
AVOIDDS: Aircraft Vision-based Intruder Detection
Dataset and Simulator

Elysia Q. Smyers
Department of Computer Science

Stanford University
elysia@cs.stanford.edu

Sydney M. Katz
Department of Aeronautics and Astronautics

Stanford University
smkatz@stanford.edu

Anthony L. Corso
Department of Aeronautics and Astronautics

Stanford University
acorso@stanford.edu

Mykel J. Kochenderfer
Department of Aeronautics and Astronautics

Stanford University
mykel@stanford.edu

Abstract

Designing robust machine learning systems remains an open problem, and there
is a need for benchmark problems that cover both environmental changes and
evaluation on a downstream task. In this work, we introduce AVOIDDS, a re-
alistic object detection benchmark for the vision-based aircraft detect-and-avoid
problem. We provide a labeled dataset consisting of 72,000 photorealistic images
of intruder aircraft with various lighting conditions, weather conditions, relative
geometries, and geographic locations. We also provide an interface that evaluates
trained models on slices of this dataset to identify changes in performance with
respect to changing environmental conditions. Finally, we implement a fully-
integrated, closed-loop simulator of the vision-based detect-and-avoid problem
to evaluate trained models with respect to the downstream collision avoidance
task. This benchmark will enable further research in the design of robust ma-
chine learning systems for use in safety-critical applications. The AVOIDDS
dataset and code are publicly available at https://purl.stanford.edu/hj293cv5980
and https://github.com/sisl/VisionBasedAircraftDAA, respectively.

1 Introduction

The use of machine learning in high stakes applications will require the design of robust systems that
perform well in a wide range of environmental conditions [1]–[3]. For example, a learning-based
perception system designed for use in aviation will need to handle changing environmental conditions
such as weather and time of day. In addition, these systems are often components of an autonomy
stack, and their performance should be evaluated both in isolation and with respect to the downstream
task of the system in which they operate [4], [5]. For the aviation example, perception models
should not only be evaluated based on isolated metrics on a test set such as mean average precision
but also on downstream tasks such as collision avoidance. Benchmark systems that allow for this
comprehensive evaluation are needed to build robust machine learning systems.

A number of recent benchmark datasets such as WILDS [3] and MetaShift [6] contain distribution
shifts due to environmental changes; however, these datasets only allow for evaluation on a test
set and generally do not provide evaluation capabilities for downstream decision-making tasks.
While recent work has highlighted the importance of task-specific design and evaluation, there
is a lack of standardized and accessible benchmarks in this area [4], [5], [7], [8]. To provide a
benchmark environment that covers both environmental changes and task-specific evaluation, we

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.

https://purl.stanford.edu/hj293cv5980
https://github.com/sisl/VisionBasedAircraftDAA


Dataset

Time: 13:00
Weather: Scattered

Location: Palo Alto
Aircraft: Cessna
Time:13:00

Weather: Scattered
Location: Palo Alto
Aircraft: Cessna
Time:13:00

Weather: Scattered
Location: Palo Alto
Aircraft: Cessna

Models
YOLOv8s

Test Set Evaluation

Precision: 0.99
Recall: 0.92Precision: 0.99

Recall: 0.92Precision: 0.99
Recall: 0.92

Closed-Loop Evaluation

Ownship

Intruder

Figure 1: AVOIDDS benchmark overview.

introduce AVOIDDS (Aircraft Vision-based Intruder Detection Dataset and Simulator). AVOIDDS is
a benchmark dataset and evaluation environment for the problem of vision-based aircraft detect-and-
avoid (DAA). For this task, onboard aircraft systems must detect nearby aircraft and determine proper
maneuvers to avoid colliding with them. AVOIDDS specifically focuses on vision-based models,
which are trained to detect intruding aircraft from images taken by a mounted camera [9]–[13]. These
models will be especially critical in the development of unmanned aircraft and future air mobility
concepts.

AVOIDDS allows for training and testing of vision-based aircraft detection models. The benchmark
includes three main components (see fig. 1):

• Data: We provide a dataset containing 72,000 airspace images for training detection models
along with data generation code for customizable creation of new datasets. The dataset
is annotated with metadata that describes the environmental conditions under which each
image was captured.

• Baseline models: We provide baseline YOLOv8 aircraft detection models trained on the
AVOIDDS dataset.

• Evaluation capabilities: We provide capabilities for test set evaluation and an aircraft
encounter simulator to evaluate the closed-loop performance of trained detection models on
the downstream task of collision avoidance.

AVOIDDS serves as a benchmark for vision-based aircraft DAA and will enable further research
on the robust design and evaluation of learning-based perception systems. By defining a specific
downstream task and collecting annotated data across a variety of conditions, we enable further
research into solving safety-critical problems.

2 Related Work

The AVOIDDS benchmark is related to previous work involving object detection benchmarks, task-
specific evaluation, datasets with distribution shifts, and vision-based aircraft detect-and-avoid.

Object detection benchmarks Early object detection datasets include Pascal VOC [14] and COCO
[15], which contain images of common objects with their corresponding labels. These datasets have

2



served as standard evaluation benchmarks for new object detection algorithms throughout the last
decade [16]–[23]. While these benchmarks cover a wide range of common objects, they do not
capture the performance of object detection algorithms on task-specific domains. Li et al. [24] created
the ODinW (Object Detection in the Wild) dataset, which contains 13 task-specific datasets that were
used to check zero-shot performance of language-image models. Ciaglia et al. [25] provide a more
extensive version of this dataset called RF100 (Roboflow-100) that consists of 100 task-specific object
detection datasets from domains such as microscopic images and video games. However, ODinW
and RF100 do not provide interfaces to assess task-specific performance metrics on each dataset. In
this work, we provide both a task-specific dataset for vision-based aircraft collision avoidance and a
simulator to evaluate performance on the downstream collision avoidance task.

