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Abstract

Video Semantic Segmentation (VSS) involves assigning a semantic label to each
pixel in a video sequence. Prior work in this field has demonstrated promising
results by extending image semantic segmentation models to exploit temporal
relationships across video frames; however, these approaches often incur significant
computational costs. In this paper, we propose an efficient mask propagation
framework for VSS, called MPVSS. Our approach first employs a strong query-
based image segmentor on sparse key frames to generate accurate binary masks and
class predictions. We then design a flow estimation module utilizing the learned
queries to generate a set of segment-aware flow maps, each associated with a
mask prediction from the key frame. Finally, the mask-flow pairs are warped to
serve as the mask predictions for the non-key frames. By reusing predictions from
key frames, we circumvent the need to process a large volume of video frames
individually with resource-intensive segmentors, alleviating temporal redundancy
and significantly reducing computational costs. Extensive experiments on VSPW
and Cityscapes demonstrate that our mask propagation framework achieves SOTA
accuracy and efficiency trade-offs. For instance, our best model with Swin-L
backbone outperforms the SOTA MRCFA using MiT-B5 by 4.0% mIoU, requiring
only 26% FLOPs on the VSPW dataset. Moreover, our framework reduces up
to 4× FLOPs compared to the per-frame Mask2Former baseline with only up
to 2% mIoU degradation on the Cityscapes validation set. Code is available at
https://github.com/ziplab/MPVSS.

1 Introduction

Video Semantic Segmentation (VSS), a fundamental task in computer vision, seeks to assign a
semantic category label to each pixel in a video sequence. Previous research on VSS has leveraged
developments in image semantic segmentation models, e.g., FCN [40] and Deeplab [82, 4], which
made tremendous progress in the field. However, adapting image semantic segmentation models
to VSS remains challenging. On one hand, sophisticated temporal modeling is required to capture
the intricate dynamics among video frames. On the other hand, videos contain a significantly larger
volume of data compared to images. Processing every frame with a strong image segmentor can incur
significant computational costs.

Prior work in VSS mainly focuses on leveraging both temporal and spatial information to enhance
the accuracy of pixel-wise labeling on each video frame, building upon the pixel-wise classification
paradigm of traditional image semantic segmentors. Specifically, these methods exploit temporal
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Figure 1: Motivation of the proposed MPVSS. Three consecutive frames with ground truth category
labels are sampled from a video in VSPW [42], illustrating a strong correlation between video frames
along the temporal dimension. This observation underscores the significant temporal redundancy
present in videos. The remaining columns contrast the proposed query-based flow and traditional
optical flow, each showing a normalized flow map, a mask prediction, and the final predicted semantic
map, respectively.

information by integrating visual features from previous frames into the target frame, employing
techniques such as recurrent units [26, 43], temporal shift [33, 1], or spatial-temporal attention
modules [19, 44, 28, 16, 53], among others.

More recently, with the prevalence of the DETR [2] framework, DETR-like segmentors [8, 7, 51] have
dominated the latest advances and achieved state-of-the-art performance in semantic segmentation.
Notably, MaskFormer series [8, 7] learn a set of queries representing target segments, and employ
bipartite matching with ground truth segments as the training objective. Each query is learned to
predict a binary mask and its associated class prediction. The final result is obtained by combining the
binary masks and class predictions of all queries via matrix multiplication. However, these models
require computing a high-resolution per-pixel embedding for each video frame using a powerful
image encoder, leading to significant computational costs. For instance, processing an input video
clip with 30×1024×2048 RGB frames using the strong Mask2Former [7] requires more than 20.46T
Floating-point Operations (FLOPs) in total. Such computational demands render it impractical to
deploy these models in real-world VSS systems.

