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Abstract

This paper presents a framework for computing the Gromov-Wasserstein problem
between two sets of points in low dimensional spaces, where the discrepancy is the
squared Euclidean norm. The Gromov-Wasserstein problem is a generalization of
the optimal transport problem that finds the assignment between two sets preserving
pairwise distances as much as possible. This can be used to quantify the similarity
between two formations or shapes, a common problem in AI and machine learning.
The problem can be formulated as a Quadratic Assignment Problem (QAP), which
is in general computationally intractable even for small problems. Our framework
addresses this challenge by reformulating the QAP as an optimization problem with
a low-dimensional domain, leveraging the fact that the problem can be expressed
as a concave quadratic optimization problem with low rank. The method scales
well with the number of points, and it can be used to find the global solution for
large-scale problems with thousands of points. We compare the computational
complexity of our approach with state-of-the-art methods on synthetic problems
and apply it to a near-symmetrical problem which is of particular interest in
computational biology.

1 Introduction

Many important applications in machine learning deal with comparing sequences, images, and
higher dimensional data, where the data is unstructured and not directly comparable. In physics,
chemistry, biology, music, and linguistics, objects with greatly different properties often appear
in symmetrical variations characterized by concepts such as isomerisms, chirality, harmonies, and
alternations. Understanding, and being able to analyze, these types of variations can be truly critical
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as some variations in chemicals and biologicals may be toxic or even lethal. The Gromov-Wasserstein
framework [15, 16, 17], has shown to be a powerful approach for comparing and matching such data,
as it is invariant to translations and rotation. The Gromov-Wasserstein framework has, for example,
been successfully applied to domain adaptation [29], graph matching [28], metric alignment [9],
single-cell alignment [7], and word embedding [1].

The task of evaluating the Gromov-Wasserstein problem is in general considered to be intractable.
Typically, the computational burden grows exponentially with the number of points describing
the compared objects. In fact, a Gromov-Wasserstein problem can be formulated as quadratic
assignment problem (QAP) [14, 5, 4], which is known to be NP-Hard. Naturally, there has been
plenty of research on local and approximate methods for solving Gromov-Wasserstein and QAP
problems [20, 23, 22, 27, 2, 24, 25]. However, objects containing symmetries or repeated patterns
are particularly challenging for local optimization methods and may lead to significant errors in the
estimated discrepancy as matching such objects with local optimization methods may accidentally
find the sub-optimal reflections and rotations. The inability to detect such phenomena can have a
great impact on the discovery of isomerisms and subsequently attributes of crucial importance.

In this paper, we develop a rigorous method for globally optimizing Gromov-Wasserstein problems
by calculating a sequence of iteratively improving upper- and lower bounds. We consider a general
class of Gromov-Wasserstein discrepancy problems where the points, representing the objects, belong
to a Euclidean space. We show that such Gromov-Wasserstein problems can be formulated exactly as
low-rank QAPs. We build upon this low-rank QAP representation to develop an algorithm that scales
well with the number of points. The proposed algorithm can be characterized as a so-called cutting
plane method [12, 10] where we solve a sequence of relaxed problems that are iteratively strengthened
by generating and accumulating valid linear inequality constraints, i.e., cutting planes. The optimum
of the relaxed problem provides a valid lower bound for the optimum of the Gromov-Wasserstein
problem in each iteration. By solving a computationally cheap optimal transportation problem
[18, 26, 6], we obtain both an upper-bound and a new cutting plane to strengthen the relaxation. We
prove convergence for the proposed algorithm, and present a computational study that clearly shows
the algorithm’s efficiency and that the performance scales well with the number of points.

The main contribution of the paper can be summarized as:

• We identify a general class of Gromov-Wasserstein problems, for point clouds embedded in
low dimensional Euclidean spaces, that can be exactly represented as a concave low-rank
QAP. In particular, mappings of images fits well within our framework.

• We develop a method for solving this class of Gromov-Wasserstein problems by solving a
sequence of alternating sub-problems, which are either low-dimensional or linear.

• We prove that the proposed algorithm converges to a global optimal solution. The algorithm
produces an optimality certificate in each iteration, in the form of upper- and lower bounds,
which informs us of the potential suboptimality if the algorithm is terminated early.

• We present a numerical study, showing the efficiency of the proposed algorithm by comparing
to other global optimization methods. We also illustrate the importance of globally solving
Gromov-Wasserstein problems on a problem in computational biology.

In Section 2 we introduce the Gromov-Wasserstein problems and how it can be written as a QAP.
In Section 3 we identify a class of Gromov-Wasserstein discrepancy problems that can be written
as a concave relaxed QAPs problem, and in Section 4 we present the main methodology and an
algorithm for solving this class of problems. Finally, in Section 5 we present numerical results and an
application in computational biology.

2 The Gromov-Wasserstein discrepancy problem

Let x1 . . . , xn ∈ X and y1 . . . , yn ∈ Y be two sets of points and consider the problem of finding an
assignment π between the point sets such that the pairwise distances dX (xi, xi′) and dY(yπ(i), yπ(i′))
are as close as possible for i, i′ = 1, . . . , n, where dX and dY represents a notion of distance on the
sets X and Y , respectively. This can be formulated as the discrete Gromov-Wasserstein discrepancy
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problem

min
Γ∈P

1

2

n∑
i,i′,j,j′=1

(dX (xi, xi′)− dY(yj , yj′))
2Γi,jΓi′,j′ , (1)

and where the assignment π is represented by a permutation matrix Γ and P is the set of all n× n
permutation matrices. The corresponding relaxed problem, where instead Γ is in the set of doubly
stochastic matrices, denoted by P , is often referred to as the Gromov-Wasserstein problem [20]. In
these formulations we note that

n∑
i,i′,j,j′=1

(dX (xi, xi′)− dY(yj , yj′))
2Γi,jΓi′,j′

=

n∑
i,i′,j,j′=1

(dX (xi, xi′)
2 − 2dX (xi, xi′)dY(yj , yj′) + dY(yj , yj′)

