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Abstract

Aimed at adapting a generative model to a novel generation task with only a few
given data samples, the capability of few-shot generation is crucial for many real-
world applications with limited data, e.g., artistic domains. Instead of training
from scratch, recent works tend to leverage the prior knowledge stored in previous
datasets, which is quite similar to the memory mechanism of human intelligence,
but few of these works directly imitate the memory-recall mechanism that hu-
mans make good use of in accomplishing creative tasks, e.g., painting and writing.
Inspired by the memory mechanism of human brain, in this work, we carefully
design a variational structured memory module (VSM), which can simultaneously
store both episodic and semantic memories to assist existing generative models
efficiently recall these memories during sample generation. Meanwhile, we in-
troduce a bionic memory updating strategy for the conversion between episodic
and semantic memories, which can also model the uncertainty during conversion.
Then, we combine the developed VSM with various generative models under the
Bayesian framework, and evaluate these memory-augmented generative models
with few-shot generation tasks, demonstrating the effectiveness of our methods.

1 Introduction

A remarkable capability of human intelligence is its ability to quickly grasp the concepts of new
objects that it has never encountered before [1]. Essentially, this rapid adaptation is achieved by
utilizing the past memories stored in the human brain, which can greatly improve the efficiency
of later learning [2, 3]. Unlike human brain, existing machine learning methods often require to
be trained on a large amount of data when facing new tasks, motivating the research interests on
few-shot learning that aim at efficiently solving these unseen tasks with only a few given data samples
[4–6]. While there have been promising processes for few-shot adaptation on classification tasks, less
work has been done on few-shot generation [7–10], which is mainly due to the challenging nature of
learning the generative process with only a few samples in an unsupervised manner [11, 12].

For existing deep neural networks, to improve their abilities of few-shot adaptation, one of the most
effective methods is to introduce an augmented memory module, which can store the memory of past
experiences to adapt the model to a new task quickly [6, 13–16]. However, the most widely used
memory mechanism in exisiting works is short-term [17] with limited capacity, which focuses on the
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collection of personal experience related to a particular place or time. To remove the limitation of
short-term memory, Zhen et al. [18] introduce the concept of semantic memory, which allows the
storage of general conceptual information into meta-learning to acquire long-term knowledge for
few-shot learning. Although these memory modules have separately achieved attractive progress in
few-shot learning [1, 2, 19, 20], there is little work to explore a memory mechanism to organically
combine the semantic and episodic memories, and further apply it on few-shot generation tasks.

Inspired by the memory mechanism of the human brain, where both episodic and semantic memory
work together to help humans understand the world around us and also accomplish creative tasks, in
this work, we first develop a variational structured memory module (VSM), which can simultaneously
store both episodic and semantic memories to improve the few-shot generation capability of the
generative models. Then, we design two important processes in VSM: 1) structured memory recall,
which retrieves the relevant information of previous tasks from VSM to be applied on current task;
2) structured memory update, which continuously collects data information from training tasks and
gradually consolidates the structured memories stored in VSM. Finally, we combine VSM with a
branch of few-shot latent variable models, specifically neural statistician (NS) [7], and develop a
series of memory-augmented latent variable models for few-shot generation.

The main contributions of this paper can be summarized as follows:

• Inspired by the memory mechanisms of the human brain, we develope a novel variational
structured memory module (VSM) that can concurrently store both episodic and semantic
memories, effectively aiding generative models in memory recall during sample generation.

• Meanwhile, we introduce a bionic memory updating strategy for the conversion between
episodic and semantic memories stored in VSM, where episodic memory can provide
detailed episodes that will be converted later and stored in semantic memory.

• Through incorporating VSM with NS, we develop a novel hierarchical memory-augmented
neural statistician (HMNS), whose generative process can be specified with VAE or diffusion
model, leading to VSM-VAE and VSM-Diffusion, respectively.

• Extensive experiments demonstrate that our developed VSM-VAE and VSM-Diffusion can
achieve promising generative performance on few-shot generation tasks.

2 Related work

Few-Shot Latent Variable Models: For few-shot generation, a series of latent variable models based
on NS [7] have been developed [9–12], which can be further improved by adopting a non-parametric
formulation for the context [21], introducing a hierarchical learnable aggregation for the input set [11],
increasing expressivity for the conditional prior [10], or exploring supervision [22]. Specifically,
NS [7] introduces a context constant variable to specify the summary statistics of a dataset, which
provides a shared prior for these samples within the same dataset, contributing to handling new
datasets at test time; GMN [9] defines a variational model to learn a per-sample context-aware latent
variable. Distinct from previous works, our method introduces a memory module to collect historical
datasest information to inference the context of a new dataset.