A typical solution is to incorporate temporal information guided by optical flow [50, 82, 22, 66] to
reduce the redundancy. The related literature proposes to propagate feature maps from the key frame to
other non-key frames using optical flow. The motivation mainly comes from two aspects. First, videos
exhibit high temporal redundancy due to the similar appearance of objects or scenes in consecutive
frames [13], especially in videos with a high frame rate. As shown in Fig. 1, we empirically observe
that semantic information in consecutive video frames is highly correlated. Additionally, previous
methods [50, 82, 22, 30, 25, 45] highlight the gradual changes in semantic features within deep neural
networks. They attempt to reduce the computational costs by reusing feature maps from preceding
frames for the target frame, facilitated by the estimated optical flow between the neighboring frames.
However, these methods may still suffer from degraded performance due to inaccurate and noisy
optical flow estimation, which only measures pixel-to-pixel correspondence between adjacent frames.
Recent advancements in Transformer-based optical flow methods [58, 20, 63, 64] demonstrate the
importance of incorporating global correspondence information for each pixel, resulting in more
precise per-pixel optical flow estimation. Nevertheless, these methods still focus solely on pixel-level
correspondence and do not account for segment-level information among video frames, as illustrated
in Fig. 1, which may be insufficient for the task of VSS.

In this paper, we present an efficient mask propagation framework for VSS, namely MPVSS, as shown
in Fig. 2. This framework relies on two key components: a strong query-based image segmentor
for the key frame (upper part of Fig. 2), and a powerful query-based flow estimator for the non-
key frames (lower part of Fig. 2). Specifically, we employ the state-of-the-art query-based image
segmentation model, i.e., Mask2Former [7] to process sparse key frames and generate accurate binary
masks and class predictions. We then propose to estimate individual flow map corresponding to each
segment-level mask prediction of the key frame. To achieve this, we leverage the learned queries
from the key frame to aggregate segment-level motion information between adjacent frame pairs
and capture segment-specific movements along the temporal dimension. These queries are fed to
a flow head to predict a set of segment-aware flow maps, followed by a refinement step. The mask
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predictions from key frames are subsequently warped to other non-key frames through the generated
query-based flow maps, where each flow map is tailored to the corresponding mask predicted by
the associated query in the key frame. Finally, we derive semantic maps for the non-key frames by
aggregating the warped mask predictions with the class probabilities predicted from the key frame.
By warping the predicted segmentation masks from key frames, our model avoids processing each
individual video frame using computationally intensive semantic segmentation models. This not only
reduces temporal redundancy but also significantly lowers the computational costs involved.

In summary, our main contributions are in three folds:

• We propose MPVSS, a novel mask propagation framework for efficient VSS, which reduces com-
putational costs and redundancy by propagating accurate mask predictions from key frames to
non-key frames.

• We devise a novel query-based flow estimation module that leverages the learned queries from
the key frame to model motion cues for each segment-level mask prediction, yielding a collection
of accurate flow maps. These flow maps are utilized to propagate mask predictions from the key
frame to other non-key frames.

• Extensive experiments on standard benchmarks, VSPW [42] and Cityscapes [9], demonstrate that
our MPVSS achieves SOTA accuracy and efficiency trade-offs.

2 Related Work

Image semantic segmentation. As a fundamental task in computer vision, image semantic seg-
mentation seeks to assign a semantic label to each pixel in an image. The pioneering work of Fully
Convolutional Networks (FCNs) [40] first adopts fully convolutional networks to perform pixel-wise
classification in an end-to-end manner and apply a classification loss to each output pixel, which
naturally groups pixels in an image into regions of different categories. Building upon the per-pixel
classification formulation, various segmentation methods have been proposed in the past few years.
Some works aim at learning representative features, which propose to use atrous convolutional layers
to enlarge the receptive field [68, 4, 5, 46, 67], aggregate contextual information from multi-scale
feature maps via a pyramid architecture [17, 36], encoder-decoder architecture [49, 6], or utilize
attention modules to capture the global dependencies [27, 76, 14, 79, 78, 61]. Another line of work fo-
cuses on introducing boundary information to improve prediction accuracy for details [10, 29, 70, 77].
More recent methods demonstrate the effectiveness of Transformer-based architectures for semantic
segmentation. SegFormer [62], Segmentor [51], SETR [78], MaskFormer [8, 7] replace traditional
convolutional backbones [18] with Vision Transformers [11, 59, 39, 34] and/or implement the head
with Transformers following the DETR-like framework [2]. Basically, we propose an efficient frame-
work for video semantic segmentation that leverages the mask predictions generated by DETR-like
image segmentors. Our framework focuses on propagating these mask predictions across video
frames, enabling accurate and consistent segmentation results throughout the entire video sequence.
By incorporating the strengths of DETR-like models in image segmentation, we achieve high-quality
and efficient video semantic segmentation.

