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Abstract

We study the problem of private distribution learning with access to public data. In
this setup, which we refer to as public-private learning, the learner is given public
and private samples drawn from an unknown distribution p belonging to a class Q,
with the goal of outputting an estimate of p while adhering to privacy constraints
(here, pure differential privacy) only with respect to the private samples.
We show that the public-private learnability of a class Q is connected to the
existence of a sample compression scheme for Q, as well as to an intermediate
notion we refer to as list learning. Leveraging this connection: (1) approximately
recovers previous results on Gaussians over Rd; and (2) leads to new ones, including
sample complexity upper bounds for arbitrary k-mixtures of Gaussians over Rd,
results for agnostic and distribution-shift resistant learners, as well as closure
properties for public-private learnability under taking mixtures and products of
distributions. Finally, via the connection to list learning, we show that for Gaussians
in Rd, at least d public samples are necessary for private learnability, which is close
to the known upper bound of d+ 1 public samples.

1 Introduction

Statistical analysis of sensitive data, and specifically parameter and density estimation, is a workhorse
of privacy-preserving machine learning. To provide meaningful and rigorous guarantees on algorithm
for these tasks, the framework of differential privacy (DP) [DMNS06] has been widely adopted
by both algorithm designers and machine learning practitioners [App17, Abo18, XZA+23], and is,
by and large, one of the past decade’s success stories in principled approaches to private machine
learning, with a host of results and implementations [Goo19a, Goo19b, HBAL19, Ope20] for many
of the flagship private learning tasks.

Yet, however usable the resulting algorithms may be, DP often comes at a steep price: namely, many
estimation tasks simple without privacy constraints provably require much more data to be performed
privately; even more dire, they sometimes become impossible with any finite number of data points,
absent some additional strong assumptions.

The prototypical example in that regard is learning a single d-dimensional Gaussian distribution from
samples. In this task, a learner receives i.i.d. samples from an unknown d-dimensional Gaussian p
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and is tasked with finding an estimate q close to p in total variation (TV) distance. Without privacy
constraints, it is folklore that this can be done with O(d2) samples; yet once privacy enters the picture,
in the form of pure differential privacy, no finite sample algorithm for this task can exist, unless a
bound on the mean vector and covariance matrix are known.

This “cost of privacy” is, unfortunately, inherent to many estimation tasks, as the positive results
(algorithms) developed over the years have been complemented with matching negative results (lower
bounds). In light of these strong impossibility results, it is natural to wonder if one could somehow
circumvent this often steep privacy cost by leveraging other sources of public data to aid the private
learning process.

Recent work in finetuning machine learning models has tried to address the question whether, in
situations where a vast amount of public data is available, one can combine the public data with a
relatively small amount of private data to somehow achieve privacy guarantees for the private data
and learning guarantees that would otherwise be ruled out by the aforementioned impossibility results.
We, on the other hand, address the same question, but in the opposite setting, i.e., when the amount
of public data available is much smaller than the amount of private data available. In other words, we
answer the following question from new perspectives.

Can one leverage small quantities of public data to privately learn from sensitive
data, even when private learning is impossible?

This question was the focus of a recent study of Bie, Kamath, and Singhal [BKS22], the starting
point of our work. In this paper, we make significant strides in this direction, by obtaining new “plug
and play” results and connections in this public-private learning setting, and using them to obtain
new sample complexity bounds for a range of prototypical density estimation tasks.

1.1 Our results

First, we establish a connection between learning (in the sense of distribution learning or density
estimation) with public and private data (Definition 2.4) and sample compression schemes for
distributions (Definition 2.5; see [ABDH+20, Definition 4.2]), as well as an intermediate notion we
refer to as list learning (Definition 3.2).
Theorem 1.1 (Sample compression schemes, public-private learning, and list learning (Informal; see
Theorem D.1)). Let Q be a class of probability distributions and m(α, β) be a sample complexity
function in terms of target error α and failure probability β. Then the following are equivalent.

1. Q has a sample compression scheme using O(m(α, β)) samples.

2. Q is public-privately learnable with O(m(α, β)) public samples.

3. Q is list learnable with O(m(α, β)) samples.

Despite its technical simplicity, this sample complexity equivalence turns out to be quite useful,
and allows us to derive new public-private learners for an array of key distribution classes by
leveraging known results on sample compression schemes. In particular, from the connection
to sample compression schemes we are able to obtain new public-private learners for: (1) high-
dimensional Gaussian distributions (Corollary E.1); (2) arbitrary mixtures of high-dimensional
Gaussians (Theorem 1.2/Corollary E.2); (3) mixtures of public-privately learnable distribution classes
(Theorem 4.3/E.5); and (4) products of public-privately learnable distribution classes (Theorem
4.3/E.7). For instance, the following is a consequence of the above connection.
Theorem 1.2 (Public-private learning for mixtures of Gaussians (Informal; see Corollary E.2)). The
class of mixtures of k arbitrary d-dimensional Gaussians is public-privately learnable with m public
samples and n private samples, where

m = Õ

(
kd

α

)
and n = Õ

(
kd2

α2
+

kd2

αε

)
,

in which α is the target error and ε the privacy parameter.

We also examine public-private distribution learning in a setting with relaxed distributional assump-
tions, in which the distributions underlying the public and private data: (1) may differ (the case of
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public-private distribution shift); and (2) may not be members of the reference class of distributions,
and so we instead ask for error close to the best approximation of the private data distribution by a
member of the class (the agnostic case). We show that robust sample compression schemes for a
class of distributions can be converted into public-private learners in this agnostic and distribution-
shifted setting. As a consequence, we have the following result for learning distributions that can be
approximated by Gaussians under public-private distribution shift.
Theorem 1.3 (Agnostic and distribution-shifted public-private learning for Gaussians (Informal; see
Corollary F.1)). There is a public-private learner that takes m public samples and n private samples
from any pair of distributions p̃ and p over Rd respectively, with TV(p̃, p) ≤ 1

3 , where

m = O (d) and n = Õ

(
d2

α
+

d2

αε

)
,

in which α is the target error and ε the privacy parameter. With probability ≥ 9
10 , the learner outputs

q with TV(q, p) ≤ 3OPT + α, where OPT is the total variation distance between p and the closest
d-dimensional Gaussian to it.

Next, using the aforementioned connection to list learning, we are able to establish a fine-grained
lower bound on the number of public data points required to privately learn high-dimensional
Gaussians.
Theorem 1.4 (Almost tight lower bound on privately learning Gaussians with public data (Informal;
see Theorem 6.1)). The class of all d-dimensional Gaussians is not public-privately learnable with
fewer than d public samples, regardless of the number of private samples.

[BKS22] showed that d-dimensional Gaussians are public-privately learnable with Õ( d
2

α2 + d2

αε )
private samples, as soon as d+ 1 public samples are available. Thus, our result shows a very sharp
threshold for the number of public data points necessary and sufficient to make private learning
possible.

We also provide a general result for public-privately learning classes of distributions whose Yatracos
class has finite VC dimension.
Theorem 1.5 (VC dimension bound for public-private learning (Informal; see Theorem 7.2)). Let Q
be a class of probability distributions over a domain X such that the Yatracos class of Q, defined as

H := {{x : f(x) > g(x)} : f, g ∈ Q} ⊆ 2X

has bounded VC dimension. Denote by VC(H) and VC∗(H) the VC and dual VC dimensions of
H respectively. Then Q is public-privately learnable with m public samples and n private samples,
where

m = Õ

(
VC(H)

α

)
and n = Õ

(
VC(H)2 VC∗(H)

εα3

)
,

in which α is the target error and ε the privacy parameter.

The Õ(VC(H)
α ) public sample requirement is less than the known O(VC(H)

α2 ) sample requirement to
learn with only public data via the non-private analogue of this result [Yat85, DL01].

1.2 Related work

The most closely related work is that of Bie, Kamath, and Singhal [BKS22], which initiated the study
of distribution learning with access to both public and private data. That work studied algorithms for
specific canonical distribution classes, while the present paper aims to broaden our understanding of
public-private distribution learning in general, via connections to other problems and providing more
general approaches for devising sample efficient public-private learners. In addition, we prove the
first lower bounds on the amount of public data needed for private distribution learning.

There is a long line of work on private distribution learning, especially with regards to Gaussians and
mixtures of Gaussians. [KV18] studied univariate Gaussians, showing that logarithmic dependencies
on parameter bounds are necessary and sufficient in the case of pure DP, but can be removed under
approximate DP. The same is true in the multivariate setting [KLSU19, KMS+22, TCK+22, AL22,
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KMV22, LKO22]. For mixtures of Gaussians, most studies have focused on parameter estimation
of mixture components [NRS07, KSSU19, CKM+21, CCd+23, AAL23b], and employ component
separation and mixing weight assumptions. For density estimation (the setting studied in this work)
[BKSW19, AAL21] give learnability results under various structural assumptions. The concurrent
work of Azfali, Ashtiani, and Liaw [AAL23a] gives the first learnability result for general high-
dimensional mixtures of Gaussians under approximate differential privacy.

Outside of distribution learning, there is a significant interest in using public data to improve
private algorithms. Some problems studied include private query release, synthetic data generation,
classification, mean estimation, empirical risk minimization, and stochastic convex optimization
[JE13, BNS16, ABM19, NB20, BCM+20, BMN20, LVS+21, KADV23, LLHR23]. The definition
of public-private algorithms that we adopt is from [BNS16], which studied classification in the PAC
model. The VC dimension bound we give for public-private distribution learning relies on results
from public-private classification [ABM19] and uniform convergence [BCM+20].

On the technical side, we establish connections with distribution compression schemes as introduced
by [ABDH+20], and directly apply their results to establish new results for public-public learning.
Related compression schemes for PAC learning for binary classification have been shown to be
necessary and sufficient for learnability in those settings [LW86, MY16]. For further discussion of
related work, please see Appendix A.

1.3 Limitations

Our work investigates the sample complexity of public-private learning, and does not give computa-
tionally efficient learners, or in some cases, algorithmic learners that run in finite time.1 In particular,
all public-private learners we obtain from sample compression run in time exponential in the sample
complexity. Also, for our VC dimension upper bounds, we enumerate all realizable labellings of the
input sample as per the relevant Yatracos class H, which is not computable for general H [AABD+20].
Finally, dependence on VC∗(H) in sample complexity is not ideal, as VC∗(H) ≤ 2VC(H)+1 − 1 is
the best possible upper bound in terms of VC(H) for general H [Ass83].

2 Preliminaries

2.1 Notation

We denote by X the domain of examples. For a domain U , denote by ∆(U) the set of all probability
distributions over U . We refer to a set Q ⊆ ∆(X ) as a class of distributions over X .

We equip ∆(X ) with the total variation metric, which is defined as follows: for p, q ∈ ∆(X ),
TV(p, q) := supB∈B |p(B)− q(B)|, where B are the measurable sets of X . For p ∈ ∆(X ) and a set
of distributions L ⊆ ∆(X ), we denote their point-set distance by dist(p, L) := infq∈L TV(p, q).

We will let x̃ = (x̃1, . . . , x̃m) ∈ Xm denote a public dataset and x = (x1, . . . , xn) ∈ Xn denote a
private dataset. Their respective capital versions X̃ , X denote random variables for datasets realized
by sampling from some underlying distribution. For p ∈ ∆(X ), we denote by pm the distribution
over Xm obtained by concatenating m i.i.d. samples from p.