Task-specific evaluation Object detection models are often evaluated in isolation using metrics
such as precision, recall, and mean average precision (mAP) [21]–[23]. However, these models are
often components of a system for a high-level decision-making task. For the vision-based detect-
and-avoid example, the object detection model is trained to detect intruding aircraft such that the
overall system can recommend safe collision avoidance maneuvers. Furthermore, the best model
according to traditional metrics does not always result in the best performance on downstream tasks
[4], [5], [7], [8]. For this reason, it is important to incorporate task-aware metrics into the design
and evaluation of machine learning models. Philion et al. [4] develop planner-centric metrics for a
machine-learning based object detection system used in autonomous driving and show their benefit
over traditional metrics. They evaluate the metrics using driving trajectories from the nuScenes dataset
[26]. The nuScenes dataset provides trajectories for the autonomous driving task, but the trajectories
are prerecorded and therefore do not allow for a proper simulation to assess the performance of the
fully-integrated, closed-loop system [26]. The CARLA simulator enables closed-loop simulation of
driving trajectories and scenarios to evaluate various models for perception and control [27]–[30]. In
the aviation domain, AirSim allows for the closed-loop simulation of unmanned aerial vehicles, such
as small drones [31]–[34]. Corso et al. [5] design safer perception systems by quantifying the effect
of perception errors on the performance of a downstream task and apply their methods to increase the
safety of a vision-based detect-and-avoid system. This work expands on this application to provide
an accessible benchmark for task-specific evaluation.

Datasets with distribution shifts Previous work has shown that machine learning models often
drop in performance when their test distribution differs from their training distribution [1]–[3]. This
dropoff is especially apparent if the model relies on spurious correlations in the training data [35].
For this reason, researchers have created benchmark datasets with distribution shifts. Early datasets
containing distribution shifts focused on local perturbations such as rotation and image noise. For
example, some works created distribution shifts by rotating images in standard benchmark datasets
such as MNIST and CIFAR-10 [36], [37]. Hendrycks et al. [38] created the ImageNet-C dataset
by applying 75 common corruptions to the ImageNet dataset and noted a drop in performance of
state-of-the-art models when evaluated on the corrupted images. Datasets such as WILDS [3] and
MetaShift [6] go beyond image tranformations and gather data containing more general distribution
shifts that machine learning models may encounter when deployed in the wild. The WILDS dataset,
for example, contains 10 datasets with distribution shifts involving domain generalization and
subpopulation shift [3]. However, the WILDS dataset does not have clear annotations of the semantic
concepts that change in each distribution shift. Datasets such as NICO [39] and MetaShift [6]
provide metadata describing the semantic concepts present in images of common objects. This
metadata enables the evaluation of model performance across groupings of the dataset with similar
concepts. Inspired by the metadata used in NICO and MetaShift, AVOIDDS provides annotations of
the environmental conditions such as time of day, weather, and geography for each aircraft image.
While previous distribution shift benchmarks evaluate changes in model performance using standard
test set metrics, AVOIDDS also allows for evaluation of performance with respect to the downstream
task of the broader system in which the model operates.

Vision-based aircraft detect-and-avoid Aircraft detect-and-avoid systems rely on sensor informa-
tion to detect and track intruding aircraft so that they may issue proper collision avoidance advisories.
Traditional sensors used for surveillance and tracking include ADS-B, onboard radar, and transpon-
ders [40], [41]; however, automated aircraft collision avoidance systems will require additional
sensors both for redundancy and to replace the visual acquisition typically performed by the pilot.
For this reason, vision-based traffic detection systems have been proposed, in which intruding aircraft

3



ownship

intruder

Aircraft Encounter

Perception System

Controller

Figure 2: Vision-based detect-and-avoid system overview.

are detected from a camera sensor mounted on the aircraft [9]–[13], [42], [43]. Early work on
vision-based aircraft detection used traditional model-based computer vision techniques [42], [43];
however, these techniques were unable to detect aircraft below the horizon in front of a background
with ground clutter. Deep learning-based approaches address this limitation and are well-suited for
the aircraft detection task [9]–[13]. However, since this application is safety-critical, it is important
to evaluate the safety and robustness of these systems with respect to changes in the environment
using realistic datasets and simulators [44]. Aerial object tracking datasets provide video sequences
of aerial imagery [45]–[47]. The simulator in the AVOIDDS benchmarks produces video sequences
similar to these existing tracking datasets while also allowing for the simulation of new scenarios.
Of the vision-based traffic detection benchmarks and datasets that are publicly available, AVOIDDS
represents the only benchmark with both an extensive dataset covering a range of environmental
conditions annotated with metadata and a simulator for evaluation on the downstream collision
avoidance task.

3 AVOIDDS Benchmark

An aircraft detect-and-avoid system is responsible for sensing nearby aircraft and determining the
necessary maneuvers to avoid collision. Figure 2 provides an overview of this process for a vision-
based system. At each time step, the equipped aircraft (referred to as the ownship) captures an
image of its surroundings using a mounted camera. This image is then passed through a perception
system that detects surrounding aircraft (referred to as intruders) and produces an estimate of their
state. This state estimate is then passed to a controller, which selects a collision avoidance maneuver.
While extensive previous work has studied aircraft collision avoidance controllers that rely on state
information [40], [41], [48], [49], the image-based aircraft detection problem remains an open area
of research. Therefore, the AVOIDDS benchmark focuses mainly on the detection component of
the detect-and-avoid system but also provides a framework for evaluating this component within the
context of the fully-integrated, closed-loop system shown in fig. 2.

Figure 1 outlines the three main components of the AVOIDDS benchmark. The first component
provides capabilities for the controllable generation of labeled airspace images under a range of
environmental conditions using a photo-realistic flight simulator. We used these capabilities to
produce a large, public dataset of airspace images with intruder aircraft at various locations in the
frame. Using this dataset, we trained baseline YOLOv8 models to detect intruder aircraft in individual
frames passed to the model. The final component involves two evaluation systems: one that outputs
traditional metrics such as precision and recall evaluated on a test set of individual image inputs
and an aircraft encounter simulator that outputs task-specific metrics. With both of these evaluation
systems, we can evaluate model performance on sample inputs and on the downstream task that the
model is intended to serve.

