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Abstract

In this paper we fully describe the trajectory of gradient flow over 2-layer diagonal1

linear networks for the regression setting in the limit of vanishing initialisation. We2

show that the limiting flow successively jumps from a saddle of the training loss to3

another until reaching the minimum ℓ1-norm solution. We explicitly characterise4

the visited saddles as well as the jump times through a recursive algorithm reminis-5

cent of the Homotopy algorithm used for computing the Lasso path. Starting from6

the zero vector, coordinates are successively activated until the minimum ℓ1-norm7

solution is recovered, revealing an incremental learning. Our proof leverages a8

convenient arc-length time-reparametrisation which enables to keep track of the9

transitions between the jumps. Our analysis requires negligible assumptions on the10

data, applies to both under and overparametrised settings and covers complex cases11

where there is no monotonicity of the number of active coordinates. We provide12

numerical experiments to support our findings.13

1 Introduction14

Strikingly simple algorithms such as gradient descent are driving forces for deep learning and have15

led to remarkable empirical results. Nonetheless, understanding the performances of such methods16

remains a challenging and exciting mystery: (i) their global convergence on highly non-convex losses17

is far from being trivial and (ii) the fact that they lead to solutions which generalise well [40] is still18

not fully understood.19

To explain this second point, a major line of work has focused on the concept of implicit regularisation:20

amongst the infinite space of zero-loss solutions, the optimisation process must be implicitly biased21

towards solutions which have good generalisation properties for the considered real-world prediction22

tasks. Many papers have therefore shown that gradient methods have the fortunate property of23

asymptotically leading to solutions which have a well-behaving structure [31, 18, 11].24

Aside from these results which mostly focus on characterising the asymptotic solution, a slightly25

different point of view has been to try to describe the full trajectory. Indeed it has been experimentally26

observed that gradient methods with small initialisations have the property of learning models of27

increasing complexity across the training of neural networks [23]. This behaviour is usually referred28

to as incremental learning or as a saddle-to-saddle process and describes learning curves which are29

piecewise constant: the training process makes very little progress for some time, followed by a30

sharp transition where a new “feature” is suddenly learned. In terms of optimisation trajectory, this31

corresponds to the iterates "jumping" from a saddle of the training loss to another.32

Several settings exhibiting such dynamics for small initialisation have been considered: matrix33

and tensor factorisation [35, 21], simplified versions of diagonal linear networks [17, 6], linear34

networks [16, 36, 20], 2-layer neural networks with orthogonal inputs [8] and matrix sensing [1, 27,35
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Figure 1: Gradient flow (βα
t )t with small initialisation scale α over a 2-layer diagonal linear network

(for the precise experimental setting, see Appendix A). Left: Training loss across time, the learning is
piecewise constant. Middle: The magnitudes of the coordinates are plotted across time: the process
is piecewise constant. Right: In the R3 space in which the iterates evolve (the remaining coordinates
stay at 0), the iterates jump from a saddle of the training loss to another. The jumping times ti as well
as the visited saddles βi are entirely predicted by our theory.

22]. However, all these results require restrictive assumptions on the data or only characterise the36

first jump. Obtaining a complete picture of the saddle-to-saddle process by describing all the visited37

saddles and jump times is mathematically challenging and still missing. We intend to fill this gap38

by considering diagonal linear networks which are simplified neural networks that have received39

significant attention lately [39, 38, 19, 34, 14] as they are ideal proxy models for gaining a deeper40

understanding of complex phenomenons such as saddle-to-saddle dynamics.41

1.1 Informal statement of the main result42

In this paper, we provide a full description of the trajectory of gradient flow over 2-layer diagonal43

linear networks in the limit of vanishing initialisation. The main result is informally presented here.44

Theorem 1 (Main result, informal). In the regression setting and in the limit of vanishing initial-45

isation, the trajectory of gradient flow over a 2-layer diagonal linear network converges towards46

a limiting process which is piecewise constant: the iterates successively jump from a saddle of the47

training loss to another, each visited saddle and jump time can recursively be computed through an48

algorithm (Algorithm 1) reminiscent of the Homotopy algorithm for the Lasso.49

The incremental learning stems from the particular structure of the saddles as they correspond to min-50

imisers of the training loss with a constraint on the set of non-zero coordinates. The saddles therefore51

correspond to sparse vectors which partially fit the dataset. For simple datasets, a consequence of our52

main result is that the limiting trajectory successively starts from the zero vector and successively53

learns the support of the sparse ground truth vector until reaching it. However, we make54

minimal assumptions on the data and our analysis also holds for complex datasets. In that case,55

the successive active sets are not necessarily increasing in size and coordinates can deactivate as well56

as activate until reaching the minimum ℓ1-norm solution (see Figure 1 (middle) for an example of a57

deactivating coordinate). The regression setting and the diagonal network architecture are introduced58

in Section 2. Section 3 provides an intuitive construction of the limiting saddle-to-saddle dynamics59

and presents the algorithm that characterises it. Our main result regarding the convergence of the60

iterates towards this process is presented in Section 4 and further discussion is provided in Section 5.61

2 Problem setup and leveraging the mirror structure62

2.1 Setup63

Linear regression. We study a linear regression problem with inputs (x1, . . . , xn) ∈ (Rd)n and64

outputs (y1, . . . , yn) ∈ Rn. We consider the typical quadratic loss:65

L(β) =
1

2n

n∑
i=1

(⟨β, xi⟩ − yi)
2 . (1)
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We make no assumption on the number of samples n nor the dimension d. The only assumption we66

make on the data throughout the paper is that the inputs (x1, . . . , xn) are in general position. In order67

to state this assumption, let X ∈ Rn×d be the feature matrix whose ith row is xi and let x̃j ∈ Rn be68

its jth column for j ∈ [d].69

Assumption 1 (General position). For any k ≤ min(n, d) and arbitrary signs σ1, . . . , σk ∈ {−1, 1},70

the affine span of any k points σ1x̃j1 , . . . , σkx̃jk does not contain any element of the set {±x̃j , j ̸=71

j1, . . . , jk}.72

This assumption is slightly technical but is standard in the Lasso literature [37]. Note that it is73

not restrictive as it is almost surely satisfied when the data is drawn from a continuous probability74

distribution [37, Lemma 4].75

2-layer diagonal linear network. In an effort to understand the training dynamics of neural networks,76

we consider a 2-layer diagonal linear network which corresponds to writing the regression vector β as77

βw = u⊙ v where w = (u, v) ∈ R2d . (2)

This parametrisation can be interpreted as a simple neural network x 7→ ⟨u, σ(diag(v)x)⟩ where u78

are the output weights, the diagonal matrix diag(v) represents the inner weights, and the activation79

σ is the identity function. We refer to w = (u, v) ∈ R2d as the neurons and to β := u ⊙ v ∈ Rd80

as the prediction parameter. With the parametrisation (2), the loss function F over the parameters81

w = (u, v) ∈ R2d is defined as:82

F (w) := L(u⊙ v) =
1

2n

n∑
i=1

(⟨u⊙ v, xi⟩ − yi)
2 . (3)

Though this reparametrisation is simple, the associated optimisation problem is non-convex and83

highly non-trivial training dynamics already occur. The critical points of the function F exhibit a84

very particular structure, as highlighted in the following proposition proven in Appendix B.85

Proposition 1. All the critical points wc of F which are not global minima, i.e., ∇F (wc) = 0 and86

F (wc) > minw F (w), are necessarily saddle points (i.e., not local extrema). They map to parameters87

βc = uc ⊙ vc which satisfy |βc|⊙∇L(βc) = 0 and:88

βc ∈ argmin
β[i]=0 for i/∈supp(βc)

L(β) (4)

where supp(βc) = {i ∈ [d], βc[i] ̸= 0} corresponds to the support of βc.89

The optimisation problem in Eq. (4) states that the saddle points of the train loss F correspond to90

sparse vectors that minimise the loss function L over its non-zero coordinates. This property91

already shows that the saddle points possess interesting properties from a learning perspective. In the92

following we loosely use the term of ‘saddle’ to refer to points βc ∈ Rd solution of Eq. (4) that are93

not saddles of the convex loss function L. We adopt this terminology because they correspond to94

points wc ∈ R2d that are indeed saddles of the non-convex loss F .95

Gradient Flow and necessity of “accelerating” time. We minimise the loss F using gradient flow:96

dwt = −∇F (wt)dt , (5)

initialised at u0 =
√
2α1 ∈ Rd

>0 with α > 0, and v0 = 0 ∈ Rd. This initialisation results in97

β0 = 0 ∈ Rd independently of the chosen neuron initialisation scale α. We denote βα
t := uα

t ⊙ vαt98

the prediction iterates generated from the gradient flow to highlight its dependency on the initialisation99

scale α1. The origin 0 ∈ R2d is a critical point of the function F and taking the initialisation α→ 0100

therefore arbitrarily slows down the dynamics. In fact, it can be easily shown for any fixed time t,101

that (uα
t , v

α
t ) → 0 as α → 0, indicating that the iterates are stuck at the origin. Therefore if we102

restrict ourselves to a finite time analysis, there is no hope of exhibiting the observed saddle-to-saddle103

behaviour. To do so, we must find an appropriate bijection t̃α in R≥0 which “accelerates” time (i.e.104

t̃α(t)−→
α→0

+∞ for all t) and consider the accelerated iterates βα
t̃α(t)

which can escape the saddles.105

Finding this bijection becomes very natural once the mirror structure is unveiled.106

1We point out that the trajectory of βα
t exactly matches that of another common parametrisation βw :=

w2
+ − w2

−, with initialisation w+,0 = w−,0 = α1.
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2.2 Leveraging the mirror flow structure107

While the iterates (wα
t )t follow a gradient flow on the non-convex loss F , it is shown in [4] that the108

iterates βα
t follow a mirror flow on the convex loss L with potential ϕα and initialisation βα

t=0 = 0:109

d∇ϕα(β
α
t ) = −∇L(βα

t )dt, (6)

where ϕα is the hyperbolic entropy function [15] defined as:110

ϕα(β) =
1

2

d∑
i=1

(
βiarcsinh(

βi

α2
)−

√
β2
i + α4 + α2

)
. (7)

Unveiling the mirror flow structure enables to leverage convex optimisation tools to prove convergence111

of the iterates to a global minimiser β⋆
α as well as a simple proof of the implicit regularisation problem112

it solves. As shown by Woodworth et al. [39], in the overparametrised setting where d > n and where113

there exists an infinite number of global minima, the limit β⋆
α is the solution of the problem:114

β⋆
α = argmin

yi=⟨xi,β⟩,∀i
ϕα(β). (8)

Furthermore, a simple function analysis shows that ϕα behaves as a rescaled ℓ1-norm as α goes115

to 0, meaning that the recovered solution β⋆
α converges to the minimum ℓ1-norm solution β⋆

ℓ1
:=116

argminyi=⟨xi,β⟩∥β∥1 as α goes to 0. To bring to light the saddle-to-saddle dynamics which occurs117

as we take the initialisation to 0, we make substantial use of the nice mirror structure from Eq. (6).118

Appropriate time rescaling. To understand the limiting dynamics of βα
t , it is natural to consider119

the limit α→ 0 in Eq. (6). However, the potential ϕα is such that ϕα(β) ∼ ln(1/α)∥β∥1 for small120