2.2 Public-private learning

Definition 2.1 (Differential privacy [DMNS06]). Fix an input space X and an output space Y . Let
ε, δ > 0. A randomized algorithm A : Xn → ∆(Y) is (ε, δ)-differentially private ((ε, δ)-DP), if for
any private datasets x,x′ ∈ Xn differing in one entry,

P
Y∼A(x)

{Y ∈ B} ≤ exp(ε) · P
Y ′∼A(x′)

{Y ′ ∈ B}+ δ for all measurable B ⊆ Y .

1The comment of reviewer rJcv points out an approach to address the non-constructive nature of the reduction
of public-privately learning mixture classes to public-privately learning the base class. To summarize: fixing
the m public samples and running the public-private learner on n “null samples” repeatedly (with different
random coins) produces a cover containing the true distribution with high probability. From here, we can run this
procedure on all subsamples of the public data and construct a cover containing the true (mixture) distribution.
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The case where δ = 0 is referred to as pure differential privacy or ε-DP.

Our focus is on understanding the public data requirements for privately learning different classes of
distributions. We seek to answer the following question:

For a class of distributions Q, how much public data is necessary and sufficient to
render Q privately learnable?

To do so, we give the formal notion of “public-private algorithms” – algorithms that take public
data samples and private data samples as input, and guarantee differential privacy with respect to
the private data – as studied previously in the setting of binary classification [BNS16, ABM19]. We
restrict our attention to public-private algorithms that offer a pure DP guarantee to private data.
Definition 2.2 (Public-private ε-DP). Fix an input space X and an output space Y . Let ε > 0.
A randomized algorithm A : Xm × Xn → ∆(Y) is public-private ε-DP if for any public dataset
x̃ ∈ Xm, the randomized algorithm A(x̃, ·) : Xn → ∆(Y) is ε-DP.
Definition 2.3 (Public-private learner). Let Q ⊆ ∆(X ). For α, β ∈ (0, 1] and ε > 0, an (α, β, ε)-
public-private learner for Q is a public-private ε-DP algorithm A : Xm ×Xn → ∆(∆(X )), such
that for any p ∈ Q, if we draw datasets X̃ = (X̃1, ..., X̃m) and X = (X1, ..., Xn) i.i.d. from p and
then Q ∼ A(X̃,X),

P
X̃∼pm,X∼pn

Q∼A(X̃,X)

{TV(Q, p) ≤ α} ≥ 1− β.

Definition 2.4 (Public-privately learnable class). We say that a class of distributions Q ⊆ ∆(X ) is
public-privately learnable with m(α, β, ε) public and n(α, β, ε) private samples if for any α, β ∈
(0, 1] and ε > 0, there exists an (α, β, ε)-public-private learner for Q that takes m = m(α, β, ε)
public samples and n = n(α, β, ε) private samples.

When Q satisfies the above, we may omit the private sample requirement, and say that Q is public-
privately learnable with m(α, β, ε) public samples.

Denote by SCQ(α, β) the sample complexity of learning Q. Our primary interest lies in determining
when non-privately learnable Q can be public-privately learned with m(α, β, ε) = o(SCQ(α, β))
public samples (at a target ε).

2.3 Sample compression schemes

One of the main techniques that we use in this work to create public-private learners for various
distribution families is the robust sample compression scheme from [ABDH+20]. Roughly speaking,
if every member q of a class of distributions Q admits a way to encode enough information about itself
in a small number of samples from q and extra bits, such that it can be approximately reconstructed
by a fixed and deterministic decoder, Q can be learned.
Definition 2.5 (Robust sample compression [ABDH+20, Definition 4.2]). Let r ≥ 0. We say
Q ⊆ ∆(X ) admits (τ(α, β), t(α, β),m(α, β)) r-robust sample compression if for any α, β ∈ (0, 1],
letting τ = τ(α, β), t = t(α, β), m = m(α, β), there exists a decoder g : X τ × {0, 1}t → ∆(X ),
such that the following holds:

For any q ∈ Q there exists an encoder fq : Xm → X τ × {0, 1}t satisfying for all x ∈ Xm that for
all i ∈ [τ ], there exists j ∈ [m] with fq(x)i = xj , such that for every p ∈ ∆(X ) with TV(p, q) ≤ r,
if we draw a dataset X = (X1, ..., Xm) i.i.d. from p, then

P
X∼pm

{TV(g(fq(X)), q) ≤ α} ≥ 1− β.

When Q satisfies the above, we may omit the compression size complexity function τ(α, β) and bit
complexity function t(α, β), and say that Q is r-robustly compressible with m(α, β) samples. When
r = 0, we say that Q admits (τ(α, β), t(α, β),m(α, β)) realizable compression and is realizably
compressible with m(α, β) samples.

Both robust and realizable compression schemes satisfy certain useful properties that we use to
develop public-private distribution learners in different settings. For example, the existence of a
realizable compression scheme is closed under taking mixtures or products of distributions.
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3 The connection to sample compression schemes

In this section we prove Theorem 1.1/D.1, the sample complexity equivalence between sample
compression (Definition 2.5), public-private learning (Definition 2.4), and an intermediate notion
we refer to as list learning (Definition 3.2). We do so by giving sample-efficient reductions between
the three notions (Propositions 3.1, 3.4, and 3.5). The propositions state the quantitative translations
between: compression size τ and number of bits t, number of private samples n, and list size ℓ.

3.1 Compression implies public-private learning

We start by establishing that the existence of a sample compression scheme for Q implies the existence
of a public-private learner for Q.
Proposition 3.1 (Compression =⇒ public-private learning). Let Q ⊆ ∆(X ). Suppose Q ad-
mits (τ(α, β), t(α, β),mC(α, β)) realizable sample compression. Then Q is public-privately
learnable with m(α, β, ε) = mC(

α
6 ,

β
2 ) public and n(α, β, ε) = O(( 1

α2 + 1
αε ) · (t(α6 ,

β
2 ) +

τ(α6 ,
β
2 ) log(mC(

α
6 ,

β
2 )) + log( 1β ))) private samples.

Proof sketch. The full proof is given in Appendix D.1, and mirrors that of Theorem 4.5 from
[ABDH+20] (albeit adapted to the public-private setting). Fix α, β ∈ (0, 1] and ε > 0. Let
τ = τ(α6 ,

β
2 ), t = t(α6 ,

β
2 ), and m = mC(

α
6 ,

β
2 ). We draw a public sample X̃ of size m, and

enumerate all combinations of a size τ subset of X̃ with a binary string of length t. Essentially, we
“guess” the encoding of the unknown distribution p. Running the decoder on this set of possible
encodings gives us a set of distributions; some of them are close to p. Then, with private samples
only, we use the pure DP 3-agnostic learner for finite classes (Fact C.2) to pick one such out.

3.2 Public-private learning implies list learning

Next, we show that the existence of a public-private learner for a class of distributions implies the
existence of a list learner for the class. A list learner for a class Q takes input samples from any
p ∈ Q and outputs a finite list of distributions, one of which is close to p.
Definition 3.2 (List learner). Let Q ⊆ ∆(X ). For α, β ∈ (0, 1] and ℓ ∈ N, an (α, β, ℓ)-list learner
for Q is an algorithm L : Xm → {L ⊆ ∆(X ) : |L| ≤ ℓ}, such that for any p ∈ Q, if we draw a
dataset X = (X1, . . . , Xm) i.i.d. from p, then

P
X∼pm

{dist(p,L(X)) ≤ α} ≥ 1− β.

Definition 3.3 (List learnable class). A class of distributions Q ⊆ ∆(X ) is list learnable to list size
ℓ(α, β) with m(α, β) samples if for every α, β ∈ (0, 1], letting ℓ = ℓ(α, β) and m = m(α, β), there
is an (α, β, ℓ)-list-learner for Q that takes m samples.

If Q satisfies the above, irrespective of the list size complexity ℓ(α, β), we say Q is list learnable
with m(α, β) samples.

Now, we state our reduction of list learning to public-private learning. The key step of our proof is
showing that, upon receiving samples x̃, outputting a finite cover of the list of distributions that a
public-private learner would succeed on given public data x̃ is a successful strategy for list learning.
Proposition 3.4 (Public-private learning =⇒ list learning). Let Q ⊆ ∆(X ). Suppose Q is public-
privately learnable with mP (α, β, ε) public and n(α, β, ε) private samples. Then for all ε > 0, Q is
list-learnable to list size ℓ(α, β) = 10

9 exp(ε · n(α2 ,
β
10 , ε)) with m(α, β) = mP (

α
2 ,

β
10 , ε) samples.

Proof. Let ε > 0 be arbitrary. Fix any α, β ∈ (0, 1]. By assumption, Q admits a (α2 ,
β
10 , ε)-

public-private learner A, which uses m := mP (
α
2 ,

β
10 , ε) public and n := n(α2 ,

β
10 , ε) private

samples. We use A to construct a (α, β, 10
9 exp(εn))-list learner that uses m samples. Consider any

x̃ = (x̃1, . . . , x̃m) ∈ Xm and the class

Qx̃ =

q ∈ Q : P
X∼qn

Q∼A(x̃,X)

{
TV(Q, q) ≤ α

2

}
≥ 9

10

 .
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Note that by definition, Qx̃ has a (α2 ,
1
10 )-learner under ε-DP that takes n samples. Hence, by Fact C.1

it follows that any α-packing of Qx̃ must have size ≤ 10
9 exp(εn) =: ℓ. Let Q̂x̃ be such a maximal

α-packing, hence it is also an α-cover of Qx̃ with |Q̂x̃| ≤ ℓ. We define our list learner’s output,
L(x̃) = Q̂x̃. It remains to show that for any p ∈ Q, with probability ≥ 1− β over the sampling of
X̃ ∼ pm, dist(p,L(X̃)) ≤ α. Suppose otherwise, that is, there exists p0 ∈ Q, such that

P
X̃∼pm

0

{
dist(p0,L(X̃)) > α

}
> β.

Since L(X̃) is a α-cover of QX̃ , we have that with probability > β over the sampling of X̃ ∼ pm0 ,
p0 ̸∈ QX̃ . This contradicts the success guarantee of A:

P
X̃∼pm

0 ,X∼pn
0

Q∼A(X̃,X)

{
TV(Q, p0) >

α

2

}
≥ P

{
TV(Q, p0) >

α

2

∣∣∣p0 ̸∈ QX̃

}
· P {p0 ̸∈ QX̃}

>
1

10
· β =

β

10
.

The second inequality follows by the definition of QX̃ : conditioned on the event p0 ̸∈ QX̃ , the
probability, over the private samples X ∼ pn0 and the randomness of the algorithm A, that the output
Q of our algorithm satisfies TV(Q, p0) ≤ α

2 is < 9
10 .

3.3 List learning implies compression

We state the final component of Theorem 1.1/D.1: the existence of a list learner for a class of
distributions Q implies the existence of a sample compression scheme for Q. This follows from the
definitions: given samples x̃, the encoder of the sample compression scheme runs a list learner L on
x̃. It passes along x, and, with knowledge of the target distribution q, the index i of the distribution
in L(x̃) that is close to q. The decoder receives this information and outputs L(x̃)i. The proof can be
found in Appendix D.2.
Proposition 3.5 (List learning =⇒ compression). Let Q ⊆ ∆(X ). Suppose Q is list learn-
able to list size ℓ(α, β) with mL(α, β) samples. Then Q admits (τ(α, β), t(α, β),m(α, β)) =
(mL(α, β), log2(ℓ(α, β)),mL(α, β)) realizable sample compression.