3.1 Data Generation

A challenge for the use of computer vision in aviation is that the variability of environmental variables
may lead to lower performance, posing large risks. During flight, aircraft can experience changes in
terrain, lighting, and weather that will impact the performance of a vision-based model. To capture
this variability, we provide an accessible interface for generating customized image datasets with

4



Morning Midday

Afternoon Late Afternoon

Time of Day

Boston Oshkosh

Palo Alto Reno

Geographic Region

Cessna Skyhawk

Boeing 737

King Air C90

Aircraft Type
Clear High Cirrus Scattered

Broken Overcast Stratus

Weather

Figure 3: AVOIDDS dataset overview.

a wide range of conditions, including intruder aircraft type, weather, geographic region, relative
geometry, and time of day. We use X-Plane 11 1, a photo-realistic flight simulator, for data generation,
allowing for programmatic control of the environmental conditions and intruder location for the
rendered images. X-Plane 11 also outputs ground truth position and camera data, which allows
us to automatically generate bounding box labels, removing the need for manual labeling. This
publicly-available commercial flight simulator has been used in prior work to generate data for an
aircraft taxi scenario [50].

Using our accessible interface, we generated the AVOIDDS dataset to adequately cover the aforemen-
tioned environmental variations. The AVOIDDS dataset is a collection of 72,000 images and labels
from the ownship’s point of view of encounters with intruder aircraft in the airspace. Each image
is randomized across a range of intruder aircraft types, locations, weather conditions, and times of
day with the intruder aircraft located uniformly within the ownship’s field of view. Capturing a wide
variety of conditions allows us to train an associated model that accounts for these same variations in
the environment, which is essential in high-stakes situations such as aircraft collision avoidance.

The 72,000 images generated for this dataset are distributed equally among 6 weather types, 3 aircraft
types, and 4 regions. Figure 3 summarizes the various conditions present in the AVOIDDS dataset.
The time of day for each sample was randomized between 08:00 and 17:00 on January 1st in each
respective location’s local time. This range includes an adequate spread of times that represents
nominal lighting conditions with a small portion of samples captured around dusk or dawn. The
encounter location was sampled uniformly within the surrounding region of the following four
airports: Palo Alto (PAO), Reno-Tahoe (RNO), Boston Logan (BOS), and Whitman Regional (OSH).

1https://www.x-plane.com (Python interface at https://github.com/nasa/XPlaneConnect)

5

https://www.x-plane.com
https://github.com/nasa/XPlaneConnect


We selected these regions to create variability in the scenery determined by the geography of each
region. The range between the ownship and intruder aircraft was sampled from a gamma distribution
with a slight skew toward closer ranges. To account for the larger size of the Boeing 737-800 aircraft
relative to the smaller aircraft, the gamma distribution was skewed toward slightly larger ranges for
Boeing 737-800 images. The vertical and horizontal position of the intruder was sampled uniformly
within the ownship field of view.

The AVOIDDS dataset serves as an independent, accessible dataset that can be used for training
vision-based object detection models for aircraft collision avoidance without having to interface
directly with the X-Plane 11 flight simulator. The dataset abides by the YOLO format [23] with
subdirectories for images and labels for both the training and validation set. We also include metadata
for each image, containing positional information about the ownship and intruder as well as details
about the environment (e.g. weather, time of day, region). The ability to filter the dataset using this
metadata enables easy slicing of the data for model training and evaluation purposes. For instance,
we can choose to evaluate a model on images from a particular location or time of day or even images
with the intruder in specific orientations relative to the ownship. This capability allows for evaluation
of the model not only on nominal conditions in the airspace but also on conditions that might result
in unpredictable model performance.

3.2 Baseline Models

We trained a baseline YOLOv8 object detection model on the AVOIDDS dataset for 100 epochs
with default hyperparameters. We used the YOLOv8s architecture, which includes 11.2 million
trainable parameters. The training took 73 h on an NVIDIA GeForce GTX 1070 Ti. We also trained
an alternative model for comparison on a subset of the AVOIDDS dataset, only including samples
in nominal conditions: minimal cloud cover (clear, high cirrus, or scattered clouds) between 08:00
and 15:00 in Palo Alto. The alternative model uses the same architecture and required 6.5 h for 100
epochs with default hyperparameters on 6944 samples.

3.3 Evaluation

As shown in fig. 1, AVOIDDS provide two methods for evaluating trained models: evaluation on a test
set and evaluation with respect to the downstream task. For the former, we evaluate the performance
of detection models on a test set using standard metrics such as precision, recall, and mean average
precision (mAP). Evaluation with respect to the downstream task, on the other hand, allows us to see
how these standard metrics translate to performance in simulated aircraft encounters using X-Plane
11. This method of evaluation uses task-specific metrics to measure the model’s performance.

Simulator Overview The AVOIDDS closed-loop simulator allows us to test vision-based aircraft
detection models on the downstream task they were meant to serve: navigating encounters with other
aircraft in the airspace. To evaluate closed-loop performance, we provide the three components of the
problem shown in fig. 2. We define an encounter model from which the simulator can sample sets
of pairwise encounters between an ownship and intruder. We also define a perception system that
relies on our trained detection models to predict the intruder state. Its predictions are then passed
to a controller produced in previous work [51] that determines the best course of action based on
the intruder state. By simulating a full set of encounters and determining the number of encounters
that resulted in a near mid-air collision (NMAC), we can evaluate the performance of the detection
model with respect to the full closed-loop system. The encounter model only provides positional
information and velocities for the two aircraft, allowing for custom simulation of the encounters with
different regions, times of day, weather, and intruder aircraft types.

Encounter Model Monte Carlo analysis on airspace encounter models has been used extensively to
assess the safety of aircraft collision avoidance systems [52], [53]. Encounter models are probabilistic
representations of typical aircraft behavior during a close encounter with another aircraft. To analyze
the safety of a particular collision avoidance system, we can simulate the system on a set of encounters
and analyze the resulting trajectories. We provide a model that generates pairwise encounters in
which the ownship and intruder follow straight line trajectories with various relative geometries. We
sample encounters by first sampling features such as aircraft speeds, miss distances, and relative
headings. We then use these features to generate trajectories for the ownship and intruder aircraft.

6



Appendix A provides additional details on this model. We provide this straight-line model as a
baseline to demonstrate the evaluation capabilities that AVOIDDS enables, and we define a general
interface between the encounter model and simulator such that more complex encounter models can
easily be incorporated. For example, recent work in airspace modeling has resulted in a number of
publicly available data-driven statistical encounter models that capture the full set of variations in
aircraft behavior [54]–[57].

Perception System The perception system involves two steps: detecting the intruder in view and
interrogating the intruder for its location relative to the ownship. The image observations for the
perception system are obtained by positioning the aircraft in X-Plane 11 according to the current
state. Once the aircraft are positioned, the perception system uses the vision-based detection model
to detect intruding aircraft. If detected, the state of the intruder is then passed to the controller.