α and therefore degenerates as α → 0. Similarly, for β ̸= 0, ∥∇ϕα(β)∥→ ∞ as α→ 0. The121

formulation from Eq. (6) is thus not appropriate to take the limit α→ 0. We can nonetheless obtain a122

meaningful limit by considering the opportune time acceleration t̃α(t) = ln(1/α) · t and looking at123

the accelerated iterates124

β̃α
t := βα

t̃α(t) = βα
ln(1/α)t. (9)

Indeed, a simple chain rule leads to the “accelerated mirror flow”: d∇ϕα(β̃
α
t ) = − ln ( 1

α )∇L(β̃α
t )dt.125

The accelerated iterates (β̃α
t )t follow a mirror descent with a rescaled potential:126

d∇ϕ̃α(β̃
α
t ) = −∇L(β̃α

t )dt, where ϕ̃α :=
1

ln(1/α)
· ϕα, (10)

with β̃t=0 = 0 and where ϕα is defined Eq. (7). Our choice of time acceleration ensures that the127

rescaled potential ϕ̃α is non-degenerate as the initialisation goes to 0 since ϕ̃α(β) ∼
α→0
∥β∥1.128

3 Intuitive construction of the limiting flow and saddle-to-saddle algorithm129

In this section, we aim to give a comprehensible construction of the limiting flow. We therefore130

choose to provide intuition over pure rigor, and defer the full and rigorous proof to the Appendix E.131

The technical crux of our analysis is to demonstrate the existence of a piecewise constant limiting132

process towards which the iterates β̃α converge to. The convergence result is differed to the following133

Section 4. In this section we assume this convergence and refer to this piecewise constant134

limiting process as (β̃◦
t )t. Our goal is then to determine the jump times (t1, . . . , tp) as well as the135

saddles (β0, . . . , βp) which fully define this process.136

To do so, it is natural to examine the limiting equation obtained when taking the limit α → 0 in137

Eq. (10). We first turn to its integral form which writes:138

−
∫ t

0

∇L(β̃α
s )ds = ∇ϕ̃α(β̃

α
t ). (11)

Provided the convergence of the flow β̃α towards β̃◦, the left hand side of the previous equation139

converges to −
∫ t

0
∇L(β̃◦

s )ds. For the right hand side, recall that ϕ̃α(β)
α→0∼ ∥β∥1, it is therefore140
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natural to expect the right hand side of Eq. (11) to converge towards an element of ∂∥β̃◦
t ∥1, where141

we recall the definition of the subderivative of the ℓ1-norm as:142

∂∥β̃∥1= {1} if β̃ > 0, {−1} if β̃ < 0, [−1, 1] if β̃ = 0.

The arising key equation which must satisfy the limiting process β̃◦ is then, for all t ≥ 0:143

−
∫ t

0

∇L(β̃◦
s )ds ∈ ∂∥β̃◦

t ∥1. (12)

We show that this equation uniquely determines the piecewise constant process β̃◦ by imposing144

the number of jumps p, the jump times as well as the saddles which are visited between the jumps.145

Indeed the relation described in Eq. (12) provides 4 restrictive properties that enable to construct β̃◦.146

To state them, let st = −
∫ t

0
∇L(β̃◦

s )ds and notice that it is continuous and piecewise linear since β̃◦147

is piecewise constant. For each coordinate i ∈ [d], it holds that:148

(K1) st[i] ∈ [−1, 1] (K2) st[i] = 1⇒ β̃◦
t [i] ≥ 0 and st[i] = −1⇒ β̃◦

t [i] ≤ 0149

(K3) st[i] ∈ (−1, 1)⇒ β̃◦
t [i] = 0 (K4) β̃◦

t [i] > 0⇒ st[i] = 1 and β̃◦
t [i] < 0⇒ st[i] = −1150

To understand how these conditions lead to the algorithm which determines the jump times and the151

visited saddles, we present a 2-dimensional example for which we can walk through each step. The152

general case then naturally follows from this simple example.153

3.1 Construction of the saddle-to-saddle algorithm with an illustrative 2d example.154

Let us consider n = d = 2 and data matrix X ∈ R2×2 such that X⊤X = ((1, 0.2), (0.2,−0.2)).155

We consider β⋆ = (−0.2, 2) ∈ R2 and outputs y = Xβ⋆. This setting is such that the loss L156

has β⋆ as its unique minimum and L(β∗) = 0. Furthermore the non-convex loss F has 3 saddles157

which map to: βc,0 := (0, 0) = argminβi=0,∀i L(β), βc,1 := (0.2, 0) = argminβ[2]=0 L(β) and158

βc,2 := (0, 1.6) = argminβ[1]=0 L(β). The loss function L is sketched in Figure 2 (Left). Notice159

that by the definition of βc,1 and βc,2, the gradients of the loss at these points are orthogonal to the160

axis they belong to. When running gradient flow with a small initialisation over our diagonal linear161

network, we obtain the plots illustrated Figure 2 (Middle and Right). We observe three jumps: the162

iterates jump from the saddle at the origin to βc,1 at time t1, then to βc,2 at time t2 and finally to the163

global minimum β⋆at time t3.164
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[2]

Figure 2: Left: Sketch of the 2d loss. Middle and right: Outputs of gradient flow with small
initialisation scale: the iterates are piecewise constant and st is piecewise linear across time. We refer
to the main text for further details.

Let us show how Eq. (12) enables us to theoretically recover this trajectory. A simple observation165

which we will use several times below is that for any t′ > t such that β̃◦ is constant equal to β over166

the time interval (t, t′), the definition of s enables to write that st′ = st − (t′ − t) · ∇L(β).167

Zeroth saddle: The iterates are at the saddle at the origin: β̃◦
t = β0 := βc,0 and therefore168

st = −t·∇L(β0). Our key equation Eq. (12) is verified since st = −t·∇L(β0) ∈ ∂∥β0∥1= [−1, 1]d.169

However the iterates cannot stay at the origin after time t1 := 1/∥∇L(β0)∥∞ which corresponds to170

the time at which the first coordinate of st hits +1: st1 [1] = 1. If the iterates stayed at the origin after171

t1, (K1) for i = 1 would be violated. The iterates must hence jump.172
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First saddle: The iterates can only jump to a point different from the origin which maintains173

Eq. (12) valid. We denote this point as β1. Notice that:174

• st1 [2] = −t1 · ∇L(β0)[2] ∈ (−1, 1) and since st is continuous, we must have β1[2] = 0 (K3)175

• st1 [1] = 1 and hence for t ≥ t1, st[1] = 1− (t− t1)∇L(β1)[1]. We cannot have∇L(β1)[1] <176

0 (K1), and neither∇L(β1)[1] > 0 since otherwise st[1] ∈ (−1, 1) and β1 = 0 (K3)177

The two conditions β1[2] = 0 and ∇L(β1)[1] = 0 uniquely defines β1 as equal to βc,1. We now178

want to know if and when the iterates jump again. We saw that st[1] remains at the value +1. However179

since β1 is not a global minimum, ∇L(β1)[2] ̸= 0 and st[2] hits +1 at time t2 defined such that180

−(t1∇L(β0) + (t2 − t1)∇L(β1))[2] = 1. The iterates must jump otherwise (K1) would break.181

The iterates cannot jump to β⋆ yet! As the second coordinate of the iterates can activate, one182

could expect the iterates to be able to jump to the global minimum. However note that st is a183

continuous function and that st2 is equal to the vector (1, 1). If the iterates jumped to the global184

minimum, then the first coordinate of the iterates would change sign from +0.2 to −0.2. Due to (K4)185

this would lead st jumping from +1 to −1, violating its continuity.186

Second saddle: We denote as β2 the point to which the iterates jump. st2 is now equal to the vector187

(1, 1) and therefore (i) β2 ≥ 0 (coordinate-wise) from (K2 and K3) and the continuity of s. Since188

st = st2 − (t − t2)∇L(β2), we must also have: (ii) ∇L(β2) ≥ 0 from (K1) (iii) for i ∈ {1, 2}, if189

β2[i] ̸= 0 then ∇L(β2)[i] = 0 from (K4). The three conditions (i), (ii) and (iii) precisely correspond190

to the optimality conditions of the following problem:191

argmin
β[1]≥0,β[2]≥0

L(β).

The unique minimiser of this problem is βc,2, hence β2 = βc,2, which means that the first coordinate192

deactivates. Similar to before, (K1) is valid until the time t3 at which the first coordinate of st =193

st2 − (t− t2)∇L(β2) reaches −1 due to the fact that∇L(β2)[1] > 0.194

Global minimum: We follow the exact same reasoning as for the second saddle. We now have195

st3 equal to the vector (−1, 1) and the iterates must jump to a point β3 such that (i) β3[1] ≤ 0,196

β3[2] ≥ 0 (K2 and K3), (ii) ∇L(β3)[1] ≤ 0, ∇L(β3)[2] ≥ 0 (K1), (iii) for i ∈ {1, 2}, if β3[i] ̸= 0197

then∇L(β3)[i] = 0 (K4). Again, these are the optimality conditions of the following problem:198

argmin
β[1]≤0,β[2]≥0

L(β).

β⋆ is the unique minimiser of this problem and β3 = β⋆. For t ≥ t3 we have st = st3 and Eq. (12) is199

satisfied for all following times: the iterates do not have to move anymore.200

3.2 Presentation of the full saddle-to-saddle algorithm201

We can now provide the full algorithm (Algorithm 1) which computes the jump times (t1, . . . , tp) and202

saddles (β0 = 0, β1, . . . , βp) as the values and vectors such that the associated piecewise constant203

process satisfies Eq. (12) for all t. This algorithm therefore defines our limiting process β̃◦.204

Algorithm 1 in words. The algorithm is a concise representation of the steps we followed in the205

previous section to construct β̃◦. We explain each step in words below. Starting from k = 0, assume206

we enter the loop number k at the saddle βk computed in the previous loop:207

• The set Ak contains the set of coordinates "which are unstable": by having a non-zero208

derivative, the loss could be decreased by moving along each one of these coordinates and209

one of these coordinates will have to activate.210

• The time gap ∆k corresponds to the time spent at the saddle βk. It is computed as being the211

elapsed time just before (K1) breaks if the coordinates do not jump.212

• We update tk+1 = tk +∆k and sk+1 = sk −∆k∇L(βk): tk+1 corresponds to the time at213

which the iterates leave the saddle βk and sk+1 constrains the signs of the next saddle βk+1214

• The solution βk+1 of the constrained minimisation problem is the saddle to which the flow215

jumps to at time tk+1. The optimality conditions of this problem are such that Eq. (12) is216

maintained for t ≥ tk+1.217
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Algorithm 1: Successive saddles and jump times of limα→0β̃
α

Initialise: (t, β, s)← (0,0,0);
while ∇L(β) ̸= 0 do
A ← {j ∈ [d],∇L(β)(j) ̸= 0}
∆← inf {δ > 0 s.t. ∃i ∈ A, s(i)− δ∇L(β)(i) = ±1}
(t, s)← (t+∆, s−∆ · ∇L(β))

β ← argmin L(β) where β ∈
{
β ∈ Rd s.t.

