A Fundamental Concepts

In this section, we will elaborate on concepts from Sec. E]in more detail.

A.1 Sufficient Statistics

Bayesian learning involves updating our belief of the likely values of the model parameters 6, captured
in the prior p(0), to a posterior belief p(6|D;) x p(f) x p(D;|0). The posterior belief gets more
concentrated (around the maximum likelihood estimate) after observing a larger dataset D;.

The statistic s; is a SS for D; if 6 and D; are conditionally independent given s;, i.e.,
p(0|D;) = p(0]s;, D;) = p(0]s;) [48 52]. Knowing the dataset D; does not provide any extra
information about # beyond the SS s;. SS exists for exponential family models [5]] and Bayesian
linear regression [39]. Approximate SS has been proposed by [21] for generalized linear models. For
more complex data such as images, we can use pre-trained neural networks like VGG-16 as feature
extractors and generate SS from the last hidden layer’s outputs.

Bayesian Linear Regression. In linear regression, each datum consists of the input x € R"
and the output variable y € R. Let D denote the dataset with ¢ data points, and y and X be the
corresponding concatenated output vector and design matrix in R¢**. Bayesian linear regression
models the relationship as y = Xw + N (0,0%I) where the model parameters  consists of the
weight parameters w € R™ and the noise variance 2. The likelihood
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only depends on data via the sufficient statistics s = (y 'y, X "y, X " X). Concretely, when the
prior p(#) of the weights and variance follow a normal inverse-gamma distribution, NIG(0, Vj, ao, bo),
the posterior p(6|D;) is the normal inverse-gamma distribution NIG(w;, V;, ag + ¢;/2, b;) where ¢;
is the number of data points and

w=ViX[y;  Vi= (V' XTX) T bi=bo+ (1/2) [5 v — w] V w

can be computed directly from s;. The posterior belief p(6|D;, D;) given parties ¢ and j’s dataset can
be similarly computed using the SS of their pooled dataset, s;;. As the SS s;; works out to s; + s,
we only need s; and s; from party ¢ and j instead of their private datasets.

Generalized Linear Model (GLM). A generalized linear model (GLM) generalizes a linear model
by introducing an inverse link function Y. The probability of observing the output y given input
x = (21, ..., T(w)) and model weights 6 depends on their dot product

p(ylz,0) = p(y|L(zT0)).

Next, we define the GLM mapping function v to the log-likelihood of observing y given the GLM
model. Formally,

v(y,z"0) £ logp(y|L(zT0)).

As an example, logistic regression is a GLM with T defined as the sigmoid function and
p(y = +1|sigmoid(x'0)) follows a Bernoulli distribution. As the non-linearity of Y disrupts
the exponential family structure, logistic regression and other GLMs do not have sufficient statistics.
Logistic regression’s GLM mapping function viog(y, ' 0) = —log(1 + exp(—yz ' 0)).

[21]] propose to approximate the GLM mapping function v with an M-degree polynomial
approximation vys;. wvps is an exponential family model with sufficient statistics g(d) =
{TT ()™ | >, ms < M,Vim; € ZS‘}. These SS are the polynomial approximate suf-
ficient statistics for GLMs. For example, when M = 2 and ® = (z(1),7(2), 9(d) =

[L T(1)Y, T(2)Y, x?l)yz’ x?g)yQ, x(l)m(Z)y2:| .
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A.2 Differential Privacy

Remark 1. Our work aims to ensure example-level DP for each collaborating party: A party updat-
ing/adding/deleting a single datum will only change the perturbed SS visible to the mediator and
the corresponding belief of the model parameters in a provably minimal way. We are not ensuring
user-level DP: The belief of model parameters only changes minimally after removing a collaborating
party’s (or a user/data owner’s) dataset, possibly with multiple data points [35]].

Intuitively, a DP algorithm R : D — o guarantees that each output o is almost equally likely
regardless of the inclusion or exclusion of a data point d in D. This will allay privacy concerns and
incentivize a data owner to contribute its data point d since even a knowledgeable attacker cannot
infer the presence or absence of d.

The works on noise-aware inference [4} 27]] assume that the input « and output y of any data point
have known bounded ranges. We will start by introducing our domain-dependent definitions:

Definition A.1 (Neighboring datasets). Two datasets D and D’ are neighboring if D’ can be obtained
from D by replacing a single data point. The total number of data points and all other data points are
the same.

Definition A.2 (Sensitivity [[11]). The sensitivity of a function g that takes in dataset Dj, quantifies
the maximum impact a data point can have on the function output. The ¢;-sensitivity A;(g) and
l5-sensitivity Ao (g) measure the impact using the ¢; and ¢5 norm, respectively. Given that D must
be a neighboring dataset of D;,

Aq(g) £ max|lg(D:) = g(Di)]1

Aa(g) & max |lg(Di) — g(Dj)ll2 -

In our problem, g computes the exact SS s; for D;. The sensitivity can be known/computed if the
dataset is normalized and the feature ranges are bounded.

We start with the definition of e-differential privacy. The parameter e bounds how much privacy is
lost by releasing the algorithm’s output.

Definition A.3 (Pure ¢-DP [11]). A randomized algorithm R : D — o with range O is ¢-DP if for
all neighboring datasets D and D’ and possible output subset O C Range(R),

The Laplace mechanism [11]] is an e-DP algorithm. Instead of releasing the exact SS s;, the
mechanism will output a sample of the perturbed SS o; ~ Laplace(s;, (A1(g)/€) I).

A common relaxation of e-differential privacy is (e, §)-differential privacy. It can be interpreted as
€-DP but with a failure of probability at most 6.

Definition A.4 ((¢,0)-DP). A randomized algorithm R : D — o with range O is (e, §)-differentially
private if for all neighboring datasets D and D’ and possible output subset O C Range(R),

P(R(D) € O) < ¢ P(R(D') € O) +6.

The Gaussian mechanism is an (e, §)-DP algorithm. The variance of the Gaussian noise to be added
can be computed by the analytic Gaussian mechanism algorithm [2]].

In the main paper, we have also discussed another relaxation of e-differential privacy that is reproduced
below:

Definition A.5 (Rényi DP [38]]). A randomized algorithm R : D — o is (A, €)-Rényi differen-
tially private if for all neighboring datasets D and D’, the Rényi divergence of order A > 1 is
D\ (R(D) || R(D")) < e where

P(R(D)=0)]"
log Eo~r(p) [P(R(D/):o)}
A—1

DA(R(D) || R(D")) =
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When A = oo, Rényi DP becomes pure e-DP. Decreasing A emphasizes less on unlikely
large values and emphasizes more on the average value of the privacy loss random variable
log [P(R(D) = 0)/P(R(D’) = 0)] with o ~ R(D’).

The Gaussian mechanism is a (A, €)-Rényi DP algorithm. Instead of releasing the exact SS s;, the
mechanism will output a sample of the perturbed SS 0; ~ N (s;, 0.5 (\/€) A3(g) I).

Post-processing. A common and important property of all DP algorithms/mechanisms is their
robustness to post-processing: Processing the output of a DP algorithm R without access to the
underlying dataset will retain the same privacy loss and guarantees [12].

Choosing Rényi-DP over (¢, §)-DP. In our work, we consistently use the Gaussian mechanism in all
the experiments, like in that of [27]]. We choose Rényi DP over (¢, d)-DP due to the advantages stated
below:

e Rényi-DP is a stronger DP notion according to [38]: While (¢, §)-DP allows for a complete failure
of privacy guarantee with probability of at most §, Rényi-DP does not and the privacy bound is
only loosened more for less likely outcomes. Additionally, [38]] claims that it is harder to analyze
and optimize (e, 0)-DP due to the trade-off between ¢ and §. More details can be found in [38].

e Rényi-DP supports easier composition: In a collaborative ML framework, each party ¢ may need
to release multiple outputs on the same dataset D; such as the SS and other information for
preprocessing steps (e.g., principal component analysis). Composition rules bound the total privacy
cost € of releasing multiple outputs of differentially private mechanisms. It is harder to keep track
of the total privacy cost when using (e, §)-DP due to advanced composition rules and the need
to choose from a wide selection of possible (e(4), d) [38]. In contrast, the composition rule (i.e.,
Proposition 1 in [38])) is straightforward: When ) is a constant, the € of different mechanisms can
simply be summed.

Note that the contribution of our work will still hold for (¢, §)-DP (using the Gaussian mechanism)
and e-DP (using the Laplace mechanism) with some modifications of the inference process and
proofs.

Remark 2. Our work is in the same spirit as local DP (and we also think that no mediator can be
trusted to directly access any party’s private dataset) but does not strictly satisfy the definition of local
DP (see Def.[A.6). In the definition, the local DP algorithm takes in a single input/datum and ensures
the privacy of its output — the perturbation mechanism is applied to every input independently. In
contrast, in our case, a party may have multiple inputs and the perturbation mechanism is only applied
to their aggregate statistics. Thus, a datum owner (e.g., a patient of a collaborating hospital) enjoys
weaker privacy in our setting than the local DP setting.

Definition A.6 (e-Local DP [61]]). A randomized algorithm R is e-local DP if for any pair of data
points d, d’ € D and for any possible output O C Range(R),

P(R(d) € O) < e P(R(d') € O) .