2)Γi,jΓi′,j′

= ⟨Cx, Cx⟩ − 2⟨CxΓ,ΓCy⟩+ ⟨Cy, Cy⟩
where Cx = [dX (xi, xi′)]

n
i,i′=1, Cy = [dY(yj , yj′)]

n
j,j′=1, and ⟨·, ·⟩ denotes the standard (Frobenius)

inner product. Since the first and third sums are independent of Γ, solving the discrete Gromov-
Wasserstein problem (1) is the same as solving a quadratic assignment problem (QAP) on a simplified
Koopmans-Beckmann form [5], namely as

min
Γ∈P

− ⟨CxΓ,ΓCy⟩+
1

2
(⟨Cx, Cx⟩+ ⟨Cy, Cy⟩). (2)

This problem is in general NP-hard, and the number of variables scales with the number of data
points, making (2) computationally intractable for problems of relevant size. Here, we focus on
instances where the matrices Cx, Cy are positive definite and low rank. By utilizing this structure, we
develop an algorithm that is guaranteed to find a globally optimal solution and scales well with the
number of points.

3 The Gromov-Wasserstein problem and low rank QAP

An important special case of the Gromow-Wasserstein problem, considered in [20, 22], is when the
point clouds belong to the Euclidean space and the squared Euclidean distance is used as discrepancy.
That is, when the set of points are x1 . . . , xn ∈ Rℓx and y1 . . . , yn ∈ Rℓy , which we represent by the
matrices

X = (x1, x2, . . . , xn) ∈ Rℓx×n, Y = (y1, y2, . . . , yn) ∈ Rℓy×n.

In this case it can be noted that the distance matrices Cx and Cy has a rank bounded by ℓx + 2 and
ℓy + 2, respectively, which can be seen from the identities

Cx = (∥xi − xj∥22)ni,j=1 = 1mT
x − 2XTX +mx1

T , (3a)

Cy = (∥yi − yj∥22)ni,j=1 = 1mT
y − 2Y TY +my1

T , (3b)

where mx = (∥x1∥2, ∥x2∥2, . . . , ∥xn∥2)T , my = (∥y1∥2, ∥y2∥2, . . . , ∥yn∥2)T , and 1 ∈ Rn×1 is
a column vector of ones. This observation was also used in [22] for formulating the Gromov-
Wasserstein problem as a quadratic problem of rank (ℓx + 2)(ℓy + 2) and developing fast algorithms
for the problem. However, the rank can be even further reduced and the corresponding Gromov-
Wasserstein problem can be formulated as a QAP problem of rank ℓxℓy [25, Lemma 4.2.3] (cf. [20,
Proposition 1]).
Proposition 1. [25, Lemma 4.2.3] Let Γ be a doubly stochastic matrix and the matrices Cx and Cy

given by (3), then it holds that

⟨CxΓ,ΓCy⟩ = ⟨2XΓY T , 2XΓY T ⟩+ ⟨L,Γ⟩+ 21Tmy1
Tmx,

where L = 2nmxm
T
y − 4mx1

TY TY − 4XTX1mT
y .

Proof. The proposition follows by straightforward computations, where the expressions are simplified
using 1 = Γ1 = ΓT1. See the appendix for the proof.
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Hence, the low rank QAP formulation of the discrete Gromov-Wasserstein problem can be stated as

min
Γ∈P

− ⟨2XΓY T , 2XΓY T ⟩ − ⟨L,Γ⟩+ c0 (4)

where L = 2nmxm
T
y − 4mx1

TY TY − 4XTX1mT
y , and c0 = (⟨Cx, Cx⟩ + ⟨Cy, Cy⟩ −

41Tmy1
Tmx)/2. The Gromov-Wasserstein problem can also be rewritten similarly and formu-

lated as

min
Γ∈P

− ⟨2XΓY T , 2XΓY T ⟩ − ⟨L,Γ⟩+ c0, (5)

and since the objective function is concave, any optimal solution of (4) is also an optimal solution of
the relaxed problem.

Proposition 2. Any optimal solution of the discrete Gromov-Wasserstein problem (4), is also an
optimal solution to the Gromov-Wasserstein problem (5). Conversely, problem (5) always has an
optimal solution in one extreme point,1 and any optimal extreme point to (5) is also an optimal
solution to (4).

Proof. Since (5) is the minimization of a concave objective function over a convex sets P , it attains
the optimal value in an extreme point of the feasible set. Since the permutation matrices are the
extreme points to the doubly stochastic matrices, i.e., P = ext(P ), (5) attains its minimum on P .
Further, the set of points in P for which (5) attains its minimum are the optimal solutions of (4).
To show the converse statement, note that a minimum exists since P is compact and the objective
function is continuous. Further, since the objective function is concave, an optimum must be at an
extreme point. Finally, since the extreme points of P is the permutation matrices P , any optimal
extreme point of (5) is also feasible and optimal to (4).

In the next section we will propose a methodology and an algorithm for solving this problem.

4 A cutting plane algorithm utilizing the low rank structure

By Proposition 2, we know that an optimal solution to the discrete Gromov-Wasserstein problem
(4) can be obtained by solving the relaxed problem (5). However, the relaxed problem (5) is still a
high-dimensional non-convex QP, which is NP-hard [19]. The high dimensionality can, in particular,
be a limiting factor in solving the problem. For example, it is known that the performance of spatial
branch-and-bound, one of the main approaches for globally optimizing nonconvex problems [10],
can scale poorly with the number of variables. Thus, directly optimizing either (1) or (5) by spatial
branch-and-bound is not computationally tractable for larger instances. Our idea is to use the low-rank
formulation of the Gromov-Wasserstein problem and perform the optimization in a projected subspace
of dimension ℓxℓy + 1 by solving a sequence of relaxed problems.

