 81.1 −12.9

Table 3: Ablation study on routing methods. We use CODA k-to-k variant for a fair comparison with
the truncation method. Better routing method delivers better accuracy on various tasks and model
sizes tested. We use soft top-k as our default method.

5 Understanding and Analyzing CODA

Setup We present several analyses to validate the design choices of CODA in this section. We
initialize CODA using the version 1.1 release of T5 checkpoints2, and perform CODA pretraining
using the same setting as the T5 models. During pretraining, we set routing capacity to k = 192
given input sequence length n = 512. We do not tune the value of k for pretraining, but will report
the results of using different k values in finetuning. We perform 100K gradient steps, which is 10%
of the total number of steps used to train the T5 dense models. The overall computational cost is over
20x less than the full training of dense models, since CODA only applies heavy computation on less
than half of the tokens.

For simplicity, we evaluate on classification tasks for various ablation studies of CODA. Specifically,
we report results on the MNLI, RTE and BoolQ datasets, and test three different model sizes including
the Base, Large and XL size of T5. We will extend our evaluation to generation tasks such as question
answering in the full result section (§6).

Can CODA be fast and accurate? Table 2 presents the finetuning results of CODA. As a compar-
ison, we also report the results of Parallel Adapter, which is similar to CODA except that it applies
the expensive Transformer layers to all input tokens. This constitutes an upper-bound, and is a strong
baseline that has been reported as the best among a range of adapter and prompt tuning methods [He
et al., 2021]. As shown in Table 2, CODA can achieve 3-5x computation reduction (r = 3, 5) in the
Transformer layers at a cost of less than 1.0 point drop on average accuracy. As expected, our k-to-all
attention variant achieves consistently better accuracy than the k-to-k variant, since it can access the
full attention context. On the other hand, the k-to-k attention variant runs faster in practice, which
can be beneficial for tasks with very long inputs. We select the k-to-all version in the final result
section (§6).
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Figure 3: Finetuning accuracy (y-axis) as
a function of CODA pretraining steps (x-
axis). We show results using 0, 20K, 50K
and 100K pretraining steps, and for reduc-
tion factor r = 3 and r = 5 respectively.
CODA requires as few as 20K steps to
obtain competitive finetuning accuracy.

How many pretraining steps are needed? Figure 3
plots the finetuning accuracy by varying the number of
pretraining steps for CODA. Because CODA can be
initialized using pretrained dense models, it requires as
few as 20K steps to obtain competitive finetuning results.
Of course, using more pretraining steps can improve
the downstream accuracy. The fact that CODA can be
quickly updated without repeating the expensive pretrain-
ing will be very beneficial in real-world applications.

Does learned routing matter? We analyze the impact
of learned routing in Table 3 by comparing our soft
top-k router with other router implementations. We
implement a variant that replaces soft top-k with the
sigmoid activation function, so the selection weight of
each token activates on its own (without considering the
capacity constraint). As shown in the table, this variant

2https://github.com/google-research/text-to-text-transfer-transformer/blob/main/
released_checkpoints.md#t511
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Model Trainable Reduction MNLI RTE BoolQ SQuAD ReCord XSum ∆Avg
Params r Acc. Acc. Acc. F1 F1 R2

Parallel Adapter 10M - 91.5 91.0 88.5 94.8 91.4 21.9 ±0.0
CODA 10M 3 91.2 90.3 87.5 94.1 89.3 20.6 −1.0
CODA 10M 5 90.7 89.5 87.3 93.5 87.6 20.2 −1.7

Prefix Tuning [Li and Liang, 2021]† 15M (2M) - (86.3) - - - - 20.5
Sequential Adapter [Houlsby et al., 2019]† 10M (2M) - (87.2) - - - - 20.0
Parallel Adapter [He et al., 2021]† 10M - - - - - - 20.7