4 Applications

Here, we state a few applications of the connections obtained via Theorem 1.1/D.1. First, we recover
and extend results on the public-private learnability of high-dimensional Gaussians and mixtures of
Gaussians, using known results on sample compression schemes. Second, we describe the closure
properties of public-private learnability: if a class Q is public-privately learnable, the class of mixtures
of Q and the class of products of Q are also public-privately learnable.

4.1 Public-private learnability of Gaussians and mixtures of Gaussians

There are known realizable sample compression schemes for the class of Gaussians in Rd, as
well as for the class of all k-mixtures of Gaussians in Rd [ABDH+20]. Hence, these classes are
public-privately learnable.
Fact 4.1 (Robust compression scheme for Gaussians [ABDH+20, Lemma 5.3]). The class of
Gaussians over Rd admits (O(d), O(d2 log( dα )), O(d log( 1β ))

2
3 -robust sample compression.

Fact 4.2 (Realizable compression scheme for mixtures of Gaussians [ABDH+20, Lemma 4.8 applied
to Lemma 5.3]). The class of k-mixtures of Gaussians over Rd admits (O(kd), O(kd2 log( dα ) +

log( kα )), O(kd log(k/β) log(1/β)
α )) realizable sample compression.

Gaussians. From Theorem 1.1/D.1 and Fact 4.1, we get a public-private learner for Gaussians
over Rd using O(d log( 1β )) public and Õ(d

2+log(1/β)
α2 + d2+log(1/β)

αε ) private samples (Corollary E.1).
This recovers the result of [BKS22] on Gaussians up to a factor of O(log( 1β )) in public sample
complexity, and improves the private sample complexity by a polylog(1/β) factor.
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Mixtures of Gaussians. From Theorem 1.1/D.1 and Fact 4.2, we get a public-private learner
for the class of k-mixtures of Gaussians in Rd using Õ(kd log2(1/β)

α ) public and Õ(kd
2+log(1/β)

α2 +
kd2+log(1/β)

αε ) private samples (Theorem 1.2/Corollary E.2).

In terms of k, d, and α, the public sample complexity of this learner is less than the Θ̃(kd
2

α2 ) necessary
and sufficient sample complexity for the problem non-privately [ABDH+20]. This also implies that in
the regime where ε > α, having more public samples (but still õ(kd

2

α2 )) cannot improve private sample

complexity. Under pure DP, no finite sample size suffices; under approximate DP, Õ(k
2d4 log(1/δ)

α2ε )
has been shown to suffice [AAL23b].

Algorithms for parameter estimation, like the mixture of Gaussians estimators from [BKS22] cannot
be directly compared as they target a strictly stronger success criteria under stronger assumptions
on the underlying distribution. [BKS22] gives an estimator for separated Gaussian mixtures that
uses Õ(d log(k)

w∗
) public and Õ( d2

w∗α2 + d2

w∗α2 ) private samples satisfying ε2

2 -zCDP, where w∗ is the
minimum component mixing weight. In terms of the privacy guarantee and private sample complexity,
our result is a strict improvement for density estimation, since k = O( 1

w∗
). In the setting where

w∗ = Ω( 1k ), [BKS22]’s algorithm uses 1
α -factor fewer public samples. Furthermore, their algorithm

runs in time polynomial in the sample complexity.

4.2 Public-private learnability of mixture and product distributions

If a class is realizably compressible, the class of its k-mixtures and the class of its k-products are
also realizably compressible. Being realizably compressible with O(m(α, β)) samples is equivalent
to being public-privately learnable with O(m(α, β)) public samples. Hence, we have black-box
reductions of public-private learnability of mixture/product classes to public-private learnability of
their base classes.
Theorem 4.3 (Public-private learning for mixture and product distributions (Informal; see Theorems
E.5 and E.7)). Let k ≥ 1. If Q ⊆ ∆(X ) is public-privately learnable with m(α, β, ε) public samples,
then for any ε0 > 0:

1. The class of k-mixtures of Q is public-privately learnable with O(k log(k/β)
α ·m(α, β, ε0))

public samples.

2. The class of k-products of Q (over X k) is public-privately learnable with O(log( kβ ) ·
m(α/k, β, ε0)) public samples.

The full statements and proof can be found in Appendix E.2. Here, we use the non-constructive
reduction of list learning to public-private learning, and hence this does not yield a finite time
algorithm. Note also that the target privacy ε does not appear in the public sample complexity (it only
affects the amount of private samples required).

5 Agnostic and distribution-shifted public-private learning

The setting we have examined thus far makes the following assumptions on the data generation
process: (1) same distribution – public and private data are sampled from the same underlying
distribution; and (2) realizability – public and private data are sampled from members of the class Q.

[BKS22] shows that for Gaussians over Rd, the first condition can be relaxed: they give an algorithm
for the case where the public and the private data are generated from different Gaussians with bounded
TV distance. However, they do not remove the second assumption.

We show that for general classes of distributions that robust compression schemes yield public-private
learners, which: (1) can handle public-private distribution shifts (i.e., the setting where the public
data and the private data distributions can be different); and (2) are agnostic, i.e., they do not require
samples to come from a member of Q, and instead, promise error close to the best approximation
of the private data distribution by a member of Q. Since Gaussians admit a robust compression
scheme (Fact 4.1), we obtain public-private Gaussian learners that work under relaxed forms of these
assumptions on the data generating process (Theorem 1.3/F.1).
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We first formally define the notion of agnostic and distribution-shifted public-private learning, and
then prove the main result of this section.
Definition 5.1 (Agnostic and distribution-shifted public-private learner). Let Q ⊆ ∆(X ). For
α, β ∈ (0, 1], ε > 0, γ ∈ [0, 1], and c ≥ 1 a γ-shifted c-agnostic (α, β, ε)-public-private learner for
Q is a public-private ε-DP algorithm A : Xm × Xn → ∆(∆(X )), such that for any p̃, p ∈ ∆(X )

with TV(p̃, p) ≤ γ, if we draw datasets X̃ = (X̃1, . . . , X̃m) i.i.d. from p̃ and X = (X1, . . . , Xn)

i.i.d. from p, and then Q ∼ A(X̃,X),

P
X̃∼p̃m,X∼pn

Q∼A(X̃,X)

{TV(Q, p) ≤ c · dist(p,Q) + α} ≥ 1− β.

Theorem 5.2 (Robust compression =⇒ agnostic and distribution-shifted public-private learning).
Let Q ⊆ ∆(X ) and r > 0. If Q admits (τ(α, β), t(α, β),mC(α, β)) r-robust compression, then for
every α, β ∈ (0, 1] and ε > 0, there exists a r

2 -shifted 2
r -agnostic (α, β, ε)-public-private learner for

Q that uses m(α, β, ε) = mC(
α
12 ,

β
2 ) public samples and n(α, β, ε) = O(( 1

α2 + 1
αε ) · (t(

α
12 ,

β
2 ) +

τ( α
12 ,

β
2 ) log(mC(

α
12 ,

β
2 )) + log( 1β ))) private samples.

Proof. The proof again mirrors the proof of Theorem 4.5 in [ABDH+20]. The key observation (and
difference from the proof in Appendix D.1) is the following: for the unknown distribution p ∈ ∆(X ),
consider dist(p,Q). If dist(p,Q) ≥ r

2 , the output Q of any algorithm satisfies TV(p,Q) ≤
1 ≤ 2

r · dist(p,Q). Hence, we can assume dist(p,Q) < r
2 , and let q∗ ∈ Q with TV(p, q∗) <

min
{

r
2 ,dist(p,Q) + α

12

}
as guaranteed by such.

By triangle inequality, TV(p̃, q∗) < r. This implies that when we generate hypotheses Q̂ to choose
from using the r-robust sample compression with samples from p̃, with high probability there will be
some q ∈ Q̂ with TV(q, q∗) ≤ α

12 . We have

TV(p, q) ≤ TV(p, q∗) + TV(q∗, q) ≤ dist(p,Q) +
α

12
+

α

12
=

α

6
.

Applying the 3-agnostic ε-DP learner for finite classes from [AAAK21] (Fact C.2) with the above
setting of n gives us the result.

6 Lower bounds

We give a lower bound on the number of public samples required to public-privately learn Gaussians
in Rd. We know that Gaussians in Rd are public-privately learnable with d + 1 public samples
from [BKS22]. We show that this is within 1 of the optimal: the class of Gaussians in Rd is not
public-privately learnable with d − 1 public samples. The following is the formal statement of
Theorem 1.4.
Theorem 6.1. The class Q of all Gaussians in Rd is not public-private learnable with mP (α, β, ε) =
d− 1 public samples, regardless of the number of private samples. That is, there exists αd, βd > 0
such that for any n ∈ N, Q does not admit a (αd, βd, 1)-public-private learner using d− 1 public
and n private samples.

Our result leverages the connection between public-private learning and list learning. The existence
of such a public-private learner described above would imply the existence of a list learner for
d-dimensional Gaussians taking d − 1 samples as input. We show, using a “no-free-lunch”-style
argument (e.g. Theorem 5.1 from [SSBD14]) that such a list learner cannot exist. The proof of
Theorem 6.1, given in Appendix G, goes through the following steps.

1. We reduce list learning to public-private learning, via Proposition 3.4;
2. We establish a technical lemma that relates the PAC guarantee of a list learner with its

average performance over a set of problem instances, via a “no-free-lunch”-style argument
(Lemma G.1);

3. For every d ≥ 2, we find a sequence of hard subclasses of Gaussians over Rd, which satisfy
the conditions of Lemma G.1. This forms the set of hard problem instances that imply a
lower bound on the error of any list learner for the class (does not receive enough samples);
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4. Since list learning to arbitrary error with few samples is impossible, public-private learning
to arbitrary error with few public samples must also be impossible.

7 Learning when the Yatracos class has finite VC dimension

In this section, we describe a public-private learner for classes of distributions whose Yatracos class
has finite VC dimension. We start by defining the Yatracos class of a family of distributions.
Definition 7.1 (Yatracos class). For Q ⊆ ∆(X ), the Yatracos class of Q is given by

H = {{x ∈ X : p(x) > q(x)} : p ̸= q ∈ Q}.2

Theorem 7.2. Let Q ⊆ ∆(X ). Let H be the Yatracos class of Q, denote by VC(H) and VC∗(H)
the VC and dual VC dimension of H. Q is public-privately learnable with m public and n private
samples, where

m = O

VC(H) log
(
1
α

)
+ log

(
1
β

)
α

 and n = O

(
VC(H)2 VC∗(H) + log( 1β )

εα3

)
.

Theorem 7.2/1.5 says that classes of distributions whose Yatracos class have finite VC dimension can
be public-privately learned. Note that the number of public samples used is indeed fewer than the
O(VC(H)

α2 ) sample requirement in the non-private analogue of the result (Fact H.1).

The proof is given in Appendix H. The result is a consequence of a known public-private uniform
convergence result [BCM+20, Theorem 10]. To adapt it to our setting, we (1) modify their result for
pure DP (rather than approximate DP); and (2) conclude that uniform convergence over the Yatracos
sets of Q suffices to implement the learner from Fact H.1.

8 Conclusion

In this work, we connect public-private distribution learning to the notions of sample compression
and list learning. In doing so, for broad classes of distributions, we introduce approaches to: (1)
design sample-efficient public-private learners; (2) prove lower bounds on how much public data is
required for public-private learnability. In the following, we list several questions for future study.
Question 8.1. For a class Q, our work examines the minimal amount of public data needed to render
Q pure privately learnable. How much do we need to render Q approximate DP learnable?