First, we note that problem (5) can be written as

min
W∈Rℓx×ℓy ,w∈R,Γ∈P

− ∥W∥2F − w + c0 (6a)

subject to W = 2XΓY T , w = ⟨L,Γ⟩. (6b)

Equivalence of problems (5) and (6) is shown by simply inserting the expressions for w and W into
the objective function. Next, we project out the Γ variables, and we define the feasible set in the
(w,W )-space as F = ProjW,w

(
W ∈ Rℓx×ℓy , w ∈ R,Γ ∈ P

∣∣W = 2XΓY T , w = ⟨L,Γ⟩
)
.

Constructing an H-representation of the polytope F , i.e., representing it by linear constraints of the
form ⟨Zr,W ⟩+ αrw ≤ βr, is not trivial and the number of constraints can grow exponentially with
the number of data points. Therefore, we propose an algorithm based on a cutting plane scheme to
optimize over F .

1An extreme point of a convex set is a point in the set which does not lie in any open line segment joining
two points of the set.
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Instead of directly optimizing the objective in (6a) over the feasible set F , which we don’t have a
tractable representation for, we relax the problem as

min
W∈Rℓx×ℓy,w∈R

− ∥W∥2F − w + c0 (7a)

subject to ⟨Zr,W ⟩+ αrw ≤ βr, for r = 1, . . . , N. (7b)
The linear constraints (7b) are supporting hyperplanes of the feasible set F , which we will generate
iteratively. The goal is to force the minimizer of problem (7) into the feasible set F by using relatively
few linear constraints. Keep in mind, we don’t need a full representation of set F , we only need
to capture the shape of F in some areas of interest, e.g., the constraints defining the faces of F at
the optimal solution of problem (6) would suffice. The main advantage of the relaxation in problem
(7) is that it contains far fewer variables than both problems (5) and (6), and the dimensionality is
independent of the number of data points. Problem (7) can, therefore, be solved much more efficiently,
especially in early iterations when the number of constraints is low. We will show that the constraints
can be determined, as needed, by solving optimal transport problems. Based on this, we will develop
an iterative approach that sequentially solves problem (7) and adds a constraint until the the solutions
is the same as (6).

To initialize the search we determine a bounding box of F and use this to define a set of constraints
(7b). The bounding box is determined by the (elementwise) minimum and maximum of the variables
w and W given by

min
Γ∈P̄

2(XΓY T )i,j ≤Wi,j ≤ max
Γ∈P̄

2(XΓY T )i,j for i = 1, . . . , ℓx; j = 1, . . . , ℓy (8a)

min
Γ∈P̄
⟨L,Γ⟩ ≤ w ≤ max

Γ∈P̄
⟨L,Γ⟩, (8b)

which can each be computed efficiently by solving a standard optimal transport problem. Initializing
the set of constraints by the bounding box ensures that (7) is well-defined and bounded.

If the minimizer of problem (7) is within F , then we can stop as the solution is optimal for (6).2
Otherwise, we improve the outer approximation of F by adding new a constraint defined by ZN+1,
αN+1 and βN+1. Let (wN ,WN ) be the current optimal solution of (7), and assume that (wN ,WN ) /∈
F , then we form a new constraint, a so-called cutting plane, that excludes (wN ,WN ) from the feasible
set of (7).

We form a new constraint based on the gradient of the objective function (7a), which is given by
∇(w,vec(W )T )(−∥W∥2F − w, ) =

(
−1,−2 vec(W )T

)
.

By letting αN+1 = 1 and ZN+1 = 2WN , the hyperplane defining the new constraint will have the
(negative) gradient in the optimum (wN ,WN ) as normal vector. Then we select βN+1 such that the
new constraint forms a supporting hyperplane of F (7b). This can be found by solving the following
optimal transport problem

βN+1 := max
W∈Rℓx×ℓy ,w∈R,Γ∈P

⟨ZN+1,W ⟩+ αN+1w = max
Γ∈P

⟨4XTWNY + L,Γ⟩. (9)

subject to W = 2XΓY T , w = ⟨L,Γ⟩

When solving this problem, we also obtain a solution ΓN which is a doubly stochastic matrix
(generically also a permutation matrix), which gives an upper bound for (6) and a candidate for
the optimal solution. In the following subsection, we prove that the that algorithm, described in
Algorithm 1, converges to a globally optimal solution.

A geometrical illustration of the algorithm is given in Figure (1). For illustrative purposes, we have
used one-dimensional data resulting in a two-dimensional problem in the (W,w)-space. The data
sets consist of 6 points each where one of the data sets has a reflective symmetry. This results in
two global optima and 6! projected permutations in P . The first solution of (7) is located at one of
the corners of the bounding box and marked with a "1" (the subsequent solutions are marked "2" –
"5"). The infeasible point "1" is excluded from the search space by a cutting plane (red line, marked
with an "A"). Following the same procedure we obtain point "2", and cutting plane "B". Adding
further cutting planes excludes "3" and subsequently "4", resulting in the feasible and optimal point
"5". Note that the cutting planes from iterations 3 and 4 almost overlap the cutting planes "A" and
"B", since the gradients in the points 1 and 3 are very similar (the same for points 2 and 4).