Table 4: Comparison of CODA and parallel adapter on 6 language tasks. We
report results on the test set of XSum, and on the development set of other
tasks. † indicates results taken from He et al. [2021], and referenced results
in bracket correspond to using 2M adapter parameters. Note that our Parallel
Adapter numbers are stronger as our pretrained Transformer backbone uses
more parameters than the model used in He et al. [2021].
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Figure 4: Average
finetuning scores of
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model sizes.
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Figure 5: The scaling of CODA on the XSum and LibriSpeech dataset. Left: CODA achieves better
speed-quality trade-off than finetuning adapters with smaller models, on the XSum dataset. Middle:
larger CODA model achieves higher speed-ups. Right: CODA achieves better speed-quality trade-off
than the dense baseline on the LibriSpeech dataset.

achieves worse accuracy on almost all tasks and model sizes tested, getting 2.0 point worse on
average. We also implement a “no-learning” baseline that simply selects the first k tokens, which is
equivalent to truncating the input sequence.3 This baseline performs much worse, resulting in more
than 10 point decrease in accuracy for small k (and equivalently large r). This analysis confirms the
importance of learning a good routing in order to retain strong model performance.

6 Full Results

Setup In this section, we apply our best training recipe to all tasks and application domains. We first
pretrain dense Transformer models, followed by the CODA training procedure in §3.2. Our speech
models are pretrained using a masked language modeling (MLM) objective similar to BERT [Devlin
et al., 2019], and random quantized output label space [Chiu et al., 2022]. Our vision and text
models use an encoder-decoder architecture similar to T5 but incorporate a few changes. Following
PaLM [Chowdhery et al., 2022], we use multi-query attention [Shazeer, 2019] that shares the same
key and value projection for multiple query heads. We only use 6 decoder layers and increase the feed
forward hidden size (to compensate for the decrease in the number of layers). These modifications
have a neutral effect on model quality, but speed up auto-regressive decoding significantly. We will
show CODA is compatible with these changes and can further speed up inference by a considerably
large factor. We provide more details of our experimental setup in Appendix A.

NLP results In addition to the classification datasets used in Section 5, we also evaluate our final
models on the SQuAD, ReCord and XSum datasets which require generating an answer or a summary

3We always include the question text for BoolQ, to achieve higher accuracy.
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Model r
Base Large XL

clean other clean other clean other

w2v-BERT - 1.8 3.6 1.5 2.9 1.5 2.9
BEST-RQ - 1.7 3.5 1.6 2.9 1.4 2.7

P-Adapter - 1.6 3.5 1.4 3.0 1.4 2.7
CODA 2 1.6 3.5 1.4 3.0 1.4 2.8
CODA 4 1.6 3.6 1.5 3.1 1.4 2.8

Table 5: Comparison of CODA and the parallel
adapter baselines on Librispeech. We report the
WER results on test-clean and test-other. More
results can be found in §B.2.

Model r
OCRVQA DocVQA Screen2Words

EM Speedup ANLS Speedup CIDEr Speedup

Parallel
Adapter - 67.5 1× 70.8 1× 110.2 1×

CODA 4 68.2 4.6× 71.8 4.6× 111.6 4.6×
CODA 8 67.6 8.0× 66.6 8.0× 108.1 8.0×
CODA 16 66.9 13.5× 56.6 12.1× 109.0 12.5×
CODA 32 64.4 19.4× 42.5 16.7× 104.2 17.8×

Table 6: Comparison of CODA and the paral-
lel adapter applied to a pretrained Pix2Struct
model [Lee et al., 2022] on 3 visually-situated
language understanding tasks.

Original Image Layer 0 Layer 8 Layer 17

Figure 6: Visualization of routing preferences for a CODA model applied to the OCR-VQA task.
Warmer and cooler colors represent higher and lower scores respectively. Router prefers diverse
coverage in early layers, but converges to selecting sparse and representative patches in later layers.

given the input. Table 4 contains the finetuning results of XL models. Compared to the parallel
adapter baseline that uses full computation, CODA achieves 3x and 5x computation reduction with
only 1.0 and 1.7 point loss in average score.