βi≥0 if s(i)=+1
βi≤0 if s(i)=−1
βi=0 if s(i)∈(−1,1)

}
end
Output: Successive values of β and t

Various comments on Algorithm 1. First we point out that any solution βc of the constrained min-218

imisation problem which appears in Algorithm 1 also satisfies βc = argminβ[i]=0 for i/∈supp(βc) L(β)219

as in Eq. (4): the algorithm hence indeed outputs saddles as expected. Up until now we have never220

checked whether the algorithm’s constrained minimisation problem has a unique minimum. This is221

crucial otherwise the assignment step would be ill-defined. Showing the uniqueness is non-trivial222

and is guaranteed thanks to the general position Assumption 1 on the data (see Proposition 6 in223

Appendix D.1). In this same proposition, we also show that the algorithm terminates in at most224

min (2d,
∑n

k=0

(
d
k

)
) steps, that the loss strictly decreases at each step and that the final output βp225

is the minimum ℓ1-norm solution. These last two properties are expected given the fact that the226

algorithm arises as being the limit process of β̃α which follows the mirror flow Eq. (10).227

Links with the Homotopy algorithm for the Lasso. Recall that the Lasso problem is formulated as:228

β⋆
λ = argmin

β∈Rd

L(β) + λ∥β∥1. (13)

229
The optimality condition of Eq. (13) writes −∇L(β⋆

λ) ∈ λ∂∥β⋆
λ∥1. Now notice the similarity230

with Eq. (12): the two would be equivalent with λ = 1/t if the integration on the left hand side231

of Eq. (12) did not average over the whole trajectory but only on the final iterate, in which case232

−
∫ t

0
∇L(β̃◦

t )ds = −t · ∇L(β̃◦
t ). Though the difference is small, the trajectories of our limiting233

trajectory β̃◦ and the lasso path (β⋆
λ)λ are quite different: one has jumps, whereas the other is234

continuous. Nonetheless, the construction of Algorithm 1 shares many similarities with that of the235

Homotopy algorithm (see, e.g., [37] and references therein) which is used to compute the Lasso236

path. A notable difference however is the fact that each step of our algorithm depends on the whole237

trajectory through the vector s, whereas the Homotopy algorithm can be started from any point on238

the path.239

Outputs of the algorithm under a RIP assumption on the data. Unlike previous results on240

incremental learning, complex behaviours can occur when the feature matrix is ill designed: several241

coordinates can activate and deactivate at the same time (see Appendix A for various cases). However,242

if the feature matrix satisfies the 2r-restricted isometry property (RIP) [10] and there exists an r-sparse243

solution β⋆, the visited saddles can be easily approximated using Algorithm 1. Specifically, writing244

β⋆ = (β⋆
1 , . . . , β

⋆
r , 0, . . . , 0) such that w.l.o.g |β⋆

1 |≥ . . . ≥ |β⋆
r |> 0, then under properties depending245

on the RIP constant and β⋆, the algorithm terminates in exactly r loops, and outputs jump times and246

saddles roughly equal to ti = 1/|β∗
i | and βi = (β⋆

1 , · · · , β⋆
i , 0, . . . , 0) (we refer to Appendix D.2 for247

the precise characterisation). Therefore, in simple settings, the support of the sparse vector is learnt a248

coordinate at a time, without any deactivations.249

4 Convergence of the iterates towards the process defined by Algorithm 1250

We are now fully equipped to state our main result which formalises the convergence of the accelerated251

iterates towards the limiting process β̃◦ which we built in the previous section.252
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Theorem 2. Let the saddles (β0 = 0, β1, . . . , βp−1, βp = β⋆
ℓ1
) and jump times (t0 = 0, t1, . . . , tp)253

be the outputs of Algorithm 1 and let (β̃◦
t )t be the piecewise constant process defined as follows:254

(Saddles) β̃◦
t = βk for t ∈ (tk, tk+1) and 0 ≤ k ≤ p, tp+1 = +∞.

The accelerated flow (β̃α
t )t defined in Eq. (9) uniformly converges towards the limiting process (β̃◦

t )t255

on any compact subset of R≥0\{t1, . . . , tp}.256

Convergence result. We recall that from a technical point of view, showing the existence of a257

limiting process limα→0 β̃
α is the toughest part. Theorem 2 provides this existence as well as the258

uniform convergence of the accelerated iterates towards β̃◦ over all closed intervals of R which do not259

contain the jump times. We highlight that this is the strongest type of convergence we could expect260

and a uniform convergence over all intervals of the form [0, T ] is impossible given that the limiting261

process β̃◦ is discontinuous. In Proposition 2, we give an even stronger result by showing a graph262

convergence of the iterates which takes into account the path followed between the jumps. We also263

point out that we can easily show the same type of convergence for the neurons w̃α
t := wα

t̃α(t)
using264

the bijective mapping which links the neurons wt and the predictors βt (see Lemma 1 in Appendix C).265

Estimates for the non-accelerated iterates βα
t . We point out that our result provides no speed266

of convergence of β̃α towards β̃◦. We believe that a non-asymptotic result is challenging and267

leave it as future work. Note that we experimentally notice that the convergence rate quickly268

degrades after each saddle. Nonetheless, we can still write for the non-accelerated iterates that269

βα
t = β̃α

t/ln(1/α) ∼ β̃◦
t/ln(1/α) as α→ 0. Hence, for α small enough the iterates βα

t are roughly equal270

to 0 until time t1 ·ln(1/α) and the minimum ℓ1-norm interpolator is reached at time tp ·ln(1/α). Such271

a precise estimate of the global convergence time is rather remarkable and goes beyond classical272

Lyapunov analysises which only leads to L(βα
t ) ≲ ln(1/α)/t (see Proposition 3 in Appendix C).273

Natural extensions of our setting. More general initialisations can easily be dealt with. For instance,274

initialisations of the form ut=0 = αu0 ∈ Rd lead to the exact same result as it is shown in [39]275

(Discussion after Theorem 1) that the associated mirror still converges to the ℓ1-norm. Initialisations276

of the form [ut=0]i = αki , where ki > 0, lead to the associated potential converging towards a277

weighted ℓ1-norm and one should modify Algorithm 1 by accordingly weighting ∇L(β) in the278

algorithm. Also, deeper linear architectures of the form βw = wD
+ − wD

− as in [39] do not change279

our result as the associated mirror still converges towards the ℓ1-norm. Though we only consider280

the square loss in the paper, we believe that all our results should hold for any loss of the type281

L(β) =
∑n

i=1 ℓ(yi, ⟨xi, β⟩) where for all y ∈ R, ℓ(y, ·) is strictly convex with a unique minimiser at282

y. In fact, the only property which cannot directly be adapted from our results is showing the uniform283

boundedness of the iterates (see discussion before Proposition 4 in Appendix C).284

4.1 High level sketch of proof of β̃α → β̃◦ which leverages an arc-length parametrisation285

In this section, we give the high level ideas concerning the proof of the convergence β̃α → β̃◦ given286

in Theorem 2. A full and detailed proof can be found in Appendix E. The main difficulty stems287

from the non-continuity of the limit process β̃◦. To circumvent this difficulty, a clever trick which288

we borrow to [13, 29] is to “slow-down” time when the jumps occur by considering an arc-length289

parametrisation of the path. We consider the R≥0 arclength bijection τα and leverage it to define290

the ‘appropriately slowed down’ iterates β̂α
τ as:291

β̂α
τ = β̃α

t̂α(τ)
where t̂ατ = (τα)−1(τ) and τα(t) = t+

∫ t

0

∥ ˙̃βα
s ∥ds.

This time reparametrisation has the fortunate but crucial property of leading to ˙̂tα(τ) + ∥ ˙̂βα
τ ∥= 1292

by a simple chain rule, which means that the speed of (β̂α
τ )τ is uniformly upperbounded by 1293

independently of α. This behaviour is in stark contrast with the process (β̃α
t )t which has a speed294

which explodes at the jumps. This change of time now allows us to use Arzelà-Ascoli’s theorem295

8



to extract a subsequence which uniformly converges to a limiting process which we denote β̂.296

Importantly, β̂ enables to keep track of the path followed between the jumps as we show that its297

trajectory has two regimes:298

Saddles: β̂τ = βk Connections: ˙̂
βτ = − |β̂τ |⊙∇L(β̂τ )

∥|β̂τ |⊙∇L(β̂τ )∥
.

The process β̂ is illustrated on the right: the red curves correspond to the
paths which the iterates follow during the jumps. These paths are called
heteroclinic orbits in the dynamical systems literature [25, 2]. To prove
Theorem 2, we can map back the convergence of β̂α to show that of β̃α .
Moreover from the convergence β̂α → β̂ we get a more complete picture
of the limiting dynamics of β̃α as it naturally implies the convergence
of the graph of the iterates (β̃α

t )t converges towards that of (β̂τ )τ . The
graph convergence result is formalised in this last proposition.
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Proposition 2. For all T > tp, the graph of the iterates (β̃α
t )t≤T converges to that of (β̂τ )τ :

dist({β̃α
t }t≤T , {β̂τ}τ≥0) −→

α→0
0 (Hausdorff distance)

5 Further discussion and conclusion299

Link between incremental learning and saddle-to-saddle dynamics. The incremental learning300

phenomenon and the saddle-to-saddle process are often complementary facets of the same idea and301

refer to the same phenomenon. Indeed for gradient flows dwt = −∇F (wt)dt, fixed points of the302

dynamics correspond to critical points of the loss. Stages with little progress in learning and minimal303

movement of the iterates necessarily correspond to the iterates being in the vicinity of a critical304

point of the loss. It turns out that in many settings (linear networks [24], matrix sensing [7, 32]),305

critical points are necessarily saddle points of the loss (if not global minima) and that they have a306

very particular structure (high sparsity, low rank, etc.). We finally note that an alternative approach to307

realising saddle-to-saddle dynamics is through the perturbation of the gradient flow by a vanishing308

noise as studied in [5].309

Characterisation of the visited saddles. A common belief is that the saddle-to-saddle trajectory310

can be found by successively computing the direction of most negative curvature of the loss (i.e.311

the eigenvector corresponding to the most negative eigenvalue) and following this direction until312

reaching the next saddle [20]. However this statement cannot be accurate as it is inconsistent with313

our algorithm in our setting. In fact, it can be shown that this algorithm would match the orthogonal314

matching pursuit (OMP) algorithm [33, 12] which does not necessarily lead to the minimum ℓ1-norm315

interpolator. In the recent work [6], which is the closest to ours, the successive saddles are entirely316

characterised for the quadratic parametrisation β = u2 but with restrictive assumptions on the data.317

Subdifferential equations and rate-independant systems. As in Eq. (12), subdifferential inclusions318

of the form ∇L(βt) ∈ d
dt∂h(βt) for non-differential functions h have been studied by Attouch319

et al. [3] but for strongly convex functions h. In this case, the solutions are continuous and do not320

exhibit jumps. On another hand, [13, 29, 30] consider so-called rate-independent systems of the form321

∂qE(t, qt) ∈ ∂h(q̇t) for 1-homogeneous dissipation potentials h. Examples of such systems are322

ubiquitous in mechanics and appear in problems related to friction, crack propagation, elastoplasticity323

and ferromagnetism to name a few [28, Ch. 6 for a survey]. As in our case, the main difficulty with324

such processes is the possible appearance of jumps when the energy E is non-convex.325