Question 8.2. The VC bound of Theorem 1.5/7.2, although more general, is “qualitatively” loose.
For Gaussians, it yields a O(d

2

α ) public sample complexity, though we know O(d) is possible, notably
with no dependence on α. On the other hand, Ω(1/α) public samples are required for public-privately
learning mixtures of Gaussians. What qualities of a distribution admit public-private learning with
α-independent public sample complexity? Stronger: can we find more illuminating characterizations
of the sample complexity of list learning?

Question 8.3. Our work studies sample complexity improvements from using public data. Can public
data lead to algorithmic improvements, that is, runtime efficiency or simpler algorithms?
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[LTLH22] Xuechen Li, Florian Tramèr, Percy Liang, and Tatsunori Hashimoto. Large language
models can be strong differentially private learners. In Proceedings of the 10th Interna-
tional Conference on Learning Representations, ICLR ’22, 2022.

[LVS+21] Terrance Liu, Giuseppe Vietri, Thomas Steinke, Jonathan Ullman, and Steven Wu.
Leveraging public data for practical private query release. In Proceedings of the 38th
International Conference on Machine Learning, ICML ’21, pages 6968–6977. JMLR,
Inc., 2021.

[LW86] Nick Littlestone and Manfred Warmuth. Relating data compression and learnability,
1986.

[LWAFF21] Zelun Luo, Daniel J Wu, Ehsan Adeli, and Li Fei-Fei. Scalable differential privacy
with sparse network finetuning. In Proceedings of the 2021 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, CVPR ’21, pages 5059–5068,
Washington, DC, USA, 2021. IEEE Computer Society.

[MY16] Shay Moran and Amir Yehudayoff. Sample compression schemes for VC classes.
Journal of the ACM, 63(3):1–10, 2016.

[NB20] Anupama Nandi and Raef Bassily. Privately answering classification queries in the ag-
nostic PAC model. In Proceedings of the 31st International Conference on Algorithmic
Learning Theory, ALT ’20, pages 687–703. JMLR, Inc., 2020.

[NRS07] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and
sampling in private data analysis. In Proceedings of the 39th Annual ACM Symposium
on the Theory of Computing, STOC ’07, pages 75–84, New York, NY, USA, 2007.
ACM.

[Ope20] OpenDP Team. The OpenDP white paper, 2020.

[PAE+17] Nicolas Papernot, Martı́n Abadi, Ulfar Erlingsson, Ian Goodfellow, and Kunal Talwar.
Semi-supervised knowledge transfer for deep learning from private training data. In
Proceedings of the 5th International Conference on Learning Representations, ICLR
’17, 2017.

[PCS+19] Nicolas Papernot, Steve Chien, Shuang Song, Abhradeep Thakurta, and Ulfar Erlings-
son. Making the shoe fit: Architectures, initializations, and tuning for learning with
privacy. https://openreview.net/forum?id=rJg851rYwH, 2019.

[PSM+18] Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Talwar,
and Úlfar Erlingsson. Scalable private learning with PATE. In Proceedings of the 6th
International Conference on Learning Representations, ICLR ’18, 2018.

[RY20] Prasad Raghavendra and Morris Yau. List decodable learning via sum of squares. In
Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 161–180.
SIAM, 2020.

14

https://openreview.net/forum?id=rJg851rYwH


[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From
Theory to Algorithms. Cambridge University Press, 2014.
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A Extended related work

Privately learning Gaussians. Our work studies the task of learning arbitrary, unbounded
Gaussians while offering differential privacy guarantees. Basic private algorithms for the task
(variants of “clip-and-noise”) impose boundedness assumptions on the underlying parameters
of the unknown Gaussian, since their sample complexities grow to infinity as the bounds
widen to include more allowed distributions. Understanding these dependencies without pub-
lic data has been a topic of significant study. [KV18] examined univariate Gaussians, showing
that logarithmic dependencies on parameter bounds are necessary and sufficient in the case of
pure DP, but can be removed under approximate DP. The same is true in the multivariate set-
ting [AAAK21, KMS+22, TCK+22, AL22, KMV22, LKO22]. [BKS22] shows that instead of
relaxing to approximate DP to handle arbitrary Gaussians, one can employ a small amount of public
data; our lower bound tells us almost exactly how much is needed. Furthermore, our reductions
between public-private learning and list learning offers the conclusion that the role of public data
is precisely for bounding: distribution classes that can be privately learned with a small amount of
public data are exactly the distributions that can be bounded with a small amount of public data.

Privately learning mixtures of Gaussians. Another line of related work is that on privately
learning mixtures of Gaussian, but without any public data. [NRS07] provided a subsample-and-
aggregate approach to learn the parameters of mixtures of spherical Gaussians based on the work by
[VW02] under the weaker, approximate DP. Recently, [CCd+23] improved on this by weakening the
separation condition required for the mixture components. [KSSU19] provided the first polynomial-
time, approximate DP algorithms to learn the parameters of mixtures of non-spherical Gaussians
under weak boundedness assumptions. [CKM+21] improved on their work both in terms of the
sample complexity and the separation assumption. [AAL23b] provided a polynomial-time reduction
for privately and efficiently learning mixtures of unbounded Gaussians from the approximate DP
setting to its non-private counterpart (albeit at a polynomial overhead in the sample complexity).

Our work falls into the category of private density estimation, for which [AAL21] gave new algo-
rithms for the special case of spherical Gaussians under approximate DP, while [BKSW19] gave
(computationally inefficient) algorithms for bounded Gaussians under pure DP. For comparison,
the latter would have infinite sample complexity for unbounded Gaussians, but our work provides
finite private sample complexity even under pure DP using public data. On the other hand, [ASZ21]
showed hardness results for privately learning mixtures of Gaussians with known covariances. The
concurrent work of Azfali, Ashtiani, and Liaw [AAL23a] gives the first learnability result for general
high-dimensional mixtures of Gaussians under approximate differential privacy.

Theory for private algorithms with public data. Beyond distribution learning, there is a lot more
work that investigates how public data can be employed in private data analysis. Some specific areas
include private query release, synthetic data generation, and classification [JE13, BNS16, ABM19,
NB20, BCM+20, BMN20, LVS+21, KADV23], and the results are a mix of theoretical versus
empirical. The definition of public-private algorithms that we adopt is from [BNS16], which studied
classification in the PAC model. The VC dimension bound we give for public-private distribution
learning relies on results from public-private classification [ABM19] and uniform convergence
[BCM+20].

A concurrent and independent work [LLHR23] also studies learning with public and private data,
focusing on the problems of mean estimation, empirical risk minimization, and stochastic convex
optimization. The focus of the two works is somewhat different, both in terms of the type of problems
considered (we study density estimation) and the type of results targeted. That is, our objective is to
draw connections between different learning concepts and exploring the resulting implications for
public-private distribution learning, while their goal seems to be understanding the precise error rates
for some fundamental settings.

Private machine learning with public data. Within the context of private machine learning, there
has been significant interest in how to best employ public data. The most popular method is pre-
training [ACG+16, PCS+19, TB21, LWAFF21, YZCL21, LTLH22, YNB+22, GHN+23, HASP22]
(though some caution about this practice [TKC22]), while other methods involve computing statistics
about the private gradients [ZWB21, YZCL21, KRRT21, AGM+22, GKW23], or training a student
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model [PAE+17, PSM+18, BTGT18]. For more discussion of public data for private learning, see
Section 3.1 of [CDE+23].

List learning We also use the notion of list learning in this work, which is a “non-robust” version
of the well-known list-decodable learning [AAL21, RY20, BBV08, CSV17, DKS18, KS17], where
the goal is still to output a list of distributions that contains one that is accurate with respect to the true
distribution, but the sampling may happen from a corrupted version of the underlying distribution.

Hybrid differential privacy. Finally, a related setting is the hybrid model, in which samples require
either local or central differential privacy [AKZ+17]. Some learning tasks studied in this model
include mean estimation [ADK20] and transfer learning [KS22].

B Technical overview

New connections for public-private learning. Our first contribution is establishing connections
between sample compression, public-private learning, and list learning, via reductions. We show that:
(1) sample compression schemes yield public-private learners; (2) public-private learners yield list
learners; and (3) list learners yield sample compression schemes.

(1) and (3) are straightforward to prove: (1) compression implies public-private learning follows
from a modification of an analogous result of [ABDH+20], where we observe that in their proof, the
learner’s two-stage process of drawing a small compression sample used to generate a finite set of
hypotheses using the compression scheme, followed by hypothesis selection with a larger sample, can
be cleanly divided into using public and private samples respectively. In the latter stage, we employ
a known pure DP hypothesis selection algorithm [BKSW19, AAAK21]). (3) List learning implies
compression follows immediately from the definitions.

For (2) public-private learning implies list learning, we show non-constructively that there exists a
list learner for a class, given a public-private learner for that class, but do not provide an algorithmic
translation of the public-private learner to a list learner. For a set of samples S, we show that
outputting a finite cover of the list of distributions on which the public-private learner succeeds on,
when using S as the public samples, is a correct output for a list learner. Hence the list learner we
construct, on input S, outputs this finite cover as determined by (but not explicitly constructed from)
the public-private learner.

Agnostic and distribution-shifted public-private learning. We identify some distributional as-
sumptions that can be relaxed in the public-private learning setup. We obtain agnostic and distribution-
shifted public-private learners via a connection to robust compression schemes. The reduction ideas
are similar to those in the case of public-private learning and non-robust sample compression described
above.

Lower bound on public-private learning of Gaussians. Our lower bound for public-privately
learning high-dimensional Gaussians exploits our above connection between public-private learning
and list learning, and applies a “no-free-lunch”-style argument. The latter uses the fact that an
algorithm’s worst-case performance cannot be better than its performance when averaged across
all the problem instances. In other words, we have two main steps in our proof: (1) we first claim
that due to our above reduction, a lower bound for list learning high-dimensional Gaussians would
imply a lower bound on the public sample complexity for public-privately learning high-dimensional
Gaussians; and (2) assuming certain accuracy guarantees and a sample complexity for our list learner
for high-dimensional Gaussians; we show that across a set of adversarially chosen problem instances,
our average accuracy guarantee fails, which is a contradiction to our assumed worst-case guarantees.

We observe that the lower bound from Theorem 6.1 establishes that at least d public samples are
necessary for public-private learning to vanishingly small error as d increases (impossibility of
learning to a target error, via the application of Lemma G.1, is related to the bound on η from
Equation (6), which decreases exponentially with d). A natural question is whether the result can be
strengthened to say that there is a single target error, simultaneously for all d, for which learning is
impossible without d public samples.
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VC dimension upper bound for public-private learning. Our proof involves invoking the existing
results for public-private binary classification [ABM19] and uniform convergence [BCM+20]. We
use them to implement Yatracos’ minimum distance estimator [Yat85, DL01] in a public-private way.

C Extended preliminaries

C.1 Notation

Covers and packings. For α > 0 and Q ⊆ ∆(X ), we say that C ⊆ ∆(X ) is an α-cover of Q if for
any q ∈ Q, there exists a p ∈ C with TV(p, q) ≤ α. For α > 0 and Q ⊆ ∆(X ), we say that P ⊆ Q
is an α-packing of Q if for any p ̸= q ∈ P , TV(p, q) > α.

Class of k-mixtures. Let Q ⊆ ∆(X ) be a class of distributions. For any k ≥ 1, the class of
k-mixtures of Q is given by

Q⊕k :=

{
k∑

i=1

wiqi : qi ∈ Q, wi ≥ 0 for all i ∈ [k] and
k∑

i=1

wi = 1

}
.