Figure 4 and 5 highlight the scaling trend of CODA. CODA runs much faster with slightly worse
quality than the parallel adapter baseline. This is expected because the baseline processes all tokens in
every layer, whereas CODA only selects 1/r of tokens for heavy processing. Importantly, this quality
gap reduces as the model size increases (as shown in Figure 4), making CODA a computationally
efficient choice for large models. Indeed, CODA can trade off quality for speed by varying the number
of selected tokens. Figure 5 (left) demonstrates that CODA achieves much stronger speed-quality
trade-off compared to dense models without conditional computation. The black line indicates the
results of Parallel Adapter when the model size grows from Small to XL, and each blue line represents
the speed-quality trade-off of CODA using r = 1, 3, 5. Moreover, Figure 5 (middle) shows that larger
CODA models exhibit higher inference speed-ups. These observations are consistent on other tasks.
We provide additional results in Appendix §B.

Speech recognition results We further validate the performance of CODA in the speech domain.
Our model uses a Transformer encoder and a 2-layer LSTM Transducer [Graves, 2012]. Similar to
NLP setups, we test the performance of the speech model on 3 scales – Base, Large and XL (see
Appendix A for details). Table 5 demonstrates that with sizable reduction ratios (r = 2, 4), the change
on word error rate (WER) is consistently minimal on the test-clean and test-other sets of LibriSpeech
across different model sizes (and on other sets in §B.2). Moreover, our results are comparable to the
top-performing models, such as w2v-BERT [Chung et al., 2021] and BEST-RQ [Chiu et al., 2022],
that are fully finetuned by updating all parameters. Figure 5 (right) highlight again that applying
conditional computation leads to better speed-quality trade-off compared to dense models.

Vision results We extend our experiments to visual tasks that involves natural language within the
image, such as documents and user interfaces. Our experiments are based on Pix2Struct [Lee et al.,
2022], where an image-encoder-text-decoder is pretrained by learning to predict simplified HTML
from webpage screenshots. Table 6 shows the results on three tasks that were also evaluated in the
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original Pix2Struct paper. In OCRVQA and Screen2Words, we observe relatively small drops in
performance when reducing the number of routed tokens (i.e. patches). When the capacity is 1/16th
of the original sequence length, leading to around 13× speedup, we only lose about 1 point. We
speculate that this is due to the high-level sparsity in the inputs for these two tasks. For DocVQA,
where there is comparatively more textual information, we observe a steeper performance-speed
trade-off but still achieve a 8× speedup with a 4-point drop.

To provide a more intuitive understanding why CODA works, we visualize the router behavior for
the OCR-VQA model in Figure 6. We show which patches the routers prefers the most (warmest
colors) and least (coolest colors), for several layers. The first, immediately obvious, observation
is that router avoids low-frequency patches, i.e. patches likely to be “whitespace”, since they can
be adequately handled by the cheap adapter layers. The second, more subtle, observation is that
the router progressively converges on a small number of key patches that we hypothesize serve as
representations for larger regions. The visualization confirms that CODA is able to select meaningful
and representative patches that are useful for the prediction task.

7 Conclusion and Limitation

We present CODA, a parameter-efficient adapter method that enables fast inference. CODA relies on
conditional computation to selectively activate model computation on important input units, providing
a novel way to balance model expressivity and efficiency.

In this work, we focus on encoder-heavy applications such as summarization, speech recognition and
visual question answering, by applying our method to the encoder. One limitation of CODA is that
the current routing mechanism (i.e. token selection in a given sequence) is not directly applicable
to decoder-only models for auto-regressive token generation. Enabling fast token generation using
conditional activation in decoder layers is an interesting direction we plan to explore in future work.
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Piotr Nawrot, Jan Chorowski, Adrian Łańcucki, and Edoardo M. Ponti. Efficient transformers with
dynamic token pooling, 2022.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an asr corpus
based on public domain audio books. In 2015 IEEE international conference on acoustics, speech
and signal processing (ICASSP), pages 5206–5210. IEEE, 2015.

Ofir Press, Noah A Smith, and Omer Levy. Improving transformer models by reordering their
sublayers. arXiv preprint arXiv:1911.03864, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 2020. URL http://jmlr.org/papers/
v21/20-074.html.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ ques-
tions for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, 2016. URL https://nlp.stanford.edu/pubs/
rajpurkar2016squad.pdf.