Memory-Augmented Neural Networks: It has been shown that augmenting existing neural networks
with an external memory module can improve their capability of few-shot learning [23]. Specifically,
these memory-augmented neural networks mainly collect the information stored in the support set of
the current task [6, 15, 16], which will be wiped form episode to episode [17] instead of maintaining
long-term information that has been shown to be crucial for effectively learning new unseen tasks.
For instance, variational semantic memory [18] is proposed to accumulate and store the semantic
information from previous tasks for the inference of the prototypes of new tasks. Distinct from
previous methods only constructing semantic memory for the prototype network, in this paper, we
develop a structured memory module to store the historical information at both the episodic and
semantic sides, which can largely enhance the model’s capability of few-shot generation.
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(a) NS
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(b) HNS
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(c) VSM-VAE
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(d) VSM-Diffusion

Figure 1: The generative process of (a) neural statistician (NS), (b) hierarchical neural statistician
(HNS), (c) memory-augmented variational autoencoder (VSM-VAE), and (d) memory-augmented
difussion model (VSM-Diffusion), where xi,j denotes the observed data sample, z(l)

i,j is the latent

variable at the l-th hidden layer, and c
(l)
i and m

(l)
i are the context variable and memory variable of

dataset Di, respectively. More details can be found in Section 3.2.

3 Memory-Augmented Neural Statistician

3.1 Preliminary

Few-shot Generation: Few-shot generation [22] borrows a similar setting of few-shot learning [4]
but for a more challenging task to generate objects given only a few samples of that object at test time.
Specifically, given a set of training datasets Dold = {Di}Ni=1, where each dataset Di = {xij}Ji

j=1

consists of Ji data samples, the goal of few-shot generation is to train a generative model pθ(x) that
is trained on given datasets Dold but can be quickly adapted to a new unseen task given only a few
data samples collected from a new dataset Dnew.

3.2 Memory-Augmented Neural Statistician

Through incorporating memory mechanism with few-shot latent variable models, specifically NS
[7] in Figure 1(a), in this paper, we develop a novel memory-augmented NS (MNS) for few-shot
generation.

Generative Process of MNS: The design of MNS aims at introducing a memory module to store
and update the data information at various semantic levels, which can be recalled when facing a new
generative task. As shown in Figure 1(c), the generative process of hierarchical MNS is formulated
as:

pθ(Dold) =

∫ ∫ ∫ N∏
i=1

Ji∏
j=1

pθ (xi,j | zi,j , ci,mi) (1)

N∏
i=1

Ji∏
j=1

pθ(zi,j | ci)
N∏
i=1

pθ(ci |mi)

N∏
i=1

p(m
i
)dzi,j dci dmi.

To clarify the meanings of zi,j , ci, and mi: zi,j denotes the per-sample latent variables of the jth
sample in dataset Di, ci denotes the task-specific context variable of dataset Di, whose detailed
definition can be found in [7], and mi denotes the task-specific memory variable, which stores the
data information of previous tasks that will be adapted to the new task.

3.3 Variants of Hierarchical Memory-Augmented Neural Statistician

Through specifying the generative process of HMNS and replacing its memory module with the
variational structured memory (VSM) as described in Section 4, we can obtain a series of model
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variants, such as VSM-HVAE and VSM-Diffusion, both of which can achieve promising generative
performance on few-shot generation task.

3.3.1 VSM-VAE

Generative Process of VSM-VAE: To capture the hierarchical data information at various semantic
levels, we extend the latent variables in Eq. (1) to a hierarchical version, specifically zi,j = {z(l)i,j}Ll=1,

ci,j = {c(l)i,j}Ll=1, and mi,j = {m(l)
i,j}Ll=1, which will be included in a variational autoencoder (VAE)

with L hidden layers, leading to a VSM-VAE shown in Figure 1(c). Under the generative framework
of MNS, using the same symbol notation in Eq. (1), the per-sample generative process of xi,j in the
dataset Di can be formulated as

pθ(xi,j) =

∫ ∫ ∫
pθ(xi,j | zi,j)pθ(zi,j | ci)pθ(ci |mi)p(mi) dzi,j dci dmi, (2)

where pθ(zi,j | ci), pθ(ci |mi), and p(mi) are formulated as the product of corresponding hierarchi-
cal latent variables as follows

pθ(zi,j | ci) =
L∏

l=1

pθ(z
(l)
i,j | z

(l+1)
i,j , c

(l)
i ), pθ(ci |mi) =

L∏
l=1

pθ(c
(l)
i | c

(l+1)
i ,m

(l)
i ), (3)

pθ(mi) =

L−1∏
l=1

pθ(m
(l)
i |m

(l+1)
i )p(m

(L)
i ), p(m

(L)
i ) = N (0, I). (4)

