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Abstract
Recently, learned image compression (LIC) has garnered increasing interest with its
rapidly improving performance surpassing conventional codecs. A key ingredient
of LIC is a hyperprior-based entropy model, where the underlying joint probability
of the latent image features is modeled as a product of Gaussian distributions
from each latent element. Since latents from the actual images are not spatially
independent, autoregressive (AR) context based entropy models were proposed to
handle the discrepancy between the assumed distribution and the actual distribution.
Though the AR-based models have proven effective, the computational complexity
is significantly increased due to the inherent sequential nature of the algorithm.
In this paper, we present a novel alternative to the AR-based approach that can
provide a significantly better trade-off between performance and complexity. To
minimize the discrepancy, we introduce a correlation loss that forces the latents to
be spatially decorrelated and better fitted to the independent probability model. Our
correlation loss is proved to act as a general plug-in for the hyperprior (HP) based
learned image compression methods. The performance gain from our correlation
loss is ‘free’ in terms of computation complexity for both inference time and
decoding time. To our knowledge, our method gives the best trade-off between
the complexity and performance: combined with the Checkerboard-CM, it attains
90% and when combined with ChARM-CM, it attains 98% of the AR-based
BD-Rate gains yet is around 50 times and 30 times faster than AR-based methods
respectively.

1 Introduction
In the digital world, visual media has proven to be a mixed blessing. On the one hand, it provides a
mechanism to disseminate a plethora of data, information, and knowledge in a form easily consumable
by humans Silk et al. [2021], while on the other, improved quality and increased content is very
quickly pushing the boundaries of data storage, communication, and processing technologies Kim
et al. [2021]. A software-driven solution to skew the balance of this state has been extensively
presented in the form of lossy compression techniques Wallace [1991], Rabbani and Joshi [2002],
Ballé et al. [2017]. In the case of images, these techniques aim to reduce the data size while
maintaining its context. Traditional image codecs like JPEG Wallace [1991] and JPEG2000 Rabbani
and Joshi [2002] use mathematically well-defined transformations such as discrete cosine transform
(DCT) and discrete wavelet transform (DWT). These context-less transformations lead to reduced
efficiency in terms of maintaining an optimal balance between the image quality and bitrate of the
encoded image. In complex and varied images, this problem is especially pronounced, leading to
the inclusion of various artifacts such as ringing and blocking Ballé et al. [2017]. In recent years,
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deep learning has significantly advanced several computer vision tasks Hu et al. [2022], especially
image compression, by incorporating structure and learned behavior. In particular, learned image
compression (LIC) has gained popularity as a field of research that has the potential to go beyond
traditional compression methods by exploring the inherent nature of images Toderici et al. [2016],
Lee et al. [2022], Johnston et al. [2018], Qian et al. [2022], Cheng et al. [2019].
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Figure 1: Performance-complexity tradeoff using vari-
ous entropy models on the top of Cheng’s architecture.
Incorporating correlation loss to Cheng’s hyperprior
yields a BD rate gain of 9.5%, comparable to the gains
achieved by the Checkerboard (CKBD) method. Apply-
ing correlation loss to the CKBD model results in a BD
rate gain of 6.13% in comparison to the CKBD baseline,
signifying approximately 90% of the gain seen in AR-
based models. Notably, this improvement is achieved
with a computational expense merely 1/50th that of the
full AR-based model. Similarly, incorporating corre-
lation loss into ChARM leads to a BD rate gain of
3.3% over the ChARM baseline, akin to 98% of the
gain achieved by a full AR model, while utilizing only
1/30th of the computational resources.

State-of-the-art learned image compression tech-
niques employ transform coding strategies for
lossy image compression, which maps image
pixels into a quantized latent space Cheng et al.
[2020], Zhong et al. [2020]. This map is then
losslessly compressed using entropy coding
methods such as Huffman or arithmetic cod-
ing to create a bitstream for transmission over
a channel Shannon [1948]. The entropy coding
algorithm requires an entropy model, which is a
prior probability model on the quantized latent
representation. In this framework, deep neural
networks are used for both transform coding and
entropy modeling. By learning both modules
end-to-end, the ability of deep neural networks
is fully utilized to improve the compression per-
formance Yang et al. [2023]. The bitstream size
depends on the accuracy of the entropy model,
making it essential to design an accurate model
for efficient compression Kim et al. [2022]. The
objective of the entropy model is to estimate a
joint probability distribution over the elements
of the quantized latent representation. A sim-
plistic approach is to assume complete indepen-
dence among the elements, but this approach re-
sults in subpar compression performance Ballé
et al. [2017, 2018]. Thus, modeling the quan-
tized latent representation interdependencies in
learned image compression is a significant chal-
lenge Lee et al. [2019], Minnen et al. [2018],
Qian et al. [2021], Theis et al. [2017].