Controller The controller takes in the intruder state estimated by the perception system and selects
an appropriate collision avoidance advisory. Example advisories include “Clear of Conflict” (COC)
if no change of course is required and vertical advisories to climb or descend at different rates. We
provide an interface to use the control policy defined in the VerticalCAS repository created by Julian
et al. [51]. VerticalCAS contains an open-source collision avoidance logic loosely inspired by the
vertical logic used in a family of collision avoidance systems called ACAS X, which model the
collision avoidance problem as a Markov decision process (MDP) [40], [41], [48], [49]. The MDP is
solved offline using dynamic programming, which results in a collision avoidance policy that balances
between safety and efficiency [58]. The collision avoidance logic is stored as a numeric lookup table,
and the ownship looks up its current state during flight based on the relative geometry of the intruder
to determine optimal collision avoidance advisories. While VerticalCAS is a strong baseline inspired
by real-world systems such as ACAS X, it is a notional example designed for research purposes, and
it has not been put through the same rigorous testing and validation as ACAS X.

Simulator Metrics We provide capabilities to retrieve task-specific metrics from the simulation
results related to safety and efficiency. We assess safety by determining the number of encounters that
resulted in an NMAC, defined as a simultaneous loss of separation to less than 500 ft horizontally
and 100 ft vertically. In this application, we want to minimize the number of NMACs while issuing
as few alerts (advisories other than COC) as possible. To evaluate this balance, we also compute the
alert frequency, defined as the fraction of time steps in which the system issues an alert.

4 Experiments

Using our evaluation capabilities, we evaluate the trained models outlined in section 3.2 on a test set
and with respect to the aircraft collision avoidance task.

4.1 Test Set Evaluation

We can evaluate the precision, recall, and mean average precision (mAP) of the baseline models
on different slices of the dataset. Figure 4 provides a summary, and table 4 in appendix C contains
the full results. The baseline model performs strongly, showing an mAP of 0.866 overall and a
precision of over 0.990 across all categories. In comparison, we see in fig. 4 that the alternative
model performs worse overall than the baseline, producing a lower mAP in every category; however,
it still makes detections in conditions that were not present during training, indicating some degree
of generalizability. The overall lower performance of the alternative model reinforces the need for
models to be trained on comprehensive datasets, particularly when used for high-stakes tasks.

There are common patterns between the baseline and alternative models that demonstrate the potential
for performance differences within categories, even when trained on a comprehensive dataset. For
instance, both models perform worse as the distance between the aircraft increases. In the same way,
Boeing 737-800 intruders were easiest to detect by both models even though training was spread
evenly between the three aircraft. This result is likely due to the relative size of Boeing 737-800
aircraft compared to the Cessna Skyhawk and King Air C90 and highlights that performance may
vary even when model training accounts for variation in conditions. One pattern shown by our
test set evaluation environment that we did not intuit was both models performing worse on clear
weather conditions than most of the other cloud variations. There are a few potential explanations for

7



Clear Cirrus Scattered Broken Overcast Stratus

0.6

0.8

1

Weather

m
A

P

baseline alternative

PAO BOS OSH RNO

Region
Below Above

Intruder Rel. Alt.

Morning
Midday

Early Afternoon

Late Afternoon

0.6

0.8

1

Time of Day

m
A

P

0−150
m

150
−500

m
>500

m

Range
Cessna Skyhawk

Boeing 737-800

KingAir C90

Aircraft Type

Figure 4: Mean average precision (mAP) of the baseline and alternative models.

this behavior, including that the intruder tends to camouflage with the terrain more when the air is
completely clear or that clouds create a more pale background against which intruder detection is
made easier by a higher contrast in colors.

In addition to the similarities between the models, we see some differences that further support
the argument for comprehensive training. For example, while the models result in a similar mAP
on images from the Palo Alto region, there is a significant drop in mAP between the baseline and
alternative models for the regions that were not used in the alternative model training. Similarly, the
performance of the alternative model decreases significantly for late afternoon samples, in contrast
to the baseline model performance. Some late afternoon samples show darker conditions (around
dusk), so a drop in performance is not unexpected. However, we see that training the baseline on
late afternoon images resulted in more consistent and higher performance on that category. Likewise,
training on all locations enabled the baseline model to achieve higher performance than the alternative
model. These results demonstrate the importance of comprehensive training datasets.

4.2 Downstream Task Evaluation

We evaluated the AVOIDDS baseline model using the simulator on 8640 encounters sampled from
the model described in section 3.3 and appendix A. These encounters were equally distributed among
each cloud type, region, time of day, and aircraft type shown in fig. 4. For each combination of
conditions (of which there are 288), 30 encounters were randomly generated using the encounter
model and used to evaluate the detection models. Our aim was to produce analogous results to the
test set evaluation, creating the same variation in conditions and at least as many instances to evaluate
(8640 encounters and 7200 validation images).

Figure 5 summarizes the safety results, and table 5 in appendix C contains the full safety and
efficiency results. Overall, the results highlight the importance of both test set and downstream task
evaluation for complex models. We see some alignment between both types of evaluation. In fig. 6,
we see from the negative correlation between mAP and NMAC frequency that the model is producing
downstream results that are consistent at a high level with the test set results. As a specific example,
across all times of day, both models resulted in the highest NMAC rate and lowest mAP on late
afternoon samples. However, the downstream task evaluation results in other cases that do not line up
with the test set evaluation, demonstrating the need for both types of evaluation to truly capture the
performance of the model. Even though the models produced higher mAP on Boeing 737-800 images

8



Clear Cirrus Scattered Broken Overcast Stratus
0.1

0.12

0.14

0.16

0.18

0.2

Weather

N
M

A
C

Fr
eq

ue
nc

y

baseline alternative

PAO BOS OSH RNO

Region

Morning
Midday

Early Afternoon

Late Afternoon
0.1

0.12

0.14

0.16

0.18

0.2

Time of Day

N
M

A
C

Fr
eq

ue
nc

y

Cessna Skyhawk

Boeing 737-800

KingAir C90

Aircraft Type

Figure 5: Rate of NMAC for the baseline and alternative models. Error bars represent standard error.