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamicvit:
Efficient vision transformers with dynamic token sparsification. In Advances in Neural Information
Processing Systems (NeurIPS), 2021.

Adam Roberts, Hyung Won Chung, Anselm Levskaya, Gaurav Mishra, James Bradbury, Daniel
Andor, Sharan Narang, Brian Lester, Colin Gaffney, Afroz Mohiuddin, Curtis Hawthorne, Aitor
Lewkowycz, Alex Salcianu, Marc van Zee, Jacob Austin, Sebastian Goodman, Livio Baldini
Soares, Haitang Hu, Sasha Tsvyashchenko, Aakanksha Chowdhery, Jasmijn Bastings, Jannis
Bulian, Xavier Garcia, Jianmo Ni, Andrew Chen, Kathleen Kenealy, Jonathan H. Clark, Stephan
Lee, Dan Garrette, James Lee-Thorp, Colin Raffel, Noam Shazeer, Marvin Ritter, Maarten Bosma,
Alexandre Passos, Jeremy Maitin-Shepard, Noah Fiedel, Mark Omernick, Brennan Saeta, Ryan
Sepassi, Alexander Spiridonov, Joshua Newlan, and Andrea Gesmundo. Scaling up models and
data with t5x and seqio. arXiv preprint arXiv:2203.17189, 2022. URL https://arxiv.org/
abs/2203.17189.

13

https://aclanthology.org/2020.emnlp-main.494
https://aclanthology.org/2020.emnlp-main.494
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://nlp.stanford.edu/pubs/rajpurkar2016squad.pdf
https://nlp.stanford.edu/pubs/rajpurkar2016squad.pdf
https://arxiv.org/abs/2203.17189
https://arxiv.org/abs/2203.17189


Stephen Roller, Sainbayar Sukhbaatar, Jason Weston, et al. Hash layers for large sparse models.
Advances in Neural Information Processing Systems, 34:17555–17566, 2021.

Bernhard Schmitzer. Stabilized sparse scaling algorithms for entropy regularized transport problems.
SIAM Journal on Scientific Computing, 41(3):A1443–A1481, 2019.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi Tay, and Donald
Metzler. Confident adaptive language modeling. Advances in Neural Information Processing
Systems, 2022.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538, 2017.

Jonathan Shen, Patrick Nguyen, Yonghui Wu, Zhifeng Chen, et al. Lingvo: a modular and scalable
framework for sequence-to-sequence modeling, 2019.
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A Experimental details

Model implementation For our text and vision experiments, we implement our models using
JAX [Bradbury et al., 2018]. Specifically, our training and model modules are built on top of the
T5X, Flax and Flaxformer framework [Roberts et al., 2022, Heek et al., 2020]. Following the T5
v1.1 implementation and PaLM [Chowdhery et al., 2022], our Transformer models use the GLU
variant [Shazeer, 2020] as the feed forward network and multi-query-attention [Shazeer, 2019] as the
attention block. These modifications are shown to enhance modeling capacity and speed up decoding
respectively.

For the speech experiments, we use TensorFlow [Abadi et al., 2015] and the Lingvo framework [Shen
et al., 2019]. The state-of-the-art Transformer variant for speech recognition is the Conformer
architecture [Gulati et al., 2020] which additionally uses depth-wise convolution in each layer. Since
the convolution operation is applied to consecutive inputs and does not immediately support routing,
we use the standard Transformer architecture [Vaswani et al., 2017] instead. Swish activation is used
in the feed forward blocks, following Gulati et al. [2020]. We provide the model configuration details
in Table 7.