A.3 DP Noise-Aware Inference

DP mechanisms introduce randomness and noise to protect the output of a function. Noise-naive
techniques ignore the added noise in downstream analysis. In contrast, noise-aware techniques
account for the noise added by the DP mechanism.

Consider a probabilistic model where the model parameters 6 generate the dataset D; which then
generates the exact and perturbed sufficient statistics of each party ¢, which are modeled as random
variables S; and O;, respectively. The exact SS s; and perturbed SS o; computed by party i are
realizations of S; and O;, respectively. As the mediator cannot observe ¢’s exact SS, .S; is a latent
random variable. Instead, the mediator observes i’s perturbed SS O; which also contains noise Z;
added by the DP mechanism, i.e., O; £ S; + Z;. The Gaussian mechanism to ensure (), ¢)-Rényi
DP sets Z; ~ N (07 0.5 (\/e) A(g) I). We depict the graphical model of our multi-party setting

in Fig. [
Differences between exact, noise-naive and noise-aware inference. When the mediator observes

the exact SS s; from party 4, the exact posterior belief p(8|S; = s;) can be computed in closed form
based on App. However, when the mediator only observes the perturbed SS o;, the mediator can
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Figure 4: In the graphical model above, all parties share the same prior belief p(#) of model parameters
6 and prior belief p(w) of data parameters w. The mediator models its beliefs of the SS of each party
separately and only observes the perturbed SS o; of every party ¢ € N (thus, only O; is shaded). The
sufficient statistic .S; is generated from the model inputs X; and the model output y; (which depends
on the model parameters #). We illustrate the relationship between w, X;, and .S; as dashed lines as
they may be modeled differently in the various DP noise-aware inference methods. See [4}27] for
their respective graphical models and details.

only compute the noise-naive and noise-aware posterior beliefs instead. The noise-naive posterior
belief p(]S; = o;) will neither reflect the unobservability of the exact SS random variable S;
accurately nor quantify the impact of the DP noise Z;. In contrast, for any party, the DP noise-aware
posterior belief p(6)0O; = 0;), conveniently abbreviated as p(6|o;), will quantify the impact of the
noise added by the DP mechanism. (For a coalition C of parties, the DP noise-aware posterior belief
is p(8loc) £ p(0|{O0; = 0;}icc)), as described in Footnote @) The works of [3| 4] 27] have shown
that DP noise-aware inference leads to a posterior belief that is better calibrated (i.e., lower bias and
better quantification of uncertainty without overconfidence) and of higher utility (i.e., closer to the
non-private posterior belief), thus a better predictive performance.

The main challenge of noise-aware inference lies in tractably approximating the integral p(O; =
0;|0) = [ p(s;|0)p(0i]s;) ds; and p(s;]0) = f{D:(X’y):g(D):Si} p(X,y|0) dX dy over all datasets.
[3L14,127] exploit the observation that as the SS sum c individuals, the central limit theorem guarantees
that the distribution p(s;|@) can be well-approximated by the Gaussian distribution N (cpg, cXy)
for large c [4]. Here, u1y and X, are the mean and covariance of an individual’s SS. [3l 4} 27, 26]
prescribe how to compute ji, and 34 in closed form from the sampled 6 parameters and moments
of  and set the noise of the DP mechanism based on a sensitivity analysis. To approximate the
posterior p(0|o), Markov Chain Monte Carlo (MCMC) sampling steps are needed. [4] propose to use
Gibbs sampling, an algorithm that updates a group of parameters at a time and exploits conditional
independence, for Bayesian linear regression models. [27] use the No-U-Turn [19] sampler and
utilizes Hamiltonian dynamics to explore the parameter space more efficiently for generalized linear
models. We describe the BLR Gibbs sampler adapted for our multi-party setting in Algo/[T]
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Algorithm 1 BLR Gibbs sampler [4] from noise-aware posterior p(f|Oy = on)
J I;cn [p(0i]s:) p(s:]6)] p(0) dsi--- ds,,. The algorithm (repeatedly) sample the latent variables
S, w and 6 sequentially.

Require: Shared prior p(#) of model parameters, prior p(w) of data parameters, data quantity c;,

EAIANE S A e

o]

10:
11:
12:
13:

14:
15:

16:
17:
18:
19:
20:
21:

shared perturbed SS realization o;, the Gaussian noise distribution of Z; for every party : € N,
number b of burn-in samples, number m of samples, Boolean parameter (shared) controlling if
p(x) is the same across parties.

Sample the initial model parameters 6(°) from the prior p(6).
Sample the data prior parameters w©) from the prior p(w).
Compute the moments of X; based on w.
fort=1,...,b+mdo
fort=1,...,ndo
Compute the normal approximation of p(.S;|6), denoted as pa(.S;|6), using the moments of
X;.
Sample sl(»t) from the product of two multivariate Gaussians ps(S;|0) p(0;]S;), which is
also multivariate Gaussian.
if not shared then
Use information from sgt) and ¢; to perform conjugate update on p(w;) to obtain
p(ws] (sl(-t), ¢i)). Sample wgt) and compute the moments of X;.
end if
end for
if shared then
Use information from (sl(-t), ¢i)ien to perform conjugate update on p(w) to obtain
p(w| (sl(-t), ¢i)ien)- Sample w® and compute the moments of X;.
end if
Use (5", ¢i)ien to perform conjugate update on p(6) to obtain p(9|(3§t), Ci)ieN)-
Sample 61 from p(6](s{"), ¢;)sen).
if t > b then
Append 6®) to ©.
end if
end for
return O
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B Key Differences with Existing Data Valuation, Collaborative ML, and
DP/FL Works

Incentives for Data Sharing
Higher reward for contributing more valuable data
(fairness across parties, individual rationality, etc.)

Data Valuation

(181 2511591

DP Mechanisms
(1L, 41 27, [56]

Collaboratively Trained
Model

Each party receives a
model decentrally trained
with everyone’s data

Figure 5: Our work, «, uniquely satisfies all 3 desiderata. When parties share information computed
from their data, we ensure that every party has at least its , receives a
collaboratively trained model, and receives a higher reward for sharing higher-quality data than the
others.

It is not trivial to (i) add DP to « while simultaneously enforcing a privacy-valuation trade-off, (ii)
add data sharing incentives to ¥ (i.e., design valuation functions and rewards), and (iii) achieve » as
access to a party’s dataset (or a coalition’s datasets) is still needed for its valuation in [37].

Difference with existing data valuation and collaborative ML works considering incentives. Our
work aims to additionally (A) offer parties assurance about privacy but (B) deter them from selecting
excessive privacy guarantees. We achieve (A) by ensuring differential privacy (see definitions in
App.[A-2)) through only collecting the noisier/perturbed version of each party’s sufficient statistics
(see App. @) To achieve (B), we must assign a lower valuation (and reward) to a noisier SS.
Our insight is to combine noise-aware inference (that computes the posterior belief of the model
parameters given the perturbed SS) with the Bayesian surprise valuation function. Lastly, (C) we
propose a mechanism to generate model rewards (i.e., posterior samples of the model parameters)
that attain the target reward value and are similar to the grand coalition’s model.

Difference with federated learning and differential privacy works. Existing FL. works have covered
learning from decentralized data with DP guarantees. However, these works may not address the
question: Would parties want to share their data? How do we get parties to share more to maximize
the gain from the collaboration? Our work aims to address these questions and incentivize (A) parties
to share more, higher-quality data and (B) select a weaker DP guarantee. To achieve (A), it is standard
in data valuation methods to use the Shapley value to value a party relative to the data of
others as it considers a party’s marginal contribution to all coalitions (subsets) of parties. This would
require us to construct and value a trained model for each coalition C' C N: To ease aggregation
(and to avoid requesting more information or incurring privacy costs per coalition), we consider

20



sufficient statistics (see App.[A.T). To achieve (B), we want a valuation function that provably ensures
a lower valuation for a stronger DP guarantee. Our insight is to combine noise-aware inference (that
computes the posterior belief of the model parameters given perturbed SS) with the Bayesian surprise
valuation function. Lastly, like the works of [47,51]], (C) we generate a model reward that attains a
target reward value (which parties can use for future predictions). Our model reward is in the form of
posterior samples of the model parameters instead. We propose a new mechanism to control/generate
model rewards that work using SS and preserve similarity to the grand coalition’s model.

Fig. 5| shows how our work in this paper fills the gap in the existing works.

C Characteristic/Valuation Function

C.1 Proofs of properties for valuation function
In this section, we will use the random variable notations defined in App.[A] Moreover, we abbreviate
the set of perturbed SS random variables corresponding to a coalition C of parties as O¢ = {O; }icc.

Let H(a) denote the entropy of the variable a.

Relationship between KL divergence and information gain.

[(0; Oc) = Eocnoe [DxL(p(0loc); p(6))]
=H(0) — Eocrnoc [H(0|Oc = oc)] -

Party monotonicity (V2). Consider two coalitions C C C’ C N. By taking an expectation
w.r.t. random vector O¢r,

Eou/noe [V0] = Eogroc [DxL(p(0loc); p(0))] = 1(0; Oc) = H(0) — H(0|Oc)
and
Eopin0er [V0r] = Eogimog [Dxr(p(8loc:); p(9))] = 1(8; Oc) = H(0) — H(0|Oc, Ocn\c) -

Then, Eo, ~o., [vc'] > EoL, ~o.. [vc] as conditioning additionally on O¢\ ¢ should not increase
the entropy (i.e., H(0|Oc, Ocne) < H(|Oc¢)) due to the “information never hurts” bound for

entropy [10].