Training Objective of VSM-VAE: For VSM-VAE, the training objective is to maximize the evidence
lower bound (ELBO) of a set of training datasets {Di}Ni=1, which can be expressed as

LELBO =
N∑
i=1

EQ [log pθ(Di | ci)]− EQ

[
log

qϕ(ci |Di,mi)

pθ(ci |mi)

]
− EQ

[
log

qϕ(mi |Di,M)

pθ(mi)

]
. (5)

The first item in Eq. (5) can be further written as

EQ [log pθ(Di | −)] =
Ji∑
j=1

EQ

[
log pθ(xi,j |z(1)i,j )

]
−

L∑
l=1

EQ

[
log

qϕ(z
(l)
i,j |xi,j , z

(l+1)
i,j , c

(l)
i )

pθ(z
(l)
i,j | c

(l)
i , z

(l+1)
i,j )

]

EQ

[
log

qϕ(ci | −)
pθ(ci |mi)

]
=

L∑
l=1

EQ

[
log

qϕ(c
(l)
i |Di, c

(l+1)
i ,m

(l)
i )

pθ(c
(l)
i | c

(l+1)
i ,m

(l)
i )

]
,

EQ

[
log

qϕ(mi | −)
pθ(mi)

]
=

L∑
l=1

EQ

[
log

qϕ(m
(l)
i |Di,M)

pθ(m
(l)
i |m

(l+1)
i )

]
,

(6)

and Q denotes the variational distribution defined by the inference network of VSM-VAE

Q =
∏L

l=1
qϕ(z

(l)
i,j |xi,j , z

(l+1)
i,j , c

(l)
i )qϕ(c

(l)
i |Di,m

(l)
i )qϕ(m

(l)
i |Di,M), (7)

where M indicates the memory module to store the semantic information collected from previous
tasks, and will be introduced in Section 4.

3.3.2 VSM-Diffusion

Generative Model of VSM-Diffusion: Further, through specifying the generative process of HMNS
with the diffusion model, we can obtain the VSM-Diffusion, as shown in Figure 1(d). Distinct from
the hierarchy of latent variables in VSM-VAE, we share the same context and memory variables across
all hidden layers of a diffusion model, specifically ci = c

(l)
i and mi = m

(l)
i for l ∈ {1, ..., L}. Thus,

under the generative formulate of MNS, using the same symbol notation in Eq. (1), the per-sample
generative process of xi,j in the dataset Di can be formulated as

pθ(xi,j) =

∫ ∫ ∫
pθ(xi,j | {x(l)

i,j}
L
l=1, ci)pθ(ci|mi)p(mi) d{x(l)

i,j}
L
l=1 dci dmi,

4



where the backward diffusion process is consistent with that of conditional diffusion model [24, 25],
formulated as

pθ(xi,j | {x(l)
i,j}

L
l=1, ci) = pθ(xi,j |x(1)

i,j , ci)

L−1∏
l=1

pθ(x
(l)
i,j |x

(l+1)
i,j , ci)pθ(x

(L)
i,j ). (8)

Training objective of VSM-Diffusion: For VSM-Diffusion, the training objective is derived from
maximizing the evidence lower bound (ELBO) of a set of training datasets {Di}Ni=1, which is
consistent with Eq. (5). Similar to regular DDPMs, the first term can be decomposed into a summation
of L terms, each of which can be computed independently, and can be estimated as

EQ [log pθ(Di | ci,mi)]=

Ji∑
j=1

EQ

[
− log

pθ(xi,j , {x(l)
i,j}Ll=1|−)

qϕ({x(l)
i,j}Ll=1 | xi,j)

]
=

Ji∑
j=1

Lj,0 +

L∑
t=2

Lj,l−1 + Lj,L,

where LL is a fixed constant, L0 is the expectation of likelihood term and the intermediate term Ll−1

can be formulated as

Lj,l−1 = E
qϕ

(
x
(l)
i,j |xi,j

)
[
log

qϕ(x
(l−1)
i,j | x(l)

i,j ,xi,j)

pθ(x
(l−1)
i,j | x(l)

i,j , ci)

]
. (9)

4 Variational Structured Memory

In this section, we will introduce the storage architecture of VSM in Section 4.1, equipped with the
mechanism of memory recall and update in Sections 4.2 and 4.3, respectively. The basic intuition of
VSM is inspired by the memory mechanism in the human brain: 1) there are two advanced forms of
memory in the human brain: semantic memory allows the storage of general conceptual information
and episodic memory allows the collection of detailed episodes; 2) episodic memory can provide
detailed episodes that will be converted into conceptual information and stored in semantic memory.
The structured memories stored in VSM will be recalled to infer the posterior of task-specific memory,
formulated as:

qϕ(mi |Di,M) (10)

which will be used in the inference process of either VSM-VAE or VSM-Diffusion.