Video semantic segmentation. Video semantic segmentation has recently captured the attention of
researchers due to its dynamic nature and practical significance in real-world scenarios. Compared
with image semantic segmentation, most existing methods of VSS pay attention to exploiting temporal
information, which can be divided into two groups. The first group of approaches exploits temporal
relationships to improve prediction accuracy and consistency. For example, some works utilize
recurrent units [26, 43] or design an attention propagation module [19] to warp the features or
results of several reference frames [81, 15], or aggregate neighbouring frames based on optical flow
estimation [15, 37]. In particular, ETC [38] proposes temporal consistency regularization during
training, [73] instead exploits perceptual consistency in videos, MRCFA [54] mines relationship of
cross-frame affinities, STT [28] employs spatial-temporal transformer, CFFM-VSS [53] disentangles
static and dynamic context for video frames. The second line of methods infers to alleviate the huge
temporal redundancy among video frames and thus reduce the computational cost. Observing the high
similarity of the semantic representation of deep layers, ClockNet [50] designs a pipeline schedule
to adaptively reuse feature maps from previous frames in certain network layers. DFF [82] utilizes
optical flow to propagate feature maps from key frames to non-key frames, achieving remarkable
computational efficiency. Accel [22] further proposes to execute a large model on key frames and
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Figure 2: Overall architecture of the proposed MPVSS.

a compact one on non-key frames, while DVN [66] proposes a region-based execution scheme on
non-key frames, as well as an dynamic key-frame scheduling policy. LLVS [30] develops an efficient
framework involving both adaptive key frame selection and selective feature propagation. Unlike
methods that primarily rely on optical flow, which models dense pixel-to-pixel correspondence, we
introduce a novel query-based flow module that focuses on segment-level flow fields between adjacent
frames. By operating at the segment level, our method captures higher-level motion information that
is more accurate for VSS.

Motion estimation by optical flow. Optical flow estimation is a fundamental module in video
analysis, which estimates a dense field of pixel displacement between adjacent frames. In deep
learning era, FlowNet [12] first utilizes convolutional neural networks to learn from labeled data. Most
follow-up methods propose to employ spatial pyramid networks [52], or utilize recurrent layers [58]
to apply iterative refinement for the predicted flow in a coarse-to-fine manner [52, 47, 24, 55]. More
recent methods pioneer Transformers to capture the global dependencies of cost volume [58, 20],
or extract representative feature maps for global matching [63], addressing the challenge of large
displacement. As optical flow represents the pixel-to-pixel correspondence in adjacent frames, it is
often utilized in a wide range of video analysis tasks, i.e., optical flow as motion information for
modeling action motion in the tasks of action recognition [3, 56], temporal action detection [57, 32],
or improving the feature representation in video segmentation [74], object detection [81]; optical flow
estimation as a simultaneous task to model pixel correspondence for video interpolation [23, 48, 21],
video inpainting [71, 72, 31], etc.

3 Mask Propagation via Query-based Flow

In Sec. 3.1, we introduce the overall pipeline of the proposed MPVSS. In Sec. 3.2, we simply revisit
Mask2Former that MPVSS is built upon. Finally, in Sec. 3.3, we introduce our query-based flow
estimation method, which yields a set of flow maps for efficiently propagating mask predictions from
key frames to other non-key frames.

3.1 Overview

The overall architecture is shown in Fig. 2. Let {It ∈ RH×W×3}Tt=1 be an input video clip with
T frames, where H and W denote the height and width of frames in the video. Without loss of
generality, we select key frames from the video clip at fixed intervals, e.g., every 5 frames, considering
other frames within these intervals as non-key frames. For simplicity, we denote each key frame
as Ik and non-key frame as Ij . To reduce redundant computation, we only run the heavy image
segmentation model on the sampled key frames and propagate the predictions from key frames to
non-key frames.