Model Num of params Layers Num of heads dmodel dffn dhead dadpt

Text Base 0.1B 12, 6 12 768 3072 128 64
Text Large 0.5B 24, 6 16 1024 4096 128 64
Text XL 2.1B 24, 6 32 2048 8192 128 64

Speech Base 0.2B 31, 2 8 768 3072 96 256
Speech Large 0.6B 32, 2 8 1280 5120 160 256
Speech XL 1.1B 32, 2 8 1664 6656 208 256

Vision 0.7B 18, 6 24 1536 3968 128 256

Table 7: Configuration of Transformer models used in §6. We show the total number of parameters
(in billions). dmodel is the model hidden dimension, dffn is the intermediate FFN hidden dimension,
dhead is the attention head dimension and dadpt is the adapter hidden dimension.

Dataset Input length Batch size Steps Optimizer Learning rate

MNLI 128

128 300K Adafactor 0.001, constant

RTE 256
BoolQ 384
SQuAD 512
ReCord 512
XSum 1664

LibriSpeech 3200 256 150K Adafactor 0.001, inverse decay

OCR-VQA 4096 256
20K Adafactor 0.01, cosine decayDocVQA 4096 256

Screen2Words 4096 32

Table 8: Fine-tuning hyperparmaeters. We use a maximum of 300K steps for NLP tasks following
T5 [Raffel et al., 2020]. Pix2struct [Lee et al., 2022] uses 10K fine-tuning steps for vision tasks. We
use 20K steps as CODA takes longer to train.

Model training We use the same data and procedure described in T5 [Raffel et al., 2020], BEST-
RQ [Chiu et al., 2022] and Pix2struct [Lee et al., 2022] for pre-training the respective text, speech
and vision models. We use the same training hyper-parameters, such as batch size, input sequence
length, the number of pre-training steps and the choice of optimizer and learning rate scheduling. All
models have been pre-trained using 128 or 256 TPUv3/TPUv4 chips.

We run CODA pre-training for text and vision models, using an additional 100K steps and 200K
steps respectively. For text models, the input sequence length is n = 512 and we set the number of
selected tokens k = 192. For vision models, the input sequence contains n = 4096 image patches
and we set k = 1024. CODA pre-training is not used for our speech models because there are
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Figure 7: Analyzing the speed and quality of CODA. We select 3 representative tasks including BoolQ
(classification), SQuAD (question answering) and XSum (summarization). (a) Relative decoding
speed given different reduction factor r. (b) Speed-quality trade-off of CODA applied on different
tasks and model sizes. CODA achieves better quality than the dense Parallel Adapter baseline when
running at a similar inference speed. The black line shows the performance of Parallel Adapter
given Small to XL model size. Each blue line represents the performance of CODA for reduction
r = 1, 3, 5 for a given model size. When r = 1, CODA is equivalent to the dense baseline.

sufficient fine-tuning data. Following standard practice in speech, we use the 1K hour data from the
LibriSpeech dataset [Panayotov et al., 2015] and another 30K hour data generated using the noisy
student self-training method [Xie et al., 2020, Zhang et al., 2022].

Table 8 lists the hyper-parameters used for fine-tuning, including the sequence length, learning rate,
batch size and the number of fine-tuning steps used. For NLP datasets, we set the maximum input
length and decoding length to the 98th percentile of lengths in the training set. For vision datasets,
we set the input length following the suggested values in Pix2struct. We also find that annealing the
number of routed tokens k can achieve better finetuning results. Specifically, we decrease k linearly
from the sequence length n down to the target value n/r using the first 10% to 20% of the finetuning
steps.

B Additional results

B.1 NLP

Table 9 contains the complete fine-tuning results on the 6 language datasets. As discussed in §6, the
gap between CODA and its counterpart without conditional computation is large at Base size. As the
model size increases, CODA retains almost the same level of quality given 3x computation reduction
(r = 3). The reduction leads to decoding speed-ups, as shown in Figure 7. More importantly, we see
that larger model benefits more from CODA, achieving a speed-up factor close to the reduction factor
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Model Trainable Reduction MNLI RTE BoolQ SQuAD ReCord XSum
Params r Acc. Acc. Acc. F1 F1 R2