A common approach is to use convolutional neu-
ral networks (CNNs) to extract additional fea-
tures, known as "hyperprior," which captures the
context from the quantized latent representation to improve the efficiency of the entropy model Ballé
et al. [2018]. The underlying assumption of hyperprior-based entropy models is the probabilistic
independence of the latent features, which contradicts the highly correlated nature of latent space,
resulting in a discrepancy between the actual distribution and the assumed probability model Kim et al.
[2022]. To minimize this discrepancy, Autoregressive context model (AR-CM) based LIC methods
have been proposed Minnen et al. [2018], where the probability of each latent is updated based on
the previously coded neighboring latents. While this increases the model’s overall performance, it
introduces sequential dependencies, making it roughly 50× slower than simple hyperprior-based
models He et al. [2021] and hinders its practical implementation of neural image compression in
real-world scenarios

To mitigate the above issue, a line of works have attempted to discard AR method for improving
efficiency. A notable advancement in this domain is the channel-wise autoregressive entropy model
(ChARM) introduced by Minnen et al. Minnen and Singh [2020]. ChARM focuses on reducing the
element-level serial processing within the context model presented in Minnen et al. [2018], and it
demonstrates a reasonably good RD performance compared to a full autoregressive context model.
Li et al. introduced CCN Li et al. [2020], which enables faster context calculation with moderate
parallelizability. However, the effectiveness of CCN is still constrained by the image size, limiting its
overall efficiency. He et al. He et al. [2021] proposed a parallelizable checkerboard context model
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along with a two-pass decoding method, aiming to achieve a better trade-off between rate distortion
(RD) performance and computational efficiency. The efficiency of the above methods is increased at
a cost of performance drop compared to AR-based models.

To this end, we introduce a correlation loss to minimize the discrepancy without incurring any
sequential dependency. The correlation loss forces latents to be decorrelated spatially, resulting in a
better fit with the spatially independent probability model. Our findings indicate that decorrelating
the latent aids in enhancing the general effectiveness of the hyperprior entropy model. Figure 1
illustrates the effectiveness of the proposed approach. Applying correlation loss to Cheng’s hyperprior
model yields a comparable performance improvement to that achieved by integrating efficient context
modeling approaches. When our approach is integrated with the Checkerboard method, it leads to
substantial BD rate improvements of approximately 90%, and when coupled with ChARM, it exhibits
BD rate gains of about 98%, akin to the gains observed in a full AR-CM. Notably, our method
achieves these remarkable performance gains while requiring only 1/50th and 1/30th of the inference
time required by the AR model, respectively. Our key contributions can be summarized as follows:

• Our work takes the path of decorrelating latents that have never been tried in the field. The
previous approaches primarily focus on CMs to enhance their performance, whereas, in
our work, we address the fundamental need for employing computationally heavy CMs.
With the introduction of our correlation loss, the correlation among spatially-neighbored
elements in the latent space is decreased. This would minimize the discrepancy between the
hyperprior entropy model’s assumed probability distribution and the actual distribution of
the latents, which eventually leads to an overall improvement of the rate-distortion (RD)
performance.

• Since our method modifies only the loss function, i.e. adding a correlation loss to the original
one, it does not require any additional memory or computational complexity beyond the
base model. In contrast to the AR-based method which has severe sequential dependency
among neighboring latent elements and thus could increase the inference time or decoding
time up to 100× the base model, our method does not create any sequential dependency and
thus can maintain the inference or decoding time of the base model.

• Our proposed correlation loss acts as a plug-in for the existing learned image compression
methods and can achieve BD rate gains of up to 9.5% by combining with the base hyperprior-
based models. Remarkably, the gains are comparable to the performance improvements
achieved by combining the hyperprior module with efficient context-based LIC models,
like the SOTA efficiency-oriented Checkerboard’s context model (CM). When combined
with Checkerboard method, our proposed approach acheives 90% and when combined
with ChARM our proposed approach acheives 98% of the AR-CM’s BD-Rate gains while
incurring only 1/50th and 1/30th of the inference time of the AR-CM. Our method achieves
the best trade-off between the complexity and performance.

