
Combinatorial Optimization with Policy Adaptation
using Latent Space Search

Felix Chalumeau∗

InstaDeep
f.chalumeau@instadeep.com

Shikha Surana∗
InstaDeep

s.surana@instadeep.com

Clément Bonnet
InstaDeep

c.bonnet@instadeep.com

Nathan Grinsztajn
InstaDeep

n.grinsztajn@instadeep.com

Arnu Pretorius
InstaDeep

a.pretorius@instadeep.com

Alexandre Laterre
InstaDeep

a.laterre@instadeep.com

Thomas D. Barrett
InstaDeep

t.barrett@instadeep.com

Abstract

Combinatorial Optimization underpins many real-world applications and yet, de-
signing performant algorithms to solve these complex, typically NP-hard, problems
remains a significant research challenge. Reinforcement Learning (RL) provides a
versatile framework for designing heuristics across a broad spectrum of problem
domains. However, despite notable progress, RL has not yet supplanted industrial
solvers as the go-to solution. Current approaches emphasize pre-training heuristics
that construct solutions but often rely on search procedures with limited variance,
such as stochastically sampling numerous solutions from a single policy or em-
ploying computationally expensive fine-tuning of the policy on individual problem
instances. Building on the intuition that performant search at inference time should
be anticipated during pre-training, we propose COMPASS, a novel RL approach
that parameterizes a distribution of diverse and specialized policies conditioned on
a continuous latent space. We evaluate COMPASS across three canonical problems
- Travelling Salesman, Capacitated Vehicle Routing, and Job-Shop Scheduling -
and demonstrate that our search strategy (i) outperforms state-of-the-art approaches
in 9 out of 11 standard benchmarking tasks and (ii) generalizes better, surpassing
all other approaches on a set of 18 procedurally transformed instance distributions.

1 Introduction

Combinatorial Optimization (CO) has a wide range of real-world applications, from transporta-
tion (Contardo et al., 2012) and logistics (Laterre et al., 2018), to energy (Froger et al., 2016). Solving
a CO problem consists of finding an ordering, labelling or subset of elements from a finite, discrete
set that maximizes (or minimizes) a given objective function. As the number of feasible solutions
typically grows exponentially with the problem size, CO problems are challenging (often NP-hard)
to solve. As such, significant work goes into designing problem-specific heuristic approaches that,

*Equal contribution

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

whilst not guaranteeing the optimal answer, can often work well in practice. Reinforcement Learning
(RL) offers a domain-agnostic framework to learn heuristics and has been successfully applied across
a range of CO tasks (Vinyals et al., 2015; Deudon et al., 2018; Mazyavkina et al., 2021).

Concretely, leading RL methods typically train a policy to incrementally construct a solution one
element at a time. However, whilst most efforts have focused on improving the one-shot quality
of these construction heuristics (Kool et al., 2019; Kwon et al., 2020; Grinsztajn et al., 2022), it
intuitively appears impractical to reliably produce the optimal solution to NP-hard problems within
a single construction attempt. Consequently, competitive performance has to rely on combining a
pre-trained policy with an additional search procedure. Nevertheless, this crucial aspect is often
implemented using simple procedures such as stochastic sampling (Kool et al., 2019; Kwon et al.,
2020; Grinsztajn et al., 2022), beam search (Steinbiss et al., 1994) or Monte Carlo Tree Search
(MCTS) (Browne et al., 2012). An alternative approach, representing the current state-of-the-art
for search-based RL (Bello et al., 2016; Hottung et al., 2022), is to actively re-train the heuristic on
each new problem instance; however, this comes with clear computational and practical limitations.
Strikingly, neither of these approaches pre-trains the policy in a way that could enable a fast and
efficient inference time search: rather current approaches typically completely decouple both. The
absence of an efficient search strategy is even more detrimental when the test instances are out of the
distribution (OOD) used to train the policy, as this may cause a large difference between the learned
policy and the policy leading to the optimal solution.

In this work, we aim to overcome the current limitations of search strategies used in RL when
applied to CO problems. Our approach is to learn a latent space of diverse policies that can be
explored at inference time in order to find the best-performing strategies for a given instance. This
updates the current paradigm by enabling sampling from a policy space at inference time rather than
constantly sampling the same policy (or set of policies) with stochasticity. We introduce COMPASS
– COMbinatorial optimization with Policy Adaptation using Latent Space Search. COMPASS
effectively creates an infinite set of diverse solvers by using a single conditioned policy and sampling
the conditions from a continuous latent space. The training process encourages subareas of the latent
space to specialize to sub-distributions of instances and this diversity is used at inference time to
solve newly encountered instances.

We evaluate COMPASS on three popular CO problems: Travelling Salesman Problem (TSP), Capaci-
tated Vehicle Routing Problem (CVRP) and Job-Shop Scheduling Problem (JSSP). After training
on a distribution of fixed-sized instances for each problem, we evaluate our method on both in- and
out-of-distribution test sets. We find that simple search strategies requiring no re-training provide
both rapid and sustained improvement of the instance-specific policy, with COMPASS establishing a
new state-of-the-art across all problems in this setting. Thanks to the diversity provided by its latent
space, COMPASS achieves high performance even without a search budget and achieves comparable
or better results than current leading few-shot methods.

Concretely, our work makes the following contributions: (i) We introduce COMPASS which leverages
a latent space of diverse and specialized policies to effectively solve CO problems. (ii) We show
that COMPASS allows for the efficient adaptation of instance-specific policies without re-training
or sacrificing zero-shot performance. (iii) Experimentally, our approach is found to represent a new
state-of-the-art for RL-based CO methods across all our considered problem types, achieving superior
performance in 27 out of 29 tasks. (iv) We release fast and performant implementations of our
method and its main competitors, written in JAX. We also provide all of our test sets including our
procedurally transformed problem instances for easier comparison in future work.