2Remember, we are minimizing the objective (6a) over an outer approximation of the feasible set.
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Algorithm 1 Gromov-Wasserstein problem
Input X ∈ Rℓx×n, Y ∈ Rℓy×n, ϵ > 0 (Define point clouds and give tolerance level)
Lbound ← −∞, and Ubound ←∞ (Set lower and upper bounds)
(Zr, αr, βr) for r = 1, . . . , N from (8), where N = 2ℓxℓy + 2 (Set initial constraints)
while Ubound − Lbound > ϵ do
(wN ,WN )← Optimal solution to (7) (Solve (7))
Lbound ← −∥WN∥2F − wN + c0 (Update lower bound)
ΓN ← Optimal solution to (9) (Solve (9))
Ubound ← min(Ubound,−∥2XΓNY T ∥2F − ⟨L,ΓN ⟩+ c0) (Update upper bound)
(ZN+1, αN+1, βN+1)← (2WN , 1, ⟨4XTWNY + L,ΓN ⟩) (Calculate new constraints)
N ← N + 1 (Update iteration number)
end while
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Figure 1: Left image: An illustrative example of the method on one-dimensional data. Right image:
The area around the two global optima highlighting the sequence of optimal extreme points in the
approximate cover and generation of cutting planes.

4.1 Proof of convergence of Algorithm 1

The main result considering convergence is presented in the following theorem.

Theorem 1. The gap between the upper bound and lower bound in Algorithm 1 converges to 0 (if the
tolerance is ϵ = 0).

Proof. Consider the N th iteration in Algorithm (1), let (wN ,WN ) be an optimal solution to (7), and
ΓN is an optimal solution to (9) with corresponding points (ŵ, Ŵ ) = (⟨L,ΓN ⟩, 2XΓ̂NY T ), in the
(w,W )-space. Assume that the gap in the objective function between those two points is

ϵN = ∥WN∥2F + wN − ∥Ŵ∥2F − ŵ. (10)

The new constraint is then defined by⟨ZN+1,W ⟩+ w ≤ βN+1 where ZN+1 = 2WN and βN+1 =

2⟨WN , Ŵ ⟩+ ŵ, and thus for any point (w,W ) that satisfy the constraint it must hold that

0 ≤ 2⟨WN , Ŵ −W ⟩+ ŵ − w.
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By substituting ŵ from (10), we obtain

ϵN ≤ 2⟨WN , Ŵ −W ⟩ − w + ∥WN∥2F + wN − ∥Ŵ∥2F
= wN − w + 2⟨WN ,WN −W ⟩ − ∥Ŵ −WN∥2F
≤ wN − w + 2⟨WN ,WN −W ⟩
≤ (|wN − w|2 + ∥WN −W∥2F )1/2(1 + 4∥WN∥2F )1/2

where we in the last step have used the Cauchy-Schwarz inequality.

For any iteration number N+k with k > 0, we have that (wN+k,WN+k) is feasible for ⟨ZN+1,W ⟩+
w ≤ βN+1, and thus the Euclidean distance between (wN ,WN ) and (wN+k,WN+k) is at least
ϵN/(1 + 4∥WN∥2F ). If the gap in the algorithm does not converge to 0, then there is an ϵ > 0 for
which ϵN ≥ ϵ for all N and thus the distance between any two points in the sequence {(wN ,WN )}N
is bounded from below by ϵ/(1+4max{∥W∥2F |W ∈ (8)}). However, since the infinite sequence of
points {(wN ,WN )}N belong to a bounded set defined by (8), there must be a convergent subsequence,
which contradicts that there is a positive lower bound on the distance between any two points.

From Theorem 1 the gap between the upper and lower bound converges to zero, and thus Algorithm 1
converges to a globally optimal solution.

4.2 Considerations when solving the relaxed problem

Problem (7) minimizes a concave function over a convex set. Thus, the solution is located in the
extreme points of the convex set, i.e., the outer approximation of F . The standard approach to
solve such problems is by branch and bound methods. However, the low dimension and sequential
generation of constraints make it viable to search among the extreme points for an optimal solution.

To simplify notation, we define xT =
(
w vec(W )T

)
∈ Rr where r := ℓxℓy + 1. Then we can

write (7b) on the form Akx ≤ bk. Note that, by construction, none of the constraints are strongly
redundant as every constraint is satisfied with equality for a permutation. As the constraints are
added sequentially, it is actually easy to compute the new extreme points by keeping track of previous
extreme points as described in the following proposition.
Proposition 3. Assume that the extreme points {xk}k of the convex set described by Ax ≤ b are
known. When adding a constraint AT

Nx ≤ bN , the additional extreme points are linear combinations
of pairs of existing extreme points xk1 and xk2 both satisfying the same r−1 constraints with equality
and AT

Nxk1 ≤ bn and AT
Nxk2 > bn so that the combination satisfies AT

N (λxk1 + (1− λ)xk2) = bN .

Proof. This is done by counting the number of constraints satisfied with equality. See the appendix
for the proof.

Especially, in lower dimensions, e.g., with two or three dimensional data, this approach of keeping
track of all extreme points and calculating new extreme points after adding a constraint can be very
efficient for solving problem (7). More details of this method is provided in the appendix. In the
numerical results, we present results where problem (7) is solved both by this extreme point search
and the spatial branch and bound method in Gurobi.

5 Numerical results

5.1 Computational efficiency

In this section we compare the time to solve the problem up to an accuracy measured in relative error
with different methods: Algorithm 1 when (7) is solved with the extreme point method as described
in section 4.2, Algorithm 1 when (7) solved using Branch & bound using Gurobi 10.0 [13], MILP1
formulation in [11] implemented in Gurobi and finally when (6) is directly solved using Gurobi.
The MILP1 formulation can handle a larger class of problems, but is reported to handle very few
dimensions. All computations were performed using Matlab on an Intel i5 2.9 GHz PC. The linear
optimal mass problem (9) was solved using the package [3] which is based on the network simplex
[18]. The model problems tested are evenly distributed points in a unit disc or ball which we denote
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Table 1: Computational efficiency. Computational time on the format [mean (low - high)] from 5
repeats for various problem geometries, dimensions and sizes, for the proposed extreme point method,
the same method using branch and bound (B&B), the problem formulation MILP1 [11] and finally
(6) implemented in Gurobi via Matlab interface. An "-" indicates that the problem timed out, in such
a way being incomparable with the proposed method. An "!" indicates that the problem reached 104

iterations and stopped to the accuracy indicated.