2 Related Work
The autoregressive context based entropy model, inspired by the concept of context used in traditional
codecs, is used to predict the probability of unknown codes based on latents that have already been
decoded Bellard [2015]. These models use hyper latent and context to predict both the location (mean
value) and scale parameters (standard deviation) of the entropy model Minnen et al. [2018]. By
combining elements of differentiable entropy modeling, hyper latent, and context models, it is possible
to outperform BPG Bellard [2015] in terms of PSNR and MS-SSIM Minnen et al. [2018], He et al.
[2021], Qian et al. [2022]. These context models have also been extended to become more powerful
but also more computationally expensive Cheng et al. [2020]. In particular, AR context-based models,
essential for achieving the state of the art performance, have low computational efficiency due to the
sequential dependency of decoding the latents. As AR context models are sequentially dependent,
they cannot be deployed on edge devices or take advantage of parallel hardware processing. As a
result, models focusing on the real-world deployment of learned image compression often exclude
AR context models due to their inefficiency and high inference costs He et al. [2021].

Parallel decoding approaches like Checkerboard He et al. [2021] and ChARM Minnen and Singh
[2020] offer a better performance tradeoff over computation complexity. Checkerboard introduces
a parallel decoding approach by encoding and decoding only half of the latent variables using a
checkerboard-shaped context and hyperprior. The remaining latents, referred to as anchors, are coded
solely based on the hyperprior. On the other hand, ChARM utilizes channel conditioning instead of
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Figure 2: Operational diagram combining Hyper-
prior Ballé et al. [2018] with our proposed correla-
tion loss
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element-wise conditioning, along with latent residual prediction, to enhance the rate-distortion (RD)
performance. The recent efficient SOTA methods are all built on top of the ChARM and checkerboard
context model as an alternative to a fully AR-based context model Zhu et al. [2022], Qian et al.
[2022], Kim et al. [2022].

Recent research in the field of entropy coding has primarily concentrated on improving the efficiency
of context-based methods. These methods aim to exploit the interdependencies within the latent
space more effectively, utilizing the inherent dependencies present Lei et al. [2022], Lee et al. [2019].
However, there has been a lack of attention towards enhancing the effectiveness of the hyperprior
module, an integral component of prominent learned image compression (LIC) techniques. Notably,
recent studies utilizing Transformer Vaswani et al. [2017] models have demonstrated that achieving a
higher level of decorrelation in the latent space leads to improved rate-distortion (RD) performance
Zhu et al. [2022]. This improvement can be attributed to the reduction in the discrepancy between
the actual distribution of the latent space and the assumed probability model Kim et al. [2022]. Our
work aims to address this research gap by introducing a novel approach that builds upon the existing
findings. Specifically, we incorporate correlation loss during the training phase of our model, which
promotes better decorrelation among the latent variables. By doing so, we enhance the performance
of the hyperprior module, thereby improving the overall efficacy of LIC models.

3 Methodology
3.1 Formulation of Learned Image Compression Models
Image compression can be formulated through the transform coding approach by (as Figure 2 and 3)

y = ga(x;ϕ)

ŷ = Q(y)

x̂ = gs(ŷ; θ),

(1)

where x and x̂ are input and reconstructed image, y is a latent representation, and ŷ is the quantized
latent representation. ϕ and θ are the parameters of analysis and synthesis transforms ga and gs,
respectively, Q represents the quantization. During training, the quantization is approximated using
uniform noise. While for inference, a round function is applied for quantization to generate ŷ,
and then entropy encoded to generate the bitstream. Given a probability model for the quantized
representation, entropy encoding techniques such as arithmetic coding Rissanen and Jr. [1981] can
losslessly compress the quantized codes. Arithmetic coders are optimal entropy coders which can be
used to estimate the entropy of ŷ during training.