Specifically, for a key frame Ik, we adopt Mask2Former [7] (upper part of Fig. 2) to generate N
mask predictions Mk and class predictions. Then, we use the flow estimation module (bottom part
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of Fig. 2) to predict a set of flow maps F j→k ∈ RN×2×H×W indicating the motion changes from
Ij to Ik, which will be discussed in Sec. 3.3. Subsequently, we apply the bilinear warping function
on all locations to propagate per-segment mask predictions Mk to obtain Mj of non-key frames,
i.e., Mj = W(Mk,F j→k). Consequently, we segment the non-key frame Ij by propagating the
predicted masks from its preceding key frame Ik, avoiding the necessity of computationally intensive
image segmentation models for every video frame.

During training, we apply the loss function in Mask2Former [7] on the warped mask predictions
Mj and perform bipartite matching with the ground truth masks for the current frame. The training
approach is similar to the process described in [82], where the loss gradients are back-propagated
throughout the model to update the proposed flow module.

3.2 Mask2Former for Segmenting Key Frames

Mask2Former consists of three components: a backbone, a pixel decoder and a transformer decoder,
as depicted in the upper part of Fig. 2. The backbone extracts feature maps from the key frame
Ik ∈ RH×W×3. The pixel decoder builds a multi-scale feature pyramid as well as generates a high-
resolution per-pixel embedding, following FPN [35] and Deformable DETR [80]. In transformer
decoder, the target segments are represented as a set of learned queries Qk

O ∈ RN×C where C is the
channel dimension. After gradually enriching their representations with stacked decoder blocks, Qk

O
is fed into a class and a mask head to yield N class probabilities and N mask embeddings, respectively.
After decoding the binary mask predictions Mk ∈ RN×H×W with the class predictions and the per-
pixel embeddings, we can finally derive the semantic maps for the key frame by aggregating N binary
mask predictions with their corresponding predicted class probabilities via matrix multiplication. We
refer readers to [8, 7] for more details.

3.3 Query-based Flow Estimation

To generate the segmentation masks for the non-key frames efficiently, we propose to estimate a set
of flow maps, each corresponding to a mask prediction of the key frame. We start with introducing
the process of generating N query-based flow maps between the current non-key frame Ij and its
preceding key frame Ik, where 0 < j − k ≤ T . The overall flow module comprises three key
elements: a motion encoder to encode the motion feature pyramid between the pair of video frames
{Ik, Ij}, a motion decoder that leverages the learned queries Qk

O from the key frame to extract
motion information from the motion feature maps for each segment, and a flow head responsible
for predicting N query-based flow maps F j→k, where each flow map is associated with warping a
segment (mask prediction) of the key frame to the current non-key frame.

Motion encoder. To obtain motion features between the paired frames {Ik, Ij}, we concatenate the
two frames along the channel dimension as the input of the motion encoder. The motion encoder,
utilizing the same architecture as the flow encoder in FlowNet [12], is employed to extract motion
features at each location in a downsampling manner. Following [12, 7], we reverse the order of the
original feature maps, generating a motion feature pyramid {b1,b2,b3,b4}, each at resolutions
1/32, 1/16, 1/8 and 1/4 of the original video frame, respectively. Subsequently, the feature pyramid
is fed to the model decoder for the decoding of flow maps from the lowest to the highest resolution.

Motion decoder. We then devise a motion decoder to aggregate motion information from the motion
feature pyramid using N flow queries QF .

First, the motion decoder takes as input the first three feature maps {b1,b2,b3} from the motion
feature pyramid and the flow queries QF . We initialize flow queries with the N learned queries
Qk

O of the preceding key frame, i.e., Q1
F = Qk

O, where Q1
F indicates the input flow queries to

the motion decoder. Following [7], feature map in each layer is projected into C channels in the
channel dimension using a linear layer, which is then added with a sinusoidal positional embedding
and a learnable level embedding. This results in three scales of motion feature maps in total, i.e.,
{B1

1,B
1
2,B

1
3}, as the input of the following layers.

Next, the motion decoder can be divided into S stages, each indexed by s, with each stage involving
L blocks, each indexed by l. We adopt S = 3 and L = 3 for our model. Inspired by [7, 65], starting
from s = 1 and l = 1, for each block in each stage, we first concatenate Bs

l and Qs
F together and

then feed them into a number of Transformer layers, each of which performs information propagation

5



between Bs
l and Qs

F .