Base

Parallel Adapter
2M

- 88.2 75.8 80.1 91.2 76.7 14.1
CODA 3 85.8 68.6 78.7 89.1 69.1 13.5
CODA 5 82.8 60.3 78.0 87.3 61.8 13.1

Large

Parallel Adapter
5M

- 90.5 90.6 86.7 93.9 87.2 18.3
CODA 3 90.0 84.8 84.3 93.1 84.6 17.0
CODA 5 89.4 88.5 83.9 92.2 81.2 16.7

XL

Parallel Adapter
10M

- 91.5 91.0 88.5 94.8 91.4 22.3
CODA 3 91.2 90.3 87.5 94.1 89.3 21.2
CODA 5 90.7 89.5 87.3 93.5 87.6 20.7

Table 9: Fine-tuning results on 6 language tasks × 3 model sizes. We report the best results on the
development set.

Model r
Base Large XL

∆ Avgdev test dev test dev test

clean other clean other clean other clean other clean other clean other

w2v-BERT - 1.7 3.6 1.8 3.6 1.5 2.9 1.5 2.9 1.5 2.6 1.5 2.9 -
BEST-RQ - 1.6 3.5 1.7 3.5 1.5 2.8 1.6 2.9 1.4 2.7 1.4 2.7 -

Parallel Adapter - 1.5 3.5 1.6 3.5 1.4 3.0 1.4 3.0 1.4 2.7 1.4 2.7 ±0.0
CODA 2 1.5 3.5 1.6 3.5 1.4 3.0 1.4 3.0 1.4 2.7 1.4 2.8 +0.01
CODA 4 1.6 3.6 1.6 3.6 1.4 3.1 1.5 3.1 1.4 2.8 1.4 2.8 +0.07

Table 10: Comparison of CoDA and the parallel adapter baselines on all 4 splits (dev-clean, dev-other,
test-clean, test-other) of Librispeech.

r. These results highlight the potential of CODA for large-scale models, which we plan to investigate
in future work.

B.2 Speech

Table 10 extends Table 5 by including WER results on dev-clean and dev-other splits. From the table,
one can observe that XL with CoDA (r = 2, 4) are consistently better than the Large parallel adapter
model on each split, and the Large model with CoDA (r = 2, 4) are also consistently better than the
Base PA on each split. Given the inference speeds for CoDA models shown in Table 8, larger CoDA
models are generally faster and better than smaller dense ones (even with PA) with regard to either
time cost or computation GFLOPs. Therefore, it is likely for CoDA to help scale up ASR models
with decent computation resources and time cost.

B.3 Combining CODA and LoRA

CODA can be easily combined with other types of adapter methods. To see this, we additionally
implemented a variant that combines with Low-Rank Adapter [LoRA; Hu et al., 2021], which is
another parameter-efficient transfer learning method that recently became the most popular choice for
LLMs. We incorporate the latest development suggested in the QLoRA paper [Dettmers et al., 2023],
which adds low-rank adapters to every linear projection matrix in the Transformer layers. This is
found to obtain better fine-tuning performance than the original implementation. Our CODA variant
with LoRA simply removes the parallel adapter branches and instead adds low-rank adapters to the
projection matrices of the pretrained layers.

Table 11 shows the finetuning results. The new LoRA baseline achieves stronger accuracy than
the Parallel Adapter baseline (84.0 v.s. 82.9 on average), highlighting the effectiveness of recent
development on LoRA. In addition, our CODA variant using LoRA still achieves very close accuracy
compared to its dense counterpart (84.0 v.s. 84.0 or 83.7 on average). We believe the additional
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reduction is significant as r increases.

Base Large

Model Reduction r MNLI RTE BoolQ MNLI RTE BoolQ Avg on 6

Parallel Adapter (PA) - 87.1 71.5 77.9 90.3 84.8 85.8 82.9
CODA w/ PA 3 86.6 72.6 76.6 90.2 85.9 85.1 82.8
CODA w/ PA 5 86.0 70.8 76.0 89.7 85.2 84.3 82.0

Low-rank Adapter (LoRA) - 88.0 73.7 80.3 90.7 85.2 86.3 84.0
CODA w/ LoRA 3 86.2 76.9 78.4 90.3 86.3 85.8 84.0
CODA w/ LoRA 5 86.0 76.9 78.3 89.8 86.3 84.7 83.7

Table 11: Results of applying CODA with Parallel Adapter v.s. Low-Rank Adapter. We report results
on the development sets and on the Base and Large model size.

results strengthen our claims – that CODA enables a strong trade-off between accuracy and efficiency
using conditional activation, and this technique can be combined with other developments in PETL.