Class of k-products. Let Q ⊆ ∆(X ) be a class of distributions over X . For any k ≥ 1, q =
(q1, . . . , qk) is a product distribution over X k, if qi ∈ Q for all i ∈ [k] and for X ∼ q, the i-th
component Xi of X is independently (of all the other coordinates) sampled from qi. The class of
k-products of Q over X k is given by

Q⊗k := {(q1, . . . , qk) : qi ∈ Q for all i ∈ [k]} .

C.2 Privacy

The following is a known hardness result on density estimation of distributions under pure differential
privacy, and is based on the standard “packing lower bounds”.
Fact C.1 (Packing lower bound [BKSW19, Lemma 5.1]). Let Q ⊆ ∆(X ), α ∈ (0, 1], and ε > 0.
Let Q̂ be any α-packing of Q. Any ε-DP algorithm A : Xn → ∆(∆(X )) that, upon receiving n i.i.d.
samples X1, . . . , Xn from any p ∈ Q, outputs Q with TV(Q, p) ≤ α

2 with probability ≥ 9
10 requires

n ≥
log(|Q̂|)− log( 109 )

ε
.

The next result guarantees the existence of agnostic learners for finite hypothesis classes under pure
differential privacy.
Fact C.2 (Pure DP 3-agnostic learner for finite Q [BKSW19], [AAAK21, Theorem 2.24]). Let
Q ⊆ ∆(X ) with |Q| < ∞. For every α, β ∈ (0, 1] and ε > 0, there exists an ε-DP algorithm
A : Xn → ∆(∆(X )), such that for any p ∈ ∆(X ), if we draw a dataset X = (X1, ..., Xn) i.i.d.
from p and then Q ∼ A(X),

P
X∼pn

Q∼A(X)

{TV(Q, p) ≤ 3 · dist(p,Q) + α} ≥ 1− β,

where

n = O

(
log(|Q|) + log( 1β )

α2
+

log(|Q|) + log( 1β )

αε

)
.

D Statements and proofs for Section 3 – The connection to sample
compression schemes

The following is the full formal statement of Theorem 1.1.
Theorem D.1 (Sample complexity equivalence between sample compression, public-private learning,
and list learning). Let Q ⊆ ∆(X ). Let m : (0, 1]2 → N be a sample complexity function, such that
m(α, β) = poly( 1

α ,
1
β ).

3 Then the following are equivalent.

3The reductions between the learners do not need this assumption, it is only used to state the sample
complexity equivalence.
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1. Q is realizably compressible with mC(α, β) = O(m(α, β)) samples.

2. Q is public-privately learnable with mP (α, β, ϵ) = O(m(α, β)) public samples.

3. Q is list learnable with mL(α, β) = O(m(α, β)) samples.

The functions mC , mP , and mL are related to one another as: mP (α, β, ε) = mC(
α
6 ,

β
2 );

mL(α, β) = mP (
α
2 ,

β
10 , ε) for any ε > 0; and mC(α, β) = mL(α, β). Hence, if there exists

a polynomial m : (0, 1]2 → N, such that mC(α, β) = O(m(α, β)), then mC(α, β), mP (α, β), and
mL(α, β) are all within constant factors of each other.

D.1 Compression implies public-private learning

Proof of Proposition 3.1. The proof this proposition closely mirrors that of Theorem 4.5 from
[ABDH+20]. We adapt their result to the public-private setting.

Fix α, β ∈ (0, 1] and ε > 0. Let τ = τ(α6 ,
β
2 ), t = t(α6 ,

β
2 ), and m = mC(

α
6 ,

β
2 ). We draw a public

dataset X̃ of size m i.i.d. from p. Consider

S :=
{
(S′, b) : S′ ⊆ X̃ where |S′| = τ, and b ∈ {0, 1}t

}
.

Note that the encoding fp(X̃) ∈ S, so forming Q̂ = {g(S′, b) : (S′, b) ∈ S} means that with
probability ≥ 1− β

2 over the sampling of X̃ , q = g(fp(X̃)) ∈ Q̂ has TV(q, p) ≤ α
6 .

Now, we run the ε-DP 3-agnostic learner from Fact C.2 on Q̂, targeting error α
2 and failure probability

β
2 , which is achieved as long as we have n private samples (given in the statement of Proposition 3.1),
which is logarithmic in |S|. With probability ≥ 1 − β, we approximately recover p with the
compression scheme and the DP learner succeeds, and so the output Q satisfies

TV(Q, p) ≤ 3 ·min
q∈Q̂

TV(p, q) +
α

2

≤ 3 · α
6
+

α

2
= α.

D.2 List learning implies sample compression

Proof of Proposition 3.5. Fix any α, β ∈ (0, 1]. Let m = mL(α, β) and ℓ = ℓ(α, β). By assumption,
Q admits an (α, β, ℓ)-list learner L : Xm → {L ⊆ ∆(X ) : |L| ≤ ℓ} that takes m samples. Letting
τ = m and t = log2(ℓ), we define the compression scheme as follows.

• Encoder: for any q ∈ Q, the encoder fq : Xm → X τ × {0, 1}t produces the following,
given an input x̃ ∈ Xm. It first runs the list learner on x̃, obtaining L(x̃). Then, it finds the
smallest index i with TV(q,L(x̃)i) = dist(q,L(x̃)), where L(x̃)i denotes the i-th element
of the the list L(x̃). The output of the list learner is (x̃, i). Note that x̃ ∈ X τ and that i can
be represented with log2(ℓ) = t bits.

• Decoder: the fixed decoder g : X τ × {0, 1}t → ∆(X ) takes x̃ and i, runs the list learner L
on x̃, and produces L(x̃)i.

By the guarantee of the list learner, we indeed have for any q ∈ Q, with probability ≥ 1− β over the
sampling of X̃ ∼ qm, TV(q, g(fq(S))) ≤ α.
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E Statements and proofs for Section 4 – Applications

E.1 Public-private learnability of Gaussians and mixtures of Gaussians

Corollary E.1 (Public-private learning for Gaussians). Let d ≥ 1. The class of Gaussians over Rd is
public-privately learnable with m(α, β, ε) public samples and n(α, β, ε) private samples, where

m(α, β, ε) = O

(
d log

(
1

β

))
,

n(α, β, ε) = O

d2 log
(
d
α

)
+ log

(
1
β

)
α2

+
d2 log

(
d
α

)
+ log

(
1
β

)
αε

 .

Corollary E.2 (Public-private learning for mixtures of Gaussians). Let d, k ≥ 1. The class of all
k-mixtures of Gaussians over Rd is public-privately learnable with m(α, β, ε) public samples and
n(α, β, ε) private samples, where

m(α, β, ε) = O

kd log
(

k
β

)
log
(

1
β

)
α

 ,

n(α, β, ε) = O

( 1

α2
+

1

εα

)
·

kd2 log

(
d

α

)
+ kd log

kd log
(

k
β

)
α

+ log

(
1

β

) .

E.2 Public-private learnability of mixture and product distributions

Mixture distributions. We first mention a fact from [ABDH+20], which says that if a compression
scheme exists for a class of distributions Q, then there exists a compression scheme for the class of
k-mixtures of Q.

Fact E.3 (Compression for mixture distributions [ABDH+20, Lemma 4.8]). If a class of distributions
Q admits (τ(α, β), t(α, β),m(α, β)) realizable sample compression, then for any k ≥ 1, the class
of k-mixtures of Q admits (τk(α, β), tk(α, β),mk(α, β)) realizable sample compression, where
τk, tk,mk : (0, 1]2 → N are as follows:

τk(α, β) = k · τ
(α
3
, β
)
, tk(α, β) = k · t

(α
3
, β
)
+ log2

(
3k

α

)
,

mk(α, β) =
48k log

(
6k
β

)
α

·m
(α
3
, β
)
.

Next, we state a corollary of Propositions 3.4 and 3.5, which describes the existence of a compression
scheme, given the existence of a public-private learner.

Corollary E.4 (Public-private learning =⇒ compression). Let Q ⊆ ∆(X ) be a class of distributions.
Suppose Q is public-privately learnable with mP (α, β, ε) public samples and n(α, β, ε) private
samples. Then for any ε > 0, Q admits

(τ(α, β), t(α, β),m(α, β)) =

mP

(
α

2
,
β

10
, ε

)
,
log( 109 ) + ε · n

(
α
2 ,

β
10 , ε

)
log(2)

,mP

(
α

2
,
β

10
, ε

)
realizable sample compression.

Proof. Fix ε > 0. From Proposition 3.4, if Q is public-privately learnable, then it is list learnable to
list size ℓ(α, β) with mL(α, β) samples, where

ℓ(α, β) =
10

9
exp

(
ε · n

(
α

2
,
β

10
, ε

))
and mL(α, β) = mP

(
α

2
,
β

10
, ε

)
.
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Proposition 3.5 implies Q admits (τ(α, β), t(α, β),mC(α, β)) sample compression, where

τ(α, β) = mL(α, β) = mP

(
α

2
,
β

10
, ε

)
,

t(α, β) = log2(ℓ(α, β)) =
log( 109 ) + ε · n

(
α
2 ,

β
10 , ε

)
log(2)

,

mC(α, β) = mL(α, β) = mP

(
α

2
,
β

10
, ε

)
.

This completes the proof.

As a consequence of Corollary E.4, Fact E.3, and Proposition 3.1, we have the following result about
the public-private learnability of mixture distributions.
Theorem E.5 (Public-private learning for mixture distributions). Suppose Q ⊆ ∆(X ) is public-
privately learnable with m(α, β, ε) public samples and n(α, β, ε) private samples. Then for any
k ≥ 1, Q⊕k, the class of k-mixtures of Q, is public-privately learnable with mk(α, β, ε) public
samples and nk(α, β, ε) private samples, where

mk(α, β, ε) = O

k log
(

k
β

)
α

·m
(

α

36
,
β

20
, ε0

) ,

nk(α, β, ε) = O

((
1

α2
+

1

εα

)
·
(
ε0k · n

(
α

36
,
β

20
, ε0

)
+

k log

k log
(

k
β

)
α

·m
(

α

36
,
β

20
, ε0

) ·m
(

α

36
,
β

20
, ε0

)
+ log

(
1

β

)
for any choice of ε0 > 0.

We give an example of an application of this result. Consider the class of Gaussians over Rd, for which
there exists a public-private learner that uses m = O(d) public samples and n = O

(
d2

α2 + d2

εα

)
·

polylog
(
d, 1

α ,
1
β

)
private samples [BKS22]. Then Theorem E.5 implies that there exists a public-

private learner for the class of k-mixtures of Gaussians that uses mk = O
(

kd log(k/β)
α

)
public

samples and

nk = O

((
1

α2
+

1

εα

)
·
(
ε0k

(
d2

α2
+

d2

ε0α

)
+ kd

))
· polylog

(
d, k,

1

α
,
1

β

)
private samples for any ε0 > 0.

With the choice of ε0 = α, we get a private sample complexity of nk = O
(

kd2

α3 + kd2

α2ε

)
·

polylog
(
d, k, 1

α ,
1
β

)
. Notably, this private sample complexity, obtained by specializing the general

result of Theorem E.5, suffers some loss compared to our learner for mixtures of Gaussians from
Corollary E.2.