Zs
l = [Qs

F ;B
s
l ] , (1)

Ẑs
l = LN(MSA (Zs

l ) + Zs
l ), (2)

Q̂s
F , B̂

s
l = LN(FFN(Ẑs

l ) + Ẑs
l ), (3)

where [; ] denotes the concatenation operation. LN(·), MSA(·) and FFN(·) denote LayerNorm
layer, Mutli-head Self-Attention and Feed-forward Neural Network, respectively. Therefore, in each
stage, we learn flow queries and update motion feature maps via self-attention. The self-attention
mechanism aggregates motion information globally from both the motion feature maps and the flow
query features simultaneously. Finally, the learned flow queries Q̂F and updated motion feature maps
{B̂1, B̂2, B̂3} are fed to the flow head for flow prediction.

As each query of Qk
O encodes global information for each segment in the key frame, using Qk

O as
initial flow queries enables each flow query to extract motion information for each segment present in
the key frame, which facilitates query-based motion modeling.

Flow head. The flow head generate the final flow maps F j→k ∈ RN×2×H×W by combining
query-based flow FQF and pixel-wise flow FPF .

To obtain the query-based flow FQF , an MLP with 2 hidden layers is employed to convert the learnt
flow queries Q̂F to flow embeddings EF ∈ RN×C , each with C channels. Inspired by the pixel
decoder design in Mask2Former, we project the motion feature map b4 from the motion encoder
to EB ∈ R2C×H

4 ×W
4 using another MLP with 2 hidden layers. Let Ex

B and Ey
B denote the first and

last C channels of EB , and they are used to obtain the query-based flow predictions in terms of
x and y direction, respectively. Then, for the nth query, we get the flow map via a dot product
between the nth flow embedding EFn and the projected motion map EB , i.e., FQF

n (x) = EFn · Ex
B

and FQF
n (y) = EFn · E

y
B in terms of x and y direction, respectively. Then we can obtain the predicted

query-based flow FQF
n = [FQF

n (x);FQF
n (y)] ∈ R2×H

4 ×W
4 for the nth query. The dot product of

the flow embeddings and projected motion maps quantifies the similarity between the segment-level
motion vector and the encoded motion information at each location on the feature maps, which
reflects the movement for each query on the spatial dimension.

Additionally, we use the updated motion feature maps {B̂1, B̂2, B̂3} to predict a pixel-wise flow
FPF ∈ R2×H

4 ×W
4 in a coarse-to-fine manner, following [12], which is used to refine the query-based

flow.

To obtain the final flow map Fj→k
n ∈ R2×H×W for the nth query, we apply a 2D convolutional layer

to the concatenated FQF
n and FPF , and then upsample the flow map to the original resolution:

F j→k
n = Upsample

(
Conv2D

([
FQF

n ;FPF
]))

. (4)

Remark. We use N flow queries, which are initialized with the learned per-segment queries Qk
O from

the key frame, to capture the motion for each mask predicted on the key frame. In contrast to existing
optical flow estimation methods, which model pixel-to-pixel dense correspondence, we propose a
novel query-based flow that incorporates segment-level motion information between adjacent frames,
assisting more accurate mask propagation in VSS.

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate our method on two benchmark datasets: VSPW [42] and Cityscapes [9].
VSPW is the largest video semantic segmentation benchmark, consisting of 2,806 training clips
(198,244 frames), 343 validation clips (24,502 frames), and 387 test clips (28,887 frames). Each
video in VSPW has densely annotated frames at a rate of 15 frames per second, covering 124 semantic
categories across both indoor and outdoor scenes. Additionally, we present results on the Cityscapes
dataset, which provides annotations every 30 frames. This dataset serves as an additional evaluation
to showcase the effectiveness of our proposed method.
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Table 1: Performance comparisons with state-of-the-art methods on VSPW dataset. We report mean
IoU (mIoU) and Weighted IoU (WIoU) for the performance evaluation and Video Consistency (VC)
for the temporal consistency comparison. We measure FLOPs (G) for computational costs, averaging
over a 15-frame clip with resolution of 480× 853. Frame-per-second (FPS) is measured on a single
NVIDIA V100 GPU with 3 repeated runs.