Ry

Figure 6: Graphical model to illustrate privacy-valuation trade-off (V3) where O; £ S; + Z} and
O £0; + Z2.

Privacy-valuation trade-off (V3). Letef < ¢;, and Z} and Z? be independent Gaussian distribu-
tions with mean 0 and, respectively, variance a; /¢; and (a;/€$)—(a;/€;) > 0 where a; = 0.5 X\ A2(g),
function g computes the exact SS s; from local dataset D;, and As(g) denotes its ¢o-sensitivity.
Adding Z} to S; will ensure (), ¢;)-DP while adding both Z} and independent Z? to S; is equiva-
lent to adding Gaussian noise of variance a; /€ to ensure (A, ef)-DP From the graphical model

18 Adding or subtracting independent noise will lead to a random variable with a higher variance. Thus, we
cannot model the random variable O; of a lower variance a; /¢; to ensure (X, €;)-DP as O; — Zf.

21



in Fig. [6| and the Markov chain § — O; — O;, the following conditional independence can be
observed: 6 L O? | O;. By the data processing inequality, no further processing of O;, such as the
addition of noise, can increase the information of 6. Formally, I(6; O;) > I(6; OF). Simultaneously,
0 J O, | Oi. Hence, I(6; O;) # 1(0; O3) = (1(0; O;) > 1(0; 07)).

To extend to any coalition C' containing 7, by the chain rule of mutual information,
1(0;0i, 07, Oc\(iy) = 1(6; 05, Ocr\(iy) +1(6; 07104, O (3y)

As conditional independence 6 AL O | O;,O¢\(;; and dependence 6 L O; | OF, O g4y still

hold, I(6; 05]10;,0cnfiy) = 0 and 1(6; 0;|05,0c\(53) > 0, respectively. It follows from the

above expression that 1(6; O¢) > 1(6; O3, Ocn (1), which implies Eo,, [vc] > Eoe iy,0: [v¢] -
For future work, the proof can be extended to other DP mechanisms.

C.2 Proof of Remark in Sec.

Let the alternative valuation of a coaliion C be v, = Dgi(p(flon);p(0)) —
Dxur(p(0lon); p(floc)). Then, vy = 0 and vly = Dk (p(f|on); p(0)). It can be observed that

e Unlike vc, v, may be negative.

e Unlike vy, v}y is guaranteed to have the highest valuation as the minimum KL divergence
Dx1(p(flon); q(6)) is 0 only when ¢(6) = p(f|on ). This is desirable when we want the grand
coalition to be more valuable than the other coalitions but odd when we consider the non-private
posterior ¢(0) = p(f|sy): Intuitively, the model computed using sy should be more valuable
using v’ than that computed using the perturbed SS oy .

By taking an expectation w.r.t. oy,

Epon) lve] = 1(6; On) — Eoi~p(oc) [EON\C"’P (On\cloc) [DKL (p(9|ON = {ON\C7 Oc});p(9|00))]:|

p(0lonc, 0c)
=1(0; On) — Egonp(oc) [EoN\cw(oN\doc) {E9NP(9|ON\C7OC) {logp(moc)

p(0,0n\cloc) ”
floc) plon\cloc)
=1(0; ON) — Eopnp(oc) [DxL (p(8, On\cloc); p(8loc) p(On\cloc))]

9 1(; On) — I(0; On\c|Oc)

= H(&, Oc) = Ep(ON)[UC] .
In equality (i) above, we multiply both the numerator and denominator within the log term by
p(on\c|oc) and consider the expectation of the joint distribution since by the chain rule of prob-

ability, p(6, On\cloc) = p(On\cloc) p(0|On\c,0c). Equality (ii) is due to the definition of
conditional mutual information.

()

I(6;On) — OCNP(OC) {Ee on\c~p(8,0n\cloc) |:10g (

C.3 KL Estimation of Valuation Function

KL estimation is only a tool and not the focus of our work. Our valuation will become more accurate
and computationally efficient as KL estimation tools improve.

Recommended - nearest-neighbors [45,/54]. Given ©P°" and Orrior which consists of m samples
of 6 (with dimension d) from, respectively, the posterior p(f|o¢) and prior p(6), we estimate the KL

divergence as
5pr10r (0) m
L5 oS o
9 cOpost

where 52‘)“(9) is the distance of the sampled 6 to its k-th nearest neighbor in ©OP* (excluding itself)
and 67" (6) is the distance of the sampled 6 to the k-th nearest neighbor in OPr,
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The number k of neighbors is tunable and analyzed in the follow-up work of [49]. As the number
m of samples increases, the bias and variance decrease. The convergence rate is analysed by [66].
Moreover, the estimate converges almost surely [45] and is consistent [54] for independent and
identically distributed (i.i.d.) samples. Furthermore, as the KL divergence is invariant to metric
reparameterizations, the bias can be reduced by changing the distance metric [42} [54]].

To generate i.i.d. samples, we suggest the usage of the NUTS sampler or thinning (keeping only
every t-th sample). We observe that if the samples from 6 | o¢ are non-independent, i.e., correlated
and close to the previous sample, we may underestimate its distance to the k-th distinct neighbor in
0] oc, (5]'30“(9), and thus overestimate the KL divergence. This is empirically verified in Table We
have also observed that the KL divergence may be underestimated when the posterior is concentrated
at a significantly different mean from the prior.

Recommended for large € - approximate p(6|o¢) using maximum likelihood distribution from
the p(0)’s exponential family. When a small noise is added to ensure weak DP, we can approximate
p(floc) with a distribution ¢ from the same exponential family as p(6|s¢). We can (i) determine ¢’s
parameters via maximum likelihood estimation (MLE) from the Gibbs sample and (ii) compute the
KL divergence in closed form.

However, the KL estimate is inaccurate (i.e., large bias) when the distribution ¢ is a poor fit for the
posterior p(6|o¢). Future work can consider using normalizing flows as g to improve the fit, reduce
the estimation bias, and work for a larger range of DP guarantees . However, this KL estimation
method may be computationally slow and risks overfitting.

Probabilistic Classification. Let the binary classifier f : © — [0,1] (e.g., a neural network)
discriminate between samples from two densities g1 () (here, the posterior p(6]|o¢)) and go(6) (here,
the prior p(6)) and output the probability that § comes from ¢;(#). Concretely, we label the m
samples from ¢; (0) and ¢o(#) withy = 1 and y = 0, respectively. By Bayes’ rule, the density ratio is
w(@) _plly=1) _ply=10)  ply=19)
@) p@ly=0) ply=00) 1-ply=10)"
Optimizing a proper scoring rule such as minimizing the binary cross-entropy loss should return
the Bayes optimal classifier f*(0) = p(y = 1|¢). The KL estimate is then computed as the mean
log-density ratio over samples from g; (). As the log-density ratio is sigmoid~!(p(y = 1/)), when
f is aneural network with sigmoid as the last activation layer, we can use the logits before activation
directly.

However, with only limited finite samples m and a large separation between the distributions g; and
qo, the density ratio and KL estimate may be highly inaccurate [8]]: Intuitively, the finite samples
may be linearly separable and the loss is minimized by setting the logits of samples from ¢ (6)
(hence KL) to infinity (i.e., classify it overconfidently with probability 1). As the separation between
the distributions ¢; and ¢ increases, exponentially more training samples may be needed to obtain
samples between ¢; and qq [8l]. Moreover, as training may not produce the Bayes optimal classifier,
there is also an issue of larger variance across runs.

D Reward Scheme for Ensuring Incentives

D.1 Incentives based on Coalition Structure

Instead of assuming the grand coalition N form, we can consider the more general case where parties
team up and partition themselves into a coalition structure C'S. Formally, C'S is a set of coalitions
such that | JoccgC = N and C N C" = () for any C,C’" € CS and C' # C'. The following
incentives are modified below:

P2 For any coalition C € CS, there is a party ¢ € C whose model reward is the coalition C’s
posterior, i.e., g;(6) = p(8loc). It follows that 7; = v as in R2 of [47].

P5 Among multiple model rewards ¢; (#) whose value r; equates the target reward ', we secondarily
prefer one with a higher similarity 7} . = —Dg 1, (p(f|oc); g:(0)) to the coalition’s posterior p(6|oc)
where i € C. '

"“The distribution ¢ from MLE minimizes the KL divergence Dxr,(p(8|oc); q(6)).
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D.2 Fairness Axioms

The fairness axioms from the work of [47] are reproduced below:

F1 Uselessness. If including the data or sufficient statistic of party ¢ does not improve the quality of
a model trained on the aggregated data of any coalition (e.g., when D; = (), ¢; = 0), then party 4
should receive a valueless model reward: For all 2 € N,

(VC - N\{Z} Vou{i} :vc) =7r;=0.

F2 Symmetry. If including the data or sufficient statistic of party ¢ yields the same improvement as
that of party j in the quality of a model trained on the aggregated data of any coalition (e.g., when
D; = Dj), then they should receive equally valuable model rewards: For all 4, j € IV s.t. ¢ # j,

(VC C N\ {i,j} veugiy = vougyy) = i =1j -

F3 Strict Desirability [33]. If the quality of a model trained on the aggregated data of at least a
coalition improves more by including the data or sufficient statistic of party ¢ than that of party j,
but the reverse is not true, then party ¢ should receive a more valuable model reward than party j:
Foralli,j € N s.t.i # j,

(3B € N\ {i,j} vpugy > vBugiy) A
(VC CN \ {Z,j} Voudi} > UCU{j}) =T >T;.