A prior work Ballé et al. [2017] has employed a non-adaptive density model which was shared
between the encoder and decoder also called factorized prior. It proposed a hyperprior in the follow-
up work as a mechanism to introduce side information z to capture the spatial dependencies in the
latent space y Ballé et al. [2018]. The side information predicted the mean and scale information for
the latent space as:

z = ha (y;ϕh)

ẑ = Q(z)

pŷ|ẑ(ŷ | ẑ)← hs (ẑ; θh) ,

(2)
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Figure 4: Visualization of quantized latent ŷ, hyperprior (µ and σ), normalized latent, and correlation map using
Cheng’s Hyperprior and Cheng’s Hyperprior with correlation loss using an image from the Kodak dataset. The
application of correlation loss enhances the details of the hyperprior and significantly reduces the correlation of
latent variable ŷ, leading to improved compression efficiency and reconstruction quality.

where ha and hs denote the analysis and synthesis transform for the hyperprior auto-encoder. pŷ|ẑ(ŷ |
ẑ) is the estimated probability distribution for the quantized latent space ŷ, given by:

pŷ|ẑ (ŷi | ẑ) =
[
N

(
µi, σ

2
i

)
∗ U

(
−1

2
,
1

2

)]
(ŷi) (3)

pŷ|ẑ(ŷ | ẑ) =
∏
i

pŷ|ẑ (ŷi | ẑ) , (4)

where the mean µi and scale σi parameter is the ith element of hs(ẑ) for each spatial location i in
the latent space ŷ. With the premise that individual latent components are mutually independent, each
spatial element in latent ŷ is modeled as a Gaussian with its own mean and standard deviation. We
may therefore estimate entropy using eq. 4. We modeled the probability of the hyper-latent ẑ using a
non-parametric fully factorized density model as:

pẑ|ψ(ẑ | ψ) =
∏
i

(
pzi|ψ(ψ) ∗ U

(
−1

2
,
1

2

))
(ẑi) , (5)

where zi denotes the ith element of z, and i specifies the position of each element, and the vectors
ψ(i) encapsulate the parameters of each univariate distribution (pzi|ψ(ψ)).

A context model can be added to boost the RD performance in the mean-scale hyperprior framework.
Additionally, a parameter inference network (gep) is employed to estimate the mean and scale
parameters Φ = (µ, σ) by leveraging the outputs of the hyperprior module hs(ẑ) and the context
model gcm(ŷ<i):

Φi = (µi, σi) = gep (hs(ẑ), gcm (ŷ<i)) , (6)
where ŷ<i means the causal context of the nearby visible latents to the latent ŷi. The context model
can be calculated as:

gcm(x) = (M ⊙W )x+ b, (7)
where⊙ refers to the Hadamard product, b is a bias term. The variable M represents a mask commonly
used to establish a top-left reference, necessitating strict Z-ordered serial decoding.

The Checkerboard context model He et al. [2021] introduces a parallel decoding approach where only
half of the latent variables are encoded/decoded using a checkerboard-shaped context and hyperprior
as shown in the Figure 3. The coding of the remaining half of the latents, referred to as anchors, relies
solely on the hyperprior. To implement this approach, the eq. 6 above is modified as:

Φi =

{
gep (hs(ẑ), 0)i , ŷi ∈ ŷanchor
gep (hs(ẑ), gcm (ŷanchor ;M ⊙W ))i , otherwise (8)

The masked convolution, denoted as gcm, is applied conditioned on a checkerboard-shaped mask
M , as described in eq. 7. The input for gcm, denoted as ŷanchor, corresponds to the set of anchors,
and i represents the index for the i-th element ŷi in the latent variable ŷ. For methods that utilize

5



𝒚

…𝑦!

𝑦"

𝝁

…𝜇!

𝜇"

𝝈

…𝜎!

𝜎"

Figure 5: After normalizing the latent y−µ
σ

, the correla-
tion will be calculated for all latents in the active k× k
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Figure 6: Our proposed mask designs for the corre-
lation loss. We have used Point Mask as a standard
for all our experiments. Please refer to the supple-
mentary material for the detailed ablation studies.

mean-scale Gaussian entropy models, the entropy parameter Φ is represented as (µ, σ), where µ and
σ correspond to the mean and standard deviation, respectively. In the presence of visible anchors,
the context features of all non-anchors can be calculated simultaneously using masked convolution
in parallel. The decoding of anchors also occurs in parallel. As a result, the calculation of entropy
parameters in eq. 8 for decoding can be performed in two passes, which significantly improves
efficiency compared to a serial context model.