4.1 Structured Memory Storage

As shown in Figure 7, there are N blocks (categories) in the VSM module, denoted as M =

{Mn}Nn=1, and each memory block Mn consists of both semantic memory M
(s)
n and episodic

memory M
(e)
n .

Semantic Memory Storage: The semantic memory in the human brain can provide conceptual
information for quickly learning concepts of new object categories by seeing only a few data samples.
Following Zhen et al. [18], for each block (category) of semantic memory in VSM, we try to store
the conceptual information by averaging the latent representations of data samples belonging to this
category, contributing to lightweight storage and fast lookup. To model the uncertainty, we model the
n-th block (category) of semantic memory with a Gaussian distribution, formulated as:

M(s) = {M(s)
n }Nn=1, M(s)

n = N (µn, diag(σn)), (11)

where µn,σn ∈ Rd denotes the d-dimensional mean and variance vectors, respectively.

Episodic Memory Storage: Distinct from semantic memory allowing the storage of general con-
ceptual information, episodic memory tends to focus on storing more detailed and vivid experiences
or episodes. The design of episodic memory is inspired by previous works [26–30], and the main
idea is to employ a query memory module to collect a subset of representative data samples for each
block (category) in VSM. Specifically, the n-th block (category) of episodic memory is a set of T
embedding vectors of data samples:

M(e) = {M(e)
n }Nn=1, M(e)

n = {M(e)
n,t}Tt=1, (12)

where T is the storage limit of each block (category) of episodic memory, and the dimension of
M

(e)
n,t ∈ Rd is the same as the latent representations of data samples.
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Figure 2: The workflow of memory recall mechanism in variational structured memory (VSM)
module M, which stores both semantic memory M(s) and episodic memory M(e).

4.2 Structured Memory Recall

Given a query dataset Di = {xi,j}Ji
j=1, which can be treated as a new dataset Dnew for previous

tasks, the mechanism of memory recall aims at effectively using the memory module to quickly adapt
a model trained on previous tasks to a new unseen task. The workflow of structured memory recall in
VSM has been depicted in Figure 7, which includes both the recalls of semantic memory M(s) and
episodic memory M(e), resulting in two kinds of task-specific memories, denoted as m(s)

i and m
(e)
i

respectively.

Semantic Memory Recall: For a new few-shot generation task on the dataset Di (Dnew), the
memory recall in VSM will first select the top-K relevant blocks (categories) of semantic memory
as the candidates, denoted as {M(s)

k }Kk=1 , and then use an attention mechanism to aggregate these
candidates into a task-specific semantic memory m

(s)
i , where the attention weight of n-th can be

calculated as

g
(
M(s)

n , hi

)
= exp (µn − hi)

2
/ 2σn

2, (13)

where g(·) can be treated as a similarity function, and hi indicates the semantic representation of
dataset Di and can be obtained by averaging the latent representations of data samples in Di.

Then, with the top-K relevant blocks of semantic memory {M(s)
k }Kk=1 in hand, we can further

aggregate these candidates with their attention weights, formulated as:

m
(s)
i =

∑K

k=1
λi,kM

(s)
k , λi,k =

g
(
M

(s)
k ,hi

)
∑K

k=1 g
(
M

(s)
k ,hi

) , M
(s)
k ∼ N (µk, diag(σk)), (14)

where m
(s)
i ∈ Rd has gathered the relevant information from the semantic memory M(s) for the

generation task on dataset Di.

Episodic Memory Recall: After selecting the top-K relevant blocks of semantic memory {M(s)
k }Kk=1,

we can further dive into recalling episodic memory, which is more specific and detailed. In practice,
each block of episodic memory contains T embedding vectors of data samples M(e)

k = {M(e)
k,t}Tt=1,

and we can finally obtain K ∗ T embedding vectors of data samples. After that, following a similar
process of recalling episodic memory, we can further aggregate these obtained embedding vectors
with their attention weights as

m
(e)
i =

∑K

k=1

∑T

t=1
λi,k,tM

(e)
k,t, λi,k,t =

g
(
M

(e)
k,t,hi

)
∑K

k=1

∑T
t=1 g

(
M

(e)
k,t,hi

) , (15)

where g(·) and hi have been defined in Eq. (13), and the obtained m
(e)
i ∈ Rd has gathered the

relevant information from the episodic memory M(e) for the generation task on dataset Di.
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4.3 Structured Memory Update and Consolidation

Semantic Memory Update: Inspired by the characteristics of human memory [31–33], we develop a
novel semantic memory update mechanism that considers the data information from previous semantic
memory M(s), episodic memory M(e), and new task Di. Specifically, the semantic memory module
is empty at the beginning of learning, and each unseen block (category) M(s)

n will be initialized
with the mean and variance of the latent representations of data samples, which is collected from the
current task Di and belongs to n-th category. For those seen categories, their semantic memory can
be updated with the data sample from the current task Di using self-attention mechanism.