F4 Strict Monotonicity. If the quality of a model trained on the aggregated data of at least a coalition
containing party ¢ improves (e.g., by including more data of party ), ceteris paribus, then party ¢
should receive a more valuable model reward than before: Let {ve }oeconv and {0¢}oean denote
any two sets of values of data over all coalitions C' C N, and r; and 7; be the corresponding
values of model rewards received by party . For all € N,

(3B C N\ {i} 9pugy > vaugiy) A
(VO C N\ {i} Pcugy = veuqiy) A
(VAC N\ {i} 94 =va) A (in > 1) =i > 7

D.3 Remark on Rationality

Let v, denote the Bayesian surprise party i’s exact SS s; elicits from the prior belief of model
parameter. We define Stronger Individual Rationality (SIR, the strengthened version of as:
each party should receive a model reward that is more valuable than the model trained on its exact SS
alone: Vi € Nr} > vg,.

We consider two potential solutions to achieve stronger individual rationality and explain how they
fall short.

* Each party 7 declares the value v, and the mediator selects a smaller p to guarantee SIR.
SIR is infeasible when the grand coalition’s posterior is less valuable than party i’s model
based on exact SS, i.e., vy < vs,. In Fig.|2} we observe that when party 2 selects a small €5,
vp is less than vg, which can approximated by v, under large e, i.e., the right end point of
the blue line. Instead, SIR is only empirically achievable when party 2 and others select a
weaker DP guarantee as in Fig. [I0]in App. Note that our work only incentivizes weaker
DP guarantees and does not restrict parties’ choice of DP guarantees.

* The mediator should reward party i with perturbed SS ¢’ (for Sec. Of K305, KiCj, KiZ;
(for Sec. for every other party j # i. Party i can then combine these with its exact s; to
guarantee SIR.

This approach achieves SIR at the expense of truthfulness. As party ¢ perturbed SS o; is not
used to generate its own model reward, party ¢ may be less deterred (hence more inclined)
to submit less informative or fake SS.

SIR is not needed when each party prefers training a DP model even when alone. SIR may be desired
in other scenarios. However, our approach does not use alternative solutions to satisfy SIR as we
prioritize incentivizing parties to (i) truthfully submit informative perturbed SS that they would use
for future predictions, while (ii) not compromising for weak DP guarantees.
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E Details on Reward Control Mechanisms

In the subsequent proofs, any likelihood p”i(-) should be interpreted as [p(-)]“*: We only raise
likelihoods (of data conditioned on model parameters) to the power of ;.

E.1 Likelihood Tempering and Scaling SS Equivalence Proof

Let g denote the function that maps any data point d; or dataset Dy, to its sufficient statistic. For any
data point d;, we assume that the data likelihood p(d;|€) is from an exponential family with natural
parameters 6 and sufficient statistic g(d;). The data likelihood p(d;|6#) can be expressed in its natural
form:

p(di]6) = h(dy) exp g(dy) - 0 — A(0)]
where a - b £ a ' b denotes the dot product between two vectors.

Next, we assume that p(6) is the conjugate prio@ for p(Dy|#) with natural parameters 1 and the

sufficient statistic mapping function 7" : § — [QT, —A(G)] i Then, for c;, data points which are
conditionally independent given the model parameters 6,

p(O{di}iEy) oc p(da]0) ... p(de, |0) p(O]n)

o (ﬁ h(ch)) exp Zk:g(dz) 0 —ckA0) | | [h(0) exp [T'(0) - — B(n)]]
I=1 1=1
9(Dx)
oc exp [g(Dy) - 0 — e, A(0) + T(0) - — B(n)]
x exp [([g(Dk)T, ck}—r + 77) -T(0) — C(n)

where C'(n) is chosen such that the distribution is normalized.

Substituting the above SS formulae into (I)), the normalized posterior distribution (after tempering
the likelihood) is

qi(0) oc p™ (d1]0) ... p™ (dc, 10) p(O]n)
x [(ﬁ h(dl)) exp [k; [9(Dk) - 0 — ci A(0)]]
=1
o exp [k;g(D) - 0 — kick A(0) + T(9) - n — B(n)]
x exp [([kig(Du) T wicr] " +n) - T(0) = C'(n)]

where C’(n) is chosen such that the distribution is normalized.

[h(8) exp [T(0) - n — B(n)]]

Thus, tempering the likelihood by &; is equivalent to scaling the SS g(Dy) and data quantity ck.
We additionally proved that the normalized posterior can be obtained from the scaled SS and data
quantity via the conjugate update.

Bayesian Linear Regression (BLR). The Bayesian linear regression model was introduced in
App.[A.1] To recap, BLR model parameters 6 consists of the weight parameters w € R* and the
noise variance o2. BLR models the relationship between the concatenated output vector ¢ and the
design matrix X as y = Xw + N(0,021). The tempered likelihood

202 202
only depends on the scaled sufficient statistics #;(y 'y, X "y, X " X). When the prior p(8) follows

the conjugate normal inverse-gamma distribution, the power posterior can be obtained from the scaled
SS and data quantity via the conjugate update.

-1 1 1
= (27r02)_T exp [Fciy—ry + PaniXTy - —w KX Xw

24(9) and p(0|D;) belong to the same exponential family.
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Generalized Linear Model (GLM). App.[A.T]introduces GLMs and states that the polynomial
approximation to the GLM mapping function is an exponential family model. Tempering the GLM
likelihood function by &; is equivalent to scaling the GLM mapping function by «; and can achieved
by scaling the polynomial approximate SS by the same factor.

E.2 Smaller Tempering Factor Decreases Reward Value Proof

The KL divergence between two members of the same exponential family with natural parameters
n and 1, and log partition function B(-) is given by (n — ') TV B(n) — B(n) + B(n') [41]. To
ease notational overload, we abuse some existing ones, which only apply in this subsection, by
letting sy = Y-, v Sk and cy = Y, v ck. Let )’ and 7 be the natural parameters of the prior
and the normalized tempered posterior distribution (used to generate a model reward with value
r;), respectively. Then, n = 1’ + &; [}, cN]T. For k; € [0,1], the derivative of r; w.r.t. ; is
non-negative:
d’f’i - 8’]"1' (97]
dk;  On Ok;
T
= ((n—n")"V2B(n) + VB(n) — VB(n)) [s}, cn]
T
= [ms}, ch} V2B(n) [s}, cN]

= ki [s%, ex] VZB() [s%, en] " > 0.

As B(n) is convex w.r.t. 7, the second derivative’| V2B(n) is positive semi-definite, so
T
[sy, en] V2B(n) [s§, cn] >0.

Hence, for x; € [0, 1], the KL divergence is non-decreasing as «; increases to 1. In other words, as
k; shrinks towards 0, the KL divergence is decreasing; equality only holds when the variance of the
SSis 0.

E.3 Implementation of Reward Control Mechanisms

This subsection introduces how to obtain the model reward ¢;(6) for each party ¢ in Sec.

Update for noise addition (varying 7;). We update the inputs to Algorithm [T] for BLR or the
No-U-Turn sampler for GLM. To generate party i’s posterior samples, for every party k € N, the
algorithm use the further perturbed SS ¢ instead of the perturbed SS oy,. Moreover, the algorithm
consider the total DP noise Z;, + N(0,0.5 A A3(gx) 7; I) instead of only the noise Z; added by
party k.

Update for likelihood tempering (varying ~;). To generate party ¢’s posterior samples, for every
party k € N, Use k;cy, KOk, and p(k;Z) as the inputs to Algorithmfor BLR or the No-U-Turn
[19] sampler for GLM instead. Scaling the perturbed SS would affect the sensitivity of party k’s
submitted information and the DP noise needed.

F Time Complexity

Algorithm 2 An overview of our collaborative ML problem setup.
The computational complexity is given in App.[H

Require: Rényi DP ) parameter, Noise-aware inference algorithm, Shared prior p(#) of model
parameters and prior p(w) of data parameters, p-Shapley fairness scheme parameter.

// Party’s actions (ensure DP)
1: for each party : € N do
2:  Compute exact SS s; from dataset D;.
3:  Choose DP guarantee (A, ¢;)-Rényi DP.

2IThis second derivative is the variance of the sufficient statistic of . It is non-negative and often positive.
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32:

Sample z; from the Gaussian distribution p(Z;) = N'(0, 0.5 (\/e;) A3(g) I).
Compute perturbed SS 0; £ s; + z;.
Submit (i) number ¢; £ |D;| of data points in its dataset D;, (ii) perturbed SS o; and (iii)
Gaussian distribution p(Z;) to the mediator.

: end for

// Mediator’s actions
// 1. Compute valuation of perturbed SS needed for Shapley value. The choice of v ensures a
privacy-valuation trade-off.

: Draw m samples from p(8).
: for each coalition C' C N do

Draw m samples from the posterior p(6|o¢) by applying the noise-aware inference algorithm.