Product distributions. We start by mentioning a fact from [ABDH+20], which says that if a
compression scheme exists for a class of distributions Q, then there exists a compression scheme for
the class of k-products of Q.
Fact E.6 (Compression for product distributions [ABDH+20, Lemma 4.6]). If a class of distributions
Q admits (τ(α, β), t(α, β),m(α, β)) r-robust sample compression, then for any k ≥ 1, the class of k-
products of Q admits (τk(α, β), tk(α, β),mk(α, β)) r-robust sample compression, where τk, tk,mk :
(0, 1] → N are as follows:

τk(α, β) = k · τ
(α
k
, β
)
, tk(α, β) = k · t

(α
k
, β
)
, mk(α, β) = log3

(
3k

β

)
·m
(α
k
, β
)
.
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As a consequence of Corollary E.4, Fact E.6, and Proposition 3.1, we have the following result about
the public-private learnability of product distributions.

Theorem E.7 (Public-private learning for mixture distributions). Suppose Q ⊆ ∆(X ) is public-
privately learnable with m(α, β, ε) public samples and n(α, β, ε) private samples. Then for any
k ≥ 1, Q⊗k, the class of k-products of Q over X k, is public-privately learnable with mk(α, β, ε)
public samples and nk(α, β, ε) private samples, where

mk(α, β, ε) = O

(
log

(
k

β

)
·m
(

α

12k
,
β

20
, ε0

))
,

nk(α, β, ε) = O

((
1

α2
+

1

εα

)
·
(
ε0k · n

(
α

12k
,
β

20
, ε0

)
+

k log

(
log

(
k

β

)
·m
(

α

12k
,
β

20
, ε0

))
·m
(

α

12k
,
β

20
, ε0

)
+ log

(
1

β

)))
for any choice of ε0 > 0.

As an example, for the class of Gaussians over R, there exists a public-private learner that requires
m = O(1) public samples and n = O

(
1
α2 + 1

εα

)
· polylog

(
1
α ,

1
β

)
private samples [BKS22]. Then

Theorem E.7 implies that there exists a public-private learner for the class of k-products of Gaussians
that requires mk = O (log(k/β)) public samples and nk =

((
1
α2 + 1

εα

)
·
(
ε0k

(
1
α2 + 1

ε0α

)
+ k
))

·

polylog
(
k, 1

α ,
1
β

)
private samples, for any choice of ε0 > 0. Note that if were to apply Fact E.6 to

Fact 4.1 after setting d = 1 in the latter, and then apply Proposition 3.1, we would obtain a better
sample complexity in terms of the private data than what we would after combining Corollary E.1
(setting d = 1) and Theorem E.7 here. However, Theorem E.7 is a more versatile framework, so
some loss is to be expected again.

F Statements and proofs for Section 5 – Agnostic and distribution-shifted
public-private learning

Theorem 5.2 gives us an agnostic and a distribution-shifted learner for Gaussians over Rd, as stated
in the following corollary.

Corollary F.1 (Agnostic and distribution-shifted public-private learner for Gaussians). Let d ≥ 1.
For any α, β ∈ (0, 1] and ε > 0, there exists 1

3 -shifted 3-agnostic public-private learner for the class
of Gaussians in Rd that uses m public samples and n private samples, where

m = O

(
d log

(
1

β

))
,

n = O

d2 log
(
d
α

)
+ log

(
1
β

)
α2

+
d2 log

(
d
α

)
+ log

(
1
β

)
αε

 .

G Statements and proofs for Section 6 – Lower bounds

Lemma G.1. Let Q ⊆ ∆(X ) and m ∈ N. For a subclass C ⊆ Q, denote by U(C) the uniform
distribution over C. Suppose there exists a sequence of distribution classes (Qk)

∞
k=1, with each

Qk ⊆ Q, and a set B ⊆ Xm such that following holds:

1. There exists η ∈ (0, 1] and kη ∈ N with

P
Q∼U(Qk)
X∼Qm

{X ∈ B} ≥ η

for all k ≥ kη .
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2. There exist c > 0 and α ∈ (0, 1] such that, defining (uk)
∞
k=1, (rk)∞k=1, and (sk)

∞
k=1 as

uk := sup
x∈B
q∈Qk

qm(x),

rk := sup
p∈Qk

P
Q∼U(Qk)

{TV(p,Q) ≤ 2α},

sk := inf
x∈B

P
Q∼U(Qk)

{Qm(x) ≥ c · uk},

we have that

lim
k→∞

rk
sk

= 0.

Then for any ℓ ∈ N, there does not exist any (αη4 , αη
4 , ℓ)-list learner for Q that uses m samples.

Proof. We provide a proof by contradiction. Suppose for some ℓ ∈ N, we have an (αη4 , αη
4 , ℓ)-list

learner for Q using m samples, denoted by L : Xm → {L ⊆ ∆(X ) : |L| ≤ ℓ}. Then for all k ∈ N,
we have that

E
Q∼U(Qk)
X∼Qm

[dist(Q,L(X))] ≤ (1− αη
4 ) · αη

4 + αη
4 · 1 ≤ αη

2 . (1)

Now, since limk→∞
rk
sk

= 0, there exists k0 ≥ kη ∈ N, such that

rk0
· uk0

· ℓ
sk0 · cuk0

≤ 1

11
, (2)

and

P
Q∼U(Qk0

)

X∼Qm

{X ∈ B} ≥ η. (3)

Fix any x ∈ B, and let R = {q ∈ Qk0
: dist(q,L(x)) ≤ α} and S = {q ∈ Qk0

: qm(x) ≥ cuk0
}

(uote that both R and S depend on x).

For i ∈ [ℓ], further let Ri = {q ∈ Qk0 : TV(q,L(x)i) ≤ α}, so that R = ∪ℓ
i=1Ri.

Now, fix i ∈ [ℓ]. Assuming that Ri ̸= ∅, consider any p ∈ Ri. For any q ∈ Ri, we have
TV(p, q) ≤ 2α. Hence, Ri ⊆ {q ∈ Qk0

: TV(p, q) ≤ 2α}. Regardless of whether Ri is empty,

P
Q∼U(Qk0

)
{Q ∈ Ri} ≤ sup

p∈Qk0

P
Q∼U(Qk0

)
{TV(p,Q) ≤ 2α} = rk0

.

Moreover, we can conclude that

P
Q∼U(Qk0

)
{Q ∈ R} ≤

ℓ∑
i=1

P
Q∼U(Qk0

)
{Q ∈ Ri} ≤ rk0

· ℓ. (4)

Observe that this implies, since uk0
≥ qm(x),∫

R

qm(x)fQ(q)dq ≤ uk0

∫
R

fQ(q)dq = uk0
P

Q∼U(Qk0
)
{Q ∈ R} ≤ uk0

· rk0
· ℓ (5)
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an inequality we will use momentarily. We can now write

E
Q∼U(Qk0

)

X∼Qm

[dist(Q,L(X)) | X = x] =

∫
Qk0

fQ|X(q | x) · dist(q,L(x))dq

≥
∫
S\R

fQ|X(q | x) · dist(q,L(x))dq

≥ α

∫
S\R

fQ|X(q | x)dq

≥ α

(∫
S

fQ|X(q | x)dq −
∫
R

fQ|X(q | x)dq
)

= α

(∫
S

qm(x)fQ(q)

fX(x)
dq −

∫
R

qm(x)fQ(q)

fX(x)
dq

)
= α

1

fX(x)

(∫
S

qm(x)fQ(q)dq −
∫
R

qm(x)fQ(q)dq

)
≥ α

1

fX(x)

(
cuk0

∫
S

fQ(q)dq − uk0 · ℓ · rk0

)
(By definition of S and (5))

= α
1

fX(x)

(
cuk0 P

Q∼U(Qk0
)
{Q ∈ S} − uk0 · ℓ · rk0

)
.

Plugging (4) in, along with the definition of sk0
, we have,

E
Q∼U(Qk0

)

X∼Qm

[dist(Q,L(X)) | X = x] ≥ α
1

fX(x)
(cuk0

· sk0
− uk0

· ℓ · rk0
)

≥ α
1

fX(x)
(10 · uk0

· ℓ · rk0
) (k0 from Equation 2)

≥ 10α

∫
R

qm(x)fQ(q)

fX(x)
dq (by (5))

= 10α · P
Q∼U(Qk0

)

X∼Qm

{Q ∈ R | X = x}.

Integrating over all x ∈ B and using Inequality 3,

E
Q∼U(Qk0

)

X∼Qm

[dist(Q,L(X))] ≥ P
Q∼U(Qk0

)

X∼Qm

{X ∈ B} · E
Q∼U(Qk0

)

X∼Qm

[dist(Q,L(X))|X ∈ B]

≥ η · E
Q∼U(Qk0

)

X∼Qm

[dist(Q,L(X))|X ∈ B]

≥ η · 10α · P
Q∼U(Qk0

)

X∼Qm

{dist(Q,L(X)) ≤ α | X ∈ B}.

If P {dist(Q,L(X)) ≤ α | X ∈ B} ≥ 1
10 , then E [dist(Q,L(X))] ≥ αη, contradicting (1). Other-

wise,

E [dist(Q,L(X))] ≥ η · E [dist(Q,L(X)) | X ∈ B]

≥ η · α · P {dist(Q,L(X)) > α | X ∈ B}
≥ η · (α · (1− 1

10 )),

also contradicting Equation 1.

Proof of Theorem 6.1. To prove Theorem 6.1, it suffices to find, for every d ≥ 2, a sequence of
subclasses (Qk)

∞
k=1 and a set B ∈ (Rd)d−1 that indeed satisfy the conditions of Lemma G.1. In

what follows, we fix an arbitrary d ≥ 2.
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The construction of the sequence of hard subclasses. Let ed = [0, 0, . . . , 1]⊤ ∈ Rd. We define
the following sets:

T =

{[
t
0

]
∈ Rd : t ∈ Rd−1 with ∥t∥2 ≤ 1

2

}
,

C =

{[
t
λ

]
∈ Rd : t ∈ Rd−1 with ∥t∥2 ≤ 1

2
and λ ∈ [1, 2] ⊆ R

}
.

That is, T is a 1
2 -disk (a disk with radius 1

2 ) in Rd−1 embedded onto the (d − 1)-dimensional
hyperplane in Rd spanning the first (d− 1) dimensions (axes), centered at the origin. C is a cylinder
of unit length and radius 1

2 placed unit distance away from T in the positive ed-direction.

Let Sd−1 = {x ∈ Rd : ∥x∥2 = 1} be the unit-sphere, centered at the origin, in Rd, and let

N =

{
u ∈ Sd−1 : |u · ed| ≤

√
3

2

}
.

That is, N is the set of vectors u on the unit hypersphere with angle ≥ π
6 from ed. For u ∈ N , define

the “rotatiou” matrix

Ru =

[ | | |
u v2 . . . vd
| | |

]
∈ Rd×d

where {v2, . . . , vd} is any orthonormal basis for {u}⊥ (where {u}⊥ denotes the subspace orthogonal
to the subspace spanned by the set of vectors {u}).4

Now, for σ > 0, t ∈ T , and u ∈ N , define the Gaussian

G(σ, t, u) = N

t, Ru


σ2

1 O

O
. . .

1

R⊤
u

 ∈ ∆(Rd).

For all k ≥ 1, let

Qk =

{
G

(
1

k
, t, u

)
: t ∈ T, u ∈ N

}
.