Following Zhen et al. [18], we construct a graph with respect to the memory M
(s)
n for updating, which

consists of latent representations of Jn data samples that belongs to n-th category and T data samples
stored in episodic memory M

(e)
n , denoted as Hn = {hn,1,hn,2, · · · ,hn,Jn

,M
(e)
n,1, · · · ,M

(e)
n,T }. The

mean of the semantic memory M
(s)
n can be updated as:

µnew

M
(s)
n
← αµold

M
(s)
n

+ (1− α) µ̄
M

(s)
n
, µ̄

M
(s)
n

=
∑Jn+T

j=1
βn,jHn,j , βn,j =

g
(
M

(s)
n , Hn,j

)
∑Jn+T

j=1 g
(
M

(s)
n , Hn,j

) , (16)

where α ∈ (0, 1) is a hyperparameter; βn,j indicates the attention weight between j-th node features
and the source node M

(s)
n ; g(·) is the similarity function defined in Eq. (13). This operation allows

the useful information to be retained in memory while erasing less relevant or trivial information.

After that, we employ the incremental update strategy of the Gaussian distribution [34] to update the
variance of semantic memory M

(s)
n as follows:

σ2

M
(s)
n

new ← α
[
σ2

M
(s)
n

old + (µnew

M
(s)
n
− µold

M
(s)
n
)
2
]
+ (1− α)

[
σ2

Hn
+ (µnew

M
(s)
n
− H̄n)

2
]
, (17)

where H̄n and σ2
Hn

are the mean and variance of the set of node features Hn, respectively.

Episodic Memory Update: Inspired by the fact that it is difficult for a person to forget those things
he/she often recalls (and vice versa), we design a frequency-based episodic memory update stragy.
Typically, for each data sample M

(e)
n,t stored in episodic memory M

(e)
n , we use a frequency matrix,

denoted as C
M

(e)
n,t

, to record how many times M(e)
n,t was recalled during training. Then, for updating

M
(e)
n = {M(e)

n,t}Tt=1, if the current episodic memory block has not been filled yet, we will directly

append the latent representation of a new data sample to the M(e)
n when a new task arrives; Otherwise,

we will update M
(e)
n by replacing the least used data sample in the block if its capability exceeds the

limit T . We note that the frequency matrix C
M

(e)
n,t

will be reset as the zero matrix after each update of
episodic memory. The detailed memory updating process algorithm can be found in Appendix A.

5 Experiments

5.1 Experimental setup

Datasets: The experiments are conducted on five widely used benchmark datasets of various
sizes, including binarized Omniglot [2], MNIST [35], DOUBLE-MNIST [36], CelebA [37] and
FS-CIFAR100 [38]. The split of training/testing set (also known as background-evaluation split)
follows Lake et al. [2], in which scenario all the samples at test time are from new classes. We resize
all the images of binary datasets to 28x28, FS-Cifar100 to 32x32, and CelebA to 64x64.

Baselines: 1) For VAE-based models, we utilize NS-related models, specifically focusing on two NS
variants: Convolutional Neural Statistician (CNS), where the latent space is shaped with convolu-
tions at a given resolution; Set-Context-Hierarchical-Aggregation-Variational-Autoencoder (SCHA-
VAE) [24], which employs an additional hierarchy over the context latent variable c. The CNS and
SCHA-VAE can be naturally extended under the framework of VSM-VAE, leading to VSM-CNS and
VSM-SCHA, respectively. Meanwhile, we create several variants by fusing either semantic memory
or episodic memory with CNS or SCHA-VAE, as appropriate, to further demonstrate the efficacy
of the proposed variational structured memory; 2) For Diffusion-based models, we consider both
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Table 1: Few-shot generative evaluation of VAE-based models on various datasets with the set size
5, including Omniglot, Double-Mnist, FS-Cifar100, and Mnist (trained on Omniglot and tested on
Mnist.). For all datasets, we set the episodic memory size of all methods to 5 and the semantic
memory size to be the same as the number of categories appearing in training data.