The algorithm requires the perturbed SS o £ {0;}icc. data quantities {c; };cc and noise
distributions {Z; };cc-
Compute v by using the nearest-neighbors method [45] to estimate the KL divergence
Dxr.(p(8loc); p(9)) from the samples.

end for

// 2. Decide the target reward values using p-Shapley value [47] which ensure efficiency (P2),

fairness (P3), rationality (P4) and control group welfare ([Pg).
for each party + € N do

Compute Shapley value ¢; = (1/n) ZCQN\i [(rlbal) 1 (UCU{i} — vc)}.
end for
Identify the maximum Shapley value ¢, = maxgen @
for each party : € N do
Compute p-Shapley fair target reward r; for party ¢ using the formula 7} = vy X (¢;/¢+)?
end for

// 3. Generate model reward q;(0) with value r; = v} that preserves similarity @) with the
grand coalition’s model and privacy for others ([P1).
for each party © € N do
Initialize Kr = ().
while True do
Select k; € [0, 1] using a root finding algorithm and Kr.
Draw m samples from the normalized posterior ¢;(0) (Eq. by applying the noise-aware
inference algorithm. Use the scaled perturbed SS {x;0; }:cn, data quantities {r;¢; }icn
and noise distributions {x;Z; }ic .
Compute the reward value 7; by using the nearest-neighbors method [45] to estimate the
KL divergence Dxk1,(g;(6); p(6)) from the samples.
if attained reward value r; = r then
Reward party ¢ with the m posterior samples from ¢;(6).
break
end if
Update Kr < Kr + ((ki, 74),)
end while
end for

The main steps of our scheme are detailed in Algo. 2] and the time complexity of the steps are as
follows:

1. Local SS s; computation (Line [2]in Algo [2). Party ¢ will need to sum the SS for its
¢; data points. Subsequent steps will not depend on the number c; of data points. The
(approximate) SS is usually an O(d?) vector where d is the number of regression model
features. Therefore, this step incurs O(c;d?) time.

2. Perturbed SS o; computation (Lines @}5]in Algo [2). Each party will need to use the
Gaussian mechanism to perturb s;. Therefore, this step incurs O(d?) time.
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Valuation of Perturbed SS (Sec.[3). The valuation of oy requires us to draw m posterior
samples of model parameters using DP noise-aware inference (refer to App. and the
cited references for the exact steps). As the methods of [27] and [4] incur O(md*) time for
a single party, inference based on Fig. 4| will take n times longer to consider n parties. KL,
estimation using k-nearest neighbor will incur O(m log(m)dim(6)) time to value multiple
(scaled) perturbed SS. Therefore, valuation incurs O(nmd* + mlog(m) dim(6)) time.

3. Deciding target reward value r; for every i € N (Sec. [, Lines [O{I9]in Algo [2)).
Computing the Shapley values exactly involves valuing o for each subset C' C IV, hence,
repeating Step E] O(2™) time. When the number of parties is small (e.g., < 6), we can
compute the Shapley values exactly. For larger n, we can approximate the Shapley values
(¢i)icn with bounded ¢5-norm error using O(n(log n)?) samples [25,53]. Moreover, the
value of different coalitions can be computed in parallel. Therefore, this step incurs O(2")
or O(n(logn)?) times the time in Step [A]

4. Solving for «; to generate model reward (Sec. Lines 2T{31] in Algo [2). During
root-finding, the mediator values different model rewards ¢;(#) generated by scaling the
perturbed SS oy, data quantity c; and DP noise distribution Zj, of each party k € N by
different x;, hence, repeats Step|Al As we are searching for the root in a fixed interval [0, 1]
and to a fixed precision, Step [A|is repeated a constant (usually < 10) number of times.
Therefore, this step incurs O(nmd?* + mlog(m) dim(0)) time per party.

The mediator can further reduce the number of valuation of model rewards (repetitions
of Step @) by using the tuples of (k;,r;) obtained when solving for k; to narrow the
root-finding range for other parties after <.

Therefore, the total incurred time depends on the number of valuations performed in Step[A] The
time complexity may vary for other inference and KL estimation methods.
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G Comparison of Reward Control Mechanisms via Noise Addition (Sec. [5.1)
vs. Likelihood Tempering (Sec.[5.2)

See Fig.[7]
2
1 II
0
-1
Bl p(w;,ws) B p(w;, wo|ty)
—2 | p(w17w2|oN) . pnz(wlaw2|oN)

—2 -1 0 1 2

Figure 7: We contour plot the distribution of the regression model weights w; and wo for the prior,
the grand coalition /V's posterior, and the model reward’s posterior to attain the target reward value 7
utilizing noise addition (Sec.[5.1) vs. likelihood tempering (Sec.[5.2) as the reward control mechanism
for the Syn dataset where p = .5. The tempered posterior interpolates the prior and grand coalition
N’s posterior better as its mean/mode lies along the line connecting the prior’s and grand coalition
N’s posterior mean and the variance is scaled by the same extent for both weights.

H Experiments

The experiments are performed on a machine with Ubuntu 20.04 LTS, 2x Intel Xeon Gold 6230
(2.1GHz) without GPU. The software environments used are Miniconda and Python. A full list of
packages used is given in the file environment.yml attached.

H.1 Experimental Details

Synthetic BLR (Syn). The BLR parameters 6 consist of the weights for each dimension of the 2D
dataset, the bias, and the variance o2. The normal inverse-gamma distribution used (i) to generate the
true regression model weights, variance, and a 2D dataset and (ii) as our model prior is as follows:
o2 ~ InvGamma(ag = 5, By = 0.1) where «p and [ are, respectively, the inverse-gamma shape
and scale parameters, and w|o? ~ N'(0,0%A; ") where Ay = 0.025 I.

We consider three parties 1, 2, and 3 with ¢y = 100, ¢; = 200, and ¢, = 400 data points, respectively.
We fix ¢4 = €3 = 0.2 and vary e, from the default 0.1. As e, increases (decreases), party 2 may
become the most (least) valuable. We allow each party to have a different Gaussian distribution p(x;)
by maintaining a separate conjugate normal inverse-Wishart distribution p(w; = (i, i, X,;)) for
each party. We set the prior 3, ; ~ WL (2pg = I, vy = 50) where 1)y and v are the scale matrix and
degrees of freedom (i.e., how strongly we believe the prior), respectively. Then, y, ; ~ N(0, %, ;).
The /2-sensitivity is estimated using [26]’s analysis based on the norms/bounds of the dataset.

One posterior sampling run generates 16 Gibbs sampling chains in parallel. For each chain, we discard
the first 10000 burn-in samples and draw m = 30000 samples. To reduce the closeness/correlation
between samples which will affect the nearest-neighbor-based KL estimation, we thin and only keep
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every 16-th sample and concatenate the thinned samples across all 16 chains. For the experiment on
reward control mechanisms, we use 5 independent runs of posterior sampling and KL estimation.

Californian Housing dataset (CaliH). As the CaliH dataset may contain outliers, we preprocess
the “public” dataset (60% of the CaliH data) by subtracting the median and scaling by the interquartile
range for each feature. We train a neural network (NN) of 3 layers with [48, 24, 6] hidden units and
the rectified linear unit (ReLU) as the activation function to minimize the mean squared error, which
we will then use as a “pre-trained NN”. The outputs of the last hidden layer have 6 features used as
the inputs for BLR. We intentionally reduce the number of features in the BLR model by adding more
layers to the pre-trained NN and reduce the magnitude of the BLR inputs by adding an activation
regularizer on the pre-trained NN hidden layers (i.e., £2 penalty weight of 0.005). These reduce the
computational cost of Gibbs sampling/KL estimation and the ¢5-sensitivity of the inputs to BLR
(hence the added DP noise), respectively. We also add a weights/bias regularizer with an {5 penalty
weight of 0.005 for the last layer connected to the outputs. Lastly, we standardize the outputs of the
last hidden layer to have zero mean and unit variance.

We preprocess the private dataset for valuation and the held-out validation set (an 80-20 split) using
the same pre-trained NN/transformation process. To reduce the sensitivity and added DP noise,
we filter and exclude any data point with a z-score > 4 for any feature. There are 6581 training
data points left. We divide the dataset randomly among 3 parties such that parties 1, 2, and 3 have,
respectively, 20%, 30% and 50% of the dataset and €; = e3 = 0.2 while €5 is varied from the default
0.1.

The BLR parameters 6 consist of the weights for each of the 6 features, the bias, and the variance o2.

We assume 6 has a normal inverse-gamma distribution and set the prior as follows. The prior depends
on the MLE estimate based on the public dataset, and we assume it has the same significance as
no = 10 data points. Hence, we set 02 ~ InvGamma (g = n¢/2, By = no/2 x MLE estimate of 2)
and w|o? ~ N(0,02%(ng z ") 1).

We assume that each party has the same underlying Gaussian distribution for p(x) and maintain
only one conjugate normal inverse-Wishart distribution p(w = (p,, 2., )) shared across parties.
We initialize the prior p(w) to be weakly dependent on the prior dataset [39]]. The ¢2-sensitivity is
estimated using [26]’s analysis based on the norms/bounds of the private transformed dataset.

One posterior sampling run generates 16 Gibbs sampling chains in parallel. For each chain, we discard
the first 10000 burn-in samples and draw m = 30000 samples. To reduce the closeness/correlation
between samples which will affect the nearest-neighbor-based KL estimation, we thin and only keep
every 16-th sample and concatenate the thinned samples across all 16 chains. For the experiment on
reward control mechanisms, we use 5 independent runs of posterior sampling and KL estimation.