That is, each Qk is a class of “flat” (i.e., near (d− 1)-dimensional) Gaussians in Rd, with σ2 = 1
k2

variance on a single thin direction u and unit variance in all other directions. Their mean vectors come
from a point on the hyperplanar disk T (which we recall is a (d− 1)-dimensional disk orthogonal to
ed), and the thin direction u comes from N (which is Sd−1 excluding points that form angle < π

6
with ed). As k → ∞, the Gaussians get flatter.

Lower bounding the weight of B. We start with the following claim, which shows the probability
that d− 1 samples drawn the uniform mixture of Qd−1

k all fall into the cylinder C can be uniformly
lower bounded by an absolute constant, independent of k.

Claim G.2. Let B be the set of all possible vectors of d − 1 points in the cylinder C, i..e, B =
Cd−1 ∈ (Rd)d−1. There exists η > 0 such that for k ≥ 10,

P
Q∼U(Qk)

X∼Qd−1

{X ∈ B} ≥ η.

Proof of Claim G.2. Consider the inscribed cylinder C ′ ⊆ C

C ′ =

{[
t
λ

]
∈ Rd : t ∈ Rd−1 with ∥t∥2 ≤ 1

3
and λ ∈

[
4

3
,
5

3

]
⊆ R

}
.

4Technically, Ru is an equivalence class of matrices since we do not specify which orthonormal basis of
{u}⊥. However, as it turns out, the choice of the orthonormal basis of {u}⊥ does not matter since they all result
in the same Gaussian densities in the proceeding definition of G(σ, t, u).
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Also, consider T ′ ⊆ T and N ′ ⊆ N :

T ′ =

{[
t
0

]
∈ Rd : t ∈ Rd−1 with ∥t∥2 ≤ 1

4

}
,

N ′ =

{
u ∈ Sd−1 : |u · ed| ≤

1

36

}
.

Now, fix u ∈ N ′ and t ∈ T ′. Define the plane going through t with normal vector u as,

P (u, t) =
{
t+ x : x ∈ Rd with x · u = 0

}
.

First, we show P (u, t) ∩ C ′ contains a (d− 1)-dimensional region. Consider,

y =

[
t
3
2

]
.

The projection onto P (u, t) of y is given by,

y′ = (y − t)− ((y − t) · u)u+ t =

[
t
3
2

]
− cu,

where |c| = |(y − t) · u| ≤ 3
2 · 1

36 = 1
24 . Since ∥t∥2 ≤ 1

4 , the norm of the first (d− 1) dimensions
of y′ is ≤ 1

4 + 1
24 ≤ 1

3 and y′d ∈ [ 32 − 1
24 ,

3
2 + 1

24 ], and so y′ ∈ C ′. Moreover, adding any z with
z · u = 0 and ∥z∥2 ≤ 1

24 results in y′ + z with the norm of the first d− 1 dimensions being at most
1
4 +

1
24 +

1
24 ≤ 1

3 and (y′+z)d ∈ [ 32 −
1
12 ,

3
2 +

1
12 ]. Hence, y′+z ∈ C ′. This shows that P (u, t)∩C ′

contains a (d− 1)-dimensional subspace, since it contains a (d− 1)-dimensional disk of radius 1
24 .

Next, let

M =

{
p+ su : p ∈ C ′ ∩ P (u, t), s ∈

[
−1

6
,
1

6

]
⊆ R

}
.

That is, M is a rectangular “extrusion” of C ′ ∩ P (u, t) along both its normal vectors. Indeed, we
have M ⊆ C, since adding a vector of length ≤ 1

6 cannot take a point in C ′ outside of C. We also
have that M is a d-dimensional region, so

P
X∼G(1/10,t,u)

{X ∈ C} ≥ P
X∼G(1/10,t,u)

{X ∈ M} > 0.

Note that for σ ≤ 1
10 , we have

P
X∼G(σ,t,u)

{X ∈ M} ≥ P
X∼G(1/10,t,u)

{X ∈ M}.

This is because any x ∈ M can be written as t + x + cu, where x is such that x · u = 0, and
|c| ≤ 1

6 . Plugging in this decomposition of x into the densities of G(1/10, u, t) and G(σ, u, t), and
simplifying yields the above.

To conclude, for k ≥ 10, we have
P

Q∼U(Qk)

X∼Qd−1

{
X ∈ Cd−1

}
= P

t∼U(T )
u∼U(N)

X∼G(1/k,t,u)d−1

{
X ∈ Cd−1

}

= c

∫
T

∫
N

P
X∼G(1/k,t,u)d−1

{
X ∈ Cd−1

}
du dt

≥ c

∫
T ′

∫
N ′

P
X∼G(1/k,t,u)d−1

{
X ∈ Cd−1

}
du dt

= c

∫
T ′

∫
N ′

(
P

X∼G(1/k,t,u)
{X ∈ C}

)d−1

du dt

≥ c

∫
T ′

∫
N ′

(
P

X∼G(1/k,t,u)
{X ∈ M}

)d−1

du dt

≥ c

∫
T ′

∫
N ′

(
P

X∼G(1/10,t,u)
{X ∈ M}

)d−1

du dt

=: η > 0, (6)

26



where c = fT (t) · fN (u) > 0 is the uniform density over T × N . Note that the final integral is
non-zero since T ′ ×N ′ has non-zero measure in T ×N and that P

X∼G(1/10,t,u)
{X ∈ M} is indeed

non-zero for all t ∈ T ′, u ∈ N ′.

Upper bounding rk, the weight of α-TV balls. We prove the following.

Claim G.3. For k ≥ 1, let

rk := sup
p∈Qk

P
Q∼U(Qk)

{
TV(p,Q) ≤ 1

400

}
.

Then we have,

rk = O

(
1

kd

)
→ 0 as k → ∞.

We use the following three facts regarding total variation distance, Gaussians, and the surface area of
hyperspherical caps.

Fact G.4 (Data-processing inequality for TV distance). Let p, q ∈ ∆(X ). For any measurable
f : X → Y ,

TV(f(p), f(q)) ≤ TV(p, q),

where for p ∈ ∆(X ), f(p) denotes the push-forward distribution assigning for all measurable
A ⊆ Y , f(p)(A) = p(f−1(A)).

Fact G.5 (TV Distance between 1-Dimensional Gaussians [DMR18, Theorem 1.3]). Let N (µ1, σ
2
1)

and N (µ2, σ
2
2) be Gaussians over R. Then

1

200
·min

{
1,max

{
|σ2

1 − σ2
2 |

σ2
1

,
40|µ1 − µ2|

σ1

}}
≤ TV

(
N
(
µ1, σ

2
1

)
,N
(
µ2, σ

2
2

))
.

Fact G.6 (Surface area of hyperspherical caps [Li10]). For u ∈ Sd−1 and θ ∈ [0, π
2 ], define

C(u, θ) =
{
x ∈ Sd−1 : ∠(x, u) ≤ θ

}
where for u, v ∈ Sd−1, ∠(u, v) := cos−1(u · v). We have

Area(C(u, θ)) =
2π(d−1)/2

Γ(d−1
2 )

·
∫ θ

0

sind−2(x)dx.

Note that

Area(Sd−1) =
2πd/2

Γ(d2 )
.

Proof of Claim G.3. Let σ > 0. Let t1, t2 ∈ T and u1, u2,∈ N . We will compare the total variation
distance of the Gaussians defined by these parameters. Let

Dσ =


σ2

1 O

O
. . .

1

 .

By Fact G.4, taking f : Rd → R to be f(x) = u⊤
1 (x− t1),

TV(G(σ, t1, u2), G(σ, t2, u2)) ≥ TV(N (u⊤
1 (t1 − t1), u

⊤
1 Ru1DσR

⊤
u1
u1),N (u⊤

1 (t2 − t1), u
⊤
1 Ru2

DσR
⊤
u2
u1))

= TV(N (0, σ2),N (u1 ·∆t, σ2 cos2(∠(u1, u2)) + sin2(∠(u1, u2)))),
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where ∆t = t2 − t1. For the last line above, we take Ru2 = [u2, v2, . . . , vd], where {v2, . . . , vd}
is an orthonormal basis for {u2}⊥. Then the equality in the last line for the variance of the second
Gaussian uses,

u⊤
1 Ru2

DσR
⊤
u2
u1 = σ2(u1 · u2)

2 + (v2 · u2)
2 + · · ·+ (vd · u2)

2

= σ2(u1 · u2)
2 + (1− (u1 · u2)

2)

= σ2 cos2(∠(u1, u2)) + (1− cos2(∠(u1, u2)))

= σ2 cos2(∠(u1, u2)) + sin2(∠(u1, u2)),

where Ru2
being unitary implies that (u1 · u2)

2 + (u1 · v2)2 + · · · + (u2 · vd)2 = 1, yielding the
second equality in the above.

We show that if ∠(u1, u2) ∈ [
√
2π
2 σ, π −

√
2π
2 σ], TV(G(σ, t1, u1), G(σ, t2, u2)) ≥ 1

200 . First, we
consider the case where ∠(u1, u2) ∈ [

√
2π
2 σ, π

2 ]. Using that on [0, π
2 ], we have sin(x) ≥ 2

πx and
cos(x) ≥ 0, we get

σ2 cos2(∠(u1, u2)) + sin2(∠(u1, u2)) ≥
4

π2
∠(u1, u2)

2 ≥ 2σ2. (7)

Therefore,

σ2
1 − σ2

2

σ2
1

≤ σ2 − 2σ2

σ2
≤ −1,

and by Fact G.5, we can conclude that TV(G(σ, t1, u1), G(σ, t2, u2)) ≥ 1
200 . Now, consider the

case where ∠(u1, u2) ∈ [π2 , π−
√
2π
2 ]. Note that in this case, there exists u′

2 = −u2 ∈ [
√
2π
2 , π

2 ] with
G(σ, t2, u2) = G(σ, t2, u

′
2), bringing us back to the previous case.

Next, note that since ∥u1∥2 = 1 and |u(d)
1 | = |u1 · ed| ≤

√
3
2 (by the definition of N ), letting r =

[u
(1)
1 , . . . , u

(d−1)
1 ]⊤ ∈ Rd−1, we have ∥r∥2 ≥ 1

2 . Let r̂ = r
∥r∥2

. We have that if [∆t1, . . . ,∆td−1]
⊤ ·

r̂ ≥ 1
20σ, then,

u1 ·∆t = r · [∆t1, . . . ,∆td−1]
⊤

≥ r

2∥r∥2
· [∆t1, . . . ,∆td−1]

⊤

≥ 1
2 r̂ · [∆t1, . . . ,∆td−1]

⊤

≥ 1

40
σ.

This implies that

40(µ1 − µ2)

σ1
=

40(−u1 ·∆t)

σ
≤ −1,

and by Fact G.5, we can conclude TV(G(σ, t1, u1), G(σ, t2, u2)) ≥ 1
200 . Therefore, for any u ∈ N ,

t ∈ T ,

P
Q∼U(Qk)

{
TV(G( 1k , t, u), Q) ≤ 1

400

}
= P

t′∼U(T )
u′∼U(N)

{
TV(G( 1k , t, u), G( 1k , t

′, u′)) ≤ 1

400

}

≤ P
t′∼U(T )
u′∼U(N)

{
TV(G( 1k , t, u), G( 1k , t

′, u′)) <
1

200

}
≤ P

t′∼U(T )

{
[∆t1, . . . ,∆td−1]

⊤ · r̂ < 1
20k

}
·

P
u′∼U(N)

{
(∠(u, u′) ∈ [0,

√
2π
2k ) ∪ (π −

√
2π
2k , π])

}
.
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For the first term, note that the event{
[∆t1, . . . ,∆td−1] · r̂ < 1

20k

}
⊆
{
t′ ∈

{
t+

[
x
0

]
+ λ

[
r̂
0

]
: ∥x∥2 ≤ 1, x · r̂ = 0, λ ≤ 1

20k

}}
,

which under U(T ), for some cd > 0 depending only on d, has probability ≤ cd · 1
20k .