LIC is a langrangian multiplier based rate-distortion optmization problem. The loss function is then
defined as

L =R(ŷ) +R(ẑ) + λ · D(x, x̂)
=E

[
− log2

(
pŷ|ẑ(ŷ | ẑ)

)]
+ E

[
− log2

(
pẑ|ψ(ẑ | ψ)

)]
+ λ · D(x, x̂),

(9)

where λ controls the rate-distortion tradeoff and D(x, x̂) is the distortion term usually using mean
square error.

3.2 Our Proposed Correlation Loss
As shown in the eq. 4, the joint probability of ŷ in the hyperprior-based entropy is calculated based
on the assumption that the latent features are mutually independent. However, as shown in the upper
portion of last column of Figure 4, the latent space is highly correlated, resulting in a discrepancy
between the actual and the calculated probability distribution. To address this discrepancy, we
introduce correlation loss to force the latent to be decorrelated spatially. We can therefore model
the correlation loss by calculating the correlation in the latent space. We start by computing the
correlation map as:

Corr_Mapk×k[i] = Ex∼p(x)
[(

yi − µi
σi

)(
ym − µm
σm

)]
, 0 ≤ i < k2 (10)

where k×k is the window size of the correlation map, µ and σ refer to the hyper-latent’s corresponding
ith and mth elements, m refers to the central point of the window of size k × k as shown in Figure 5.
We slide the window with the stride of 1 across the entire latent space to calculate the correlation of
the central point m with all the other points in the window of size k × k. We then take the mean of
all the individual correlation maps to get the resultant correlation map of the latent y of size k × k.

We then apply the Mask on the correlation map. As shown in Figure 6, the point mask only masks
the central location of latent space as it corresponds to self-correlation of 1 (when i = m). We
propose several mask designs (discussed in supplementary material) to investigate the effect of the
spatially relaxed decorrelation constraint. Mask can then be applied as:

Masked_Mapk×k[i] = Corr_Mapk×k[i]⊙Mask. (11)

The correlation loss is formulated by applying the L2 norm on the Masked_Mapk×k.

Lcorr = ||Masked_Mapk×k[i]||2. (12)

By incorporating the correlation loss Lcorr, the RD loss can now be given as:

RDloss = Ex∼p(x)

[
− log2 pŷ|ẑ(ŷ | ẑ

)
− log2 pẑ(ẑ)

]
+ λ · Ex∼p(x)

[d(x, x̂)] + α · [Lcorr], (13)

where α is the scaling factor for the correlation loss.

Given that the entropy estimate presumes independent latent elements, our proposed loss function
increases compression efficiency by reducing the correlation between latent features, hence reducing
the discrepancy between the assumed probability distribution of the entropy model and the actual
latent probability distribution.
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(b) Cheng’s mean scale hyperprior
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Figure 7: RD rate comparison of (a) Minnen’s (b) Cheng’s and (c) SwinT mean scale hyperprior models with
the inclusion of correlation loss.

4 Experiments and Results
4.1 Experimental Setup
We train all our models on the Vimeo-90k dataset Xue et al. [2019], with the images cropped to the
resolution of 256× 256 for training. The models were optimized using the Adam optimizer Kingma
and Ba [2015] with a batch size of 16 and trained for 1.5 million iterations with a learning rate of
1 × 10−4 for the first million iterations and then halved every 50,000 iterations till 1.25 million
iterations.

RD loss given in eq. 9 is used to train the baseline models, whereas the modified loss in eq. 13 is
used to train models with correlation loss. The rate-distortion tradeoff is guided by λ, whose value is
contained in the set [0.0009, 0.0018, 0.0035, 0.0067, 0.0130, 0.0250].

We tested our model on a commonly used Kodak lossless images dataset Kodak [1993], with 24
uncompressed images of 768 × 512 or 512 × 768 resolution. Bits per pixel (bpp) provide the
rate, while PSNR indicates the quality of the reconstructed image when evaluating rate-distortion
performance. In order to demonstrate the coding efficiency, RD curves are drawn.

4.2 Rate-Distortion Performance
We employ Minnen’s Minnen et al. [2018], Cheng’s Cheng et al. [2020], and SwinT Liu et al. [2021]
based mean scale hyperprior models as well as Cheng’s with Checkerboard He et al. [2021] for
our experiments. We perform all our experiments on the Pytorch framework Paszke et al. [2017]
and use the CompressAI library Bégaint et al. [2020]. Minnen’s and Cheng’s models were trained
using an NVIDIA 2080Ti, whereas the SwinT model was trained on an NVIDIA 3070Ti due to the
transformers’ high memory requirement. Note that including correlation loss has a negligible effect
on the hardware requirement of these base models.