Methods Backbone mIoU↑ WIoU↑ mVC8 ↑ mVC16 ↑ GFLOPs ↓ Params(M)↓ FPS↑
DeepLab3+ [4] R101 34.7 58.8 83.2 78.2 379.0 62.7 9.25
UperNet [60] R101 36.5 58.6 82.6 76.1 403.6 83.2 16.05
PSPNet [75] R101 36.5 58.1 84.2 79.6 401.8 70.5 13.84
OCRNet [69] R101 36.7 59.2 84.0 79.0 361.7 58.1 14.39

ETC [38] OCRNet 37.5 59.1 84.1 79.1 361.7 - -
NetWarp [15] OCRNet 37.5 58.9 84.0 79.0 1207 - -

TCB [42] R101 37.8 59.5 87.9 84.0 1692 - -
Segformer [62] MiT-B2 43.9 63.7 86.0 81.2 100.8 24.8 16.16

Segformer MiT-B5 48.9 65.1 87.8 83.7 185.0 82.1 9.48
CFFM-VSS [53] MiT-B2 44.9 64.9 89.8 85.8 143.2 26.5 10.08

CFFM-VSS MiT-B5 49.3 65.8 90.8 87.1 413.5 85.5 4.58
MRCFA [54] MiT-B2 45.3 64.7 90.3 86.2 127.9 27.3 10.7

MRCFA MiT-B5 49.9 66.0 90.9 87.4 373.0 84.5 5.02

Mask2Former [7] R50 38.5 60.2 81.3 76.4 110.6 44.0 19.4
Mask2Former R101 39.3 60.1 82.5 77.6 141.3 63.0 16.90
Mask2Former Swin-T 41.2 62.6 84.5 80.0 114.4 47.4 17.13
Mask2Former Swin-S 42.1 63.1 84.7 79.3 152.2 68.9 14.52
Mask2Former Swin-B 54.1 70.3 86.6 82.9 223.5 107.1 11.45
Mask2Former Swin-L 56.1 70.8 87.6 84.1 402.7 215.1 8.41

MPVSS R50 37.5 59.0 84.1 77.2 38.9 84.1 33.93
MPVSS R101 38.8 59.0 84.8 79.6 45.1 103.1 32.38
MPVSS Swin-T 39.9 62.0 85.9 80.4 39.7 114.0 32.86
MPVSS Swin-S 40.4 62.0 86.0 80.7 47.3 108.0 30.61
MPVSS Swin-B 52.6 68.4 89.5 85.9 61.5 147.0 27.38
MPVSS Swin-L 53.9 69.1 89.6 85.8 97.3 255.4 23.22

Implementation details. By default, all experiments are trained with a batch size of 16 on 8 NVIDIA
GPUs. Note that pre-training is important for the DETR-like segmentors. For VSPW dataset, we
pretrain Mask2Former on the image semantic segmentation task, serving as the per-frame baseline.
For Cityscapes, we adopt pretrained Mask2Former with ResNet [18] and Swin Transformer [39]
backbones from [7]. For the motion encoder, we utilized the weights from FlowNet [12] encoder
which is pre-trained on the synthetic Flying Chairs dataset; the motion decoder and flow head are
randomly initialized. We freeze most parameters of the pretrained Mask2Former, fine-tuning only
its classification and mask head, as well as the proposed flow module. We apply loss functions in
Mask2Former, including a classification loss and a binary mask loss on the class embeddings and
warped mask embeddings, respectively. All the models are trained with the AdamW optimizer [41]
for a maximum of 90k iterations and the polynomial learning rate decay schedule [4] with an initial
learning rate of 5e-5.

Compared methods. To validate the effectiveness of our proposed model, we include the following
methods for study: Per-frame: Employing Mask2Former [7] to independently predict masks for
each video frame. Optical flow: Warping mask predictions from key frames to non-key frames
using optical flow estimated by a lightweight optical flow model, i.e., FlowNet [12]. Query-random:
Implementing the proposed flow estimation method with randomly initialized flow queries. Query-
learned: Utilizing the proposed flow estimation method using the learned queries Qk

O as initialization.
Query-for-PF: Using pixel-wise flow FPF which incorporates segment-level information from the
learned flow queries for warping predictions.