Omniglot-ns Double-mnistl Mnist FS-Cifar100
NELBO NLL NELBO NLL NELBO NLL NELBO(bpd) NLL(bpd)

VAE 101.5 95.9 74.3 69.2 125.1 105.1 - -
NS 96.6 92.4 67.3 60.2 118.7 101.2 - -

CNS 92.9 89.7 66.5 54.3 114.1 90.4 9.979 9.803
CNS + Semantic 84.4 72.4 56.7 50.2 107.3 88.5 9.952 9.745
CNS + Episodic 83.9 71.8 54.3 51.1 97.8 80.3 9.946 9.741
VSM-CNS(our) 81.1 68.2 47.8 40.6 92.9 77.0 9.872 9.711

SCHA-VAE 89.4 85.8 68.1 53.3 114.7 88.5 10.364 10.338
SCHA + Semantic 81.5 66.8 53.7 48.9 98.5 77.7 10.317 10.215
SCHA + Episodic 82.5 63.4 53.0 47.2 95.3 79.1 10.292 10.176
VSM-SCHA(our) 74.0 56.8 42.4 36.5 89.9 68.2 10.219 10.041

Table 2: Few-shot generative evaluation of diffusion-based models on various datasets with the set
size 5, including Fs-Cifar100 and Celeba. (FID: Frechet score; sFID: spatial FID; P: precision; R:
recall.)

FS-Cifar100 Celeba

FID ↓ sFID ↓ P ↑ R ↑ FID ↓ sFID ↓ P ↑ R ↑

DDPM 62.84 28.91 0.58 0.40 14.02 27.46 0.71 0.39
sDDPM 45.50 29.87 0.54 0.46 12.87 26.44 0.72 0.37
vDDPM 62.58 27.50 0.58 0.41 13.01 26.24 0.73 0.39
vFSDM 63.73 28.85 0.58 0.38 13.52 27.75 0.71 0.38

VSM-vFSDM(our) 44.11 23.11 0.59 0.46 12.27 25.79 0.72 0.40

FSDM 35.07 20.95 0.62 0.53 10.11 24.58 0.73 0.39
VSM-FSDM(our) 33.21 18.32 0.68 0.61 9.25 23.21 0.77 0.43

unconditional and conditional diffusion models as baselines, where we use the DDPM [39] as the
unconditional baseline and other three conditional diffusion models: VDDPM, where the context c is
a latent variable and the dataset D is generated conditioned on c; VFSDM [24], another variational
diffusion model where employees a different way to extract and aggregate set-information using
ViT [40]: stack all the samples on the channel dimension; sDDPM adapting ideas in Sinha et al.
[41] without contrastive learning, where a ViT encoder splits the image in patches and processes
them jointly.

Model Settings: The details about model settings can be found in Appendix B.

5.2 Quantitative experiment

VAE-based models: To evaluate the generative properties of VAE-based models, we use the evidence
lower bound (ELBO) to approximate the log marginal likelihood with 1000 importance samples
(NLL). Our qualitative experiments are performed on Omniglot, DOUBLE-MNIST, MNIST, and
FS-Cifar100. The outcomes of the experiment are displayed in Table 5.2. It is clear that VSM-
CNS/VSM-SCHA can achieve significant improvements over its baseline models, proving that VSM
could be a promising mechanism for few-shot generation. Additionally, by incorporating either
semantic or episodic memory into CNS/SCHA-VAE, the resulting models can also achieve better
performance, proving both memory types can improve the model performance of few-shot generation.

Diffusion-based models: As exhibited in Table 5, we employ the metrics below to assess the
generative capacity of diffusion-based models, including: FID [42] for sample quality, sFID [43] to
capture spatial relationships, and Precision and Recall [44] for measuring variety and mode coverage.
From the results, VSM-Diffusion beats the other unconditional and conditional baselines on both two
datasets, demonstrating the effectiveness of VSM on few-shot generation.
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Figure 3: Visualization of few-shot generative samples using a VSM-Diffusion with the set size 5.
The query set and generative samples on the left side are from FS-Cifar100, while those on the right
side are from Celeba.
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Figure 4: (a) Query Set; (b) Recalled blocks (categories) of semantic memory, each of which is represented by
the images of corresponding category; (c) Recalled samples of episodic memory.
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Figure 5: Few-shot generative evaluation of VAE-based models on various datasets with different episodic
memory sizes.

5.3 Qualitative experiment

Few-shot image generation: The generation results of VSM-Diffusion are exhibited in Figure 3.
From the results, we can find that our memory-augmented models can generate class-specific samples
through successfully extracting content information and realistic classes that are both complicated and
varied. Limited by pages, additional few-shot generative experimental results on Omniglot, CelebA,
and FS-Cifar100 can be found in Appendix C.2.

Table 3: Ablation study on the update strategy of variational structured memory (VSM).