Minnens’ Hyperior: Figure 7a depicts the RD curve for Minnen’s model Minnen et al. [2018] with
and without correlation loss; for Minnen’s model, correlation loss achieves BD rate gains of 3.20%.

Cheng’s Hyperprior: Figure 7b illustrates the RD curve for Cheng’s model Cheng et al. [2020]
with and without correlation loss. Cheng’s model yields a BD rate gain of 9.5% with correlation
loss. Cheng’s model consists of attention modules along with CNN layers that significantly increase
the overall efficiency of the correlation loss. Figure 9 depicts the spatial correlation of latent y
averaged across all latent channels and compares the baseline Cheng’s model with the one trained
on correlation loss. Figure 9 demonstrates that the model trained with our proposed loss function
exhibits significantly less correlation than the baseline model. This observation holds for the models
trained with other λ values. The qualitative comparison in Figure 8 between Cheng’s model with and
without correlation loss demonstrates the superior performance achieved by incorporating correlation
loss. It implies that models trained on correlation loss incur less redundancy across different spatial
latent locations, resulting in a better rate-distortion trade-off overall.

Transformer Hyperprior: We also compared the effectiveness of correlation loss on the Transformer-
based LIC model. We implemented our SwinT with a hyperprior model inspired by Zhu’s work
and employed a similar architectural setting Zhu et al. [2022]. Transformers tend to have a lesser
correlation in their latent space than the convolutional-based LIC models Zhu et al. [2022]. The
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Figure 11: RD rate comparison of Cheng’s +
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Figure 7c illustrates the performance of the SwinT model with and without correlation loss. We
found that with the correlation loss, the SwinT model achieves a BD-rate gain of about 4.8%. The
effectiveness of correlation loss for the SwinT model further indicates the efficacy of the correlation
loss, which in turn improves the mean scale based entropy model.

Cheng’s with Checkerboard Context Model: Figure 10 illustrates the RD curve for Cheng’s model
with Checkerboard He et al. [2021] with and without correlation loss. Cheng’s with Checkerboard
yields a BD rate gain of 6.13% with correlation loss. Checkerboard uses a parallel decoding approach
by encoding and decoding only half of the latent variables using a checkerboard-shaped context. The
remaining latents, referred to as anchors, are coded solely based on the hyperprior. Since half of the
latents are encoded by the hyperprior module. Incorporating correlation loss into the Checkerboard
context model significantly improves the performance of the hyperprior module, resulting in an
overall enhancement of the model’s performance.

Cheng’s with ChARM: Figure 11 illustrates the RD curve for Cheng’s model with ChARM Minnen
and Singh [2020], both with and without the integration of correlation loss. Notably, when correlation
loss is incorporated into Cheng’s with ChARM, there is a substantial BD rate gain of 3.3%. ChARM
effectively employs channel context and latent residual prediction for the encoding and decoding of
the latents. The combination of correlation loss with ChARM leads to a significant enhancement in
its overall performance, marking a performance difference of approximately 0.5% when compared to
a full AR model.

4.3 Complexity Tradeoff
The primary advantage of the correlation loss lies in its capacity to minimize the discrepancy between
the actual and presumed probability distribution within the entropy model. Figure 1 illustrates that for
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Table 1: Average encoding and decoding time on the Kodak dataset for different entropy models applied to
Cheng’s Hyperprior. BD-Rate gains are evaluated using Cheng’s Hyperprior as the baseline.

Architecture BD Rate Gains (%) Inference Time (sec)
Cheng’s Hyperprior (CH) — 4.66
CH + Correlation Loss (Proposed) 9.5 4.66
CH + Checkerboard 10.37 5.33
CH + Checkerboard + Correlation Loss (Proposed) 16.50 5.33
CH + ChARM 14.69 8.14
CH + ChARM + Correlation Loss (Proposed) 17.99 8.14
CH + AR Context 18.47 251.65
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Figure 12: Comparison between Cheng’s AR con-
text, Cheng’s hyperprior, Cheng’s hyperprior with
correlation loss, Cheng’s Checkerboard with corre-
lation loss, and Cheng’s ChARM with correlation
loss
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Figure 13: Visual representation depicting the relationship
between bits per pixel (bpp) and correlation, and its influ-
ence on peak signal-to-noise ratio (PSNR) gains. For all
the four models, both the average correlation and the gains
decreases as the bpp value increases.