2 Related work

Construction methods for CO Construction approaches in RL for CO incrementally build a
solution by selecting one element at a time. After Hopfield and Tank (1985) first applied neural
networks to TSP, Bello et al. (2016) extended these efforts by proposing to learn heuristics with
RL using a Pointer Network (Vinyals et al., 2015) combined with an actor-critic framework. This
approach was extended by Deudon et al. (2018) who added an attention-based city encoder, which
was subsequently further extended by Kool et al. (2019) to use a general transformer architecture
(Vaswani et al., 2017). The transformer has since become the standard model for a range of CO
problems and is also used in this work. Kim et al. (2022) builds on Kool et al. (2019) by leveraging

2

symmetries of routing problems during training. Even though the majority of these construction
approaches have focused on routing problems, numerous works have also tackled other classes of
CO problems, especially on graphs, like Maximum Cut (Dai et al., 2017; Barrett et al., 2020), or Job
Shop Scheduling Problem (JSSP), for which Zhang et al. (2020) proposed a Graph Neural Network
(GNN) approach. A broader scope of (non-construction) approaches can be found in Appendix K.

Improving solutions at inference time As it is unlikely that the first solution generated by a
construction heuristic is optimal, a popular approach consists in sampling various trajectories during
inference for the same CO problem. POMO (Kwon et al., 2020) uses one policy rolled out on several
versions of the same problem, while considering different starting points or symmetries, to create
diverse trajectories and select the best one. Choo et al. (2022) proposes an efficient search guided
by simulations, but cannot take advantage of a large inference budget by itself. EAS (Hottung et al.,
2022) adds on POMO by fine-tuning a subset of the model parameters at inference time using gradient
descent. However, the new solutions are biased toward the underlying pre-trained policy and can
easily be stuck in local optima. Instead, MDAM (Xin et al., 2021) and Poppy (Grinsztajn et al., 2022)
employ a population of agents, all of which are simultaneously rolled out at inference time. MDAM
trains these policies to select different initial actions, whereas Poppy utilizes a loss function designed
to specialize each policy on specific subsets of the problem distribution. Despite demonstrating
promising performance, these approaches are constrained by the number of policies used during
training, which remains fixed. Such a limitation quickly diminishes the benefits of additional solution
candidates sampled from the population. Our method COMPASS uses the same loss as Poppy, but,
unlike their approach and that of MDAM, COMPASS is not bound to a specific number of specialized
policies. Moreover, its latent space makes it possible to add additional search mechanisms over the
policy space, ensuring better solutions over time. CVAE-Opt (Hottung et al., 2021), akin to our
method, uses a latent space for solving routing problems, however, it has several differences. First,
COMPASS is trained end-to-end with RL, hence does not necessitate pre-solved instances. Second,
CVAE-Opt requires training an additional recurrent encoder for (instance, solution) pairs, whereas
COMPASS uses the latent space to encode a distribution of complementary policies and can be easily
applied to pre-train models. Overall, COMPASS significantly outperforms CVAE-Opt while having
shorter runtime.

3 Methods

3.1 Preliminaries

Formulation The goal of a CO problem is to find the optimal labeling of a set of discrete variables
that satisfies the problem’s constraints. In RL, a CO problem can be formulated as a Markov Decision
Process (MDP) defined by M = (S,A,R, T, γ,H). This includes the state space S with states
si ∈ S, action space A with actions ai ∈ A, reward function R : S × A → R, transition function
T (si+1|si, ai), discount factor γ ∈ [0, 1], and horizon H which denotes the episode duration. The
state of a problem instance is represented as the (partial) trajectory or set of actions taken in the
instance, and the next state st+1 is determined by applying the chosen action at to the current
state st. An agent is introduced in the MDP to interact with the CO problem and find solutions by
learning a policy π : S → A. The policy is trained to maximize the expected sum of discounted
rewards to find the optimal solution, and this is formalized as the following learning objective:
π∗ = argmax

π
E[
∑H

t=0 γ
tR(st, at)].

3.2 COMPASS

Recall our intuition that no single policy will reliably be able to solve all instances of an NP-hard
CO problem in a single inference pass. Two primary approaches to address this are the inclusion
of inference time search and the deployment of a diverse set of policies to increase the chance of
a near-optimal strategy being deployed. This work aims to unify and extend these approaches by
training an infinitely large set of diverse and specialized policies that can subsequently be searched at
inference time.

To achieve this, we propose that a single set of policy parameters condition not just on the current
observation, but also on samples drawn from a continuous latent space. The training objective

3

Figure 1: Our method COMPASS is composed of the following two phases. A. Training - the latent
space is sampled to generate vectors that the policy can condition upon. The conditioned policies
are then evaluated and only the best one is trained to create specialization within the latent space.
B. Inference - at inference time the latent space is searched through an evolution strategy to exploit
regions with high-performing policies for each instance.

then encourages this latent space of policies to be diverse (generate a wide range of behaviors) and
specialized (these behaviors are optimized for different types of problem instances from the training
distribution). This latent space can then be efficiently searched during inference to find the most
performant policy for a given problem instance. In this section, we describe in detail the realization
of this approach, which we call COMPASS (COMbinatorial optimization with Policy Adaptation
using Latent Space Search). In Fig. 1, we provide an illustrated overview of COMPASS.

Our approach offers several key advantages over traditional techniques. Compared to methods that
directly train multiple, uniquely parameterized policies (Xin et al., 2021; Grinsztajn et al., 2022),
training a single conditional policy can, in principle, provide a continuous distribution of an infinite
number of policies. Moreover, our approach mitigates the significant training and memory overheads
associated with training a population of agents. Compared to methods that rely on brute-force
sampling (Kool et al., 2019; Kwon et al., 2020; Grinsztajn et al., 2022) or expensive fine-tuning
(Hottung et al., 2022), our training process produces a structured latent space (where similar policies
are found near to each other) that permits principled search during inference.