PIMA Indian Diabetes classification dataset (Diab). This dataset has 8 raw features such as age,
BMI, number of pregnancies, and a binary output variable. Patients with and without diabetes are
labeled y = 1 and y = —1, respectively. We split the training and the validation set using an 80-20
split. There are 614 training data points. There are 35.6% and 31.8% of patients with diabetes in the
training and validation sets, respectively. Hence, random guessing would lead to a cross-entropy loss
of 0.629.

We preprocess both sets by (i) subtracting the training set’s median and scaling by the interquartile
range for each feature, (ii) using principal component analysis (PCA) to select the 4 most important
components of the feature space to be used as new features, and lastly, (iii) centering and scaling the
new features to zero mean and unit variance. To reduce the effect of outliers and the /5-sensitivity,
we clip each training data point’s feature values at £2.2.

We divide the 614 training data points such that parties 1, 2, and 3 have, respectively, 20%, 30%,
and 50% of the dataset and €; = €3 = 0.2 while 5 is varied from the default 0.1. We compute the
approximate SS [21]] and perturb them for each party to achieve the selected ¢; [27]. The ¢5-sensitivity
is also estimated based on the dataset.

We consider a Bayesian logistic regression model, and its parameters 6 consist of the bias and the
weights for each of the 4 features. Like that of [27]], we set an independent standard Gaussian prior for

6 but rescale it such that the squared norm ||t9||§ has a truncated Chi-square prior with d = 4 degrees
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of freedom. Truncation prevents sampling € with a norm larger than 2.5 times the non-private/true
setting’s 8* squared norm during inference.

We assume each party has the same distribution for p(x). Our data prior p(x) has mean 0 and
covariance ¥ = diag(¢) Q diag(+) where ¢« ~ N (1,I),. € [0,2], and Q2 follows a Lewandowski-
Kurowicka-Joe prior LKJ(2).

We use the No-U-Turn [19] sampler. We run 25 Markov chains with 400 burn-in samples and draw
m = 2000 samples with a target Metropolis acceptance rate of 0.86. We discard chains with a low
Bayesian fraction of missing information (i.e., < .3) and split the concatenated samples across chains
into 5 groups to estimate KL divergence. As sampling is slower and the generated samples tend to be
less correlated, we can use fewer samples.

Remark. For the CaliH dataset, the preprocessing is based on the “public” dataset, but for the Diab
dataset, the preprocessing (i.e., standardization, PCA) is based on the private, valued dataset. We
have assumed that the data is preprocessed. However, in practice, before using our mechanism, the
parties may have to reserve/separately expend some privacy budget for these processing steps. The
privacy cost is ignored in our analysis of the privacy-valuation trade-off.

KL estimation. We estimate KL divergence using the k-nearest-neighbor-based KL estimator [43].
To reduce the bias due to the skew of the distribution, we apply a whitening transformation [54]]
where each parameter sample is centered and multiplied by the inverse of the sample covariance
matrix based on all samples from 6 and 6 | 0. As a default, we set k& = 4 and increase k until the
distance to the k-th neighbor is non-zero.

H.2 Utility of Model Reward

The mean negative log probability (MNLP) on a test dataset D, given the perturbed SS o; is defined
as follows:

1
MNLP £ X > —logp(yslz., 0;) .
* (+,y+)EDy

We prefer MNLP over the model accuracy or mean squared error metric. MNLP additionally
measures if a model is uncertain of its accurate predictions or overconfident in inaccurate predictions.
In contrast, the latter metrics penalize inaccurate predictions equally and ignore the model’s confidence
(which is affected by the DP noise).

Regression. Approximating the predictive distribution, p(y.|x., 0;), for test input x.. as Gaussian,
the MNLP formula becomes

1 - o *) T Yk 2
MNLP £ yo- (log(QWUz(IL'*)) + M)
(s, ys)EDy 2 02(32*)

|D.|

where 4, and o> (z.) denote the predictive mean and variance, respectively. The first term penalizes
large predictive variance while the second term penalizes inaccurate predictions more strongly when
the predictive variance is small (i.e., overconfidence).

e The predictive mean fi(x, ) is the averaged prediction of ¥, (i.e., w ' x., where w is part of the
model parameters #) over all samples of the model parameters 6.

e The predictive variance 0A2(x*) is computed using the variance decomposition formula, i.e., the
sum of the averaged o2 (the unknown variance parameter within #) and the computed variance in
. . . _ —1 m 2 ’\2 o~ 2
predictions over samples, i.e., = m™" 3.7, 07 + p* (@) — f(@s)”.

Classification. We can estimate p(y«|x., 0;), for test input &, using the Monte Carlo approximation
[39] and reusing the samples @ from p(#|o;). Concretely, p(y = 1|z, 0;) & m™1 Z;n:1 o0 x,).
The MNLP is equivalent to the cross-entropy loss.

H.3 Baselines

To plot the figures in Sec.[6} the baseline DP and collaborative ML works must
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1. work for similar models, i.e., Bayesian linear and logistic regression;

2. not use additional information to value coalitions and generate model rewards (to preserve
the DP post-processing property); and

3. decide feasible model reward values and suggest how model rewards can be generated.

Work of [59]]. Valuation by volume is model-agnostic (satisfying criteria 1). Each party ¢ € N can
submit the noisy version of X,;" X; with DP guarantees to the mediator who can sum them to value
coalitions (satisfying criteria 2). The work does not propose a model reward scheme to satisfy criteria
3.

Work of [47]. [47] only considered Bayesian linear regression (with known variance) and it is not
straightforward to compute information gain on model parameters for Bayesian linear regression
(with unknown variance) and Bayesian logistic regression. Thus, the work does not satisfy criteria 1.
For Bayesian linear regression (with known variance), each party ¢ € N can submit the noisy version
of X" X; with DP guarantees to the mediator who can sum them to value coalitions (satisfying
criteria 2). The work proposed a model reward scheme which involves adding noise to the outputs y
('satisfying criteria 3 but has to be adapted to ensure DP).

DP-FL works. A promising approach is to use DP-FedAvg/DP-FedSGD [36] to learn any model
parameters (satisfying criteria 1) in conjunction with FedSV [55]] to value coalitions without additional
information (satisfying criteria 2). However, to our knowledge, these works will not satisfy criteria 3
as they do not suggest how to generate model rewards of a target reward value.

As no existing work satisfies all criteria, we compare against (1) using non-noise-aware inference
instead of noise-aware inference, all else equal (in App.[H.3)); and (2) an adapted variant of the reward
control via noise addition (in Sec.[5.1] Sec.[f] and App.|G).

H.4 Valuation Function

In Sec.[6] we only vary the privacy guarantee €; of one party . In this subsection, we will analyze
how other factors such as the coverage of the input space and the number of posterior samples on the
valuation v;.

Coverage of input space. We vary the coverage of the input space by only keeping those data points
whose first feature value is not greater than the 25, 50, 75, 100-percentile. Across all experiments
in Table (1} it can be observed that as the percentile increases (hence, data quantity and coverage
improve), the surprise elicited by the perturbed SS oy increases in tandem with the surprise elicited
by the exact SS sy

Feature 0’s Percentile Range  [0,25]  [0,50] [0,75] [0, 100]

Syn

Surprise of sy 12.030 12.698 13.322 14.183
Surprise of oy 6.007 6.775 7.410  8.438
CaliH

Surprise of sy 21.261 22401 26.578 28422
Surprise of on 9.282 10.212  12.121 17.959
Diab

Surprise of sy 5450 6279 7.019  7.258
Surprise of oy 1.854 2712 3909  5.39%4

Table 1: We report the surprise elicited by s and oy (with € = 1) when using the subset of data
with first feature value not exceeding the 25, 50, 75, 100-percentile for all datasets.

Number of posterior samples. For a consistent KL estimator, the bias/variance of the KL estimator
should decrease with a larger number of posterior samples.

Gibbs sampling. We compare the estimated surprise using various degrees of thinning (i.e., keeping
only every ¢-th sample) to generate 30000 samples for the CaliH dataset. In Table[2} it can be observed
that although the total number of samples is constant, the surprise differs significantly. Moreover,

32



as t increases, the surprise decreases at a decreasing rate and eventually converges. This may be
because consecutive Gibbs samples are highly correlated and close, thus causing us to underestimate
the distance to the k-th nearest-neighbors within 6 | oy (see discussion in App. . Increasing ¢
reduces the correlation and closeness and better meets the i.i.d. samples assumption of the nearest-
neighbor-based KL estimation method [45]].

Thin every t-th sample

1 14.849 +0.036
2 12.839 +£0.033
4 11.626 £0.018
8 11.038 +0.022

Surprise vy

16 10.834 £0.033
20 10.790 £ 0.032
30 10.793 £0.011

Table 2: Thinning factor ¢ vs. surprise v for CaliH dataset.

NUTS logistic regression. After drawing 10000 samples for the Diab dataset using the default
setting, we analyze how using a subset of the samples will affect the estimated surprise. In particular,
we consider using (i) the first m samples or (ii) thinned m samples where we only keep every
10000/ m-th sample.

In TableE], it can be observed that as the number m of samples increases, the standard deviation of
the estimated surprise decreases. Moreover, there is no significant difference between using the first
m samples or the thinned m samples. This suggests that the samples are sufficiently independent and
thinning is not needed.