C Soft top-k algorithm

C.1 Derivation of the iterative updates

We present the derivation of iterative updates (11) for solving the soft top-k problem (10) in Section 3.
The soft top-k operation is defined as a maximization problem (10). For the derivation, we rewrite it
as an equivalent minimization problem:

max
λ

s>λ+ εH(λ)

⇐⇒ min
λ
−s>λ− εH(λ)

⇐⇒ min
λ
−s>λ− εH(λ)− ε1>λ (12)

s.t. 1>λ = k, λ[i] ∈ [0, 1], i = 1, . . . , n.

Note the term ε1>λ will be a constant ε× k, but we include it in the minimization object to make
our derivation simpler later.

Now, let a ∈ R and b ∈ Rm be the Lagrangian variables corresponding to the linear constraints
1>λ = k and λ[i] ≤ 1 ∀i .4 The minimization problem is equivalent to its Lagrangian expression:

min
λ∈Rm

max
a∈R,b≤0

−s>λ− εH(λ)− ε1>λ+ a(k − 1>λ) + b>(1− λ) (13)

4λ[i] ≥ 0 ∀i is already implied by the term H(λ) =
∑

i−λ[i] logλ[i] in the objective, due to the use of
logλ[i].
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The objective function (12) is strongly convex and the solution space of λ is a convex set. As a result,
strong duality holds so we can instead solve the dual problem. The dual problem exchanges the min
and max operators in (13):

max
a∈R,b≤0

min
λ∈Rm

−s>λ− εH(λ)− ε1>λ+ a(k − 1>λ) + b>(1− λ) (14)

The optimal solution (a, b,λ) must have the Karush-Kuhn-Tucker (KKT) conditions hold [Kuhn and
Tucker, 2014], namely

∂
(
−s>λ− εH(λ) + ε1>λ+ a(k − 1>λ) + b>(1− λ)

)
∂λ

= 0

⇐⇒ λ = exp

(
s+ a+ b

ε

)
⇐⇒ λ[i] = exp

(
s[i] + a+ b[i]

ε

)
∀i = 1, . . . , n

Substituting λ using the above equation in (14), the dual problem now has a simple form:

max
a∈R,b≤0

k · a+ 1>b− 1> exp

(
s+ a+ b

ε

)
We can solve this problem using coordinate descent [Wright, 2015] by successively maximizing the
function with either a or b fixed. That is, we find the optimal a that maximizes the dual objective
given a fixed b, and vice versa. This leads to the iterative updates (11) described in Section 3.

a′ = ε ln(k)− ε ln

(
n∑
i=1

exp

(
s[i] + b[i]

ε

))
, b′ = min(−s− a′, 0)

In short, we obtain the iterative updates of the soft top-k problem (10) by solving its dual problem
and by performing coordinate decent of the dual variables a and b. The iterative updates are in fact
the coordinate decent steps.

C.2 The ε-scaling trick

The iterations of a and b will converge but the number of iterations needed can be very large for
small ε. In practice, we only perform a small number of iterations and return the corresponding λ,
which may be close but not the exact solution to (12). In order to improve the convergence given
a small number of iterations, we apply an empirical trick called the ε-scaling heuristic [Schmitzer,
2019]. Let εt denote the value of ε at the t-th iteration. We initialize ε0 to a larger value and gradually
reduce εt to the target ε. Specifically, we set εt = max(βεt−1, ε) at the t-th iteration, using a scaling
constant β ∈ (0, 1). We use ε0 = 4 throughout our experiments, ε = 0.03 and β = 0.7 for text and
vision models and ε = 1.0 and β = 0.85 for speech models. Using a larger number of iterations leads
to better convergence but we found T = 20 sufficient for our experiments.