Latent space The latent space defines the set of policies that our model can condition itself upon.
Importantly, we do not learn the distribution of this space, but rather select a prior distribution over the
space from which we sample during training. In practice, we use a latent space with 16 dimensions
bounded between -1 and 1, and use a uniform sampling prior.

Architecture COMPASS is agnostic to the network architecture used, so long as the resulting
policy is, in some way, conditioned on the vector sampled from the latent space. This can be achieved
in numerous ways, from directly concatenating the vector to the input observation to conditioning
keys, queries, and values in the self-attention models commonly used for CO. We refer to Appendix D
for further details about the architectures used in this work and how the latent vector is used to
condition them. Whilst it is possible to train COMPASS from scratch, we found that it was simple
and efficient to adapt pre-trained single-policy models. To do this, we zero-initialize any additional
weights corresponding to the sample latent vector such that it has no impact at the start of training. In
practice, we adapt a single-agent architecture designed for few-shot inference in all of our problem
settings; POMO (Kwon et al., 2020) for TSP and CVRP, and a similar architecture taken from
Jumanji (Bonnet et al., 2023) for JSSP (we also considered the current SOTA model L2D (Zhang
et al., 2020), however, we found that the model from Jumanji already outperformed this approach).
Full network details can be found in Appendices D.1 (TSP & CVRP) and D.2 (JSSP).

Training The training procedure aims to specialize subareas of the latent space to sub-distributions
of problems by training the policy solely on latent vectors that achieve the best performance on a given
problem. At each training step, we uniformly sample a set of N vectors from the latent space and
condition the policy on each vector resulting in N conditioned policies. After evaluating each policy

4

on the problem instance, we train the best policy (i.e. the policy conditioned on the best-performing
latent vector) on the instance. The model is updated using the gradient of our objective as given by

∇θJcompass = Eρ∼DEz1,...,zN∼Pz
Eτi∼πθ(·|zi)[∇θ log πθ(τi⋆ |zi⋆)Ri⋆−Bρ,θ], (1)

where D is the data distribution, Pz the latent space, zi a latent vector, πθ the conditioned policy,
τi the trajectory generated by policy πθ conditioned on vector zi and has the corresponding reward
Ri, i⋆ is the index of the best performing latent vector (in the sampled set) and is expressed as
i⋆ = argmaxi∈[1,N] R(τi), and lastly, Bρ,θ is the baseline, inspired by Kwon et al. (2020). Full
details of the algorithmic procedure can be found in Appendix F. Notably, our work is the first to
create a specialized and diverse set of policies represented by a continuous latent space by only
training the best-performing vector for each problem instance.

A key training hyperparameter is the number of condition vectors sampled during evaluation. More
conditioned policies results in an increased certainty that the best-performing vector in the sampled
set of conditions is the best-performing vector in the latent space. Therefore, increasing the number
of sampled conditions increases the likelihood of training the true best latent vector for the given
problem instance, rather than a potentially suboptimal vector. More details (including training times
and environment steps) are reported in Appendix F.

Inference-time search Given the latent space of diverse, specialized policies obtained by training
COMPASS, at inference time, we apply a principled search procedure to find the most performant
strategies. Our desired properties for a search procedure are that it should be simple, capable of
rapid adaptation and robust to local optima. As such, evolutionary strategies are an appropriate
approach. Specifically, we use Covariance Matrix Adaptation (CMA-ES, (Hansen and Ostermeier,
2001)). CMA-ES uses a multivariate normal distribution to sample vectors and iteratively updates the
distribution’s mean to increase the expected performance of sampled vectors (i.e. the quality of the
solution found by the policy corresponding to each vector). The covariance is also adapted over time,
either for exploration (high values, broad sampling) or exploitation (small values, focused sampling).

For a given problem instance, there may be multiple high-performance policies, therefore we use
several independent CMA-ES components in parallel. To ensure that those components explore
distinct areas of the space (or at least, take different paths), we compute a Voronoi Tesselation (Du
et al., 1999) of the latent space and use the corresponding centroids to initialize the means of the
CMA-ES components. This method proves to be robust, easy to tune, and fast, and requires low
memory and computation budget, making it the perfect candidate for efficient adaptation at inference
time. In our experimental section (4.3), we present an analysis of our latent space and how it is
explored by CMA-ES. Details and considered alternatives can be found in Appendix E.4.

4 Experiments

We evaluate our method on three problems – Travelling Salesman (TSP), Capacitated Vehicle Routing
(CVRP), and Job Shop Scheduling (JSSP) – widely used to assess RL-based methods for CO (Deudon
et al., 2018; Kool et al., 2019; Grinsztajn et al., 2022; Hottung et al., 2022). In Section 4.1, we
evaluate COMPASS in the standard setting used by other methods from the literature and report
results on each problem type. In Section 4.2, we assess the robustness of methods by evaluating
them on instances of TSP and CVRP that are procedurally transformed using the approach developed
by Bossek et al. (2019). In Section 4.3, we analyze the methods’ search strategies; in particular, we
provide insights about COMPASS’ latent space and how it is navigated by CMA-ES at inference time.
Figure 2 provides a radar plot overview of our aggregated experimental results across six performance
categories of interest: (1) in distribution instances, OOD instances with different levels of distribution
shift (2) small, (3) medium and (4) large, (5) large instance sizes as well as (6) few-shot performance.
Our results highlight the strengths and weaknesses of each approach and in particular, the versatility
and superiority of COMPASS.