a given encoder and decoder architecture, which is Cheng’s model in this case, the choice of entropy
model determines the performance of the resulting model. Note that Cheng’s hyperprior signifies the
lower bound with the given encoder-decoder architecture, whereas Cheng’s AR defines the upper
limit with the same encoder-decoder architecture. Using Cheng’s hyperprior model as the baseline,
we compared the effectiveness of including an AR module vs. the correlation loss. The Figure 12
shows the RD curve comparison, while the Table 1 compares the inference time for processing the
entire Kodak test dataset. Incorporating correlation loss into Cheng’s hyperprior model results in
a performance improvement roughly half that of the AR-context-based model, all while reducing
inference costs to just 1/55th of the original. Similarly, when utilizing Cheng’s Checkerboard with
correlation loss, a substantial performance enhancement of approximately 90% is achieved compared
to the AR-context-based model, with an inference cost as low as 1/50th of the latter. Additionally,
Cheng’s ChARM with correlation loss attains an impressive performance gain of about 98% when
compared to the AR-context-based model, while incurring an inference cost of merely 1/30th of the
AR-context-based model as shown in Figure 1.
It should be noted that when correlation loss is applied to Cheng’s hyperprior, significant improve-
ments can be achieved due to the large performance gap between Cheng’s hyperprior baseline and
the upper limit. On the other hand, since the gaps are diminished in models like Cheng’s with
Checkerboard and Cheng’s with ChARM, the potential for improvement by applying correlation
loss is also limited when compared to Cheng’s hyperprior baseline. In summary, the introduction of
correlation loss to these models would result in a closer approximation to the full AR performance,
albeit with gains that are comparatively smaller.
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5 Analysis

5.1 Visual Illustration of Effectiveness of the Correlation Loss
Figure 4 visualizes some of the internal workings of our models. We compare Cheng’s hyperprior
model with and without correlation loss. By observing the first column of Figure 4, it is clear that
our correlation loss makes the latent feature preserve more detailed texture information yielding
higher PSNR compared with the base model. The mean µ can also extract more distinctive and
meaningful information from the latent space. Since the hyperpriors (mean µ and scale σ) contain
more information, they require slightly more bits than the base model. Nevertheless, the rise in
hyperprior rate is adequately offset by the relatively greater decrease in latent bitrate, as demonstrated
in the final column of Figure 4, where the normalized latents exhibit improved decorrelation compared
to the base model. Overall, our proposed method surpasses the base model by enhancing PSNR
through more decorrelated latents while either maintaining or reducing bpp with better decorrelated
latents.

5.2 Effect of Correlation score on the Model’s performance

Our proposed loss function consistently demonstrates significant BD-rate gains at lower bit rates
while maintaining comparable performance at high bit rates. This behavior is primarily attributed
to learned image compression (LIC) models exhibiting higher correlation among latent variables at
lower bpp values compared to higher bpp values as reported by Zhu et al. [2022] and also evident
from the correlation maps in Figure 6 of the supplementary material. We conducted a comprehensive
analysis and presented the findings in Figure 13. Figure 13 showcases the relationship between
PSNR gains, bpp, and correlation for different models, including Cheng’s hyperprior , Cheng’s with
Checkerboard, SwinT hyperprior, and Minnen’s hyperprior. From the graphs in the Figure 13, a clear
pattern can be observed: as the bpp decreases, the correlation of the latents increases, resulting in a
higher gain in PSNR. However, as we move towards higher bpps, the correlation becomes notably
reduced, resulting in decreased PSNR gain. This trend explains the reason why the efficacy of the
correlation loss is larger in low bpp range and diminish at high bpp range.

6 Ablation Studies

Comprehensive ablation studies regarding various mask types, mask sizes, and α values are presented
in the supplementary material.

7 Conclusion
The hyperprior-based entropy models assume probabilistic independence, which leads to a discrepancy
between the actual and the assumed probability distribution. We proposed correlation loss, which
reduces the correlation among spatially neighbored elements in the latent space resulting in a better
fit with the spatially independent probability model. Our proposed loss function does not require any
model structure or capacity changes and acts as a plug-in method for the existing neural compression
methods. The proposed approach, without modifying the entropy models and increasing the inference
time, significantly improves the RD performance with BD rate gains up to 17.99%.
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