0.7 0.8 0.9 1
0.12

0.14

0.16

0.18

0.2

mAP

N
M

A
C

Fr
eq

.

baseline alternative

0.8 0.9 1

Precision
0.8 0.85 0.9 0.95 1

Recall

Figure 6: Correlation between downstream task evaluation and test set evaluation metrics.

than the other aircraft types, the NMAC frequency for Boeing 737-800 fell between the frequencies
for the other aircraft types. The lack of precise predictability of the models’ performance on the
downstream task based on the test set evaluation reinforces the value of comprehensive evaluation for
real-world high-stakes models.

5 Conclusion

In this work, we outlined the AVOIDDS dataset, our associated vision-based aircraft detection models,
test set evaluation, and closed-loop simulation. Via evaluation of our baseline model on the test set
and downstream task and comparison to the alternative model, we validated the need for sophisticated
training and evaluation functionalities, particularly when it comes to real-world, high risk applications
in which the margin for error is minimal. These components, while centered around aviation as an
application, serve as an example of an accessible, functioning benchmark for designing and refining
machine learning-based perception systems using both standard and task-specific evaluation metrics.
The main potential negative impact of our work is premature deployment of models that have not
been thoroughly trained and tested, resulting in unsafe conditions for the passengers or other aircraft.
While we make an effort to cover as many environmental conditions as possible, we cannot guarantee
that AVOIDDS covers all conditions aircraft will experience when deployed in the real world. We

9



also use simulated images, and while X-Plane 11 is photorealistic, the sim-to-real gap should be
further investigated. Future work could also explore accounting for state uncertainty in the controller
to improve overall performance. We hope AVOIDDS motivates further work on comprehensive
benchmarks that can directly impact the training and deployment of complex models.

Acknowledgments and Disclosure of Funding

The NASA University Leadership Initiative (grant #80NSSC20M0163) provided funds to assist the
authors with their research. This research was also supported by the National Science Foundation
Graduate Research Fellowship under Grant No. DGE–1656518. Any opinion, findings, and conclu-
sions or recommendations expressed in this material are those of the authors and do not necessarily
reflect the views of any NASA entity or the National Science Foundation.

References
[1] T. Hashimoto, M. Srivastava, H. Namkoong, and P. Liang, “Fairness without demographics in repeated

loss minimization,” in International Conference on Machine Learning (ICML), PMLR, 2018, pp. 1929–
1938.

[2] C. Zhou, X. Ma, P. Michel, and G. Neubig, “Examining and combating spurious features under dis-
tribution shift,” in International Conference on Machine Learning (ICML), PMLR, 2021, pp. 12 857–
12 867.

[3] P. W. Koh, S. Sagawa, H. Marklund, S. M. Xie, M. Zhang, A. Balsubramani, W. Hu, M. Yasunaga,
R. L. Phillips, I. Gao, et al., “WILDS: A benchmark of in-the-wild distribution shifts,” in International
Conference on Machine Learning (ICML), PMLR, 2021, pp. 5637–5664.

[4] J. Philion, A. Kar, and S. Fidler, “Learning to evaluate perception models using planner-centric metrics,”
in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2020,
pp. 14 055–14 064.

[5] A. Corso, S. M. Katz, C. A. Innes, X. Du, S. Ramamoorthy, and M. J. Kochenderfer, “Risk-driven design
of perception systems,” in Advances in Neural Information Processing Systems (NeurIPS), 2022.

[6] W. Liang and J. Zou, “MetaShift: A dataset of datasets for evaluating contextual distribution shifts and
training conflicts,” in International Conference on Learning Representations, 2022.

[7] S. Bansal, R. Calandra, T. Xiao, S. Levine, and C. J. Tomlin, “Goal-driven dynamics learning via Bayesian
optimization,” in Conference on Decision and Control (CDC), IEEE, 2017, pp. 5168–5173.

[8] R. McAllister, B. Wulfe, J. Mercat, L. Ellis, S. Levine, and A. Gaidon, “Control-aware prediction
objectives for autonomous driving,” in IEEE International Conference on Robotics and Automation
(ICRA), 2022.

[9] A. Rozantsev, V. Lepetit, and P. Fua, “Detecting flying objects using a single moving camera,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 5, pp. 879–892, 2016.

[10] J. James, J. J. Ford, and T. L. Molloy, “Learning to detect aircraft for long-range vision-based sense-and-
avoid systems,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 4383–4390, 2018.

[11] R. Opromolla and G. Fasano, “Visual-based obstacle detection and tracking, and conflict detection for
small UAS sense and avoid,” Aerospace Science and Technology, vol. 119, p. 107 167, 2021.

[12] J. Ying, H. Li, H. Yang, and Y. Jiang, “Small aircraft detection based on feature enhancement and context
information,” Journal of Aerospace Information Systems, pp. 1–12, 2022.

[13] S. Ghosh, J. Patrikar, B. Moon, M. M. Hamidi, et al., “AirTrack: Onboard deep learning framework for
long-range aircraft detection and tracking,” arXiv preprint arXiv:2209.12849, 2022.

[14] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The pascal visual object
classes (VOC) challenge,” International Journal of Computer Vision, vol. 88, pp. 303–338, 2010.

[15] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft
COCO: Common objects in context,” in European Conference on Computer Vision (ECCV), Springer,
2014, pp. 740–755.

[16] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection
and semantic segmentation,” in IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), 2014, pp. 580–587.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional networks for
visual recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 9,
pp. 1904–1916, 2015.

[18] R. Girshick, “Fast R-CNN,” in IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), 2015, pp. 1440–1448.

10



[19] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object detection with region
proposal networks,” Advances in Neural Information Processing Systems (NeurIPS), vol. 28, 2015.

[20] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “SSD: Single shot
multibox detector,” in European Conference on Computer Vision (ECCV), Springer, 2016, pp. 21–37.

[21] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,” arXiv preprint arXiv:1804.02767,
2018.

[22] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object
detection,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[23] G. Jocher, A. Chaurasia, and J. Qiu, YOLO by Ultralytics, version 8.0.0, Jan. 2023.
[24] L. H. Li, P. Zhang, H. Zhang, J. Yang, C. Li, Y. Zhong, L. Wang, L. Yuan, L. Zhang, J.-N. Hwang, et al.,

“Grounded language-image pre-training,” in IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), 2022, pp. 10 965–10 975.