Conclusion. Our study examines the behaviour of gradient flow with vanishing initialisation over326

diagonal linear networks. We prove that it leads to the flow jumping from a saddle point of the loss to327

another. Our analysis characterises each visited saddle point as well as the jumping times through an328

algorithm which is reminiscent of the Homotopy method used in the Lasso framework. There are329

several avenues for further exploration. The most compelling one is the extension of these techniques330

to broader contexts for which the implicit bias of gradient flow has not yet fully been understood.331
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Organisation of the Appendix.441

1. In Appendix A, we give the experimental setup and provide additional experiments.442

2. In Appendix B, we prove Proposition 1 and provide additional comments concerning the443

unicity of the minimisation problem which appears in the proposition.444

3. In Appendix C, we provide some general results on the flow.445

4. In Appendix D, we give standalone properties of Algorithm 1.446

5. In Appendix E, we explain in more detail the arc-length parametrisation explained in the447

main text as well as prove Theorem 2 and Proposition 2.448

6. In Appendix F, we provide technical lemmas which are useful to prove the main results.449
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A Experimental setup and additional: experiments, extension, related works.450

Experimental setup and additional experiments. For each experiment we generate our dataset451

as yi = ⟨xi, β
⋆⟩ where xi = N (0, H) for a a diagonal covariance matrix H and β⋆ is a vector of452

Rd. Gradient descent is run with a small step size and from initialisation ut=0 =
√
2α1 ∈ Rd and453

vt=0 = 0 for some initialisation scale α > 0.454

• Figure 1 and Figure 4 (Left): (n, d, α) = (5, 7, 10−120), H = Id, β⋆ =455

(10, 20, 0, 0, 0, 0, 0) ∈ R7.456

• Figure 4 (Right): (n, d, α) = (6, 6, 10−10), H = diag(1, 10, 10, 10, 10, 10) ∈ R6×6,457

β⋆ = (1, 0, 0, 0, 0, 0, 0) ∈ R6.458

• Figure 3 (Left): (n, d, α1, α2) = (7, 2, 10−100, 10−10), H = Id, β⋆ = (10, 20) ∈ R7.459

• Figure 3 (Right): (n, d, α) = (3, 3, 10−100) , X is the square root matrix of the matrix460

((20, 6,−1.4), (6, 2,−0.4), (−1.4,−0.4, 0.12)) ∈ R3×3, β⋆ = (1, 9, 10).461
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Figure 3: Left: Visualisation of the uniform convergence of β̃α towards β̃◦ as α → 0. α1 =
10−100 ≪ α2 = 10−10 Right: In some cases, 2 coordinates can activate at the same time. Note that
the time axis is in log-scale for better visualisation.
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Figure 4: Complex dynamics can occur. Left and right: Coordinates are not monotonic and the
number of active coordinates neither as several coordinates can deactivate at the same time. The
piecewise constant process plotted in black is the limiting process β̃◦ predicted by our theory.
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B Proof of Proposition 1462

Proposition 1. All the critical points wc of F which are not global minima, i.e., ∇F (wc) = 0 and463

F (wc) > minw F (w), are necessarily saddle points (i.e., not local extrema). They map to parameters464

βc = uc ⊙ vc which satisfy |βc|⊙∇L(βc) = 0 and:465

βc ∈ argmin
β[i]=0 for i/∈supp(βc)

L(β) (4)

where supp(βc) = {i ∈ [d], βc[i] ̸= 0} corresponds to the support of βc.466

Proof. Non-existence of maxima / non-global minima. This is a simpler version of results which467

appear in [24], for the sake of completeness we provide here a simple proof adapted to our setting.468

The intuition follows the fact that if there existed a local maximum / non-global minimum for F then469

this would translate to the existence of a local maximum / non-global minimum for the convex loss L,470

which is absurd.471

Assume that there exists a local maximum w⋆ = (u⋆, v⋆), i.e. assume that there exists ε > 0 such472

that for all w = (u, v) such that ∥w − w⋆∥22≤ ε, F (w) ≤ F (w⋆). We show that this would imply473

that β⋆ = u⋆ ⊙ v⋆ is a local maximum of L, which is absurd.474

The mapping g : (u, v) 7→ (u⊙ v,
√
(u2 − v2)/2) from Rd

≥0 ×Rd → Rd ×Rd
≥0 is a bijection with475

inverse476

g−1 : (β, α) 7→ (

√
α2 +

√
β2 + α4, sign(β)⊙

√
−α2 +

√
β2 + α4). (14)

Also notice that F (g−1(β, α)) = L(β) for all β and α. Now let ε̃ > 0 and let β ∈ Rd such that477

∥β − β⋆∥22≤ ε̃, then for (u, v) = g−1(β, α∗) where α∗ =
√

((u⋆)2 − (v⋆)2)/2 we have that:478

∥(u, v)− (u⋆, v⋆)∥22 = 2
∥∥∥(√α4

∗ + β2 −
√
α4
∗ + β⋆2

)2∥∥∥
1

≤ 2∥β2 − β⋆2∥1
= 2∥(β − β⋆)2 + 2(β − β⋆)β⋆∥1
≤ 2∥(β − β⋆)2∥1+2∥β⋆∥∞∥β − β⋆∥1
≤ 2(1 +

√
d∥β⋆∥∞)ε̃

≤ ε

where the last inequality is for ε̃ small enough. This means that L(β) = F (w) ≤ F (w⋆) = L(β⋆)479

and β⋆ is a local maximum of L, which is absurd.480

The exact same proof holds to show that there are no local minima of F which are not global minima.481

Critical points. The gradient of the loss function F writes:482

∇wF (w) =

(
∇uF (w)
∇vF (w)

)
=

(
∇L(β)⊙ v
∇L(β)⊙ u

)
∈ R2d.

Therefore ∇F (wc) = 0 ∈ R2d implies that ∇L(βc)⊙ βc = 0 ∈ Rd. Now consider such a βc and483

let supp(βc) = {i ∈ [d] such that βc(i) ̸= 0} denote the support of βc. Since [∇L(βc)]i = 0 for484

i /∈ supp(βc), we can therefore write that485

βc ∈ argmin
βi=0 for i ̸∈supp(βc)

L(β).

Furthermore we point out that since supp(βc) ⊂ [d], there are at most 2d distinct sets supp(βc), and486

therefore at most 2d values F (wc) = L(βc), where wc is a critical point of F .487

Additional comment concerning the uniqueness of argminβi=0,i̸∈supp(βc) L(β).488
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We point out that the constrained minimisation problem (4) does not necessarily have a unique489

solution, even when βc is not a global solution. Though not required for any of our results, for the490

sake of completeness, we show here that under an additional mild assumption on the data, we can491

ensure that the minimisation problem (4) which appears in Proposition 1 has a unique minimum492

when L(βc) > 0. Under this additional assumption, there is therefore a finite number of saddles βc.493

Recall that we let X ∈ Rn×d be the feature matrix and (x̃1, . . . , x̃d) be its columns. Now assume494

temporarily that the following assumption holds.495

Assumption 2 (Assumption used just in this short section). Any subset of (x̃1, . . . , x̃d) of size smaller496

than min(n, d) is linearly independent.497

One can easily check that this assumption holds with probability 1 as soon as the data is drawn from498

a continuous probability distribution, similarly to [37, Lemma 4]). In the following, for a subset499

ξ = {i1, . . . , ik} ⊂ [d], we write Xξ = (x̃i1 , . . . , x̃ik) ∈ Rn×k (we extract the columns from X).500

For a vector β ∈ Rd we write β[ξ] = (βi1 , . . . , βik) and β[ξC ] = (βi)i/∈ξ. We distinguish two501

different settings:502

• Underparametrised setting (n ≥ d) : in this case, for any ξ = {i1, . . . , ik} ⊂ [d], then503

β⋆ := argmin
βi=0,i̸∈ξ

L(β) is unique. Indeed we simply set the gradient to 0 and notice that504

due to Assumption 2, there exists a unique solution, indeed it is β⋆ such that β⋆[ξ] =505

(X⊤
ξ Xξ)

−1X⊤
ξ y and β⋆[ξC ] = 0.506

• Overparametrised setting (d > n) : Global solutions: argminβ∈Rd L(β) is an affine space507

spanned by the orthogonal of (x1, . . . , xn) in Rd. Since span(x̃1, . . . , x̃d) = Rn from508

Assumption 2, any β⋆ ∈ argminβ∈Rd L(β) satisfies Xβ⋆ = y and L(β⋆) = 0. "Saddle509

points": now let βc ∈ Rd be such that we can write βc ∈ argminβi=0,i/∈supp(βc) L(β) and510

assume that L(βc) > 0 (i.e., not a global solution), then: (1) βc has at most n non-zero511

entries, indeed if it were not the case, then y would necessarily belong to span(x̃i)i∈supp(βc)512

due to the assumption on the data, and this would lead to L(βc) = 0, (2) therefore, similar513

to the underparametrised case, argminβi=0,i/∈supp(βc) L(β) is unique, equal to βc, and we514

have that βc[ξ] = (X⊤
ξ Xξ)

−1X⊤
ξ y and βc[ξ

C ] = 0 where ξ = supp(βc).515

Thus, in both the underparametrised and overparametrised settings, the minimisation problem (4)516

appearing in Proposition 1 has a unique minimum when L(βc) > 0 and Assumption 2 holds.517
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C General results on the iterates518

In the following lemma we recall a few results concerning the gradient flow Eq. (5):519

dwt = −∇F (wt)dt , (15)

where F is defined in Eq. (3) as:520

F (w) := L(u⊙ v) =
1

2n

n∑
i=1

(⟨u⊙ v, xi⟩ − yi)
2 .

521

Lemma 1. For an initialisation u0 =
√
2α, v0 = 0, the flow wα

t = (uα
t , v

α
t ) from Eq. (15) is such522

that the quantity (uα
t )

2 − (vαt )
2 is constant and equal to 2α21. Furthermore uα

t > |vαt |≥ 0 and523

therefore from the bijection Eq. (14) we have that:524

uα
t =

√
α2 +

√
(βα

t )
2 + α4, vαt = sign(βα

t )⊙
√
−α2 +

√
(βα

t )
2 + α4.

