
Balancing memorization and generalization in RNNs
for high performance brain-machine Interfaces

Supplemental Methods and Results

Supplemental Video Captions

Supplemental Video 1: Online decoder comparison. Example trials from Monkey N using an
LSTM, FNN, TFM, and KF to control the virtual hand. All decoders were trained using 400
trials of random targets, and then tested online during the same experimental session.
Video corresponds to main text Results 3.1.

Supplemental Video 2: LSTM movement memorization. An LSTM decoder was trained on a
reduced target dataset, and then tested online on the same set of targets (Monkey N). Example 1:
2 degrees-of-freedom with 4 target postures. Example 2: 1 degree-of-freedom with 7 target
postures. In both cases, the decoder reaches the same performance as able-bodied control, with
minimal overshooting or movement error.
Video corresponds to main text Results 3.2.

Supplemental Video 2: Performance recovery through memorization. First, we show
Monkey N using an LSTM trained on random targets, which has poor online control of the index
finger. Second, we train an LSTM on a modified task with random targets for MRS fingers but
only 3 targets for index finger. This allows for memorization of the index finger movements
while maintaining fully continuous control of MRS fingers, resulting in an improved success
rate. Video corresponds to main text Results 3.3.

Neural Network Architectures

Supplemental Figure 1: Neural network architectures. Each decoder takes in binned neural features
(RNN – the most recent bin, FNN & TFM – the most recent five bins) and predicts the current position
and velocity of one or two finger groups. The FNN is a time-convolutional network introduced by
Willsey et al. 2022 which learns convolutional features over the neural inputs for each channel and uses
several feedforward layers. The TFM is a feedforward transformer (Vaswani 2017) network using
positional encoding, multi-head attention, and standard feedforward layers.

Decoder Hyperparameters

To optimize decoder hyperparameters, we used the Optuna Python library to perform Bayesian
optimization. For each monkey, optimization was independently performed for two datasets
(from 2-3 months apart) and the final chosen hyperparameters minimized the MSE of position
and velocity predictions for both days. All decoders were generally robust to the specific
parameter choice (a large range of parameters achieved high offline performance). In the table
below, “scheduler patience” corresponds to the learning rate scheduler and sets the number of
training steps without loss improvement before reducing the learning rate.

 Monkey N Monkey W

LSTM GRU FNN TFM LSTM GRU FNN TFM

Number of
Input Neural

Time Bins
 1 1 5 5

1 1 5 5

Convolutional
Features

 n/a n/a 16 n/a

n/a n/a 16 n/a

Num Layers 1 2 3 4 layers,
8 heads

1 1 3 5 layers,

8 heads

Hidden Size 300 250 400, 400, 100 1000

250 250 300, 100, 300 1400

Dropout n/a 0.5 0.5 0.1

n/a n/a 0.06 0.14

Learning Rate 2.00E-04 2.00E-04 2.00E-04 2.00E-04

2.00E-04 4.00E-04 8.00E-04 1.00E-04

Weight Decay 0.003 0.004 0.03 0.002

0.003 0.003 0.01 1.00E-04

Scheduler
Patience

 800 800 1000 800

800 800 600 800

Supplemental Table 1: Decoder hyperparameters for each monkey.

Decoder Number of Parameters

 LSTM GRU FNN TFM KF

Number of
Parameters 479K 639K 821K 923K 9.7K

Supplemental Table 1: The number of parameters used for each decoding architecture,

as optimized for Monkey N.

Decoder Training Optimizations

As noted in the main results (“Training Optimizations”), we found several techniques for
improving online performance and are detailed here.

Modified loss function:
See section below.

Single-finger movements:
The 2-DoF random target task typically involves both fingers simultaneously moving to their
respective targets. However, the task lacks examples of one finger holding still while the other
moves to the target, which could be useful as decoder training examples. To provide more
training examples of independent movement, we modified the task such that on 50% of trials
only one finger had to move. When trained on this modified task, the resulting decoders had
qualitatively more independent control of each finger.

Positional perturbations:
When using a BMI decoder, the user often has to make small correctional movements near the
target in order to precisely land on the target. When training on able-bodied movement, however,
movements are typically very precise and lack examples of these fine-tuning movements. To
encourage more adjustment movements in the training dataset, we added perturbations to the
position of the virtual fingers during offline training. Perturbations occurred on 50% of trials
with a magnitude slightly larger than the target radius and a randomly chosen direction for each
finger group. On perturbation trials, the perturbation was applied at 100 ms (near movement
onset), 300 ms (during movement), or 1000 ms (during the hold period) from trial start, chosen
with equal probability.

Neural Noise:
Willet et al. 2021 found that adding a small amount of noise to the neural data during training
improved robustness to small shifts in neural tuning and magnitude over time. Here, we similarly
added a random bias (std. of 0.1, normalized units; held constant across the multiple timesteps of
each example) and random noise (std. of 0.2, normalized units) to each training example. Noise
was drawn from a zero-mean normal distribution.

Loss Function to Penalize Finger Co-Dependence

In initial online tests with RNN decoders we found that the fingers tended to move together and
were visually correlated (despite strong offline accuracy). To encourage finger independence, we
used the standard MSE loss with an additional term to penalize finger correlations:

𝑙𝑜𝑠𝑠 =
1
𝑁
'(𝑦! − 𝑦+!)"
#

!$%

+ 𝑘''/𝜌&,(/
)

!"#,
!%&

)

&$%

where 𝑦 contains the true positions and velocities (matrix of shape [number of samples, number
of fingers*2]), 𝑦" contains the predicted position and velocities, 𝑁 is the number of samples, 𝑀 is
the number of output variables (number of fingers*2), 𝑘 is a hyperparameter to control the
degree of correlation penalty, and 𝜌!,# is the correlation between the 𝑗 − 𝑡ℎ and 𝑚 − 𝑡ℎ output
variables of 𝑦". Qualitatively, for offline predictions, adding the correlation penalty acts to
smooth out small-amplitude, high-frequency prediction noise that occurs across both fingers. The
final decoder predictions were robust across a range of k values (0.01 to 100), so a value of 1
was used for decoder training.