[25] F. Ciaglia, F. S. Zuppichini, P. Guerrie, M. McQuade, and J. Solawetz, “Roboflow 100: A rich, multi-
domain object detection benchmark,” arXiv preprint arXiv:2211.13523, 2022.

[26] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan, and
O. Beijbom, “NuScenes: A multimodal dataset for autonomous driving,” in IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 11 621–11 631.

[27] B. Ravi Kiran, L. Roldao, B. Irastorza, R. Verastegui, S. Suss, S. Yogamani, V. Talpaert, A. Lepoutre,
and G. Trehard, “Real-time dynamic object detection for autonomous driving using prior 3D-maps,” in
European Conference on Computer Vision (ECCV), 2018, pp. 0–0.

[28] Z. Zhang, A. Liniger, D. Dai, F. Yu, and L. Van Gool, “End-to-end urban driving by imitating a
reinforcement learning coach,” in IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), 2021, pp. 15 222–15 232.

[29] D. Chen and P. Krähenbühl, “Learning from all vehicles,” in IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), 2022, pp. 17 222–17 231.

[30] J. Jang, H. Lee, and J.-C. Kim, “CarFree: Hassle-free object detection dataset generation using CARLA
autonomous driving simulator,” Applied Sciences, vol. 12, no. 1, p. 281, 2022.

[31] Y. Xu, Y. Wei, K. Jiang, L. Chen, D. Wang, and H. Deng, “Action decoupled SAC reinforcement learning
with discrete-continuous hybrid action spaces,” Neurocomputing, vol. 537, pp. 141–151, 2023.

[32] F. d’Apolito and C. Sulzbachner, “Flight control of a multicopter using reinforcement learning,” IFAC-
PapersOnLine, vol. 54, no. 13, pp. 251–255, 2021.

[33] T. Shimada, H. Nishikawa, X. Kong, and H. Tomiyama, “Pix2Pix-based monocular depth estimation for
drones with optical flow on AirSim,” Sensors, vol. 22, no. 6, p. 2097, 2022.

[34] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-fidelity visual and physical simulation for
autonomous vehicles,” in Field and Service Robotics: Results of the 11th International Conference,
Springer, 2018, pp. 621–635.

[35] M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why should I trust you?’ Explaining the predictions of any
classifier,” in ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016,
pp. 1135–1144.

[36] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio, “An empirical evaluation of deep
architectures on problems with many factors of variation,” in International Conference on Machine
Learning (ICML), 2007, pp. 473–480.

[37] P. Follmann and T. Bottger, “A rotationally-invariant convolution module by feature map back-rotation,”
in IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE, 2018, pp. 784–792.

[38] D. Hendrycks and T. Dietterich, “Benchmarking neural network robustness to common corruptions and
perturbations,” in International Conference on Learning Representations, 2019.

[39] Y. He, Z. Shen, and P. Cui, “Towards non-IID image classification: A dataset and baselines,” Pattern
Recognition, vol. 110, p. 107 383, 2021.

[40] M. P. Owen, A. Panken, R. Moss, L. Alvarez, and C. Leeper, “ACAS Xu: Integrated collision avoidance
and detect and avoid capability for UAS,” in Digital Avionics Systems Conference (DASC), IEEE, 2019,
pp. 1–10.

[41] L. E. Alvarez, I. Jessen, M. P. Owen, J. Silbermann, and P. Wood, “ACAS sXu: Robust decentralized
detect and avoid for small unmanned aircraft systems,” in Digital Avionics Systems Conference (DASC),
IEEE, 2019, pp. 1–9.

[42] D. Dey, C. Geyer, S. Singh, and M. Digioia, “Passive, long-range detection of aircraft: Towards a field
deployable sense and avoid system,” in Field and Service Robotics, Springer, 2010, pp. 113–123.

[43] J. Lai, J. J. Ford, L. Mejias, and P. O’Shea, “Characterization of sky-region morphological-temporal
airborne collision detection,” Journal of Field Robotics, vol. 30, no. 2, pp. 171–193, 2013.

11



[44] Airborne object tracking dataset, https : / / registry . opendata . aws / airborne - object -
tracking/, 2021.

[45] M. Mueller, N. Smith, and B. Ghanem, “A benchmark and simulator for UAV tracking,” in European
Conference on Computer Vision (ECCV), Springer, 2016, pp. 445–461.

[46] S. Li and D.-Y. Yeung, “Visual object tracking for unmanned aerial vehicles: A benchmark and new
motion models,” in AAAI Conference on Artificial Intelligence (AAAI), vol. 31, 2017.

[47] Y. Wang, Z. Huang, R. Laganière, H. Zhang, and L. Ding, “A UAV to UAV tracking benchmark,”
Knowledge-Based Systems, vol. 261, p. 110 197, 2023.

[48] M. J. Kochenderfer, J. E. Holland, and J. P. Chryssanthacopoulos, “Next generation airborne collision
avoidance system,” Lincoln Laboratory Journal, vol. 19, no. 1, pp. 17–33, 2012.

[49] S. M. Katz, L. E. Alvarez, M. Owen, S. Wu, M. W. Brittain, A. Das, and M. J. Kochenderfer, “Collision
risk and operational impact of speed change advisories as aircraft collision avoidance maneuvers,” in
AIAA AVIATION Forum, 2022.

[50] S. M. Katz, A. Corso, S. Chinchali, A. Elhafsi, A. Sharma, M. Pavone, and M. J. Kochenderfer, “NASA
ULI aircraft taxi dataset,” Stanford Digital Repository, 2021.

[51] K. D. Julian and M. J. Kochenderfer, “Guaranteeing safety for neural network-based aircraft collision
avoidance systems,” in Digital Avionics Systems Conference (DASC), 2019.

[52] B. J. Chludzinski, “Evaluation of TCAS II version 7.1 using the FAA fast-time encounter generator
model,” Massachusetts Institute of Technology, Lincoln Laboratory, Project Report ATC-346, 2009.

[53] J. E. Holland, M. J. Kochenderfer, and W. A. Olson, “Optimizing the next generation collision avoidance
system for safe, suitable, and acceptable operational performance,” Air Traffic Control Quarterly, vol. 21,
no. 3, pp. 275–297, 2013.