Proof. From the expression of ∇F (w), notice that the derivative of (uα
t )

2 − (vαt )
2 is equal to 0 and525

therefore equal to its initial value.526

Since (uα
t )

2 − (vαt )
2 = (uα

t + vαt )(u
α
t − vαt ) > 0, by continuity we get that uα

t + vαt > 0 and527

uα
t − vαt > 0 and therefore uα

t > |vαt |.528

In this section we consider the accelerated iterates Eq. (9) which follow:529

d∇ϕ̃α(β̃
α
t ) = −∇L(β̃α

t )dt, where ϕ̃α :=
1

ln(1/α)
· ϕ̃α (16)

with β̃t=0 = 0 and where ϕα is defined Eq. (7).530

Proposition 3. For all α > 0 and minimum β⋆ ∈ argminβ L(β), the loss values L(β̃α
t ) and the531

Bregman divergence Dϕ̃α
(β⋆, β̃α

t ) are decreasing. Moreover532

L(β̃α
t )− L(β⋆) ≤ ϕ̃α(β

⋆)

2t
, (17)

L
(1
t

∫ t

0

β̃α
s ds

)
− L(β⋆) ≤ ϕ̃α(β

⋆)

2t
. (18)

Proof. The loss is decreasing since: d
dtL(β̃

α
t ) = ∇L(β̃α

t )
⊤
β̇α
t = − ˙̃

βα⊤

t ∇2ϕ̃α(β̃
α
t )

˙̃
βα
t ≤ 0.533

d
dtDϕ̃α

(β⋆, β̃α
t ) = −∇L(β̃α

t )
⊤(β̃α

t − β⋆) = −2(L(β̃α
t ) − L(β⋆)) (since L is the quadratic loss),534

therefore the Bregman distance is decreasing. We can also integrate this last equality from 0 to t, and535

divide by −2t:536

1

t

∫ t

0

L(β̃α
s )ds− L(β⋆) =

Dϕ̃α
(β⋆, βα

0 = 0)−Dϕ̃α
(β⋆, βα

t )

2t

≤ ϕ̃α(β
⋆)

2t
.

Since the loss is decreasing we get that L(β̃α
t )− L(β⋆) ≤ ϕ̃α(β⋆)

2t and from the convexity of L we537

get that L
(

1
t

∫ t

0
β̃α
s ds

)
− L(β⋆) ≤ ϕ̃α(β⋆)

2t .538

In the following proposition, we show that for α small enough, the iterates are bounded independently539

of α. Note that this result unfortunately only holds for the quadratic loss, we expect it to hold for540

other convex losses of the type L(β) = 1
n

∑
i ℓ(yi, ⟨xi, β⟩) where ℓ(y, ·) is strictly convex has a541

unique root at y but we don’t know how to show it. Also note that bounding the accelerated iterates542

β̃α is equivalent to bounding the iterates βα since β̃α
t = βα

ln(1/α)t.543
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Proposition 4. For α < α0, where α0 depends on β⋆
ℓ1

, the iterates β̃α
t are bounded independently of544

α:545

∥β̃α
t ∥∞≤ 3∥β⋆

ℓ1∥1+1

Proof. From Eq. (16), integrating and using that L is the quadratic loss, we get:546

∇ϕ̃α(β̃
α
t ) =

t

n
X⊤(y −Xβ̄α

t ) = −
t

n
X⊤X(β̄α

t − β⋆),

where we recall that X ∈ Rn×d is the input data represented as a matrix and where we denote the547

averaged iterate by β̄α
t = 1

t

∫ t

0
β̃α
s ds. Thus we get548

∇ϕ̃α(β̃
α
t )

⊤(β̃α
t − β⋆) = − t

n
(β̄α

t − β⋆)⊤X⊤X(β̃α
t − β⋆). (19)

By convexity of ϕ̃α we have ϕ̃α(β
α
t )− ϕ̃α(β

⋆) ≤ ∇ϕ̃α(β
α
t )

⊤(βα
t − β⋆). By the Cauchy-Schwarz549

inequality, we also have (β̄α
t − β⋆)⊤X⊤X(βα

t − β⋆) ≤ ∥X(βα
t − β⋆)∥∥X(β̄α

t − β⋆)∥. Using550

Proposition 3: ∥X(βα
t − β⋆)∥2≤ nϕ̃α(β

⋆)/t and ∥X(β̄α
t − β⋆)∥2≤ nϕ̃α(β

⋆)/t we can further551

bound the right hand side of Eq. (19) as552

− t

n
(β̄α

t − β⋆)⊤X⊤X(βα
t − β⋆) ≤ ϕ̃α(β

⋆).

Thus it yields553

ϕ̃α(β
α
t )− ϕ̃α(β

⋆) ≤ ϕ̃α(β
⋆).

From [39] (proof of Lemma 1 in the appendix) we get that for

α < min
{
1,
√
∥β∥1, (2∥β∥1)−1

}
then:554

ϕ̃α(β) ≤
3

2
∥β∥1,

and for all α < exp(−d/2):555

ϕ̃α(β) ≥ ∥β∥1−
d

ln(1/α2)

≥ ∥β∥1−1,
which finally leads for

α < α0 := min
{
1,
√
∥β⋆

ℓ1
∥1,

(
2∥β⋆

ℓ1∥1
)−1

, exp(−d/2)
}

to the result.556

The following proposition shows that we can bound the path length of the flow β̃α independently of α.557

Keep in mind that the path length of β̃α is equivalent to that of βα as the first is just an acceleration558

of the second: β̃α
t = βα

ln(1/α)t.559

Proposition 5. For α < α0 where α0 is the same as in Proposition 4, the path length of the iterates
(βα

t )t≥0 is bounded independently of α > 0:∫ +∞

0

∥β̇α
t ∥dt < C,

where C does not depend on α. Hence the path length of the accelerated flow β̃α is also bounded560

independently of α.561
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Proof. Having shown that the iterates βα
t are bounded independently of α, it also implies that the562

iterates wt = (ut, vt) are bounded following Lemma 1. Since the loss w 7→ F (w) is a multivari-563

ate polynomial function, it is a semialgebraic function and we can consequently apply the result564

of Kurdyka [26, Theorem 2] which grants that565 ∫ +∞

0

∥ẇt∥dt < C,

where the constant C only depends on the loss and on the bound on the iterates. We further use566

that β̇ = u̇⊙ v + u⊙ v̇ and ∥u̇⊙ v + u⊙ v̇∥≤ C1(∥u̇∥+∥v̇∥) using that u and v are bounded and567

∥u̇∥+∥v̇∥≤ C2∥ẇ∥ using the equivalence of norms. Therefore
∫ +∞
0
∥β̇α

t ∥dt < C for some C which568

is independent of the initialisation scale α.569
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D Standalone properties of Algorithm 1570

D.1 “Well-definedness” of Algorithm 1 and upperbound on its number of loops571

Notice that this proposition highlights the fact that Algorithm 1 is on its own an algorithm of interest572

for finding the minimum ℓ1-norm solution in an overparametrised regression setting. We point out that573

the provided upperbound on the number of iterations is very crude and could certainly be improved.574

Proposition 6. Algorithm 1 is well defined: at each iteration (i) the attribution of ∆ is well defined575

as ∆ < +∞, (ii) the constrained minimisation problem has a unique solution and the attribution576

of the value of β is therefore well-founded. Furthermore, along the loops: the iterates β have at577

most n non-zero coordinates, the loss is strictly decreasing and the algorithm terminates in at most578

min (2d,
∑n

k=0

(
d
k

)
) steps by outputting the minimum ℓ1-norm solution β⋆

ℓ1
:= arg min

β∈ argminL
∥β∥1.579

Proof. In the following, for the matrix X and for a subset I = {i1, . . . , ik} ⊂ [d], we write580

XI = (x̃i1 , . . . , x̃ik) ∈ Rn×k (we extract the columns from X). For a vector β ∈ Rd we write581

βI = (βi1 , . . . , βik).582

(1) The constrained minimisation problem has a unique solution: we follow the proof of [37,583

Lemma 2]. Following the notations in Algorithm 1, we define I = {i ∈ [d], |si|= 1} and we584

point out that after k loops of the algorithm, the value of s is equal to s = −(∆1∇L(β0) + · · · +585

∆k∇L(βk−1)) ∈ span(x1, . . . , xn). We can therefore write s = X⊤r for some r ∈ Rn.586

Now assume that ker(XI) ̸= {0}. Then, for some i ∈ I , we have x̃i =
∑

j∈I\{i} cj x̃j where cj ∈ R.587

Without loss of generality, we can assume that I \ {i} has at most n elements. Indeed, we can588

otherwise always find n elements Ĩ ⊂ I \ {i} such that x̃i =
∑

j∈Ĩ cj x̃j . Rewriting the previous589

equality, we get590

six̃i =
∑

j∈I\{i}

(sisjcj)(sj x̃j). (20)

Now by definitions of the set I and of r, we have that ⟨x̃j , r⟩ = sj ∈ {+1,−1} for any j ∈ I . Taking591

the inner product of Eq. (20) with r, we obtain that 1 =
∑

j∈I\{i}(sisjcj). Consequently, we have592

shown that if ker(XI) ̸= {0}, then we necessarily have for some i ∈ I ,593

six̃i =
∑

j∈I\{i}

aj(sj x̃j),

with
∑

j∈I\{i} aj = 1, which means that six̃i lies in the affine space generated by (sj x̃j)j∈I\{i}.594

This fact is however impossible due to Assumption 1 (recall that without loss of generality we595

have that I \ {i} has at most n elements, and trivially less that d elements). Therefore XI is full596

rank, and Card(I) ≤ n. Now notice that the constrained minimisation problem corresponds to597

argminβi≥0,i∈I+
βi≤0,i∈I−

∥y −XIβI∥22. Since XI is full rank, this restricted loss is strictly convex and the598

constrained minimisation problem has a unique minimum.599

(2) ∆ < +∞: Notice that the optimality conditions of600

β = argmin
βi≥0,i∈I+
βi≤0,i∈I−
βi=0,i/∈I

∥y −XIβI∥22,

are (i) β satisfies the constraints, (ii) if i ∈ I+ (resp i ∈ I−) then [−∇L(β)]i ≤ 0 (resp [−∇L(β)]i ≥601

0) and (iii) if βi ̸= 0 then [∇L(β)]i = 0. One can notice that condition (ii) ensures that at each602

iteration, for δ ≤ ∆k, sk−1 − δ∇L(βk−1) ∈ [−1, 1] coordinate wise. Also, if L(βk−1) ̸= 0, then a603

coordinate of the vector |sk−1 − δ∇L(βk−1)| must necessarily hit 1, this value of δ corresponds to604

∆k.605

(3) The loss is strictly decreasing: Let Ik−1,± and Ik,± be the equicorrelation sets defined in the606

algorithm at step k−1 and k, and βk−1 and βk the solutions of the constrained minimisation problems.607

Also, let ik be the newly added coordinate which breaks the constraint at step k (which we assume608

to be unique for simplicity). Without loss of generality, assume that sk(ik) = +1. Since the sets609
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Ik−1,+ \ (Ik,+ \ {ik}) and Ik−1,− \ Ik,− are (if not empty) only composed of indexes of coordinates610

of βk−1 which are equal to 0, one can notice that βk−1 also satisfies the new constraints at step611

k. Therefore L(βk) ≤ L(βk−1). Now since [−∇L(βk−1)]ik > 0, from the strict convexity of the612

restricted loss on Ik, this means that βk(ik) > 0 (which also means that newly activated coordinate613

ik must activate), and therefore βk−1 ̸= βk and L(βk) < L(βk−1).614

(4) The algorithm terminates in at most min
(
2d,

∑n
k=0

(
d
k

))
steps: Recall that we showed in

part (1) of the proof that at each iteration k of the algorithm, Ik as at most min(n, d) elements.
Since supp(βk) ⊂ Ik, we have that βk has at most min(n, d) non-zero elements, also recall that we
always have βk = argminβi=0,i/∈supp(βk)