H.5 Additional Experiments on Valuation, Privacy-valuation Trade-off, and Privacy-reward

Trade-off

Table 3: Number m of samples vs. surprise v for Diab dataset.

No. m of Samples  Surprise vy
First 1000 2.227 £+ 0.051
Thinned 1000 2.211 + 0.034
First 2000 2.117 £ 0.049
Thinned 2000 2.117 £ 0.045
First 5000  2.145 £ 0.037
Thinned 5000 2.119 £ 0.038
All 10000  2.128 4+ 0.030

-2 -1 o0 1 —2 -1 0 1 -2 -1 o0
logy €2 logy, €2 logyg €2
(a) Syn (b) CaliH (c) Diab

Figure 8: Graphs of Shapley value ¢; of parties © = 1,2, 3 vs. party 2’s privacy guarantee ey for
various datasets.

Shapley value. In Fig.[8| it can be observed that as party 2 weakens its privacy guarantee (i.e., €3
increases), its Shapley value ¢ increases while other parties’ Shapley values (e.g., ¢3) decrease.
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When party 2 adds less noise to generate its perturbed SS 05, others add less value (i.e., make lower
marginal contributions (MC)) to coalitions containing party 2. Party 2 changes from being least
valuable to being most valuable, even though it has more data than party 1 and less data than party 3.

30| UN A
] 50 | M.
. - = 60 n
S (| 9 v
UN \.
20 40 o ~ g w—n
I‘I/ \l 6
20
10 3
—2 —1 0 1 -2 —1 0 1 —2 —1 0 1
logy €2 logyg €2 log,g €2
(a) Syn (b) CaliH (c)Diab

Figure 9: Graphs of party 2’s valuation vo, Shapley value ¢, and attained reward value ro vs. privacy
guarantee e, for various datasets when performing non-noise-aware (i.e., noise-naive) inference, i.e.,
p(0]Sy = on) and treating o as though it is sy.

Without DP noise-aware inference. In Fig. Eh, it can be observed that as ¢, increases, v; and ¢;
for party ¢ = 2 do not strictly increase. In Figs.[Op-c, it can be observed that as e, increases, v; and
¢; for party © = 2 decrease instead. The consequence of non-noise-aware inference is undesirable
for incentivization — party 2 unfairly gets a lower valuation and reward for using a weaker privacy
guarantee, i.e., a greater privacy sacrifice. Moreover, when €5 is small (i.e., under a strong privacy
guarantee), party 2 is supposed to be least valuable. However, the significantly different o, causes
party 2 to have the highest valuation and be rewarded with the grand coalition N’s model (i.e., 7;
close to v ) instead.

Lastly, we also observe that without DP noise-aware inference, the utility of the model reward is
small. For example, the naive posterior for the Syn dataset results in an MNLP larger than 100.

Conditions for larger improvement in MNLP. In Fig.[3] it seems that the utility of party i = 2’s
model reward measured by MNLP,. cannot improve significantly over over that of its individually
trained model when e5 is large. However, party ’s MNLP,. can be improved by a larger extent when
(i) any other party j # ¢ selects a weaker privacy guarantee (i.e., a larger ¢;), thus improving the
utility of the collaboratively trained model or (ii) party ¢ and others have lower data quantity (i.e.,
smaller ¢y, for all k € N) and are unable to individually train a model of high utility. Figs.[I0p, [I0p,
and[T0f are examples of (i), (ii), and (i+ii), respectively. In Fig.[TOp, the MNLP y of grand coalition
N’s collaboratively trained model is lower than that in Fig. [3p. In Fig.[IOp, the MNLP; of party 4’s
model is higher due to less data. In these examples, we observe that a party can still gain a significant
improvement MNLP; — MNLP,. when ¢; > 1.

Condition (i) for a larger improvement in MNLP,. is satisfied when the trade-off deters parties from
selecting excessive DP guarantees, i.e., it incentivizes parties to select weaker DP guarantees that
still meet their legal and customers’ requirements. Condition (ii) should be satisfied in most real-life
scenarios where a party wants to participate in collaborative ML and federated learning. The party
(e.g., bank) is unable to achieve its desired utility with its individually trained model due to limited
data and collaborates with others to unlock any improvement in the utility of a collaboratively trained
model.
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Figure 10: Graphs of utility of party ¢ = 2’s model reward ¢;(6) measured by MNLP,. vs. privacy
guarantee € for Syn dataset (a) when ¢; = e3 = 2 instead of 0.2, and (b) when only a subset of ¢, /2
data points is available for every party k = 1, 2, 3. (c) Graph of utility of party 7 = 1’s model reward
¢i(0) measured by MNLP,. vs. privacy guarantee €; for Diab dataset when €2 = €5 = 2 instead of
0.2 and only a subset of ¢, /2 data points is available for every party k = 1,2, 3.

Higher A\ = 10. In Fig.|11} the privacy-valuation, privacy-reward, and privacy-utility trade-offs are
still observed when parties select a higher A = 10 when enforcing the Rényi DP guarantee. Moreover,
the utility of party 2’s model reward is higher (i.e., lower MNLP) than that of its individually trained
model.
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Figure 11: Graphs of party 2’s (a-c) valuation vy, Shapley value ¢, and attained reward value 75,
and (d-f) utility of its model reward ¢;(#) measured by MNLP,. vs. privacy guarantee e for various
datasets when enforcing (A = 10, ¢;)-Rényi DP guarantee.

H.6 Additional Experiments on Reward Control Mechanisms

For the CaliH dataset, there is a monotonic relationship between r; vs. both «; and 7;, as shown in
Fig. @ However, it can be observed from Figs. @b-c that for the same attained reward value r;,
adding scaled noise variance 7; will lead to a lower similarity ; to the grand coalition N’s posterior
p(0lon) and utility of model reward (higher MNLP,.) than tempering the likelihood by ;.

35



[ A -
R l
9“[ Ti
Q:I.S
A
e | 2
64 Z,
| SN
| 1.0
5 y S
0l0 0.5 190 St
5 10 5 10
[ T
(@) r; vs. ki, T; (b) 7} vs. 1 (c) MNLP,. vs. 7;

Figure 12: (a) Graph of attained reward value r; vs. k; (Sec. and 7; (Sec. , (b) graph of
similarity 7} to the grand coalition N’s posterior p(6|ox) vs. r;, and (c) graph of utility of party
1 = 2’s model reward g;(0) measured by MNLP,. vs. r; for CaliH dataset.

For Diab dataset, there is a monotonic relationship between r; vs. both x; and 7;, as shown in Fig. flﬁh
However, it can be observed from Fig.[T3b-c that for the same attained reward value r;, tempering
the likelihood by %, leads to a higher similarity 7} to the grand coalition N’s posterior p(f|oy) and
utility of model reward (lower MNLP,.) than adding scaled noise variance ;.
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Figure 13: (a) Graph of attained reward value r; vs. k; (Sec. and 7; (Sec. , (b) graph of

similarity 7} to the grand coalition N’s posterior p(6|on) vs. r;, and (c) graph of utility of party
1 = 2’s model reward ¢;(0) measured by MNLP,. vs. r; for Diab dataset.

Problematic noise realization. We will show here and in Fig.[T4h that some (large) noise realization
can result in a non-monotonic relationship between the attained reward value r; vs. the scaled
additional noise variance 7;. As a result, it is hard to bracket the smallest root 7; that solves for
r; = r; (e.g., = 2 or = 3). Moreover, it can be observed from Figs. E’J—c that the model reward’s
posterior ¢;(6) has a low similarity r; to the grand coalition N’s posterior p(f|oy) and a much higher
MNLP,. than the prior. This suggests that injecting noise does not interpolate well between the prior
and the posterior. In these cases, it is not suitable to add scaled noise variance 7; and our reward
control mechanism via likelihood tempering with &, is preferred instead.
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Figure 14: (a) Graph of attained reward value r; vs. &; (Sec. and 7; (Sec. , (b) graph of
similarity 7} to the grand coalition N’s posterior p(6|ox) vs. r;, and (c) graph of utility of party
i = 2’s model reward ¢;(6) measured by MNLP,. vs. r; for Syn dataset corresponding to (a).
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I Other Questions

Question 1: Are there any ethical concerns we foresee with our proposed scheme?

Answer: Our privacy-valuation trade-off (V3] should deter parties from unfetteredly selecting
excessively strong DP guarantees. Parties inherently recognize the benefits of stronger DP guarantees
and may prefer such benefits in collaboration out of overcaution, mistrust of others, and convenience.
The trade-off counteracts (see Fig. |1 the above perceived benefits by explicitly introducing costs (i.e.,
lower valuation and quality of model reward). Consequently, parties will carefully select a weaker
yet satisfactory privacy guarantee they truly need.

However, a potential concern is that parties may opt to sacrifice their data’s privacy to obtain a
higher-quality model reward. The mediator can alleviate this concern by enforcing a minimum
privacy guarantee (i.e., maximum €) each party must select. The model rewards will preserve this
minimum privacy guarantee due to[P1] The mediator can also decrease the incentive by modifying
vco.

Another potential concern is that if parties have data with significantly different quan-
tity/quality/privacy guarantees, the weaker party k& with fewer data or requiring a stronger
privacy guarantee will be denied the best model reward (i.e., trained on the grand coalition’s SS) and
instead rewarded with one that is of lower quality for fairness. The mediator can alleviate the concern
and at least ensure individual rationality by using a smaller p so that a weaker party k& can obtain
a higher-quality model reward with a higher target reward value 7.

