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A Implementation Details

Estimation of Prior. For the initial estimation of the human body, we resort to the utilization of either
the SMPL-X model, as outlined in PIXIE [1], or the SMPL model, as delineated in PyMAF [2]. A
variety of motion datasets like AIST++ [3] adopt SMPL parameters for animation representation,
and hence we have used SMPL as the prior in the results depicted in Fig. 5.

During the training phase, the SMPL-X data tailored for THuman2.0 [4] is used as the human
prior. For our geometry testing with open-source models, as delineated in Tab. ??, we utilized the
ground-truth SMPL/SMPL-X, consistent with the methodologies employed by ICON [5] and ECON
[6]. In the texture performance evaluations with non-public models, such as S3F [7] in Fig. ??, we
abstained from using ground-truth SMPL and instead leveraged PyMAF [2] to derive the SMPL prior.
While during the inference stage, we employ the readily available models [1, 2] to predict parameters
for the human prior. In order to bolster the precision of the reconstructed outcomes, we deploy the
refinement technique from [5], which allows us to optimize the SMPL/SMPL-X parameters for a
reduced silhouette loss.

Prior-guided Tri-plane Deformation. Previous methods for generating novel poses of 3D clothed
human meshes can be grouped into two categories. The first binds the 3D mesh with a human body
prior, using algorithms like KNN [8], Surface Field [9], and MVC [10]. However, this approach
has limited robustness and may cause distorted deformations in self-intersecting parts of the model.
The second category employs deep learning to predict blend weights for each mesh point, enabling
more realistic movements. These methods [11, 12, 13, 14] often require training on multiple 3D
meshes of the same person in different poses, posing challenges for single-image clothed human
reconstruction. Motivated by the S3F [7] approach, we employ the estimated body shape and pose
parameters, denoted as β and θ, to obtain tri-plane features and transfer the features of each vertex
in the prior model M(β,θ) to the corresponding vertex in the posed prior M′(β,θ′), where θ′

represents the target pose. Subsequently, we use barycentric interpolation to obtain the feature and
feed them into the MLP to predict the 3D mesh and texture in the new pose.

Virtual Try-on. In our model, we can partition 3D features based on body parts (e.g., left arm,
right leg) once integrated into a parametric human body. Given a reference and a target image, we
feed them into our model to obtain two parametric bodies with vertex-specific features. We can
then replace features on the target body’s selected part (where clothes change is desired) with the
corresponding features from the reference body. This replacement allows the target image’s query
point to acquire reference image features, enabling the implicit function to output colors from the
reference image on the replaced parts.

†: the corresponding author.
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Figure 2: Tri-plane feature map visualization. The graphical display highlights the first 16 channels
of our decoupled tri-plane features. These features effectively capture the human body’s silhouette,
demonstrating effectiveness of our approach.

B Experiments Analysis

We further analyze our experimental results and provide corresponding theoretical explanations.

Failure due to extreme clothingFailure due to wrong pose

Figure 1: Failure cases. Inaccurate results due
to incorrect human prior estimation (left) and
failure cases due to extreme clothing (right).

Regarding quantitative evaluation metrics for geom-
etry reconstruction, we observed that our approach
achieved significant improvement in terms of Cham-
fer Distance and Point-to-Surface metrics, especially
for in-distribution poses. The predominant factor of
these advancements lies in our consideration of fea-
tures of the orthogonal planes during reconstruction.
Firstly, both of these metrics are employed to assess
the large geometric differences. As exemplified by
the results presented in Fig. 3a, ECON tends to ex-
hibit larger errors in the orthogonal planes compared to GTA. These orthogonal plane errors manifest
in three-dimensional space as overall surface shifts, significantly influencing chamfer distance and
P2S metrics. Moreover, in terms of normal consistency, as ECON [6] explicitly integrates both front
and back normal maps and performs explicit stitching for better hands and face details, our method
yielded slightly lower results than ECON in the case of the CAPE [15] dataset. Conversely, in more
intricate datasets like THuman2.0 [4], characterized by complexity and substantial occlusions, the
disparities in the normal maps are pronounced, resulting in GTA exhibiting better overall Normals. In
our further assessment of normal consistency, we observed that ECON [6] surpassed our method in
terms of front view, which aligned with our analysis. For other views, our model produced rendered
normal maps that more closely approximated the ground truth due to the utilization of our 3D features.

The qualitative results of texture exhibit our method’s superior performance in predicting textures of
invisible regions. We attribute this success to our extraction of decoupled 3D features. Additionally,
we conducted comprehensive ablation experiments, which provided evidence for the effectiveness
of our network architecture, decoupled 3D features, and hybrid prior fusion strategy. Specifically,
the results of the ablation experiments demonstrated that our network architecture, tri-plane features,
and hybrid prior fusion strategy played indispensable roles in geometry reconstruction. Besides, the
reconstruction of texture was primarily influenced by the principle plane refinement and spatial query.