L(β) (we here have unicity of this minimisation problem
following part (1) of the proof). There are hence at most

min(n,d)∑
k=0

(
d

k

)
= min

(
2d,

n∑
k=0

(
d

k

))
such minimisation problems. The loss being strictly decreasing, the algorithm cannot output the same615

solution β at two different loops, and the algorithm must terminate in at most min
(
2d,

∑n
k=0

(
d
k

))
616

iterations by outputting a vector β⋆ such that ∇L(β⋆) = 0, i.e. β⋆ ∈ argminL(β).617

(5) The algorithm outputs the minimum ℓ1-norm solution. Let β⋆ be the output of the algorithm618

after p iterations. Notice that by the definition of the successive sets Ik,± and of the constraints on the619

minimisation problem, we have that at each iteration sk ∈ ∂∥βk∥1. Therefore sp ∈ ∂∥β⋆∥1. Also,620

recall from part (1) of the proof that sp ∈ span(x1, . . . , xn) which means that there exists r ∈ Rn621

such that sp = X⊤r. Putting the two together we get that X⊤r ∈ ∂∥β⋆∥1, this condition along with622

the fact that L(β⋆) = minL(β) are exactly the KKT conditions of arg min
β∈ argminL

∥β∥1.623

D.2 Output of Algorithm 1 under the restricted isometry property (RIP)624

As mentioned several times, for general feature matrices X complex behaviours can occur with625

coordinates deactivating and changing sign several times. Here we show that for simple datasets626

which have a feature matrix X that satisfy the restricted isometry property (RIP) [10], we can simply627

determine the jump times and the saddles as a function of the sparse predictor which we seek to628

recover.629

The non-realistic but enlightening extreme case of the RIP assumption is to consider that the feature630

matrix is such that X⊤X/n = Id. In this case, by letting β⋆ be the unique vector such that631

y = ⟨x, β⋆⟩ and assuming that β⋆ = (β⋆
1 , . . . , β

⋆
r , 0, . . . , 0) with |β⋆

1 |> · · · > |β⋆
r |> 0, then the632

loss writes L(β) = ∥β − β⋆∥22/2 and one can easily check that Algorithm 1 would terminate in r633

loops and output exactly ti =
1

|β⋆
i |

and βi = (β⋆
1 , . . . , β

⋆
i , 0, . . . , 0) for i ≤ r (the case where several634

coordinates of β⋆ are stricly equal can also be treated: for example if β⋆
1 = β⋆

2 then the first output of635

the algorithm is directly β1 = (β⋆
1 , β

⋆
2 , 0, . . . , 0)).636

We now consider the more realistic RIP setting which is an adaptation of the previous observation.637

RIP setting and gap assumption. We consider a sparse regression where there exists an r-sparse638

vector β⋆ such that yi = ⟨xi, β
⋆⟩. Furthermore we assume that the feature matrix X ∈ Rn,d satisfies639

the 2r-restricted isometry property with constant ε̃ <
√
2− 1 < 1/2: for all submatrix Xs where we640

extract any s ≤ 2r columns of X , the matrix X⊤
s Xs/n of size s × s has all its eigenvalues in the641

interval [1 − ε̃, 1 + ε̃]. Furthermore we assume that the r-sparse vector β⋆ has coordinates which642

have a “sufficient gap’. W.l.o.g we write β⋆ = (β⋆
1 , . . . , β

⋆
r , 0, . . . , 0) with |β⋆

1 |≥ . . . ≥ |β⋆
r |> 0 and643

we define λ := mini∈[r](β
⋆
i − β⋆

i+1) ≥ 0 which corresponds to the smallest gap between the entries644

of β⋆. We assume that 5ε̃∥β⋆∥< λ/2 (Gap assumption) and we let ε := 5ε̃.645

A classic result from compressed sensing (see Candes [9, Theorem 1.2]) is that the 2r-restricted646

isometry property with constant
√
2− 1 ensures that the minimum ℓ0-minimisation problem has a647

unique r-sparse solution which is β⋆. Furthermore it ensures that the minimum ℓ1-norm solution is648

unique and is equal to β⋆. This means that Algorithm 1 will have β⋆ as a final output.649

We can now characterise the outputs of Algorithm 1 when the data satisfies the previous assumptions.650
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Proposition 7. Under the restricted isometry property and the gap assumption stated right above,651

Algorithm 1 terminates in r-loops and outputs:652

β1 = (β1[1], 0, . . . , 0) with β1[1] ∈ [β⋆
1 − ε∥β⋆∥, β⋆

2 + ε∥β⋆∥]

β2 = (β2[1], β2[2], 0, . . . , 0) with
{

β2[1] ∈ [β⋆
1 − ε∥β⋆∥, β⋆

1 + ε∥β⋆∥]
β2[2] ∈ [β⋆

2 − ε∥β⋆∥, β⋆
2 + ε∥β⋆∥]

...
βr−1 = (βr−1[1], . . . , βr−1[r − 1], 0, . . . , 0) with βr−1[i] ∈ [β⋆

i − ε∥β⋆∥, β⋆
i + ε∥β⋆∥ ]

βr = β⋆ = (β⋆
1 , . . . , β

⋆
r , 0, . . . , 0)

at times t1, . . . , tr such that653

ti ∈
[ 1

β⋆
i + ε∥β⋆∥ ,

1

β⋆
i − ε∥β⋆∥

]
.

Proof. For simplicity we assume that β⋆
i > 0 for all i ∈ [r], the proof can easily be adapted to the654

general case. We first define ξ := X⊤X/n− Id. By the restricted isometry property, for any k ≤ 2r,655

we have that any k × k square matrix extracted from ξ which we denote ξkk has its eigenvalues in656

[−ε̃, ε̃]. It also means that the eigenvalues of (Ik+ξkk)
−1−Ik are in [ 1

1+ε̃ −1, 1
1−ε̃ −1] ⊂ [−2ε̃, 2ε̃].657

We now proceed by induction with the following induction hypothesis:658

• βk−1 has its support on its (k− 1) first coordinates with |βk−1[i]− β⋆
i |≤ 5ε̃∥β⋆∥ for i < k659

• tk ∈
[

1
β⋆
k+5ε̃∥β⋆∥ ,

1
β⋆
k−5ε̃∥β⋆∥

]
and stk [k] = 1660

• stk [i] ∈ [tk(β
⋆
i − 5ε̃∥β⋆∥), tk(β⋆

i + 5ε̃∥β⋆∥)] ⊂ (−1, 1) for i > k661

From the recurrence hypothesis, the output of the algorithm at step k is hence βk = argminL(β)662

under the constraint β[i] ≥ 0 for i ≤ k and β[i] = 0 otherwise. We first search for the solution of the663

minimisation problem without the sign constraint and still (abusively) denote it βk: we will show that664

it turns out to satisfy the sign constraint and that it is therefore indeed βk.665

In the following, for a vector v, we denote by v[: k] its k first coordinates. Setting the k first666

coordinates of the gradient to 0, we get that [X⊤X(βk − β⋆)][:k] = 0, which leads to (Ik + ξkk)βk[:667

k] = β⋆[:k] + [ξβ⋆][:k], which gives:668

βk[:k] = (Ik + ξkk)
−1(β⋆[:k] + [ξβ⋆][:k])

= β⋆[:k] + [ξβ⋆][:k] + v1

where from the bound on the eigenvalues of (Ik + ξkk)
−1 − Ik and ∥ξβ⋆∥≤ ε̃∥β⋆∥:669

∥v1∥ ≤ 2ε̃∥β⋆[:k] + [ξβ⋆][:k])∥
≤ 2ε̃(∥β⋆∥+∥ξβ⋆∥)
≤ 2ε̃(∥β⋆∥+ε̃∥β⋆∥)
≤ 4ε̃∥β⋆∥.

Therefore670

βk[:k] = β⋆[:k] + v2
where v2 = [ξβ⋆][: k] + v1 hence ∥v2∥∞≤ ∥v2∥≤ 5ε̃∥β⋆∥. Notice that from the definition of λ671

and the fact that 5ε̃∥β⋆∥< λ/2 we have that βk[:k] ≥ 0 coordinate-wise, hence verifying the sign672

constraint. Also note that ∥βk∥≤ ∥β⋆∥+5ε̃∥β⋆∥≤ 4∥β⋆∥.673

For t ≥ tk, st = stk − (t − tk)∇L(βk), and [∇L(βk)][: k] = 0 therefore st[: k] = stk [: k]. Now674

for i > k, [−∇L(βk)]i = n−1[X⊤X(β⋆ − βk)]i = β⋆
i + [ξ(βk − β⋆)]i. Now since (βk − β⋆) is675

r-sparse we have that:676

∥ξ(βk − β⋆)∥∞ ≤ ∥ξ(βk − β⋆)∥
≤ ε̃∥βk − β⋆∥
≤ ε̃(∥βk∥+∥β⋆∥)
≤ 5ε̃∥β⋆∥< λ/2, (21)
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Now from the fact that st[i] = stk [i] + (t− tk)β
⋆
i + (t− tk)[ξ(βk − β⋆)]i and using the recurrence677

hypothesis: stk [i] ∈ [tk(β
⋆
i − 5ε̃∥β⋆∥), tk(β⋆

i + 5ε̃∥β⋆∥)], we get (using the bound Eq. (21))678

that st[i] ∈ [t(β⋆
i − 5ε̃∥β⋆∥), t(β⋆

i + 5ε̃∥β⋆∥)]. From the “separation assumption” we have that679

5ε̃∥β⋆∥< λ/2 and therefore the next coordinate to activate is necessarily the (k + 1)th at time tk+1680

with stk+1
[k + 1] = 1 and:681

tk+1 ∈
[ 1

β⋆
k+1 + 5ε̃∥β⋆∥ ,

1

β⋆
k+1 − 5ε̃∥β⋆∥

]
.

This proves the recursion. The algorithm cannot stop before iteration r as β⋆ is the unique minimiser682

of L that has at most r non-zero coordinates. But it stops at iteration r as β⋆ is the unique minimiser683

of L(β) under the constraints βi ≥ 0 for i ≤ r and βi = 0 otherwise.684
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E Proof of Theorem 2 and Proposition 2 through the arc-length685

parametrisation686

In this section, we explain in more details the arc-length reparametrisation which circumvents the687

apparition of discontinuous jumps and leads to the proof of Theorem 2. The main difficulty to show688

the convergence stems from the non-continuity of the limit process β̃◦. Therefore we cannot expect689

uniform convergence of β̃α towards β̃ as α→ 0. In addition, β̃◦ does not provide any insights into690

the path followed between the jumps.691

Arc-length parametrisation. The high-level idea is to “slow-down” time when the jumps occur. To692

do so we follow the approach from [13, 29] and we consider an arc-length parametrisation of the693

path, i.e., we consider τα equal to:694

τα(t) = t+

∫ t

0

∥ ˙̃βα
s ∥ds.

In Proposition 5, we showed that the full path length
∫ +∞
0
∥β̇α

s ∥ds is finite and bounded independently695

of α. Therefore τα is a bijection in R≥0. We can then define the following quantities:696

t̂ατ = (τα)−1(τ) and β̂α
τ = β̃α

t̂α(τ)
.