Baselines We compare COMPASS to a suite of leading RL methods and industrial solvers. Across
all problems we provide baselines for EAS (Hottung et al., 2022); the current SOTA active-search
RL method that fine-tunes the policy on each problem instance, and Poppy (Grinsztajn et al., 2022);
the current SOTA active-search RL method that stochastically samples from a fixed population of

5

pre-trained solvers. For routing problems (TSP and CVRP), we also provide results for POMO (Kwon
et al., 2020); the leading single-agent, one-shot architecture on which EAS and Poppy are built, and
LKH (Helsgaun, 2017); a leading industrial solver. We also report results of TSP-specific industrial
solver Concorde (Applegate et al., 2006). For JSSP, we provide results for L2D (Zhang et al., 2020);
the leading single-agent, one-shot architecture. We also provide results for the attention-based model
proposed in Jumanji (Bonnet et al., 2023) that proved to outperform L2D. Finally, we report the
results of Google OR-Tools (Perron and Furnon, 2019); the reference industrial solver for JSSP.

Training As our method is capable of adopting initial parameters from a pre-trained model, we
re-use publicly available checkpoints of POMO (details in Appendix H) as the starting point for
COMPASS on TSP and CVRP. For JSSP, we found attention-based model from Bonnet et al. (2023)
outperforms L2D and hence choose it to be the reference single-agent architecture. We train the model
and use the same trained checkpoints for all methods. We then train COMPASS until convergence on
the same training distribution as that used to train the initial checkpoint. For TSP and CVRP these
are problem instances with 100 locations uniformly sampled within a unit square. For JSSP, we use
the same training distribution used in EAS, which is an instance with 10 jobs and machines, and a
maximum possible duration of 98. A single set of hyperparameters is used across all problems, with
full training details provided in Appendix G.

Inference When evaluating active-search performance, each method is given a fixed budget of 1600
attempts – similar to Hottung et al. (2022); Grinsztajn et al. (2022) –, where each attempt consists
of one trajectory per possible starting point. This approach is used to enable direct comparison to
POMO and EAS which use rollouts from all starting points at each step. For the main results on
TSP and CVRP, we do not use the “augmentation trick”; where the same problem is solved multiple
times by rotating the coordinate frame to make it appear different and thus generate additional diverse
trajectories. This trick was used in a few baselines from prior work, however, we refrain from using it
in the main results of this work for two reasons: (1) it is a domain-specific trick mainly applicable to
routing problems and (2) it significantly increases the required computational budget. We nevertheless
provide some results in both settings to ease comparison with previous work. Overall, the trajectory
budget is exactly the same as the one used in Grinsztajn et al. (2022); Hottung et al. (2022). Note
that expressing the budget in terms of trajectories gives an advantage to EAS, which uses more time,
memory, and computation due to the backpropagations used to update the policy during the search.

In Distribution

Few-Shot

Large
Shift

Medium Shift

Small
Shift

Larger
Instances

0.2

0.4

0.6

0.8

1.0

COMPASS (ours) Poppy POMO EAS

In Distribution Instances drawn from the train-
ing distribution (see first cols. in Tables 1a to 1c).
Larger Instances Instance with a larger size
than the training data. See generalization in Ta-
bles 1a to 1c.
Small/Medium/Large Shift Instances that have
been procedurally mutated to be out of the training
distribution. Detailed results in Fig. 3.
Few-Shot The standard benchmark with a lower
budget (typically 10% of the usual). Numerical
results in Appendix I.

Figure 2: Performance of COMPASS and the main baselines aggregated across several tasks over
three problems (TSP, CVRP, and JSSP). For each task (problem type, instance size, mutation power),
we normalize values between 0 and 1 (corresponding to the worst and best performing RL method,
respectively). Hence, all tasks have the same impact on the aggregated metrics. COMPASS surpasses
the baselines on all of them, showing its versatility for all types of tasks and in particular, its
generalization capacity.

6

Table 1: Results of COMPASS against the baseline algorithms for (a) TSP, (b) CVRP, and (c) JSSP
problems. The methods are evaluated on instances from training distribution as well as on larger
instance sizes to test generalization.

(a) TSP

Training distr. Generalization
n = 100 n = 125 n = 150 n = 200

Method Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

Concorde 7.765 0.000% 82M 8.583 0.000% 12M 9.346 0.000% 17M 10.687 0.000% 31M
LKH3 7.765 0.000% 8H 8.583 0.000% 73M 9.346 0.000% 99M 10.687 0.000% 3H

POMO (greedy)
POMO (sampling)
Poppy 16
EAS
COMPASS (ours)

7.796
7.779
7.766
7.779
7.765

0.404%
0.185%
0.013%
0.176%
0.002%

37S
2H
2H
7H
2H

8.635
8.609
8.587
8.601
8.586

0.607%
0.299%
0.050%
0.252%
0.036%

6S
20M
20M
62M
20M

9.440
9.401
9.359
9.382
9.354

1.001%
0.585%
0.141%
0.381%
0.083%

10S
32M
32M
2H

32M

10.933
10.956
10.795
10.758
10.724

2.300%
2.513%
1.007%
0.660%
0.348%

21S
70M
70M
210M
70M

(b) CVRP

Training distr. Generalization
n = 100 n = 125 n = 150 n = 200

Method Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

LKH3 15.65 0.000% - 17.50 0.000% - 19.22 0.000% - 22.00 0.000% -

POMO (greedy)
POMO (sampling)
Poppy 32
EAS
COMPASS (ours)

15.874
15.713
15.663
15.661
15.594

1.430%
0.399%
0.084%
0.068%
-0.361%

2M
4H
4H

13H
4H

17.818
17.612
17.548
17.517
17.511

1.818%
0.642%
0.276%
0.094%
0.064%

<1M
43M
42M
2H

42M

19.750
19.488
19.421
19.285
19.313

2.757%
1.393%
1.044%
0.341%
0.485%

1M
1H
1H
4H
1H

23.318
23.378
23.352
22.264
22.462

5.992%
6.264%
6.144%
1.120%
2.098%

2M
100M
100M

7H
100M

(c) JSSP

Training distr. Generalization
10× 10 15× 15 20× 15

Method Obj. Gap Time Obj. Gap Time Obj. Gap Time

OR-Tools 807.6 0.0% 37S 1188.0 0.0% 3H 1345.5 0.0% 80H

L2D (sampling)
Single
Poppy 16
EAS
COMPASS (ours)