Type n ℓx, ℓy Rel. Algorithm 1 [s] MILP1 [s] (6) B&B [s]
error Extreme point / B&B

U 10 2,2 10−8 0.14 (0.07-0.3) / 21 (6-47) 39 (11-58) 0.15 (0.14-0.16)
U 100 2,2 10−8 0.48 (0.3-0.7) / 86 (52-107) - 25 (19-39)
U 500 2,2 10−8 11 (9-16) / 408 (269-511) - -
U 1000 2,2 10−8 69 (54-85) / 576 (389-1059) - -
U 2000 2,2 10−8 460 (313-653) / - - -

U 10 2,3 10−8 1.8 (1.2-2.4) / 133 (45-296) 105 (49-147) 2.4(1.8-3.4)
U 100 2,3 10−8 278 (99-813) / - - 172 (133-221)
U 500 2,3 10−8 9568 / - - -

N1 10 2,3 10−8 0.51 (0.39-0.65) / 708 (233-1184) 146 (66-227) 3 (2.6-4.0)
N1 100 2,3 10−8 86 (20-275) / - - 95 (73-116)
N1 500 2,3 10−5 5310!/ - - -

N2 10 3,3 10−2 1.8 (0.7-3.2) / 142 (73-210) 117 (71-163) 0.2(0.1-0.3)
N2 100 3,3 10−2 36 (22-55)/ - - 45(36-65)
N2 500 3,3 10−2 436 (228-862) / - - -

N3 10 3,3 10−2 1.2 (0.5-2.3) / 22 (11-43) 72 (43-94) 0.2(0.1-0.3)
N3 100 3,3 10−2 7 (5-8)/ 91 (76-111) - 10 (9-12)
N3 500 3,3 10−2 11 (9-16) / 161 (104-226) - -
N3 1000 3,3 10−2 25 (22-29) / 176 (149-224) - -
N3 2000 3,3 10−2 93 (91-100) / 578 (429-691) - -

U , and normally distributed points N (0, σ). We denote N1 := N (0, I), N2 := N (0,diag(1, 1, 1
10 ))

and N3 := N (0,diag(1, 1
2 ,

1
10 )). See Table 1 for numerical results. Some notes on the results

1. On 2-dimensional data (ℓx = ℓy = 2), the extreme point method is particularly efficient.

2. For problems that need many extreme points (> 106), which depends on the data itself, the
handling of extreme points becomes the driver of computational cost.

3. Problems mainly containing reflections (e.g. N3) are easier to solve than those with room
for rotations.

4. Directly solving (6) with Gurobi was not feasible for problems with n ≥ 500.

5.2 Comparison with local search method

We compare the results using the proposed method to a local search method provided in the Git-hub
repository for [20]. The entropy regularization parameter is set to 0, and the method is run with
random initializations (including the first lower bound [17] used with success in [22]) until the
relative error to the global optimum is less than a specific tolerance ϵ. The problems are the same
as in the previous section. Note here that in the local search methods we need an oracle in order
to determine when we have reached a given performance level (which of course is not available in
practice), whereas we in the proposed method computes upper and lower bounds.

Results for two and three dimensional data (ℓx = ℓy = 2, 3) are presented in Table 2. The results show
that the proposed method performs better than multi-starting the local method when ℓx = ℓy = 2.
For the matching of 2-dimensional data to 3-dimensional data, the local search method is surprisingly
fast suggesting that the problems is of a completely different nature than when 2-d data is matched to
2-d data or 3-d data is matched to 3-d data.
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Note that we have chosen to compare with the method from [20] rather than [22]. This is since we
have not optimized the optimal transport computations using the low rank structures in the problem.
If we optimized the computations in this way, i.e., as in [21], we expect to get similar improvement
as in [22] compared with [20].

Table 2: Computational efficiency compared with local search [20]. Computational time on the
format [mean (low - high)] on two specific problems which contain near symmetries and the number
of random initializations needed to achieve the required accuracy on the format [mean (low - high)].
The number of initializations were limited to 1000.

Rel. Algorithm 1 Local search
Type n ℓx, ℓy error ϵ Exec. time [s] Exec. time [s] Initializations Sucessful runs

U 100 2,2 10−6 0.5 (0.4-0.6) 4 (0.3-12.7) 64 (4-205) 5
U 200 2,2 10−6 1.6 (1.0-1.9) 27 (13-42) 129 (59-197) 5
U 300 2,2 10−6 3.2 (2.7-3.9) 174 (33-458) 366 (69-959) 5
U 400 2,2 10−6 6 (5-8) 322 (97-685) 321 (97-781) 3

U 100 2,3 10−6 352 (99-669) 23 (8-60) 341 (110-853) 5
U 200 2,3 10−6 1238 (643-2612) 92 (11-168) 421(49-778) 3
U 300 2,3 10−6 3006 (601-4908) 131 (4-344) 270 (10-710) 5
U 400 2,3 10−6 4729 (4279-4868) 367 (5-343) 365 (1-859) 5