C.3 Overhead of soft top-k iterations

The soft top-k iterations are performed for every routed Transformer layer. Although this seems
computationally expensive, the actual overhead is very small compared to the overall decoding
latency. The complexity only scales linearly with the number of layers and the sequence length, and
does not depend on the model dimension d. Table 12 showcases the latency numbers on the BoolQ
and XSum datasets, when performing batched decoding using a single TPUv4 chip. We observe
that the cost of iterations is less than 2% of the total decoding latency. Moreover, the relative cost
decreases dramatically as the model size increases, since it does not depend on the model dimension.

C.4 Additional discussion

This iterative algorithm is closely related to the Sinkhorn algorithm of Optimal Transport (OT).
Specifically, the Sinkhorn algorithm solves the entropy-regularized version of Optimal Transport [Cu-
turi, 2013]. However, our work concerns an different optimization instance. While OT solves a
transportation problem where the solution space is defined with the marginal constraints over the
rows and columns of a transportation matrix, our optimization problem is constrained with a total
budget (

∑
i λi = k) and upper bounds (λi ≤ 1 ∀i). This leads to different iterative updates.
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Task Model size Iteration latency (ms) Total latency (ms)

BoolQ
Base 0.9 48.0
Large 1.7 105.3
XL 1.7 297.6

XSum
Base 1.0 513.9
Large 2.0 1076.2
XL 2.0 2426.0

Table 12: Latency (in milliseconds) of the soft top-k iteration and the total decoding time per batch.
We use a single TPUv4 chip and 128 sequences per batch. The maximum iteration overhead is less
than 2% of the total latency.

Concurrent to our work, Tai et al. [2022] have used a similar linear program (LP) formulation for
soft top-k operation, and have applied the operator for learning sparse neural networks (i.e. model
pruning). Compared to our formulation (12), they first reduce the LP to an equivalent instance of
optimal transport problem, before introducing the entropy term. As a result, the derived updates
are different. In addition, Tai et al. [2022] have introduced an initialization for the dual variables to
improve the convergence of their algorithm, whereas we use ε scaling instead. Their implementation
can be explored for CODA as well.

Besides formulating soft top-k using entropy-regularized optimization, there are other possible
variants for trainable sparsity. One example is sparsemax [Martins and Astudillo, 2016] that can
learn sparse multi-label probabilities. We believe that the sparsemax formulation can generalize
from the top-1 to top-k case, but it is beyond the scope of this work. We use the current soft top-k
implementation because it is a natural extension of softmax (see discussions in §3), and because it
can be solved using simple iterative updates.

D Author Contributions

All authors have contributed to running experiments and discussing research ideas. Tao leads the
project, developed the conditional architecture, designed the experiments and analyses. Kenton, Yu
and Ming-Wei proposed the idea of applying conditional computation for large model adaptation.
Joshua demonstrated the conditional architecture is applicable to attention, and implemented the
initial version of conditional attention block. Tao, Yanqi, Nan, Vincent, Yuexin, Ming-Wei and
Yu conducted the NLP experiments including model pre-training, fine-tuning and various ablation
analyses. Siddhartha conducted the majority of the vision experiments. Kenton conducted the
vision analysis and advised on the vision experiments. Junwen conducted the majority of the speech
experiments. Bo and Yu assisted in trouble-shooting the speech models, ran the model pre-training
and provided guidance on the speech experiments. Finally, Tao, Ming-Wei, Junwen and Kenton made
the primary contributions to the writing of the paper.

21


	Introduction
	Related Work
	Method
	Architecture
	Training

	Experimental setup
	Understanding and Analyzing CoDA
	Full Results
	Conclusion and Limitation
	Acknowledgements
	Experimental details
	Additional results
	NLP
	Speech
	Combining CoDA and LoRA

	Soft top-Lg algorithm
	Derivation of the iterative updates
	The Lg-scaling trick
	Overhead of soft top-Lg iterations
	Additional discussion

	Author Contributions