871.7
862.1
849.7
858.4
845.5

8.0%
6.7%
5.2%
6.3%
4.7%

8H
3H
3H
5H
3H

1378.3
1302.6
1290.4
1295.2
1282.8

16.0%
9.6%
8.6%
9.0%
8.0%

25H
5H
5H
9H
5H

1624.6
1503.0
1495.7
1498.0
1485.6

20.8%
11.7%
11.2%
11.3%
10.4%

40H
8H
8H
11H
8H

Code availability We release the code1 used to train our method and to run all baselines. We also
make our checkpoints available for all three problems, along with the datasets necessary to reproduce
the results. To ensure fair comparison and extend our evaluation to new settings, we reimplemented
all baselines within the same codebase. For the three problems, we used the JAX (Bradbury et al.,
2018) implementations from Jumanji (Bonnet et al., 2023) to leverage hardware accelerators (e.g.
TPU). Our code is optimized for TPU v3-8, which is the hardware used for our experiments.

4.1 Standard benchmarking on TSP, CVRP, and JSSP

We evaluate our method on benchmark sets frequently used in the literature (Kool et al., 2019;
Kwon et al., 2020; Grinsztajn et al., 2022; Hottung et al., 2022). Specifically, for TSP and CVRP,
we use datasets of 10 000 instances drawn from the training distribution, with the positions of 100
cities/customers uniformly sampled within the unit square, and three datasets not seen during training,
each containing 1000 problem instances but with larger sizes: 125, 150 and 200, also generated from
a uniform distribution over the unit square. We use the exact same datasets as in the literature.

Results The average performance of each method across all problem settings are presented in Ta-
ble 1. We find that COMPASS demonstrates superior performance on 9 out of the 11 test sets
considered. Moreover, the degree of improvement is significant across all problem types. On TSP and
JSSP, COMPASS reduces the optimality gap on the training distribution by a factor of 6.5 and 1.3,
respectively. On CVRP, COMPASS is the only RL method able to outperform the industrial solver
LKH. Finally, COMPASS is also found to generalize well to larger problem instances unseen during
training. COMPASS obtains the best solutions in all TSP and JSSP sets and is only outperformed by

1Code, checkpoints and evaluation sets are available at https://github.com/instadeepai/compass

7

0.0 0.2 0.4 0.6 0.8

0.4

0.3

0.2

0.1

0.0

Pe
rf

. r
at

io
 (

%
)

TSP

COMPASS (ours)
Poppy 16
POMO
EAS

0.0 0.2 0.4 0.6 0.8
0.6

0.5

0.4

0.3

0.2

0.1

0.0

CVRP

Mutation Power

Figure 3: Relative difference between COMPASS and baselines as a function of mutation power.
COMPASS outperforms the baselines on all 18 evaluation sets. Most methods have a decreasing
performance ratio, showing that COMPASS generalizes better: its evolution strategy is able to find
areas of its latent space that are high-performing, even on instances that are out-of-distribution.

EAS on two instance sizes of CVRP. Nevertheless, EAS is 50% slower and more computationally
expensive as it requires updating an entire subset of its network’s weights (see Appendix A), as
opposed to simply navigating the 16-dimensional latent space of policies as is done in COMPASS.

The same benchmark is also reported with the “augmentation trick” in Table 2 for TSP and CVRP.
This trick can only be used for the routing problem and is not applicable for JSSP. Interestingly,
COMPASS is the only method that performs on par or better without the “augmentation trick”,
showing its ability to adapt and find diversity in its latent space rather than through a problem-specific
trick. Other conclusions drawn above remain unchanged in this setting.

4.2 Robustness to generalization: solving mutated instances

To further study the generalization ability of our method, we consider the mutation operators intro-
duced by Bossek et al. (2019) to procedurally transform instances drawn from the training distribution.
By progressively increasing the power of the applied mutations we construct new datasets that are
increasingly far from the training distribution whilst not modifying the overall size of the problem.

We use 9 different mutation operators (explosion, implosion, cluster, rotation, linear projection,
axis projection, expansion, compression and grid). One can find an illustration of the entire set of
mutations along with their mathematical definition in Appendix C. Interestingly, it enables us to
evaluate the methods on instances that look closer to real-life situations. For instance, the operator
that gathers nodes in a cluster can mimic a dense city surrounded by its nearby suburbs. In practice,
each mutation operator is parameterized by a factor that controls the probability of mutating each
node of the instance - referred to as mutation power - this factor directly impacts the shift between
the training distribution and the new distribution. We use 10 values, going from 0 (no change) to 0.9
(highly mutated instances).

Results We plot the relative performance of the baselines compared to COMPASS in Fig. 3.
A negative performance ratio indicates that a method does not provide as good of a solution as
COMPASS, and we observe that this is the case for all baseline methods, at all mutation strengths, on
both TSP and CVRP. Moreover, COMPASS is seen to generalize significantly better than the methods
that only rely on stochastic sampling for their search, namely POMO and Poppy. This validates our
intuition that adaptive policies are especially important for handling out-of-distribution data, where
the optimal policy may be significantly different to that needed during pre-training. Even compared
to EAS, which fine-tunes the policy to the target problem instance, we find that COMPASS maintains
a significant performance gap across all mutation strengths. This result is particularly noteworthy as
our approach only modifies 16 parameters (the conditioning vector sampled from our latent space),
compared to EAS, which updates more than 104 parameters (the embeddings of the instance’s nodes).