N1 100 2,2 10−6 0.5 (0.3-0.7) 0.6 (0.2-1.0) 10 (3-16) 5
N1 200 2,2 10−6 0.9 (0.7-1.1) 13.4 (1-37) 61 (6-168) 5
N1 300 2,2 10−6 2.4 (2.0-2.9) 37.5 (0.5-90) 75 (1-182) 5
N1 400 2,2 10−6 4.4 (3.6-5.3) 149 (22-378) 142 (21-361) 4

5.3 Application to symmetrical data for morphological analysis

In this example we investigate the impact of correctly evaluating the Gromov-Wasserstein discrepancy
compared to estimating it by local search. As a test case, we examine the ability to classify Adeno
Associated Viral (AAV) particles based on the Gromov-Wasserstein discrepancy on image data
originating from transmission electron microscopy, hence ℓx = ℓy = 2. AAV particles are nearly
round viral particles with multiple near-rotational symmetries as illustrated in Figure 2. By sampling
n = 500 positions on each AAV particle proportional to the protein density, the point sets from pairs
of particles Xi and Xj can subsequently be compared using the Gromov-Wasserstein discrepancy.

Computing the Gromov-Wasserstein discrepancy between all objects in a large set X = {Xi}Ni
is tedious. Therefore, one may consider calculating the discrepancy to a subset of the objects that
are well distributed under the Gromov-Wasserstein discrepancy. To find such a subset without
actually calculating all pairs of discrepancies, we use a greedy approach by defining the index subset
Sk = {si}ki=1 by selecting the first object arbitrarily and then let the set grow by

Sk+1 := {Sk, argmax
i ̸∈Sk

min
j∈Sk

dGW (Xi, Xj)}. (11)

In this way all objects are closer than a tolerance to an object in the subset, and the way the subset
is produced generates a monotonically decreasing tolerance. By using this procedure, every object
obtains a feature vector of distances to the objects indexed by Sk. Next the feature vectors are used
as input to a K-means clustering and classification quality in terms of purity, adjusted rand index and
normalized mutual information compared to an expert evaluation is presented in Figure 3.

The example shows that if the data contains symmetries, local search methods may get stuck on
permutations that are locally optimal but that are far from globally optimal, see Figure 2. Thus the
discrepancy obtained from local search is inappropriate to use as a discriminating feature, as shown
in the lower performance in the classification illustrated in Figure 3. In the left subfigure of Figure 2,
self-similarities are visited in the proposed method, and these local optima are in fact also almost
optimal when used as initiation point using local search methods e.g., [20].

This example shows that when the Gromov-Wasserstein problem is calculated accurately it provides
valuable information and biological meaning as it differentiates viral particles with different cargo and
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variations in capsid structure, and, at the same time, finds the optimal orientation positively revealing
possible chiralities or isomerisms. It also shows that when the distance is calculated accurately, it
provides better decision support than using local search methods.

0 1 2 3 4 5 6 7 8 9 10

global solution

0

1

2

3

4

5

6

7

8

9

10

lo
c
a
l 
s
o
lu

ti
o
n

1

-20

0

20

40

60

80

100

120

140

re
la

ti
v
e
 e

rr
o
r 

o
f 
lo

c
a
l 
s
o
lu

ti
o
n
 %

0%, rotation

5.16%, two axis mirror

8.77%, one axis mirror

3.72%, one axis mirror

Figure 2: Left: Each distance calculated with the proposed method and the same distance calculated
with the local search method [20]. For near symmetrical data, the confusion of the measurements
of the local method is clear. Middle: The relative error of the local method compared to the global
solution. Right: Matching of the structure to itself to four different orientations visited by the
algorithm where the color indicate the permutation Γ. The relative error of the Gromov-Wasserstein-
discrepancy and the isometry to the global optimum is written near each matching. The global
optimum is able to correctly match to itself, whereas the local search method may get stuck in local
optima.
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Figure 3: The trajectory of the increased quality of classification compared to an expert evaluation
when the distance is computed from all particles to the sequence of particles suggested in the text. The
gain of quality using an exact evaluation (blue) of the Gromov-Wasserstein problem is unambiguous
over the local search (red).

6 Discussion

When using distances as input for statistical analyses, the accuracy of the measurement set a bound
for the information resolution. If the measurement system introduces error of a certain structure, this
can produce artefacts in the result and affect decisions taken on the result. When using distances for
such purposes, it is necessary to either know the measurement error, the artefacts being produced, or
using an accurate measurement system. In this paper we have provided a method which computes the
Gromov-Wasserstein problem accurately, which reduces the uncertainty of such considerations.
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A Appendix

A.1 Proof of Proposition 1

Proposition 4. Let Γ be a doubly stochastic matrix and the matrices Cx and Cy given by

Cx = (∥xi − xj∥22)ni,j=1 = 1mT
x − 2XTX +mx1

T ,

Cy = (∥yi − yj∥22)ni,j=1 = 1mT
y − 2Y TY +my1

T ,

then it holds that

⟨CxΓ,ΓCy⟩ = ⟨2XΓY T , 2XΓY T ⟩+ ⟨L,Γ⟩+ 21Tmy1
Tmx,

where L = 2nmxm
T
y − 4mx1

TY TY − 4XTX1mT
y .

Proof. The proposition follows by the following straightforward computations, where we just expand
the expressions and use 1 = Γ1 = ΓT1, thus

tr(CxΓCyΓ
T ) = tr((1mT

x − 2XTX +mx1
T )Γ(1mT

y − 2Y TY +my1
T )ΓT )

=mT
xΓ(1m

T
y − 2Y TY +my1

T )ΓT1

− 2 tr(XTXΓ(1mT
y − 2Y TY +my1

T )ΓT )

+ 1TΓ(1mT
y − 2Y TY +my1

T )ΓTmx

=mT
x 1m

T
y 1− 2mT

xΓY
TY 1+ nmT

xΓmy

− 2mT
y Γ

TXTX1+ 4 tr(XTXΓY TY ΓT )− 21TXTXΓmy

+ nmT
y Γ

Tmx − 21TY TY ΓTmx + 1Tmy1
Tmx

= 4 tr(XTXΓY TY ΓT )− 4mT
xΓY

TY 1+ 2nmT
xΓmy

− 41TXTXΓmy + 21Tmy1
Tmx

= ⟨2XΓY T , 2XΓY T ⟩
+ ⟨2nmxm

T
y − 4mx1

TY TY − 4XTX1mT
y ,Γ⟩

+ 21Tmy1
Tmx.