By construction, a simple chain rule leads to ˙̂tα(τ) + ∥ ˙̂βα
τ ∥= 1, which means that the speed of (β̂α

τ )τ697

is always upperbounded by 1, independently of α. This behaviour is in stark contrast with the process698

(β̃α
t )t which has a speed which explodes at the jumps. It presents a major advantage as we can now699

use Arzelà-Ascoli’s theorem to extract a converging subsequent. A simple change of variable shows700

that the new process satisfies the following equations:701

−
∫ τ

0

˙̂tαs∇L(β̂α
s )ds = ∇ϕ̃α(β̂

α
τ ) and ˙̂tατ + ∥ ˙̂βα

τ ∥= 1 (22)

started from β̂α
τ = 0 and t̂0 = 0. The next proposition states the convergence of the rescaled process,702

up to a subsequence.703

Proposition 8. Let T ≥ 0. For every α > 0, let (t̂α, β̂α) be the solution of Eq. (22). Then, there704

exists a subsequence (t̂αk , β̂αk)k∈N and (t̂, β̂) such that as αk → 0 :705

(t̂αk , β̂αk)→ (t̂, β̂) in (C0([0, T ],R× Rd), ∥·∥∞) (23)

( ˙̂tαk ,
˙̂
βαk) ⇀ ( ˙̂t,

˙̂
β) in L1[0, T ] (24)

Limiting dynamics. The limits (t̂, β̂) satisfy:706

−
∫ τ

0

˙̂ts∇L(β̂s)ds ∈ ∂∥β̂τ∥1 and ˙̂tτ + ∥ ˙̂βτ∥≤ 1 (25)

Heteroclinic orbit. In addition, when β̂τ is such that |β̂τ |⊙∇L(β̂τ ) ̸= 0, we have707

˙̂
βτ = − |β̂τ |⊙∇L(β̂τ )

∥|β̂τ |⊙∇L(β̂τ )∥
and ˙̂tτ = 0. (26)

Furthermore, the loss strictly decreases along the heteroclinic orbits and the path length
∫ T

0
∥ ˙̂βτ∥dτ708

is upperbounded independently of T .709

Proof. Differentiating Eq. (22) and from the Hessian of ϕ̃α we get:710

˙̂
βα
τ = − ˙̂tατ (∇2ϕ̃α(β̂

α
τ ))

−1∇L(β̂α
τ )

= −(1− ∥ ˙̂βα
τ ∥)(∇2ϕ̃α(β̂

α
τ ))

−1∇L(β̂α
τ ).
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Therefore taking the norm on the right hand side we obtain that

∥ ˙̂βα
τ ∥=

∥(∇2ϕ̃α(β̂
α
τ ))

−1∇L(β̂α
τ )∥

1 + ∥(∇2ϕ̃α(β̂α
τ ))

−1∇L(β̂α
τ )∥

,

and therefore711

˙̂
βα
τ = − (∇2ϕ̃α(β̂

α
τ ))

−1∇L(β̂α
τ )

1 + ∥(∇2ϕ̃α(β̂α
τ ))

−1∇L(β̂α
τ )∥

. (27)

Subsequence extraction. By construction Eq. (22) we have ˙̂tατ + ∥ ˙̂βα
τ ∥= 1 , therefore the sequences712

( ˙̂tα)α, ( ˙̂βα)α as well as (t̂α)α, (β̂α)α are uniformly bounded on [0, T ]. The Arzelà-Ascoli theorem713

yields that, up to a subsequence, there exists (t̂, β̂) such that (t̂αk , β̂αk)→ (t̂, β̂) in (C0([0, T ],R×714

Rd), ∥·∥∞). Since ∥ ˙̂βα
τ ∥, ∥ ˙̂tατ ∥≤ 1 we have, applying the Banach–Alaoglu theorem, that up to a new715

subsequence716

( ˙̂tαk ,
˙̂
βαk)

∗
⇀ ( ˙̂t,

˙̂
β) in L∞(0, T ) (28)

and ∥ ˙̂βτ∥≤ lim infαk
∥ ˙̂βαk

τ ∥≤ 1 and thus ˙̂tτ + ∥ ˙̂βτ∥≤ 1:∫ T

0

∥ ˙̂βτ∥dτ ≤
∫ T

0

lim inf
αk

∥ ˙̂βαk
τ ∥dτ ≤

∫ +∞

0

lim inf
αk

∥ ˙̂βαk
τ ∥dτ ≤ lim inf

αk

∫ +∞

0

∥ ˙̂βαk
τ ∥dτ < C,

where the third inequality is by Fatou’s lemma. Note that since [0, T ] is bounded then it also implies
the weak convergence in any Lp(0, T ), 1 ≤ p <∞. Since (β̂α) converges uniformly on [0, T ], and
∇L is continuous, we have that∇L(β̂α) converges uniformly to∇L(β̂). Since ˙̂tαk ⇀ ˙̂t in L1(0, T ),
passing to the limit in the equation∇ϕ̃α(β̂

α
τ ) = −

∫ τ

0
˙̂tαs∇L(β̂α

s )ds leads to

−
∫ τ

0

˙̂ts∇L(β̂s)ds ∈ ∂∥β̂τ∥1,

due to Lemma 2.717

Recall from Eq. (27) and the definition of ϕ̃α that:718

˙̂
βα
τ = −

√
β̂α
τ + α4 ⊙∇L(β̂α

τ )

1/ln(1/α) + ∥
√

β̂α
τ + α4 ⊙∇L(β̂α

τ )∥
. (29)

Hence assuming that β̂τ is such that ∥|β̂τ |⊙∇L(β̂τ )∦= 0, we can ensure that ∥|β̂τ ′ |⊙∇L(β̂τ ′)∦= 0719

for τ ′ ∈ [τ, τ + ε] and ε small enough. We have then

√
β̂α
τ′+α4⊙∇L(β̂α

τ′ )

1/ln(1/α)+∥
√

β̂α
τ′+α4⊙∇L(β̂α

τ′ )∥
converges720

uniformly toward − |β̂τ′ |⊙∇L(β̂τ′ )

∥|β̂τ′ |⊙∇L(β̂τ′ )∥
on [τ, τ + ε]. Using the dominated convergence theorem, we721

have
∫ τ+ε

τ

√
β̂α
τ′+α4⊙∇L(β̂α

τ′ )

1/log(1/α)+∥
√

β̂α
τ′+α4⊙∇L(β̂α

τ′ )∥
dτ ′ →

∫ τ+ε

τ
|β̂τ′ |⊙∇L(β̂τ′ )

∥|β̂τ′ |⊙∇L(β̂τ′ )∥
dτ ′. We therefore obtain722

˙̂
βτ = − |β̂τ |⊙∇L(β̂τ )

∥|β̂τ |⊙∇L(β̂τ )∥
in L1[0, T ]. Consequently ∥ ˙̂βτ∥= 1 and ˙̂tτ = 0.723

Proof that the loss stricly decreases along the heteroclinic orbits.724

Assume β̂τ is such that |β̂τ |⊙∇L(β̂τ ) ̸= 0, then the flow follows725

˙̂
βτ = − |β̂τ |⊙∇L(β̂τ )

∥|β̂τ |⊙∇L(β̂τ )∥
Letting γ(τ) = 1

∥|β̂τ |⊙∇L(β̂τ )∥
we get:726

dL(β̂τ ) = −γ(τ)
∑
i

|β̂τ (i)|⊙[∇L(β̂τ )]
2
idτ < 0,

because |β̂τ |⊙∇L(β̂τ )
2 ̸= 0.727

25



Borrowing terminologies from [13], we can distinguish two regimes: when ˙̂
βτ = 0, the system is728

sticked to the saddle point. When ˙̂tτ = 0 and ∥ ˙̂βτ∥= 1 the system switches to a viscous slip which729

follows the normalised flow Eq. (26). We use the term of heteroclinic orbit as in the dynamical730

systems literature since in the neuron space (u, v) it corresponds to a path with links two distinct731

critical points of the loss F . Since ˙̂tτ = 0, this regime happens instantly for the original t time scale732

(i.e. a jump occurs).733

From Proposition 8, following the same reasoning as in Section 3, we can show that the rescaled734

process converges uniformly to a continuous saddle-to-saddle process where the saddles are linked735

by normalized flows.736

Theorem 3. Let T > 0. For all subsequences defined in Proposition 8, there exist times 0 = τ ′0 <737

τ1 < τ ′1 < · · · < τp < τ ′p < τp+1 = +∞ such that the the iterates (β̂αk
τ )τ converge uniformly on738

[0, T ] to the following limit trajectory :739

(“Saddle”) β̂τ = βk for τ ∈ [τ ′k, τk+1] where 0 ≤ k ≤ p

(Orbit) ˙̂
βτ = − |β̂τ |⊙∇L(β̂τ )

∥|β̂τ |⊙∇L(β̂τ )∥
for τ ∈ [τk+1, τ

′
k+1] where 0 ≤ k ≤ p− 1

where the saddles (β0 = 0, β1, . . . , βp = β⋆
ℓ1
) are constructed in Algorithm 1. Also, the loss740

(L(β̂τ ))τ is constant on the saddles and strictly decreasing on the orbits. Finally, independently of741

the chosen subsequence, for k ∈ [p] we have t̂τk = t̂τ ′
k
= tk where the times (tk)k∈[p] are defined742

through Algorithm 1.743

Proof. Some parts of the proof are slightly technical. To simplify the understanding, we make use of744

auxiliary lemmas which are stated in Appendix F. The overall spirit follows the intuitive ideas given745

in Section 3 and relies on showing that Eq. (25) can only be satisfied if the iterates visit the saddles746

from Algorithm 1.747

We let ŝτ := −
∫ τ

0
˙̂ts∇L(β̂s)ds, which is continuous and satisfies ŝτ ∈ ∂∥β̂τ∥1 from Eq. (25).748

Let S = {β ∈ Rd, |β|⊙∇L(β) = 0} denote the set of critical points and let (βk, tk, sk) be the749

successive values of (β, t, s) which appear in the loops of Algorithm 1.750

We do a proof by induction: we start by assuming that the iterates are stuck at the saddle βk−1 at751

time τ ≥ τ ′k−1 where t̂τ ′
k−1

= tk−1 and ŝτ ′
k−1

= sk−1 (recurrence hypothesis), we then show that752

they can only move at a time τk and follow the normalised flow Eq. (26). We finally show that they753

must end up “stuck” at the new critical point βk, validating the recurrence hypothesis.754

Proof of the jump time τk such that t̂τk = tk : we set ourselves at time τ ≥ τ ′k−1, stuck at the755

saddle βk−1. Let τk := sup{τ, t̂τ ≤ tk}, we have that τk < ∞ from Lemma 3. Note that by756

continuity of t̂τ it holds that t̂τk = tk. Now notice that ŝτ = ŝτ ′
k−1
− (t̂τ − t̂τ ′

k−1
)∇L(βk−1) =757

sk−1 − (t̂τ − tk−1)∇L(βk−1). We argue that for any ε > 0, we cannot have β̂τ = βk−1 on758