Evaluation metrics. Following previous works, we use mean Intersection over Union (mIoU)
at single-scale inference, and Weighted IoU (WIoU) to evaluate the segmentation performance.
We also compare models in terms of their computational complexity with FLOPs to evaluate the
efficiency of these VSS models. We calculate FLOPs for each single frame by averaging on a video
clip with 15 frames and fix the image resolution of 480 × 853 and 1024 × 2048 for VSPW and
Cityscapes, respectively. For VSPW dataset, we adopt video consistency (VC) [42] to evaluate the
visual smoothness of the predicted segmentation maps across the temporal dimension.
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Table 2: Performance comparisons with the state-of-the-art VSS methods on Cityscapes. We
report mIoU for the semantic segmentation performance and FLOPs (G) for the computational cost
comparison, which is averaged by a video clip of 15 images with a resolution of 1024 × 2048.
Frame-per-second (FPS) is measured on a single NVIDIA V100 GPU with 3 repeated runs.

Methods Backbone mIoU GFLOPs Params(M) FPS

FCN [40] R101 76.6 2203.3 68.5 2.83
PSPNet [75] R101 78.5 2048.9 67.9 2.88

DFF [82] R101 68.7 100.8 - -
DVSN [66] R101 70.3 978.4 - -
Accel [22] R101 72.1 824.4 - -
ETC [38] R18 71.1 434.1 - -

SegFormer [62] MiT-B1 78.5 243.7 13.8 20.7
SegFormer MiT-B5 82.4 1460.4 84.7 7.20

CFFM-VSS [53] MiT-B0 74.0 80.7 4.6 15.79
CFFM-VSS MiT-B1 75.1 158.7 15.4 11.71

MRCFA [54] MiT-B0 72.8 77.5 4.2 16.55
MRCFA MiT-B1 75.1 145 14.9 12.97

Mask2Former [7] R50 79.4 529.9 44.0 6.58
Mask2Former R101 80.1 685.5 63.0 5.68
Mask2Former Swin-T 82.1 543.6 47.4 5.41
Mask2Former Swin-S 82.6 730.1 68.7 4.31
Mask2Former Swin-B 83.3 1057.0 107.0 3.26
Mask2Former Swin-L 83.3 1911.3 215.0 2.11

Mask2Former-DFF R101 77.1 457.4 101.7 7.14
Mask2Former-DFF Swin-B 79.9 525.3 145.7 6.09
Mask2Former-Accel R101+R50 78.9 594.8 145.7 5.78
Mask2Former-Accel Swin-B+Swin-T 81.4 680.1 193.1 4.40

MPVSS R50 78.4 173.2 84.1 13.43
MPVSS R101 78.2 204.3 103.1 12.55
MPVSS Swin-T 80.7 175.9 114.0 12.33
MPVSS Swin-S 81.3 213.2 108.0 10.98
MPVSS Swin-B 81.7 278.6 147.0 9.54
MPVSS Swin-L 81.6 449.5 255.4 7.24