It is interesting to note that the relative generalization performance of COMPASS compared to
EAS is stronger on these mutated instances than the larger instances considered in Section 4.1. We

8

0 20 40 60 80 100

10 1

100

Di
st

an
ce

 fr
om

 O
pt

im
al

 To
ur

 L
en

gt
h

Overall Performance

0 20 40 60 80 100

Last Sample Performance

POMO (greedy)
COMPASS (ours)
Poppy 16

POMO
EAS

Search budget (%)

Figure 4: Evolution of the overall performance and last performance obtained by the methods during
their search on TSP150 - averaged on 1000 instances. The right plot reports mean and standard
deviations of the most recent shots tried by methods during the search. It illustrates how COMPASS
efficiently explores its latent space to search for high-performing solutions.

hypothesize that this is because EAS actively fine-tunes the embeddings of every location in a given
problem instance. Therefore, as the problem size increases, so does the number of free parameters
to adapt the policy (albeit with commensurately increasing computational overhead). This suggests
that further improvements to COMPASS could be possible by increasing the number of adapted
parameters (i.e. the latent space dimension), however, we defer further investigation to future works.

4.3 Analysis of the search strategies

Figure 5: Contour plot of COMPASS’s
latent space, reflecting performance on
a problem instance. White crosses show
the successive means of a CMA-ES com-
ponent during the search. The width of
the path is proportional to the search’s
variance.

In this section, we analyze the structure of the latent space
and the behavior of the search procedure both empirically
and visually.

Figure 4 details the performance of our considered meth-
ods as a function of the overall search budget. The left
panel reports the quality of the best solution found so
far (i.e. the cumulative performance), whereas the right
plot reports the mean and standard deviations of the latest
batch of solutions (i.e. the current performance) during the
search process. From this, we would highlight three main
conclusions. (i) Adaptive methods (COMPASS, EAS)
perform well as they are able to improve the mean perfor-
mance of their solution over time, in contrast to stochastic
sampling methods (Poppy, POMO). This also highlights
that the latent space of COMPASS has been able to di-
versify and can be exploited. (ii) Highly-focused (low-
variance) search does not always outperform stochastic
exploration. Concretely, whilst EAS quickly adapts a pol-
icy with better average performance than Poppy (right
panel), the additional variance of Poppy’s multiple diverse
policies means it produces better overall solutions (left
panel). (iii) COMPASS is able to combine both of the pre-
viously discussed aspects for a highly performant search procedure. By using an adaptive covariance
mechanism as well as its multiple components to navigate several regions of the latent policy space,
it focuses its search on promising strategies (better average performance) whilst maintaining a broad
beam (higher variance).

To better understand how COMPASS’s latent space is structured and explored, Fig. 5 presents the
trajectory of a single CMA-ES component during the search of a 2D latent space on a randomly
chosen problem instance. We can first observe that even for a specific problem instance, there are
several high-performing areas of interest which highlights the advantage of having multiple search
components. Furthermore, it shows how the evolution strategy explores the space. The search
variance is initially high to improve exploration until the search center moves into a high-performing
area, whereupon the variance is gradually decreased to better exploit these promising strategies. We

9

provide additional plots and explanation in Appendix E.2 for other problem instances, demonstrating
the spread of the specialised areas depending on the problem instance.

Lastly, it is worth noting that the adaptation mechanism of COMPASS (CMA-ES search) comes with
negligible time cost (e.g. three orders of magnitude smaller than the time needed for the environment
rollout), which is a strength compared to the costly backpropagation-based updates performed in
EAS. We provide additional time analysis in Appendix L.

Table 2: Results of COMPASS and the baseline algorithms with instance augmentation for (a) TSP
and (b) CVRP. We also report COMPASS with no augmentation (no aug.).

(a) TSP
Training distr. Generalization

n = 100 n = 125 n = 150 n = 200
Method Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

CVAE-Opt
SGBS
SGBS+EAS-Lay
POMO (sampling)
Poppy 16
EAS
COMPASS (aug.)
COMPASS (no aug.)

-
7.769
7.769
7.767
7.765
7.768
7.765
7.765

0.343%
0.058%
0.058%
0.026%
0.002%
0.039%
0.002%
0.002%

6D
9M
3H
2H
2H
7H
2H
2H

8.646
-
-

8.594
8.584
8.590
8.584
8.586

0.736%
-
-

0.128%
0.009%
0.082%
0.009%
0.036%

21H
-
-

20M
20M
66M
20M
20M

9.482
9.367
9.359
9.376
9.351
9.360
9.350
9.354

1.45%
0.220%
0.174%
0.321%
0.141%
0.175%
0.043%
0.083%

30H
8M
1H

32M
32M
138M
32M
32M

-
10.753
10.727
10.916
10.802
10.724
10.723
10.724

-
0.619%
0.40%
2.14%
1.08%

0.350%
0.337%
0.348%

-
14M
3H

70M
70M

206M
70M
70M

(b) CVRP
Training distr. Generalization

n = 100 n = 125 n = 150 n = 200
Method Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

CVAE-Opt
SGBS
SGBS+EAS-Lay
POMO (sampling)
Poppy 32
EAS
COMPASS (aug.)
COMPASS (no aug.)