Omniglot-ns Double-Mnist Mnist
NELBO NLL NELBO NLL NELBO NLL

W/o Episodic memory 75.4 58.2 45.3 40.1 91.1 69.5
W/o Frequency-based 74.8 58.2 42.9 37.7 91.7 70.6
Combined strategy 74.0 56.7 42.4 36.5 89.9 68.2

Memory visualization: To further verify the effectiveness of the proposed VSM, we conduct
experiments of memory visualization here. For instance, given a new set, as shown in Figure 4(a), the
images of recalled semantic memory corresponding to the class are shown in Figure 4(b), and the
images of recalled episode memory are shown in Figure 4(c). The visualization results demonstrate
that VSM can recall related image classes and samples to the query set in an effective way.
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5.4 Ablation study

Effect of memory size: To investigate the affect of memory size in episodic memory, we use the
VSM-SCHA model as a typical example. We train a model on Omniglot data, and evaluate it with
the Omniglot, DOUBLE-MNIST, and MNIST datasets for unknown classes. The size of the episodic
memory is raised from 0 to 10. The results in Figure 5 show that the model performance improves
with the increase of episodic memory size, further demonstrating the importance of episodic memory
in few-shot generation tasks. We note that the developed variational structured memory will reduce
to variational semantic memory [18] when the episodic memory size is adjusted to 0.

Effect of memory update process: We conduct two variants of VSM-SCHA to investigate the
benefits of the proposed structured memory update strategy. For the first variant, its semantic memory
update strategy does not consider episodic memory, denoted as W/o Episodic memory; For the second
variant, its episodic memory update strategy does not employ a frequency-based strategy but uses
a first-in, first-out queue-based memory update method, denoted as W/o Frequency-based. The
experiment results in Table 3 can verify the effectiveness of the proposed memory update strategy.

6 Conclusion

In this study, we develop a novel variational structured memory module that can concurrently retain
generic semantic structure about a category and specific information about a sample, the former
being achieved by semantic memory and the latter being caught by episodic memory. Meanwhile,
we introduce a bionic memory updating strategy for the conversion between episodic and semantic
memories stored in VSM, where episodic memory can provide context information that will later be
transferred and stored in semantic memory. Through incorporating VSM with few-shot latent variable
models, we develop a novel hierarchical memory-augmented neural statistician (HMNS), whose
generative process can be specified with a VAE or diffusion model, leading to VSM-VAE and VSM-
Diffusion. Extensive experiments demonstrate that our developed VSM-VAE and VSM-Diffusion
can achieve promising performance on few-shot generation tasks.
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A Memory Recall and Update Algorithm

The procedure of memory recall and update algorithm is summarized in Algorithm. 1.

Algorithm 1 Semantic Memory recall and update algorithm

Input: Given task Di; Semantic memory M(s), and episodic memory M(e);
Recall task-specific semantic memory according to Eq. 14 and episodic memory according to
Eq. 15 ;
if The semantic memory for the given task is null: then

Computing the mean and variance for the semantic memory with given task Di;
else

Update the semantic memory according to Eq. 16 and Eq. 17;
end if
if The episodic memory for the given task is null: then

Append episodic memory with given task Di;
else

Update the episodic memory according to frequency matrix C;
end if
Infer variational posteriors for the latent variables of different layers {θ(l)}L1=1;

Model Design: In most memory-based models, the images Di = {xij}Ji

j=1 are fed into an encoder

to produce image features {hij}Ji

j=1 ∈ RD×1, which are then represented as vectors. These vector
representations are utilized for both recall and update operations in the model. Nonetheless, due to the
high dimensionality of images, relying solely on vectors can lead to a loss of valuable information.By
drawing inspiration from the approach proposed in the Vision Transformer, we can overcome these
challenges and obtain more accurate memory information. We begin by obtaining image features,
denoted by {hij}Ji

j=1 ∈ RD×H×W , then calculate the average of the set dimension resulting in hi =
1
Ji

∑Ji

j=1 hij Afterwards, we reshape the size of the image features to {hi} ∈ RN×Dwhere D denotes

the patch size.When updating M
(s)
n ∈ RN×D, we employ the resized feature hm

i ∈ R(Ji×N)×D for
graph attention. As for M (e)

n ∈ RL×N×D, where L denotes the total number of episodic memory,
we directly replace the least recently used patch in M

(e)
n with hm

i .By using per-patch recall and
update, we obtain information from different semantic levels. This makes the Semantic Memory
more suitable for task generalization, while the Episodic Memory is more capable of capturing
sample-specific details.