A.2 Proof of Proposition 3

Proposition 6. Assume that the extreme points {xk}k of the convex set described by Ax ≤ b are
known. When adding a constraint AT

Nx ≤ bN , the additional extreme points are linear combinations
of pairs of existing extreme points xk1

and xk2
both satisfying the same r−1 constraints with equality

and AT
Nxk1

≤ bn and AT
Nxk2

≥ bn so that the combination satisfies AT
N (λxk1

+ (1− λ)xk2
) = bN .

Proof. Let W be a matrix whose columns consist of the extreme points defined by the N − 1
constraints Ax ≤ b. Also, let aTNx ≤ bN be an additional constraint, ek be a unit vector with 1 on
position k, and let α parametrize the convex cone on W , i.e. 1Tα = 1, α ≥ 0 so that AWα ≤ b
describes all points in the convex set. Suppose that Bk describes the indices of the constraints that
define the k:th extreme point by letting ABk

be the sub matrix of A including the rows denoted by the
indices in Bk. Then ABk

Wek = bBk
. It then follows that AW (λek1

+ (1− λ)ek2
)j = bj ifand only

if j ∈ Bk1
and j ∈ Bk2

and 0 ≤ λ ≤ 1. The construction in the proposition, λxk1
+ (1− λ)xk2

so
that AT

N (λxk1 + (1− λ)xk2) = bN then satisfies r constraints with equality and all other constraints
with inequality, i.e. the point is an extreme point to the set. We also note that every multiple
combination (three or more) of extreme points sharing r−1 constraints are not extreme points as they
are linear combination of the pairs given by α(λ1x1 + (1− λ1)x2) + (1− α)(λ2x2 + (1− λ2)x3).
Every linear combination of pairs of points sharing less than r − 1 constraints will not satisfy r
constraints, i.e. they are not extreme points.
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A.3 A description of the implementation of the extreme point method

The handling of the extreme points in the paper is done by keeping track of the extreme points,
their connection to the boundary constraints, and lookup tables for the adjacent extreme points, i.e.,
extreme points that satisfies the same r − 1 constraints with equality, where r is the rank of the
problem. Let the extreme points be described in the matrix E where each column describes an
extreme point. Thus AE ≤ b1, if the constraints are described by the matrix A and vector b such that
Ax ≤ b is the constraint equations.

Let the adjacency be described in a (sparse) matrix with binary elements D where Di,j = 1 if extreme
point i and j are adjacent. Let us also keep track of the constraints that are satisfied by an extreme
point with equality. For this purpose let B be a matrix with binary elements in which the element
Bi,j = 1 if extreme point j satisfies constraint i with equality. Thus, Di,j = 1 if (BTB)i,j = r − 1.
This is one of the computational drivers for the proposed extreme point method.

When a new constraint (An, bn) is added, the new extreme points are generated by a linear combina-
tion of the infeasible extreme points I := {i : AnEi > bn} and their adjacent feasible extreme points
fi := {j : D(i, j) = 1} where i ∈ I. Let # indicate the number of elements of a finite set, then∑

i∈I #(fi) is the number of new extreme points. We place the new extreme points in the matrix E
by adding them in the end as a matrix P . The new matrix containing the extreme points

En = (E P )

The matrix keeping track of which extreme points satisfies which constraints with equality is extended
with

Bn =

(
B C
0 1

)

where C·,k = B·,i ⊙ B·,(fi)k , preferably implemented using bitwise operators. Here, the last row
describes the newly added constraint and k a re-enumeration of the new extreme points.

The new adjacency matrix Dn can be concatenated with the old D and two additional matrices

Dn =

(
D O
OT N

)

where Oi,j = 1 the old extreme point i is adjacent to the new extreme point j. This information
is already available for us, since the new extreme points are adjacent to fj . Finally, Ni,j = 1 if
(CTC)i,j = r − 2. This is by far the most computationally expensive operation in the proposed algo-
rithm, which can be implemented with std::popcount in the standard c++ library. For 3-dimensional
problems, around 120 bits needs to be compared between all new extreme points.

A.4 Additional tests

A.5 Convergence rate

The convergence proof in Proposition 3 does not include a rate of convergence. In Figure 4, we show
the convergence trajectory for the problems U andN1 for 2-dimensional data. The tests show that the
convergence rate is linear to its nature up to a number of iterations where the gap closes completely.

In comparison to the result of the proposed method we present the same convergence evaluation with
the local search method in [20]. Figure5 shows the trajectory of convergence. The tests show that
the rate of convergence is sublinear to its nature. The number of initializations needed to achieve a
pre-determined accuracy increase with the number of points for the local search. Note here that in
order to determine when to stop one needs to know the optimal value, which is not available for the
local search method.
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Figure 4: Top row: The trajectory of the relative error for the proposed method for the problem U on
2-dimensional data. Bottom row: The trajectory of the relative error for the proposed method for the
problem N1 on 2-dimensional data. The solid blue line indicates the mean convergence rate for 20
runs and the dashed red line indicates 1 standard deviation from the mean.