Question 2: Is it sufficient and reasonable to value parties based on the submitted information
{¢i,04,p(Z;) }icn instead of ensuring and incentivizing truthfulness? Would parties strategi-
cally declare other values to gain a higher valuation and reward?

Answer: An ideal collaborative ML scheme should additionally incentivize parties to be truthful and
verify the authenticity of the information provided. However, achieving the “truthfulness” incentive
is hard and has only been tackled by existing works to a limited extent. Existing work cannot
discern if the data and information declared are collected or artificially created (e.g., duplicated) and
thus, this non-trivial challenge is left to future work. The work of [32] assigns and considers each
client’s reputation from earlier rounds, while the works of [29, [31]] measure the correlation in parties’
predictions and model updates. The work of [7] proposes a payment rule based on the log point-
wise mutual information between a party’s dataset and the pooled dataset of others. This payment
rule guarantees that when all other parties are truthful (i.e., a strong assumption), misreporting a
dataset with an inaccurate posterior is worse (in expectation) than reporting a dataset with accurate
posteriorEZ]

Thus, like the works of [[18} 17} 25140, 47, 51] and others, we value data as-is and leave achieving the
“truthfulness” incentive to future work. In practice, parties such as hospitals and firms will truthfully
share information as they are primarily interested in building and receiving a model reward of high
quality and may additionally be bound by the collaboration’s legal contracts and trusted data-sharing
platforms like Ocean Protocol [43]]. For example, with the use of X-road ecosystemE] parties can
maintain a private database which the mediator can query for the perturbed SS. This ensures the
authenticity of the data (also used by the owner) and truthful computation given the uploaded private
database.

Lastly, a party £ who submits fake SS will also reduce its utility from the collaboration. Party %’s
fake SS will affect the grand coalition’s posterior of the model parameters given all perturbed SS
and is also used to generate k’s model reward. As party k only receives posterior samples, k cannot
replace the fake SS with its exact SS locally. As party & have to bear the consequences of the fake SS,
it would be more likely to submit true information.

Question 3: Why do we only consider Bayesian models with SS?

2The payment rule may be unfair as when two parties are present, they will always be paid equally.
Bhttps://joinup.ec.europa.eu/collection/ict-security/solution/
x-road-data-exchange-layer/about, https://x-road.global/
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Answer: See App[A.T]for a background on SS. Our approach would also work for Bayesian models
with approximate SS, such as Bayesian logistic regression, and latent features extracted by a neural
network.

1. The exact SS s; captures all the information (i.e., required by the mediator) within party
1’s dataset D;. Thus, the mediator can do valuation and generate model rewards from the
perturbed SS {0; }ien without requesting more information from the parties. This limits the
privacy cost and allows us to rely on the DP post-processing property.

2. In Sec. [3] the proof that Def. 3.1] satisfies a privacy-valuation trade-off (V3] uses the
properties of SS.

Our work introduces privacy as an incentive and simultaneously offers a new perspective that
excessive DP can and should be deterred by introducing privacy-valuation and privacy-reward
trade-offs and accounting for the DP noise. We use Bayesian models with SS as a case study to
show how the incentives and trade-offs can be achieved. It is up to the future work to address
the non-trivial challenge of ensuring privacy-valuation and privacy-reward trade-offs for other models.

Question 4: Can alternative fair reward schemes be used in place of p-Shapley fair reward
scheme [47]]?

Answer: Yes, if they satisfy [P3]and[P4] For example, if the exchange rate between the perturbed SS
quality and monetary payment is known, then the scheme of [40] can be used to decide the reward
instead. Our work will still ensure the privacy-valuation trade-off and provide the mechanism to
generate the model reward ¢;(6) to attain any target reward value 7] while preserving similarity to
the grand coalition N’s model (P5).

Question 5: What is the difference between our work here and that of [47]]?

Answer: We clearly outlined our contributions in bullet points at the end of the introduction section
(Sec.[T)) and in Fig.

At first glance, our work seems to only add a new privacy incentive. However, as discussed in the
introduction section (Sec.[I)), privacy is barely considered by existing collaborative ML works and
raises significant challenges. The open questions/challenges in [64]’s survey on adopting DP in game-
theoretic mechanism design (see Sec. 7.1 therein) inspire us to ask the following questions:

e How can DP and the aims of cooperative game theory-inspired collaborative ML be compatible?
Will DP invalidate existing properties like fairness?

e How should parties requiring a strong DP guarantee be prevented from unfairly and randomly
obtaining a high-quality model reward?

We propose to enforce a provable privacy-valuation trade-off to answer the latter. The enforcement
involves novelly selecting and combining the right valuation function and tools, such as DP noise-
aware inference.

Additionally, we propose a new reward control mechanism that involves tempering the likelihood
(practically, scaling the SS) to preserve similarity to the grand coalition’s model (P5) and hence
increase the utility of the model reward.

Question 6: Will a party with high-quality data (e.g., a large data quantity, less need for DP
guarantee) be incentivized to participate in the collaboration?

Answer: From Fig.[3] it may seem that a rich party ¢ with ample data and a weak privacy guarantee
(i.e., large ¢;) has a lower utility of model reward to gain from the collaboration. However, it
may still be keen on a further marginal improvement in the utility of its model reward (e.g.,
increasing the classification accuracy from 97% to 99% and predicting better for some sub-groups)
and can reasonably expect a better improvement as other parties are incentivized by our scheme
(through enforcing a privacy-valuation trade-off and fairness [F4) to contribute more data at a
weaker yet satisfactory DP guarantee (see App. [H.5). Moreover, a rich party does not need to
be concerned about others unfairly benefiting from its contribution as our scheme guarantees
fairness through Shapley value. In Fig. |8 as a party selects a weaker DP guarantee (and all
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else being held constant), the Shapley values of others, which determine their model rewards, decrease.

Question 7: What is the impact of varying other hyperparameters?

Answer: The work of [47]] proposes p-Shapley fairness and theoretically and empirically show that
any p > 0 guarantees fairness across parties and a smaller p will lead to a higher attained reward
value r; for all other parties which do not have the largest Shapley value. These properties apply to
our problem setup, and using a larger p will worsen/reduce r; and the utility of party 7’s model reward
¢i(6) measured by MNLP,.. The work of [47] has empirically shown that the number of parties does
not impact the scheme’s effectiveness. However, it affects the time complexity to compute the exact
and approximate SV.

More importantly, the extent to which party ¢ can benefit from its contribution depends on the
quantity/quality of its data relative to that of the grand coalition /V (and the suitability of the model or
informativeness of the prior).

Party i’s DP guarantee ¢; is varied in Sec.[6] while the DP guarantee €, of the other party k and its
number ¢, of data points for k£ € N are varied in App. The privacy order A is varied in App.
Across all experiments, we observe that the privacy-valuation trade-off holds. Moreover, when (i) a
party ¢ has lower-quality data in the form of fewer data points or smaller ¢;, or (ii) another party k
has higher-quality data such as a larger €, the improvement in the utility of its model reward over
that of its individually trained model is larger.

Question 8: Can privacy be guaranteed by using secure multi-party computation and homo-
morphic encryption in model training/data valuation?

Answer: These techniques are designed to prevent direct information leakage and prevent the
computer from learning anything about the data. However, as the output of the computation is
correct, any mediator and collaborating party with access to the final model can query the model for
predictions and infer private information/membership of a datum (indirect privacy leakage). In our
work here, every party can access a model reward. Hence, the setup should prevent each party from
inferring information about a particular instance in the data beyond what can be learned from the
underlying data distribution through strong DP guarantees.

Question 9: In Sec.[d, we mention that (i) it is possible to have negative marginal contributions
(i.e., vou; < ve) in rare cases and (ii) adding some noise realizations may counter-intuitively
create a more valuable model reward (e.g., r; > vy). Why and what are the implications?

Answer: For our choice of valuation function via Bayesian surprise, the party monotonicity and
privacy-valuation trade-off properties involve taking expectations, i.e., on average/in most cases,
adding a party will not decrease the valuation (i.e., the marginal contribution is non-negative), and
strengthening DP by adding more noise should decrease the reward value. However, in rare cases, (i)
and (ii) can occur. We have never observed (i) in our experiments, but a related example of (ii) is
given in Fig.[T4p: A larger 7; surprisingly increased the valuation.

The implication of (i) is that the Shapley value ¢; may be negative, which results in an unusable
negative/undefined ;. However, this issue can be averted while preserving |P3| by upweighting
non-negative MCs, such as to the empty set, as mentioned in Footnote [I0] The implication of (ii)
is that some (large) noise realization can result in a more valuable model reward than the grand
coalition’s model, i.e., r; > vx. However, collaborating parties still prefer p(f|oy) valued at vy as
the more surprising model reward is not due to observations and information. This motivates us to
define more specific desiderata (PI]and[P2)) for our reward scheme.

Lastly, one may question if we should change the valuation function. Should we use the information
gain [(6; o¢) = Eo,. [vc] on model parameters 6 given perturbed SS o¢ instead to eliminate (i) and
(i1)? No, the information gain is undesirable as it disregards the observed perturbed SS oc and will
not capture a party’s preference for higher similarity of its model reward to the grand coalition N’s
posterior p(6|oy).
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