(τk, τk + ε). Indeed by the definition of τk and from the algorithmic construction of time tk, it would759

lead to |ŝτ (i)|> 1 for some coordinate i ∈ [d], which contradicts Eq. (25). Therefore the iterates760

must move at the time τk.761

Heterocline leaving βk−1 for τ ∈ [τk, τ
′
k] : contrary to before, our time rescaling enables to capture762

what happens during the “jump”. We have shown that for any ε, there exists τε ∈ (τk, τk + ε), such763

that β̂τε ̸= βk−1. From Lemma 4, since the saddles are distinct along the flow, we must have that764

β̂τε /∈ S for ε small enough. The iterates therefore follow a heterocline flow leaving βk−1 with a765

speed of 1 given by Eq. (26). We now define τ ′k := inf{τ > τk,∃ε0 > 0,∀ε ∈ [0, ε0], β̂τ+ε ∈ S}766

which corresponds to the time at which the iterates reach a new critical point and stay there for at767

least a small time ε0. We have just shown that τ ′k > τk. Now from Proposition 8, the path length of β̂768

is finite, and from Lemma 4 the flow visits a finite number of distinct saddles at a speed of 1. These769

two arguments put together, we get that τ ′k < +∞ and also β̂τ ′
k+ε = β̂τ ′

k
, ∀ε ∈ [0, ε0]. On another770

note, since ˙̂tτ = 0 for τ ∈ [τk, τ
′
k] we have t̂τ ′

k
= t̂τk(= tk) as well as ŝτk = ŝτ ′

k
(= sk).771
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Proof of the landing point βk : we now want to find to which saddle β̂τ ′
k
∈ S the iterates have moved772

to. To that end, we consider the following sets which also appear in Algorithm 1:773

I±,k := {i ∈ {1, . . . , d}, s.t. ŝτ ′
k
(i) = ±1} and Ik = I+,k ∪ I−,k. (30)

The set Ik corresponds to the coordinates of β̂τ ′
k

which “are allowed” (but not obliged) to be activated774

(i.e. non-zero). For τ ∈ [τ ′k, τ
′
k + ε0] we have that ŝτ = ŝτ ′

k
− (t̂τ − tk)∇L(β̂τ ′

k
). By continuity of ŝ775

and the fact that ŝτ ∈ ∂∥β̂τ ′
k
∥1, the equality translates into:776

• if i /∈ Ik, β̂τ ′
k
(i) = 0777

• if i ∈ I+,k, then [∇L(β̂τ ′
k
)]i ≥ 0 and β̂τ ′

k
(i) ≥ 0778

• if i ∈ I−,k, then [∇L(β̂τ ′
k
)]i ≤ 0 and β̂τ ′

k
(i) ≤ 0779

• for i ∈ Ik, if β̂τ ′
k
(i) ̸= 0, then [∇L(β̂τ ′

k
)]i = 0780

One can then notice that these conditions exactly correspond to the optimality conditions of the781

following constrained minimisation problem:782

arg min
βi≥0,i∈Ik,+

βi≤0,i∈Ik,−
βi=0,i/∈Ik

L(β). (31)

We showed in Proposition 6 that the solution to this problem is unique and equal to βk from Algorithm783

1. Therefore β̂τ = βk for τ ∈ [τ ′k, τ
′
k + ε0]. It finally remains to show that β̂τ = βk while τ ≤ τk+1,784

where τk+1 := sup{τ, t̂τ = tk+1}. For this let τ ∈ [τ ′k, τk+1], notice that for i /∈ Ik, we necessarily785

have that β̂τ (i) = βk(i) = 0, otherwise we break the continuity of ŝτ . Similarly, for i ∈ Ik,+, we786

necessarily have that β̂τ (i) ≥ 0 and for i ∈ Ik,−, β̂τ (i) ≤ 0 for the same continuity reasons. Now787

assume that β̂τ (Ik) ̸= βk(Ik). Then from Lemma 4 and continuity of the flow, ∃τ ′ ∈ (τ ′k, τ) such788

that β̂τ ′ /∈ S and there must exist a heterocline flow Eq. (26) starting from βk which passes through789

βτ ′ . This is absurd since along this flow the loss strictly decreases, which is in contradiction with the790

definition of βk which minimises the problem Eq. (31).791

E.1 Proof of Theorem 2792

Theorem 3 enables to prove without difficulty Theorem 2 which we recall below. Indeed we can793

show that any extracted limit β̂ maps back to the unique discontinuous process β̃◦.794

Theorem 2. Let the saddles (β0 = 0, β1, . . . , βp−1, βp = β⋆
ℓ1
) and jump times (t0 = 0, t1, . . . , tp)795

be the outputs of Algorithm 1 and let (β̃◦
t )t be the piecewise constant process defined as follows:796

(Saddles) β̃◦
t = βk for t ∈ (tk, tk+1) and 0 ≤ k ≤ p, tp+1 = +∞.

The accelerated flow (β̃α
t )t defined in Eq. (9) uniformly converges towards the limiting process (β̃◦

t )t797

on any compact subset of R≥0\{t1, . . . , tp}.798

Proof. We directly apply Theorem 3, let αk be the subsequence from the theorem. Let ε > 0, for799

simplicity we prove the result on [t1 + ε, t2 − ε], all the other compacts easily follow the same line800

of proof. Note that since t̂αk(τ ′1)→ t1 and t̂αk(τ2)→ t2, for αk small enough t̂αk(τ ′1) ≤ t1 + ε and801

t̂αk(τ2) ≥ t2− ε, by the monotonicity of ταk , this means that for αk small enough, τ ′1 ≤ ταk(t1+ ε)802

and τ2 ≥ ταk(t2 − ε). Therefore803

sup
t∈[t1+ε,t2−ε]

∥β̃αk
t − β1∥ = sup

t∈[t1+ε,t2−ε]

∥β̂αk(ταk
(t))− β1∥

= sup
τ∈[ταk (t1+ε),ταk (t2−ε)]

∥β̂αk(τ)− β1∥

≤ sup
τ∈[τ ′

1,τ2]

∥β̂αk(τ)− β1∥,

which goes uniformly to 0 following Theorem 3. Since this result is independent of the subsequence804

αk, we get the result of Theorem 2.805
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E.2 Proof of Proposition 2806

We restate and prove Proposition 2 below.807

Proposition 2. For all T > tp, the graph of the iterates (β̃α
t )t≤T converges to that of (β̂τ )τ :

dist({β̃α
t }t≤T , {β̂τ}τ≥0) −→

α→0
0 (Hausdorff distance)

Proof. For α small enough, we have that t̂ατ ′
p
≤ tp + ε ≤ T808

sup
τ≥0

d(β̂τ , {β̃α
t }t≤T ) = sup

τ≤τ ′
p

d(β̂τ , {β̃α
t }t≤T )

≤ sup
τ≤τ ′

p

∥β̂τ − β̃α
t̂ατ
∥

= sup
τ≤τ ′

p

∥β̂τ − β̂α
τ ∥ −→

α→0
0,

according to Theorem 3.809

Similarly:810

sup
t≤T

d(β̃α
t , {β̂τ ′}τ ′) = sup

τ≤τα
T

d(β̂α
τ , {β̂τ ′}τ ′)

≤ sup
τ≤τα

T

∥β̂α
τ − β̂τ∥−→

α→0
0,

according to Theorem 3, which concludes the proof.811

28



F Technical lemmas812

The following lemma describes the behaviour of∇ϕ̃α(β
α) as α→ 0 in function of the subdifferen-813

tial ∂∥·∥1.814

Lemma 2. Let (βα)α>0 such that βα −→
α→0

β ∈ Rd.815

• if βi > 0 then [∇ϕ̃α(β
α)]i converges to 1816

• if βi < 0 then [∇ϕ̃α(β
α)]i converges to −1.817

Moreover if we assume that∇ϕ̃α(β
α) converges to η ∈ Rd, we have that:818

• ηi ∈ (−1, 1)⇒ βi = 0819

• βi = 0⇒ ηi ∈ [−1, 1].820

Overall, assuming that (βα,∇ϕ̃α(β
α)) −→

α→0
(β, η), we can write:821

η ∈ ∂∥β∥1.

Proof. We have that822

[∇ϕ̃α(β
α)]i =

1

2 ln(1/α)
arcsinh(

βα
i

α2
)

=
1

2 ln(1/α)
ln

(βα
i

α2
+

√
(βα

i )
2

α4
+ 1

)
.

Now assume that βα
i → βi > 0, then [∇ϕ̃α(β

α)]i → 1, if βi < 0 we conclude using that arcsinh is823

an odd function. All the claims are simple consequences of this.824

The following lemma shows that the extracted limits t̂ as defined in Proposition 8 diverge to∞. This825

divergence is crucial as it implies that the rescaled iterates (β̂τ )τ explore the whole trajectory..826

Lemma 3. For any extracted limit t̂ as defined in Proposition 8, we have that τ − C ≤ t̂τ where C827

is the upperbound on the length of the curves defined in proposition 5.828

Proof. Recall that829

τα(t) = t+

∫ t

0

∥ ˙̃βα
s ∥ds.

From Proposition 5, the full path length
∫ +∞
0
∥β̇α

s ∥ds is finite and bounded by some constant C830

independently of α. Therefore τα is a bijection in R≥0 and we defined t̂ατ = (τα)−1(τ). Furthermore831

τα(t) ≤ t+ C leads to t ≤ t̂α(t+ C) and therefore τ − C ≤ t̂α(τ) for all τ ≥ 0. This inequality832

still holds for any converging subsequence, which proves the result.833

Under a mild additional assumption on the data (see Assumption 2), we showed after the proof of834

Proposition 1 in Appendix B that the number of saddles of F is finite. Without this assumption, the835

number of saddles is a priori not finite. However the following lemma shows that along the flow of β̂836

the number of saddles which can potentially be visited is indeed finite.837

Lemma 4. The limiting flow β̂ as defined in Proposition 8 can only visit a finite number of critical838

points β ∈ S := {β ∈ Rd, β ⊙∇L(β) = 0} and can visit each one of them at most once.839

Proof. Let τ ≥ 0, and assume that β̂τ ∈ S, i.e., we are at a critical point at time τ . From Proposition 1,840

we have that841

β̂τ ∈ argmin
βi=0 for i/∈supp(β̂τ )

L(β), (32)
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Let us define the sets842

I± := {i ∈ {1, . . . , d}, s.t. ŝτ (i) = ±1} and I = I+ ∪ I−.

The set I corresponds to the coordinate of β̂τ which “are allowed” (but not obliged) to be non-zero843

since from Eq. (25), supp(β̂τ ) ⊂ I . Now given the fact that the sub-matrix XI = (x̃i)i∈I ∈844

Rn×card(I) is full rank (see part (1) of the proof of Proposition 6 for the explanation), the solution of845

the minimisation problem (32) is unique and equal to β[ξ] = (X⊤
ξ Xξ)

−1X⊤
ξ y and β[ξC ] = 0 where846

ξ = supp(β̂τ ). There are 2d = Card(P ([d])) (where P ([d]) contains all the subsets of [d]) number847

of constraints of the form {βi = 0, i /∈ A}, where A ⊂ [d], and β̂τ is the unique solution of one of848

them. β̂τ can therefore take at most 2d values (very crude upperbound). There is therefore a finite849

number of critical points which can be reached by the flow β̂. Furthermore, from Proposition 8, the850

loss is strictly decreasing along the heteroclinic orbits, each of these critical points can therefore be851

visited at most once.852
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