0 50 100

initializations

10
-5

10
0

R
e

la
ti
v
e

 e
rr

o
r

n=100

0 500 1000

initializations

10
-4

10
-2

10
0

n=200

0 200 400

initializations

10
-6

10
-4

10
-2

10
0

n=300

0 500 1000

initializations

10
-6

10
-4

10
-2

10
0

n=400

0 100 200

initializations

10
-4

10
-2

10
0

R
e

la
ti
v
e

 e
rr

o
r

n=100

0 200 400

initializations

10
-2

10
0

n=200

0 500 1000

initializations

10
-4

10
-2

n=300

0 200 400 600

initializations

10
-2

10
0

n=400

Figure 5: Top row: The trajectory of the relative error for the local search method for the problem U
on 2-dimensional data. Bottom row: The trajectory of the relative error for the local search method
for the problem N1 on 2-dimensional data. The solid blue line indicates the mean convergence rate
for 20 runs and the dashed red line indicates 1 standard deviation from the mean.

A.6 Evaluation on the MNIST dataset

In this section we present the performance of the proposed method on shapes originating from the
MNIST dataset [8]. Even though the arabic numerals are not entirely unique to reflections (e.g.
"2" and "5") and rotations (e.g. "6" and "9"), the ability to compute the exact Gromov-Wasserstein
discepancy is of interest. When the images doesn’t contain the same number of points, evenly
distributed points are taken from the image with more points. The maximum number of points was
set to 400. Number of iterations are presented in Table 3 and the computational time is presented
in Table 4, showing that the proposed method works as anticipated on the data set. Examples of
correspondances of numerals are shown in Figure 6.
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Table 3: Number of iterations to compute the distance between two numeral shapes to a relative error
gap of 10−8. Numbers presented are median in the upper table and [min - max] in the lower table.
The number of random tests were 10 for each combination.

0 1 2 3 4 5 6 7 8 9
0 92.5 55.5 98.5 75.5 115.5 106.5 80 81 90 90
1 21 46.5 36 70.5 50.5 47 41 50 49
2 52 53.5 64 58.5 60.5 57.5 58 43
3 40.5 75 52.5 72.5 46.5 56 56.5
4 84.5 57 63.5 65 73.5 61.5
5 50 53.5 48 64.5 49.5
6 44 45.5 67 56.5
7 48.5 64 47.5
8 62.5 55.5
9 52.5

0 1 2 3 4 5 6 7 8 9
0 67-134 39-80 67-223 51-139 86-184 69-131 62-97 63-143 73-102 53-163
1 10-39 32-78 30-64 49-98 36-61 35-88 27-69 43-59 27-93
2 29-77 36-78 37-75 44-88 47-95 38-72 43-86 36-83
3 29-67 31-116 47-60 42-89 27-77 48-85 27-87
4 50-107 40-111 40-111 52-92 47-108 50-80
5 31-74 45-88 43-87 54-94 36-97
6 26-80 36-88 54-123 32-94
7 24-76 52-75 30-87
8 40-82 42-71
9 29-65

Table 4: Computational time for the distance between two numeral shapes to a relative error gap of
10−8. Numbers presented are [median]s in the upper table and [min - max]s in the lower table. The
number of random tests were 10 for each combination.

0 1 2 3 4 5 6 7 8 9
0 0.85 0.48 1.03 0.76 1.09 1.33 0.83 0.81 0.98 0.95
1 0.05 0.18 0.15 0.32 0.22 0.18 0.15 0.3 0.29
2 0.34 0.33 0.41 0.39 0.46 0.37 0.47 0.34
3 0.31 0.7 0.41 0.64 0.39 0.52 0.51
4 0.85 0.61 0.6 0.67 0.86 0.7
5 0.53 0.62 0.49 0.75 0.5
6 0.54 0.49 0.96 0.66
7 0.61 0.84 0.59
8 0.77 0.74
9 0.92

0 1 2 3 4 5 6 7 8 9
0 0.5-1.4 0.3-1 0.6-2.4 0.5-1.5 0.9-1.9 0.6-1.6 0.6-1.2 0.5-1.7 0.6-1.4 0.5-2.1
1 0-0.1 0.1-0.4 0.1-0.4 0.2-0.4 0.2-0.3 0.1-0.4 0.1-0.4 0.2-0.4 0.1-0.5
2 0.2-0.5 0.2-0.6 0.2-0.5 0.3-0.6 0.3-0.8 0.3-0.5 0.3-0.7 0.2-0.7
3 0.2-0.7 0.2-1.2 0.3-0.5 0.3-0.9 0.2-0.7 0.4-0.7 0.2-0.8
4 0.4-1 0.3-1 0.3-1.3 0.4-0.8 0.4-1.3 0.4-0.9
5 0.2-0.9 0.4-1 0.3-0.9 0.5-1.1 0.4-1.1
6 0.2-1 0.3-1 0.6-1.8 0.3-1.2
7 0.3-0.9 0.7-1.2 0.1-1.4
8 0.6-1.4 0.5-1.1
9 0.5-1.1
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Figure 6: Left image: Matching of the numeral "6" to the numeral "9". Right image: Matching of
the numeral "2" to the numeral "5". The colors represent which point in one numeral corresponds to
another point in the other numeral.

17


	Introduction
	The Gromov-Wasserstein discrepancy problem
	The Gromov-Wasserstein problem and low rank QAP
	A cutting plane algorithm utilizing the low rank structure
	Proof of convergence of Algorithm 1
	Considerations when solving the relaxed problem

	Numerical results
	Computational efficiency
	Comparison with local search method
	Application to symmetrical data for morphological analysis

	Discussion
	Appendix
	Proof of Proposition 1
	Proof of Proposition 3 
	A description of the implementation of the extreme point method
	Additional tests
	Convergence rate
	Evaluation on the MNIST dataset