-
15.66
15.594
15.67
15.62
15.62
15.65
15.594

1.36%
0.01%

-0.36%
0.18%
-0.14%
-0.21%
-0.00%
-0.36%

11D
10M
6H
4H
4H

13H
4H
4H

17.87
-
-

17.56
17.49

17.462
17.52

17.511

2.08%
-
-

0.33%
-0.10%
-0.22%
0.09%
0.06%

36H
-
-

43M
42M
2H

42M
42M

19.84
19.43

19.168
19.43
19.32

19.213
19.33

19.313

3.24 %
1.08%

-0.27%
1.08%
0.50%

-0.037%
0.56%
0.49%

46H
4M
2H
1H
1H
5H
1H
1H

-
22.57

21.988
23.24
22.94

22.162
22.55

22.462

-
2.59%

-0.05%
5.64%
4.27%
0.73%
2.49%
2.10%

-
9M
5H

100M
100M

7H
100M
100M

5 Conclusion

We present COMPASS, a novel approach to solving CO problems using RL. Our approach is
motivated by the observation that active search is a key component to finding high-quality solutions
to NP-hard problems. Finding one-shot solutions that are near-optimal is believed to be impossible.
Instead, COMPASS is trained to create a distribution of diverse and specialized policies, conditioned
on a structured latent space. This diversification is achieved by using an objective that specializes
areas of the space on sub-distributions of problem instances. By navigating this latent space at
inference time COMPASS is able to find the most performant policy for a given instance. Empirical
results show that COMPASS achieves state-of-the-art performance on 9 out of 11 standard benchmark
tasks across three distinct CO problems, TSP, CVRP and JSSP, outperforming prior RL methods
based on either stochastic sampling or fine-tuning. We extend the canonical evaluation sets with
instances that are procedurally transformed using mutation operators introduced in prior work. This
additional set of tasks enables us to assess the generalization ability of COMPASS. We show that
COMPASS is particularly robust to out-of-distribution instances, achieving superior performance
in all 18 tasks considered. To better understand the benefits of our search procedure, we provide
an empirical analysis of the latent space’s structure, along with evidence of how it is explored at
inference time. We show that, despite having no explicit regularization during training, the latent
space exhibits clear regions of interest, and our search procedure is able to explore this space using an
evolution strategy to produce high-performing policies. Overall, COMPASS proves to be performant,
robust, and versatile on many types of CO problems and is able to provide solutions quickly at a
reasonable computational cost.

Limitations and future work. The diversity of the policies contained in the latent space is closely
linked to the specialisation that can be obtained from the training distribution, and hence potentially
limited. We would like to inspect whether a broader range of policies could be obtained by using
an additional unsupervised diversity reward, or by procedurally diversifying the distribution used.
Another limitation of our method is the lack of structure in our latent space. Although we proved
that it was enough to be successfully explored by an evolution strategy, we hypothesize that a better
defined space could be searched through faster. We would like to inspect the use of regularization
terms during the training phase to achieve this.

10

Acknowledgements

Research supported with Cloud TPUs from Google’s TPU Research Cloud (TRC). We thank anony-
mous reviewers for comments and helpful discussions that helped improve the paper.

References
D. Applegate, R. Bixby, V. Chvatal, and W. Cook. Concorde TSP solver, 2006.

T. D. Barrett, W. R. Clements, J. N. Foerster, and A. I. Lvovsky. Exploratory combinatorial optimiza-
tion with reinforcement learning. In In Proceedings of the 34th National Conference on Artificial
Intelligence, AAAI, 2020.

I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio. Neural combinatorial optimization with
reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

C. Bonnet, D. Luo, D. Byrne, S. Abramowitz, V. Coyette, P. Duckworth, D. Furelos-Blanco, N. Grin-
sztajn, T. Kalloniatis, V. Le, O. Mahjoub, L. Midgley, S. Surana, C. Waters, and A. Laterre.
Jumanji: a suite of diverse and challenging reinforcement learning environments in jax, 2023. URL
https://github.com/instadeepai/jumanji.

J. Bossek, P. Kerschke, A. Neumann, M. Wagner, F. Neumann, and H. Trautmann. Evolving diverse
tsp instances by means of novel and creative mutation operators. In Proceedings of the 15th
ACM/SIGEVO Conference on Foundations of Genetic Algorithms, FOGA ’19, page 58–71, New
York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450362542. doi:
10.1145/3299904.3340307. URL https://doi.org/10.1145/3299904.3340307.

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,
J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of
Python+NumPy programs, 2018. URL http://github.com/google/jax.

C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener,
D. Perez, S. Samothrakis, and S. Colton. A survey of monte carlo tree search methods. IEEE
Transactions on Computational Intelligence and AI in games, 4(1):1–43, 2012.

F. Chalumeau, R. Boige, B. Lim, V. Macé, M. Allard, A. Flajolet, A. Cully, and T. Pierrot. Neuroevo-
lution is a competitive alternative to reinforcement learning for skill discovery. In International
Conference on Learning Representations, 2023a. URL https://openreview.net/forum?id=
6BHlZgyPOZY.

F. Chalumeau, B. Lim, R. Boige, M. Allard, L. Grillotti, M. Flageat, V. Macé, A. Flajolet, T. Pierrot,
and A. Cully. Qdax: A library for quality-diversity and population-based algorithms with hardware
acceleration, 2023b.

X. Chen and Y. Tian. Learning to perform local rewriting for combinatorial optimization. In Advances
in Neural Information Processing Systems, 2019.

J. Choo, Y.-D. Kwon, J. Kim, J. Jae, A. Hottung, K. Tierney, and Y. Gwon. Simulation-guided
beam search for neural combinatorial optimization. In Advances in Neural Information Processing
Systems (NeurIPS), 2022. URL https://arxiv.org/abs/2207.06190.

C. Contardo, C. Morency, and L.-M. Rousseau. Balancing a dynamic public bike-sharing system,
volume 4. 2012.

A. Cully. Multi-emitter map-elites: Improving quality, diversity and data efficiency with het-
erogeneous sets of emitters. In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO ’21, page 84–92, New York, NY, USA, 2021. Association for Com-
puting Machinery. ISBN 9781450383509. doi: 10.1145/3449639.3459326. URL https:
//doi.org/10.1145/3449639.3459326.

H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song. Learning combinatorial optimization
algorithms over graphs. In Advances in Neural Information Processing Systems, 2017.