C Limitations

Our method exhibits robust performance in general, though it does face challenges under certain
circumstances, as depicted in Fig. 1. The model relies on pre-existing models [1, 2] to deduce a
SMPL [16] or SMPL-X [17] from a single RGB image, thus errors in estimations can consequently
affect our reconstruction. Additionally, our model faces difficulties with extremely loose clothing
that considerably deviates from the human body’s contours. To address these issues, future research
could explore the integration of more explicit information during the reconstruction phase.
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Table 1: Comparison of parameters and inference time.

(a) Parameter number comparison.

Method use convolution ours

Total params 93,135,264 36,977,056

(b) Inference time of different SOTA models.

Method PIFu Pamir ICON ECON GTA

Inference time (s) 0.37 0.44 0.37 15.07 0.55

D Broader Impacts

Our model’s ability to reconstruct 3D realistic avatars from single input images raises potential
negative impacts, including privacy violations, "deep fakes" generation, and intellectual property
infringement. To address these concerns, ethical guidelines and legal frameworks must be established,
requiring collaboration among researchers, developers, and policymakers to ensure responsible
applications of this technology.

E Additional Results

To further demonstrate the effectiveness of GTA, we compared it with the state-of-the-art methods in
terms of time and space occupancy. In Tab. 1a, it’s evident that our model outperforms the UNet-based
approach with fewer parameters, as indicated by better reconstruction results. This highlights the
advantages of our transformer-based design in extracting 3D features. Tab. 1b displays the comparable
time efficiency of our implicit function-based model with PIFu, Pamir, and ICON. In contrast, ECON,
relying on explicit methods, demands more time due to d-BiNI and Poisson inefficiencies. CAPE-NFP
dataset with 2563 resolution is used for testing, ground truth SMPL/SMPL-X provided.

In order to assess the effectiveness of the decoupled tri-plane features, we conducted a visual analysis
of the first 16 channels of these features in Fig. 2. The visualizations demonstrated that our refined
principle plane features exhibited higher resolution and better visual results. While the features of the
orthogonal planes appeared blurred, they still captured the overall outline of the human body. This
observation serves as empirical evidence of the effectiveness of our approach, which incorporates
3D-decoupling decoders and principle plane refinement.

Fig. 3 compares the qualitative reconstruction results for geometry between the GTA and SOTA
methods and showcases the impact of marching cubes resolution on GTA. In Fig. 3a, we provide
rendered normal maps under the setting of quantitative testing (resolution of 256). The reconstruction
results are rendered as normal maps from six different viewing angles. The results demonstrate that
our approach is comparable to the SOTA methods for front-face reconstruction and outperforms them
for side-face reconstruction. These qualitative results are consistent with the quantitative experiments
presented in the main text and our analysis in the last section. In Fig. 3b, we illustrate various
resolutions’ effects on GTA’s reconstruction results, elucidating the causes of detail loss.

Next, we build upon the results elucidated in the main paper by furnishing additional qualitative
outcomes for various tasks. We present an extended range of monocular 3D clothed human recon-
struction results in Fig. 4, demonstrating a wide assortment of input conditions in terms of poses,
backgrounds, viewpoints, and clothing. Further, we showcase supplementary results of 3D human
animation in Fig. 5 and 3D virtual try-on in Fig. 6 using images from Pinterest, SHHQ [18], and
Deep Fashion [19]. While the animation and virtual try-on results offer a compelling demonstration
of our model’s capability, it’s important to acknowledge that the resolution of these results does not
quite match that of the reconstructed outcomes. This minor discrepancy arises from our approach
that relies exclusively on the prior-enhanced query for these two applications. Although the current
version of the spatial query cannot ensure smooth point deformation for these applications, which
may cause minor artifacts, this represents a valuable avenue for potential improvement in future
iterations. Nevertheless, the results of these two applications remain competitive when compared
with other state-of-the-art methods.
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(a) Qualitative comparison of geometry.
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(b) Qualitative comparison of different marching cube resolution.

Figure 3: Comparison of geometry on THuman2.0 benchmark. Please zoom in for details.
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Figure 4: Qualitative 3D human reconstruction results on in-the-wild images with geometry and
texture. For each example, we show the input image along with two views (front and back) of the
reconstructed geometry and two views (front and back) of the reconstructed texture. Our approach
is robust to pose variations, generalizes well to loose clothing, and contains detailed geometry and
texture. Please zoom in for details.
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Figure 5: Qualitative results on animation of 3D reconstructions.
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Figure 6: Qualitative results of 3D virtual try-on. We broaden the scope of the experiment discussed
in the main paper by demonstrating an instance of upper-body clothing try-on and present both the
input images (left) and source clothing (upper row). The 3D reconstructions generated exhibit high
realism and consistency across all samples.
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