VSM-SCHA In SCHA-VAE and VSM-SCHA, we use a shared routing path between c and z:
qϕ(c

(l)
i |Di, c

(l+1)
i , z

(l+1)
i ,m

(l)
i ) where zl+1 and cl+1 are samples from layer l. We additionally

remove any form of normalization (batch/layer norm) in the hierarchical formulation

Memory size Across all datasets, we set the size of each semantic memory block (category) in the
VSM-based model to 1, and each episodic memory block to 5. For models that exclusively depend
on episodic memory (CNS + Episodic, SCHA + Episodic, and Episodic-diffusion), we establish a
memory size of 10000, with the episodic memory functioning as a first-in, first-out queue.

B Details of Model Design

C Additional Experiment Results

C.1 Quantitative Comparison of Generative Samples

In this section, we apply VSM to FSDM, a conditional diffusion model where c is not a variational
variable. To align with FSDM, we only use the following update rule for the semantic memory:
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Figure 6: The process of memory recall mechanism in VSM-SCHA.
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Figure 7: The process of memory recall mechanism in VSM-FSDM.
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(
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)
∑Jn+T

j=1 g
(
M

(s)
n , Hn,j

) (18)

Table 4 presents the results of VSM-FSDM on Fs-Cifar100 and celeba datasets. It can be observed
that VSM performs well even without using variational latent variables, demonstrating its strong
performance and scalability.

C.2 Additional Visualization of Generative Samples

More visualization results of generative samples can he found in Figures 8, 9, 10 and 11.

Table 4: Few-shot generative evaluation of diffusion-based models on various datasets with the set
size 5, including Fs-Cifar100 and Celeba. (FID: Frechet score; sFID: spatial FID; P: precision; R:
recall.)

FS-Cifar100 Celeba

FID ↓ sFID ↓ P ↑ R ↑ FID ↓ sFID ↓ P ↑ R ↑

DDPM 62.84 28.91 0.58 0.40 14.02 27.46 0.71 0.39
FSDM 35.07 20.95 0.62 0.53 10.11 24.58 0.73 0.39

VSM-FSDM 33.21 18.32 0.68 0.61 9.25 23.21 0.77 0.43
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Table 5: Ablation study on diffusion-based models
FS-Cifar100 Celeba

FID ↓ sFID ↓ P ↑ R ↑ FID ↓ sFID ↓ P ↑ R ↑
vFSDM 63.73 28.85 0.58 0.38 13.52 27.75 0.71 0.38

vFSDM + semantic 60.21 27.63 0.58 0.42 12.98 26.01 0.73 0.39
vFSDM + episodic 52.13 25.25 0.59 0.44 12.36 25.97 0.72 0.41

VSM-diffusion 44.11 23.11 0.59 0.46 12.27 25.79 0.72 0.40

(a) Query Set (b) Generative Samples

Figure 8: Visualization of few-shot generative samples using a VSM-Diffusion with the set size 5 on
Celeba dataset. (Conditioning set and samples from in-distribution classes).

D Border Impact

The impact of our research can be highlighted in two key aspects:

For Few-shot Learning Task: Our structured memory has demonstrated a high level of effectiveness
in storing and managing task-related information, enabling efficient transfer of prior knowledge
from previous tasks to new ones. By combining semantic and episodic information storage, our
model enhances its ability to capture both task-level information and fine-grained image-level details.
Diverging from traditional few-shot models, our approach leverages the stored and recalled memory
to extract more valuable insights while minimizing the influence of irrelevant information on new
tasks.

For Deep Generative Models: Our modularized memory offers a seamless integration into a wide
range of generative models, such as diffusion models and VAEs, while also easily merging with
latent variables. This flexibility allows for efficient utilization of the memory component within the
generative framework. In addition, our structured memory can be divided into multiple semantic
levels, providing the ability to learn at various refined semantic layers. This hierarchical organization
of memory facilitates capturing complex dependencies and relationships across different levels of
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(a) Query Set (b) Generative Samples
Figure 9: Visualization of few-shot generative samples using a VSM-Diffusion with the set size 5 on
Celeba dataset. (Conditioning set and samples from out-distribution classes)

abstraction. By incorporating multiple semantic layers, generative models can potentially achieve
enhanced performance and generate more meaningful and coherent outcomes.

E Limitation

The proposed model variant, VSM-Diffusion, is based on the denoise diffusion model, which requires
multiple steps to generate samples. The framework can be extended to other diffusion models, such
as implicit denoise diffusion models, to accelerate the generative process and improve its efficiency.
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(a) Query Set (b) Generative Samples

Figure 10: Visualization of few-shot generative samples using a VSM-Diffusion with the set size 5
on FS-Cifar100 dataset. (Conditioning set and samples from in-distribution classes).
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(a) Query Set (b) Generative Samples

Figure 11: Visualization of few-shot generative samples using a VSM-Diffusion with the set size 5
on FS-Cifar100 dataset. (Conditioning set and samples from out-distribution classes).
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