[54] M. J. Kochenderfer, L. P. Espindle, J. K. Kuchar, and J. D. Griffith, “Correlated Encounter Model for
Cooperative Aircraft in the National Airspace System,” Massachusetts Institute of Technology, Lincoln
Laboratory, Project Report ATC-344, 2008.

[55] M. J. Kochenderfer, M. W. Edwards, L. P. Espindle, J. K. Kuchar, and J. D. Griffith, “Airspace encounter
models for estimating collision risk,” AIAA Journal of Guidance, Control, and Dynamics, vol. 33, no. 2,
pp. 487–499, 2010.

[56] A. J. Weinert, E. P. Harkleroad, J. D. Griffith, M. W. M. Edwards, and M. J. Kochenderfer, “Uncorrelated
encounter model of the national airspace system version 2.0,” Massachusetts Institute of Technology,
Lincoln Laboratory, Project Report ATC-404, 2013.

[57] M. J. Kochenderfer, L. P. Espindle, J. K. Kuchar, and J. D. Griffith, “Correlated encounter model for
cooperative aircraft in the national airspace system,” Massachusetts Institute of Technology, Lincoln
Laboratory, Project Report ATC-344, 2008.

[58] M. J. Kochenderfer and J. P. Chryssanthacopoulos, “Robust airborne collision avoidance through dynamic
programming,” Massachusetts Institute of Technology, Lincoln Laboratory, Project Report ATC-371,
2011.

12

https://registry.opendata.aws/airborne-object-tracking/
https://registry.opendata.aws/airborne-object-tracking/


A Encounter Model Details

Table 1: Parameters for data generation.

Parameter Minimum Maximum Unit

Ownship Horizontal Speed 60 70 m/s
Intruder Horizontal Speed 60 70 m/s
Horizontal Miss Distance 0 100 meters
Vertical Miss Distance −30 30 meters
Relative Heading 100 260 degrees

In order to simplify the representation of encounters in this study, we adopt a model where the
ownship and intruder aircraft move along straight-line trajectories with constant horizontal speeds.
To generate an encounter, we follow a two-step process. First, we randomly sample a set of encounter
features from uniform distributions within the specified ranges presented in table 1. We then use
these features to generate trajectories for both the ownship and intruder aircraft. The horizontal and
vertical miss distance parameters indicate the range between the ownship and intruder aircraft and
their relative altitude at the point of closest approach. These distances are deliberately chosen to
ensure that all encounters result in a near mid-air collision (NMAC) if no collision avoidance action
is taken.

Each simulated encounter has a duration of 50 seconds, with the closest point of approach occurring
40 seconds into the encounter. The range of relative headings is selected to generate encounters that
are nearly head-on, with the intruder aircraft typically within the ownship’s field of view. The features
specified in table 1 completely determine the relative trajectories of the ownship and intruder aircraft.
Once the relative trajectories are generated, we randomly position both trajectories around the origin
region by applying rotations and shifts.

B Dataset Details

The AVOIDDS dataset was generated to include 72,000 images, of which 64,800 are training images
and 7200 are validation images. These images are accompanied by 72,000 label files. Table 2 shows
the number of images for each variable category while table 3 shows the exact distributions used to
generate the images. Equal amounts of each cloud covering, region, and aircraft type are represented,
and the other variables were randomized for each image.

The range between the ownship and intruder aircraft was sampled from a gamma distribution with
shape and scale parameters dependent on the aircraft type. We sampled the distances for the Cessna
Skyhawk and King Air C90 from a gamma distribution with shape 2 and scale 200, and the Boeing
737-800 distances were sampled from a gamma distribution with shape 3 and scale 200. The expected
value of Γ(3, 200) is about 200m more than that of Γ(2, 200) which we intended to account for
the larger size of the Boeing 737-800 aircraft relative to the smaller aircraft. A gamma distribution
allows us to sample from a distribution that is skewed toward closer ranges, where aircraft are more
likely to be visible in the image. To ensure that the aircraft were not positioned too close together,
we verified that the sampled values were greater than 20m for the Cessna Skyhawk and King Air
C90 and 50m for the Boeing 737-800. The position vertically and horizontally of the intruder was
sampled uniformly within the ownship field of view. The time of day for each sample was randomized
between 08:00 and 17:00 on January 1st in each respective location’s local time. We split the day into
4 time windows for evaluation purposes: morning (08:00-10:00), midday (10:00-13:00), afternoon
(13:00-15:00), and late afternoon (15:00-17:00).

C Additional Results

Table 4 shows the specific test set evaluation values for the baseline and alternative models discussed,
specifically precision, recall, and mAP. These can be compared to the downstream task metrics shown
in table 5, which includes the frequencies of NMAC and advisory.

13



Table 2: AVOIDDS dataset overview.

Number of images

Attribute Value Total Training Validation

All - 72,000 64,800 7200

Clouds

Clear 12,000 10,800 1200
High Cirrus 12,000 10,800 1200
Scattered 12,000 10,800 1200
Broken 12,000 10,800 1200
Overcast 12,000 10,800 1200
Stratus 12,000 10,800 1200

Region

Palo Alto, CA (PAO) 18,000 16,200 1800
Boston, MA (BOS) 18,000 16,200 1800
Oshkosh, WI (OSH) 18,000 16,200 1800
Reno, NV (RNO) 18,000 16,200 1800

Aircraft type
Cessna Skyhawk 24,000 21,600 2400
Boeing 737-800 24,000 21,600 2400
King Air C90 24,000 21,600 2400

Range
0−150m 9124 8268 856
150−500m 35,932 32,303 3629
>500m 26,944 24,229 2715

Intruder rel. alt. Below 36,048 32,482 3566
Above 35,952 32,318 3634

Time of day

Morning 15,930 14,385 1545
Midday 24,142 21,722 2420
Afternoon 15,954 14,269 1685
Late Afternoon 15,974 14,424 1550

Table 3: Parameters for the AVOIDDS Dataset.

Parameter Minimum Maximum Distribution Unit

Ownship distance east/north from origin −5000 5000 U(−5000, 5000) meters
Ownship distance vertically from origin −1000 1000 U(−1000, 1000) meters
Ownship and intruder heading 0 360 U(0, 360) degrees
Ownship pitch −30 30 N (0, 5) degrees
Ownship roll −45 45 N (0, 10) degrees
Time of day 08:00 17:00 U(08:00, 17:00) hours

D Experiment Reproduction

The experiments in this work can be reproduced using the AVOIDDS repository, available at this link:
https://github.com/sisl/VisionBasedAircraftDAA.