11

P. R. de O. da Costa, J. Rhuggenaath, Y. Zhang, and A. Akcay. Learning 2-opt heuristics for the
traveling salesman problem via deep reinforcement learning. In Asian Conference on Machine
Learning, 2020.

M. Deudon, P. Cournut, A. Lacoste, Y. Adulyasak, and L.-M. Rousseau. Learning heuristics for
the tsp by policy gradient. In Integration of Constraint Programming, Artificial Intelligence, and
Operations Research, pages 170–181. Springer International Publishing, 2018.

Q. Du, V. Faber, and M. Gunzburger. Centroidal voronoi tessellations: Applications and algorithms.
SIAM Review, 41(4):637–676, 1999. doi: 10.1137/S0036144599352836. URL https://doi.
org/10.1137/S0036144599352836.

B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: Learning skills without a
reward function. In International Conference on Learning Representations, 2019.

M. C. Fontaine, J. Togelius, S. Nikolaidis, and A. K. Hoover. Covariance matrix adaptation for
the rapid illumination of behavior space. In Proceedings of the 2020 Genetic and Evolutionary
Computation Conference, GECCO ’20, page 94–102, New York, NY, USA, 2020. Association
for Computing Machinery. ISBN 9781450371285. doi: 10.1145/3377930.3390232. URL
https://doi.org/10.1145/3377930.3390232.

A. Froger, M. Gendreau, J. E. Mendoza, Éric Pinson, and L.-M. Rousseau. Maintenance scheduling
in the electricity industry: A literature review. European Journal of Operational Research, 251
(3):695–706, 2016. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2015.08.045. URL
https://www.sciencedirect.com/science/article/pii/S0377221715008012.

N. Grinsztajn, D. Furelos-Blanco, and T. D. Barrett. Population-based reinforcement learning for
combinatorial optimization. arXiv preprint arXiv:2210.03475, 2022.

N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strategies.
Evolutionary Computation, 9(2):159–195, 2001. doi: 10.1162/106365601750190398.

K. Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling salesman
and vehicle routing problems. Roskilde University, Tech. Rep., 2017.

J. J. Hopfield and W. D. Tank. “neural” computation of decisions in optimization problems. Biological
cybernetics, 52(3):141–152, 1985.

A. Hottung and K. Tierney. Neural large neighborhood search for the capacitated vehicle routing
problem. In 24th European Conference on Artificial Intelligence (ECAI 2020), 2020.

A. Hottung, B. Bhandari, and K. Tierney. Learning a latent search space for routing problems using
variational autoencoders. In International Conference on Learning Representations, 2021.

A. Hottung, Y.-D. Kwon, and K. Tierney. Efficient active search for combinatorial optimization
problems. In International Conference on Learning Representations, 2022.

M. Kim, J. Park, and J. Kim. Learning collaborative policies to solve np-hard routing problems. In
Advances in Neural Information Processing Systems, 2021.

M. Kim, J. Park, and J. Park. Sym-nco: Leveraging symmetricity for neural combinatorial optimiza-
tion. In Advances in Neural Information Processing Systems, 2022. doi: 10.48550/arXiv.2205.
13209.

W. Kool, H. van Hoof, and M. Welling. Attention, learn to solve routing problems! In International
Conference on Learning Representations, 2019.

Y.-D. Kwon, B. K. Jinho Choo, Y. G. Iljoo Yoon, and S. Min. Pomo: Policy optimization with
multiple optima for reinforcement learning. In Advances in Neural Information Processing Systems,
2020.

A. Laterre, Y. Fu, M. K. Jabri, A.-S. Cohen, D. Kas, K. Hajjar, T. S. Dahl, A. Kerkeni, and K. Beguir.
Ranked reward: Enabling self-play reinforcement learning for combinatorial optimization. arXiv
preprint arXiv:1807.01672, 2018.

12

B. Lim, M. Allard, L. Grillotti, and A. Cully. Accelerated quality-diversity for robotics through
massive parallelism. arXiv preprint arXiv:2202.01258, 2022.

Y. Ma, J. Li, Z. Cao, W. Song, L. Zhang, Z. Chen, and J. Tang. Learning to iteratively solve
routing problems with dual-aspect collaborative transformer. In Advances in Neural Information
Processing Systems, volume 34, pages 11096–11107, 2021.

N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev. Reinforcement learning for combinatorial
optimization: A survey. Computers & Operations Research, 134:105400, 2021. ISSN 0305-
0548. doi: https://doi.org/10.1016/j.cor.2021.105400. URL https://www.sciencedirect.
com/science/article/pii/S0305054821001660.

L. Perron and V. Furnon. OR-Tools, 2019. URL https://developers.google.com/
optimization/.

A. Sharma, S. Gu, S. Levine, V. Kumar, and K. Hausman. Dynamics-aware unsupervised discovery
of skills. arXiv preprint arXiv:1907.01657, 2019.

V. Steinbiss, B.-H. Tran, and H. Ney. Improvements in beam search. In Third international conference
on spoken language processing, 1994.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. In Advances in Neural Information Processing Systems, 2017.

O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. In Advances in Neural Information
Processing Systems, 2015.

Y. Wu, W. Song, Z. Cao, J. Zhang, and A. Lim. Learning improvement heuristics for solving routing
problems. IEEE Transactions on Neural Networks and Learning Systems, 33(9):5057–5069, 2022.

L. Xin, W. Song, Z. Cao, and J. Zhang. Multi-decoder attention model with embedding glimpse for
solving vehicle routing problems. In In Proceedings of the 35th National Conference on Artificial
Intelligence, AAAI, 2021.

C. Zhang, W. Song, Z. Cao, J. Zhang, P. S. Tan, and C. Xu. Learning to dispatch for job shop
scheduling via deep reinforcement learning. In Advances in Neural Information Processing
Systems, 2020.

13