RNN Hidden State Visualization

In Figure 4 we visualized the hidden states of an RNN decoder over time. To train the decoder,
we trained a GRU (1 layer, 300 hidden units) on a simulated dataset with 100 neural channels,
1000 seconds of data, and 2 degrees of freedom where one DoF had 3 targets and the second
DoF had random targets. We used a 1-layer GRU since its hidden state is a simple vector,
whereas multi-layer GRUs or LSTMs have multiple hidden state vectors. To visualize the hidden
state, we performed a principal component analysis (PCA) on the hidden state vector over time
and plotted the first 3 components with highest variance. As in Figure 4, each point represents
the hidden state at one time step, and the component axes with highest variance visually
correspond with the decoder’s position output.

Simulated Datasets

For some analyses we also created simulated offline datasets of a virtual user performing the
same target acquisition task. The goal of these simulations was to test the relative impact of
amount of training data, number of DoFs, and number of inputs on decoder performance, rather
than measuring absolute performance. The simulated user moved with a velocity proportional to
the distance to the target along each DoF, with a random reaction time of 32-96 ms at trial onset.
We generated artificial neural activity such that each channel had a random relationship with
position, velocity, and acceleration, using the log-linear approximation suggested in Truccollo et
al. 2008:

log/𝑌$%&1 = 𝑘 ∗ [1	, 𝑋,
𝑑𝑋
𝑑𝑡 	 ,

𝑑'𝑋
𝑑𝑡'] 	∗ 	𝑊

where 𝑌$%& is a vector of average neural channel values, 𝑋 is a vector of the current positions, 𝑊
is a matrix of uniform random values between -1 to 1 and defines the random tuning of each
channel, and 𝑘 is scaling constant adjusting the level of nonlinearity. At each time bin, the value
of each channel was sampled from a normal distribution:

𝑌(~	𝑁𝑜𝑟𝑚𝑎𝑙(𝑌$%&, 	𝑑𝑖𝑎𝑔(𝑌$%&/𝑆))

where 𝑌(is a vector of values for each neural channel, and 𝑆 is a constant that scales the noise
standard deviation. Each channel has independent noise from other channels. We chose a value
of 𝑆 = 10 such that the resulting LSTM decoding had similar accuracy to Monkey N (correlation
of ~0.8 at 100 channels). An additional lag of 32 ms was added to the final positions and
velocities relative to the artificial neural data. To account for random variation in simulated
channel tuning, we ran 5 simulations for each analysis with a separate decoder trained on each
dataset.

Offline Decoder Performance for Monkey N and Monkey W

Supplemental Figure 2: Offline performance for each decoder. Top: Monkey N. Bottom: Monkey W.
Correlation and MSE were calculated between the ground truth and predicted positions/velocities.
Performance was averaged across ten datasets for each monkey performing a 2-DoF random task. Error
bars denote the standard error of the mean.

Online Decoder Comparisons – Monkey N

Monkey Date DoF LSTM GRU FNN TFM KF

N 7/27/22 2 - - 2.33 100% 1.77 100% - - - -

N 10/18/22 1 2.33 100% 2.16 100% 1.77 100% 1.9 100% 1.73 100%

N 10/20/22 2 3.04 99% 2.78 99% 2.77 100% 2.1 100% 1.98 89%

N 3/15/23 2 2.31 97% - - 1.93 99% - - - -

Average
Bitrate

Success
Rate

Supplemental Table 2: Online decoder performance for Monkey N. All decoders were tested on random
targets.

LSTM Performance on Simulated Datasets with Varied Task Parameters

Supplemental Figure 3: Simulated decoder performance for varied task parameters. Simulated
datasets were generated for each parameter combination and a GRU decoder was trained to predict
positions and velocities. By default, each generated dataset used 2-DoF, 7 targets, 1000 seconds of
training data, 50 ms bins, and 10 trials of each combination. In each plot we varied the number of neural
channels and an additional parameter. The Pearson correlation was computed between the true and
predicted kinematics, with higher values being better. (a) Varied amount of training data. Performance
improves with additional training data and with additional channels. (b) Varied number of targets.
Performance drops as more targets are added (requiring additional movements to be learned). (c) Varied
number of DoF. There is only a small performance drop from adding more DoFs. All error bars denote
the standard error of the mean.

LSTM Generalization to a More Complex Task

Supplemental Figure 4: Generalization to more complex tasks online. LSTM decoders were trained
on a 1-DoF, 2-target (left) or 3-target (right) task and then tested online on the same task and the more
complex random target task (see main text Results 3.4). “Pos Control” indicates the decoder used 50%
position & 50% integrated velocity. “Vel Control” indicates the decoder used 1% position & 99%
integrated velocity. Data corresponds to main text Results 3.4.

Transformer Performance vs Time History

Supplemental Figure 5: Transformer performance drops with more time history. Separate
transformer (TFM) decoders were trained with a time history (sequence length) of 3, 5, 10, and 15 bins
(96 to 480 ms using 32 ms bins), on a 2-DoF random target task with Monkey N. During online trials,
success rate drops as more time history is added.