For the second term, note that ∠(u, u′) ∈ [0,
√
2π
2k ) ∪ (π −

√
2π
2k , π] means u′ ∈ C(u,

√
2π
2k ) ∪

C(−u,
√
2π
2k ). By Fact G.6, we know that under U(N), for some cd depending only on d,

P
u′∼U(N)

{
u′ ∈ C(u,

√
2π
2k )

}
= cd ·

∫ √
2π/2k

0

sind−2(x)dx

≤ cd ·
∫ √

2π/2k

0

xd−2dx

=
cd

d− 1

(√
2π

2

)d−1
1

kd−1
.

The bound is the same for C(−u,
√
2π
2k ). Plugging these into the above, we can conclude that

rk = sup
p∈Qk

P
Q∼U(Qk)

{
TV(p,Q) ≤ 1

400

}
≤ O

(
1

kd

)
→ 0 as k → ∞.

This proves the claim.

Lower bounding sk, the weight of alternative hypotheses. First, we note that

uk = sup
x∈B
q∈Qk

qd−1(x) =

(
1

(2π)d/2
k exp(− 1

2 )

)d−1

,

which is achieved by G( 1k ,0, e1) (where 0 ∈ Rd is the origin) and x = (ed, . . . , ed). Let

c =
exp(−5)d−1

exp(− 1
2 )

d−1
= exp

(
9(d− 1)

2

)
.

Claim G.7. For k ≥ 1, letting (uk)
∞
k=1 and c be defined as above, define

sk := inf
x∈B

P
Q∼U(Qk)

{
Qd−1(x) ≥ cuk

}
.

Then we have,

sk = Ω

(
1

kd−1

)
→ 0 as k → ∞.

Proof of Claim G.7. Let k ≥ 1. Fix any x = (x1, . . . , xd−1) ∈ B. For every t ∈ T , there
exists u ∈ {x1 − t, x2 − t, . . . , xd−1 − t}⊥. We show ∠(u, ed) ≥ π

4 . Suppose otherwise, that is,
∠(u, ed) < π

4 =⇒ |u · ed| = |u(d)| >
√
2
2 . Then,

u · (x1 − t) = u(1)(x
(1)
1 − t(1)) + · · ·+ u(d−1)(x

(d−1)
1 − t(d−1)) + u(d)x

(d)
1 .

By our assumption on u(d), and by the fact that x1 ∈ C, we have that |u(d)x
(d)
1 | >

√
2
2 . By

Cauchy-Schwarz in Rd−1, we have that,

|u(1)(x
(1)
1 − t(1)) + . . .+ u(d−1)(x

(d−1)
1 − t(d−1))|

≤ ∥[u(1), . . . , u(d−1)]⊤∥2 · ∥[x(1)
1 , . . . , x

(d−1)
1 ]⊤ − [t(1),...,t

(d−1)

]⊤∥2

<

√
2

2
· 1.
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The last inequality uses that ∥u∥2 = 1 and (u(d))2 > 1
2 , so the norm of the first (d− 1) coordinates is

<
√
2
2 , and also the fact that the first (d− 1) coordinates of x and t are in the 1

2 -disk. This inequality,
combined with the fact that |u(d)x

(d)
1 | >

√
2
2 contradicts that that (x1 − t) · u = 0.

Now, for the t and the u from above, consider an arbitrary u′ with ∠(u, u′) ≤ 1
k , and the Gaussian

with mean t and normal vector u′, G( 1k , t, u
′). We will show that any such Gaussian assigns high

mass to the point x, and furthermore that there is a high density of such Gaussians. Note that for
k ≥ 5, 1

k ≤ π
3 − π

4 =⇒ ∠(u′, ed) ≥ π
3 =⇒ u′ ∈ N . We compute the minimum density this

Gaussian assigns to x. Consider, for i ∈ [d− 1],

(xi − t)⊤(Ru′D1/kR
⊤
u′)−1(xi − t) = ∥D√

kR
⊤
u′(xi − t)∥2

= k2|u′ · (xi − t)|2 + |v2 · (xi − t)|2 + · · ·+ |vd · (xi − t)|2

≤ 5(k2|u′ · r̂|2 + 1),

where r̂ = (xi − t)/∥xi − t∥ and {v2, . . . , vd} is an orthonormal basis of {u′}⊥. We have that,

|u′ · r̂|2 = |(u+ (u− u′)) · r̂|2

≤ ∥u− u′∥22 · ∥r̂∥22
= u · u− 2u · u′ + u′ · u′

= 2− 2 cos(∠(u′, u))

≤ 2− 2(1− ∠(u′,u)2

2 )

= ∠(u′, u)2 ≤ 1

k2
.

Hence, the density of G( 1k , t, u
′) on x is lower bounded by,(

1

(2π)d/2
k exp(−5)

)d−1

= cuk.

For every t ∈ T , we found a set of u′ ∈ N such that the density G( 1k , t, u
′) assigns to x is greater

than cuk. Since for some constant cd > 0 depending only on d,

P
u′∼U(N)

{
u′ ∈ C(u, 1

k )
}
= cd

∫ 1/k

0

sind−2(x)dx

≥ cd

∫ 1/k

0

(
2

π
x

)d−2

dx

= cd

(
2

π

)d−2
1

d− 1
· 1

kd−1
,

and since x ∈ B was arbitrary, we indeed have,

sk = inf
x∈B

P
Q∼U(Qk)

{
Qd−1(x) ≥ cuk

}
= Ω

(
1

kd−1

)
.

This completes the proof of the claim.

With the three claims, applying Lemma G.1 allows us to conclude that the class of all Gaussians
in Rd is not list learnable with m(α, β) = d − 1 samples. This implies that the class is also not
public-privately learnable with m(α, β, ε) = d− 1 public samples.

H Statements and proofs for Section 7 – Learning when the Yatracos class
has finite VC dimension

When the VC dimension of the Yatracos class of Q is finite, the following gives an upper bound on
the number of samples required to non-privately learn Q.
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Fact H.1 ([Yat85], [DL01, Theorem 6.4]). Let Q ⊆ ∆(X ). Let H be the Yatracos class of Q, and
let d = VC(H). Q is learnable with

m = O

(
d+ log( 1β )

α2

)
samples.

For some classes of distributions, the above bound is tight. For example, it recovers the Θ( d
2

α2 ) sample
complexity for learning Gaussians in Rd [AM18].

To prove Theorem 7.2 we employ the following result on generating distribution-dependent covers
for binary hypothesis classes with public data.
Fact H.2 (Public data cover [ABM19, Lemma 3.3 restated]). Let H ⊆ 2X and VC(H) = d. There
exists A : X ∗ → {H ⊆ 2X : |H| < ∞}, such that for any α, β ∈ (0, 1] there exists

m = O

(
d log( 1

α ) + log( 1β )

α

)
such that for any p ∈ ∆(X ), if we draw X = (X1, . . . , Xm) i.i.d. from p, with probability ≥ 1− β,
A(X) outputs Ĥ ⊆ 2X and a mapping f : H → Ĥ with

p(h△f(h)) ≤ α for all h ∈ H
(where for A,B ⊆ X , A△B denotes the symmetric set difference (A \B) ∪ (B \A)). Furthermore,
we have |Ĥ| ≤

(
em
d

)2d
.

We also use the following pure DP algorithm for answering counting queries on finite domains.
Fact H.3 (SmallDB [BLR13], [DR14, Theorem 4.5]). Let X be a finite domain. Let H ⊆ 2X .
Let α, β ∈ (0, 1] and ε > 0, There is an ε-DP randomized algorithm, that on any dataset x =
(x1, . . . , xn) with

n = Ω

(
log(|X |) log(|H|) + log( 1β )

εα3

)
outputs estimates ĝ : H → R such that with probability ≥ 1− β,∣∣∣∣∣ĝ(h)− 1

n

n∑
i=1

1h(xi)

∣∣∣∣∣ ≤ α for all h ∈ H.

Proof of Theorem 7.2. We use our m public samples from the unknown p ∈ Q to generate a public
data cover Ĥ and mapping f : H → Ĥ courtesy of Fact H.2, selecting m to target error α

6 and
failure probability β

3 . Note that this implies that with probability ≥ 1 − β
3 , for every h ∈ H,

|p(h)− p(f(h))| ≤ |p(h△f(h))| ≤ α
6 .

Next, we consider the representative domain of X with respect to Ĥ, denoted by XĤ. In other words,
for every unique behaviour (1ĥ(x))ĥ∈Ĥ ∈ {0, 1}|Ĥ| induced by a point x ∈ X on Ĥ, we include
exactly one representative [x] in XĤ. By Sauer’s lemma we can conclude that

|XĤ| ≤

(
e|Ĥ|
d∗

)d∗

.

Then, we take our n private samples X = (X1, . . . , Xn) and map each point Xi to its representative
[Xi] ∈ XĤ, yielding a dataset of n examples [X] on the finite domain XĤ. Note that for any ĥ ∈ Ĥ,
1
n

∑n
i=1 1ĥ(Xi) =

1
n

∑n
i=1 1ĥ([Xi]). Hence when we run SmallDB (Fact H.3) on the input [X]

over the finite domain XĤ with finite class Ĥ, choosing n large enough, we obtain ĝ : Ĥ → R such
that with probability ≥ 1− β

3 , |ĝ(ĥ)− 1
n

∑n
i=1 1ĥ(Xi)| ≤ α

6 for all ĥ ∈ Ĥ.
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We also ensure n is large enough so that we get the uniform convergence property on Ĥ, which
has VC dimension d, with the private samples. That is, for all ĥ ∈ Ĥ, with probability ≥ 1 − β

3 ,
|p(ĥ)− 1

n

∑n
i=1 1ĥ(Xi)| ≤ α

6 .

As a post-processing of ĝ, our learner outputs

q̂ := argmin
q∈Q

sup
h∈H

|q(h)− ĝ(f(h))|.

By the union bound, with probability ≥ 1− β, all of our good events occur. In this case, we have for
all h ∈ H,

|p(h)− p(f(h))| ≤ α
6∣∣∣∣∣p(f(h))− 1

n

n∑
i=1

1f(h)(Xi)

∣∣∣∣∣ ≤ α
6∣∣∣∣∣ 1n

n∑
i=1

1f(h)(Xi)− ĝ(f(h))

∣∣∣∣∣ ≤ α
6

which implies |p(h)− ĝ(f(h))| ≤ α
2 . So for any q ∈ Q,

|q(h)− p(h)| − α

2
≤ |q(h)− ĝ(f(h))| ≤ |q(h)− p(h)|+ α

2

=⇒ TV(q, p)− α

2
≤ sup

h∈H
|q(h)− ĝ(f(h))| ≤ TV(q, p) +

α

2
.

We have that

sup
h∈H

|q̂(h)− ĝ(f(h)| ≤ sup
h∈H

|p(h)− ĝ(f(h)| ≤ TV(p, p) +
α

2
≤ α

2
.

Therefore,

TV(q̂, p) ≤ sup
h∈H

|q̂(h)− ĝ(f(h)|+ α

2
≤ α.

It can be verified that the choices of m and n in the statement of Theorem 7.2 suffice.
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