D.1 Test Set Evaluation

Steps for how to reproduce the test set evaluation experiment results are as follows:

1. Download AVOIDDS dataset: Download and extract the AVOIDDS dataset
(https://purl.stanford.edu/hj293cv5980) and place the folder in a convenient location.

2. Download and setup the code repository: Download the code repository
(https://github.com/sisl/VisionBasedAircraftDAA). Navigate to the src/model directory
and run pip3 install -r requirements.txt to install the necessary dependencies for
test set evaluation.

14

https://github.com/sisl/VisionBasedAircraftDAA
https://purl.stanford.edu/hj293cv5980
https://github.com/sisl/VisionBasedAircraftDAA


Table 4: Test set evaluation results for baseline and alternative model

Baseline model Alternative model

Attribute Value Precision Recall mAP Precision Recall mAP

All - 0.997 0.907 0.866 0.884 0.928 0.764

Clouds

Clear 0.991 0.905 0.856 0.818 0.918 0.687
High Cirrus 1.000 0.930 0.900 0.943 0.931 0.827
Scattered 0.997 0.923 0.887 0.952 0.936 0.841
Broken 0.997 0.921 0.888 0.934 0.936 0.826
Overcast 0.995 0.920 0.882 0.857 0.937 0.747
Stratus 0.999 0.846 0.783 0.829 0.912 0.684

Region

Palo Alto, CA (PAO) 0.999 0.930 0.900 0.984 0.934 0.865
Boston, MA (BOS) 0.996 0.922 0.885 0.819 0.938 0.722
Oshkosh, WI (OSH) 0.999 0.866 0.813 0.912 0.919 0.772
Reno, NV (RNO) 0.992 0.912 0.865 0.849 0.922 0.719

Aircraft Type
Cessna Skyhawk 0.995 0.844 0.750 0.880 0.867 0.643
Boeing 737-800 0.999 0.988 0.983 0.914 0.986 0.891
King Air C90 0.996 0.897 0.852 0.849 0.922 0.761

Range
0−150m 0.999 0.983 0.979 0.914 0.997 0.909
150−500m 0.997 0.960 0.942 0.879 0.979 0.843
>500m 0.995 0.818 0.714 0.881 0.838 0.621

Intruder rel. alt. Below 0.995 0.844 0.847 0.905 0.920 0.764
Above 0.998 0.917 0.884 0.863 0.937 0.763

Time of day

Morning 0.997 0.911 0.872 0.929 0.916 0.785
Midday 0.998 0.907 0.866 0.923 0.927 0.799
Afternoon 0.998 0.914 0.878 0.937 0.940 0.831
Late Afternoon 0.993 0.897 0.846 0.767 0.930 0.657

3. Begin evaluation: Run python3 eval.py -o baseline_results -d [PATH
TO AVOIDDS DATASET]. Results for baseline model evaluation will appear in
baseline_results.txt. Run python3 eval.py -o alternative_results -m
"../../models/alternative.pt" -d [PATH TO AVOIDDS DATASET] to evaluate
the alternative model with results outputting to alternative_results.txt.

D.2 Downstream Task Evaluation

Steps for how to reproduce the above downstream task experiment results are as follows:

1. Download and setup the code repository: Download the code repository
(https://github.com/sisl/VisionBasedAircraftDAA). Navigate to the src/simulator direc-
tory and run pip3 install -r requirements.txt to install the necessary dependencies
for downstream task evaluation.

2. Setup X-Plane and aircraft: Follow the instructions in the
"Setup X-Plane" section of the benchmark repository README file
(https://github.com/sisl/VisionBasedAircraftDAA/tree/main/src/simulator), setting
the intruder aircraft as the one with which you would like to simulate encounters.

3. Set variables for simulation: At the bottom of the simulate.py file, uncomment and set
the variables in the "BULK SIMULATION VARIABLE SETUP". Set args.craft to the
aircraft you set in X-Plane in the previous step. Set args.model_path to the desired model
as well.

4. Begin simulation: In the command line, run ./simulate.sh and toggle your screen such
that the X-Plane window is visible and full-screen. You will need to leave this visible for
the entirety of the simulation.

5. Repeat: Repeat steps 2 through 4 for each desired aircraft and model.

15

https://github.com/sisl/VisionBasedAircraftDAA
https://github.com/sisl/VisionBasedAircraftDAA/tree/main/src/simulator


Table 5: Downstream task evaluation results for baseline and alternative model

Baseline model Alternative model

Attribute Value Total Encs NMAC frq Advisory frq NMAC frq Advisory frq

All - 8640 0.143 0.187 0.165 0.191

Clouds

Clear 1440 0.158 0.181 0.188 0.186
High Cirrus 1440 0.134 0.192 0.153 0.206
Scattered 1440 0.142 0.191 0.157 0.206
Broken 1440 0.146 0.184 0.156 0.194
Overcast 1440 0.138 0.188 0.163 0.183
Stratus 1440 0.142 0.185 0.174 0.172

Region

Palo Alto, CA (PAO) 2160 0.144 0.199 0.160 0.203
Boston, MA (BOS) 2160 0.147 0.185 0.163 0.198
Oshkosh, WI (OSH) 2160 0.140 0.180 0.157 0.190
Reno, NV (RNO) 2160 0.141 0.183 0.180 0.173

Aircraft Type
Cessna Skyhawk 2880 0.157 0.124 0.179 0.130
Boeing 737-800 2880 0.141 0.280 0.152 0.287
King Air C90 2880 0.132 0.156 0.164 0.156

Time of day

Morning 2160 0.140 0.186 0.178 0.193
Midday 2160 0.140 0.188 0.148 0.195
Afternoon 2160 0.144 0.188 0.153 0.194
Late Afternoon 2160 0.149 0.185 0.181 0.182

16


	Introduction
	Related Work
	AVOIDDS Benchmark
	Data Generation 
	Baseline Models
	Evaluation

	Experiments
	Test Set Evaluation
	Downstream Task Evaluation

	Conclusion
	Encounter Model Details
	Dataset Details
	Additional Results
	Experiment Reproduction
	Test Set Evaluation
	Downstream Task Evaluation