4.2 Comparison with State-of-the-art Methods

The comparisons on VSPW dataset are shown in Tab. 1. We also report the backbone used by
each method and the computational complexity (GFOLPs), averaged over a video clip of 15 frames,
with each frame of resolution 480×853. For our proposed models, we use 5 as the default key
frame interval for comparison. We have the following analysis: 1) The proposed MPVSS achieves
comparable accuracy with significantly reduced computational cost when compared to the strong
baseline method, Mask2Former [7]. Specifically, compared to Mask2Former, our MPVSS reduces the
computational cost in terms of FLOPs by 71.7G, 96.2G, 74.7G, 104.9G, 162.0G, and 305.4G on
R50, R101, Swin-T, Swin-S, Swin-B, and Swin-L backbones, respectively, while only experiencing
1.0%, 0.5%, 1.3%, 1.7%, 1.5%, and 2.2% degradation in the mIoU score. These results demonstrate a
promising trade-off between accuracy and efficiency of our framework. 2) Our models with different
backbones perform on par with the state-of-the-art VSS methods on the VSPW dataset with much
fewer FLOPs. Specifically, our MPVSS model with the Swin-L backbone achieves an impressive mIoU
of 53.9%, surpassing CFFM-VSS with MiT-B5 backbone by 4.6%. Notably, our approach achieves
this performance with only 24% of the computational cost in terms of FLOPs. 3) When considering
the comparable computational cost, our model consistently outperforms other state-of-the-art methods.
For instance, MPVSS with Swin-L backbone surpasses Segformer with MiT-B2 backbone by 10%
mIoU, under the FLOPs around 3.5G. These compelling results highlight the exceptional performance
and efficiency of our MPVSS against the compared VSS approaches. In terms of temporal consistency,
our proposed MPVSS achieves comparable mVC scores when compared to approaches that explicitly
exploit cross-frame temporal context [54] or incorporate temporal consistency constraints during
training [38]. We provide an explanation of VC score and a discussion in the supplementary material.

We further evaluate our MPVSS on the Cityscapes dataset and achieve state-of-the-art results with
relatively low computational complexity. Notably, the Cityscapes dataset only provides sparse anno-
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Table 3: Ablation study on VSPW dataset.

(a) Effect of the proposed flow estimation method.

Backbone Per-frame Copy Optical Flow Ours

R50 38.5 35.7 36.1 37.5
R101 39.3 37.1 38.2 38.8

Swin-T 41.2 37.5 38.4 39.9
Swin-S 42.1 38.7 40.1 40.4
Swin-B 54.1 49.3 52.1 52.9
Swin-L 56.1 50.4 53.2 53.9

(b) Effect of each component.

Flow design Params(M) Swin-T Swin-B

Optical Flow 38.68 38.4 52.1
Query-random 37.56 38.1 50.9
Query-learned 37.56 39.2 52.4
Query-for-PF 40.08 38.5 52.3
Query-based flow maps 40.08 39.9 52.9

tations for one out of every 30 frames in each video. Therefore, for a fair comparison with previous
efficient VSS methods, we report the results following the same evaluation process and compute their
average FLOPs per-frame over all video frames. Specifically, compared to Mask2Former, our MPVSS
reduces the computational cost in terms of FLOPs by 0.36T, 0.48T, 0.37T, 0.52T, 0.78T and 1.5T on
R50, R101, Swin-T, Swin-S, Swin-B, and Swin-L backbones, respectively, with only 1.0%, 1.9%,
1.4%, 1.3%, 1.6% and 1.7% degradation in the mIoU score. The strong accuracy-efficiency trade-offs
demonstrate that our proposed framework also works on sparse annotated video data.

4.3 Ablation Study

Effects of the query-based flow. We compare the performance between the proposed query-based
flow and the traditional optical flow in Table 3a. Overall, our approach demonstrates superior
performance compared with the models relying solely on optical flow for mask propagation from
key frames to non-key frames. To be specific, the utilization of the proposed query-based flow for
mask warping consistently boosts the performance by 1.4%, 0.6%, 1.5%, 0.3%, 0.8% and 0.7% in
terms of mIoU on R50, R101, Swin-T, Swin-S, Swin-B and Swin-L, respectively, which leads to less
degradation to the per-frame baseline compared to models using pixel-wise optical flow. Moreover,
directly copying the mask predictions from the key frame leads to a clear performance drop.

Effects of each component. In Table 3, we verify the effects of each component design in our
query-based flow. We conduct experiments on VSPW using Swin-T and Swin-B. The performance
of Query-random on the two backbones is slightly inferior to using optical flow. This suggests that
without per-segment query initialization, the query-based flow struggles to retrieve specific motion
information from motion features for one-to-one mask warping from the key frame, resulting in
suboptimal performance. Then, by using key-frame queries as the initialization for flow queries,
we observe an improvement of 1.1% and 1.5% mIoU scores for Query-learned on Swin-T and
Swin-B respectively, compared to Query-random. Furthermore, we develop a variant design Query-
for-PF, which introduces additional performance gain by 0.1% and 0.2% compared to optical flow
respectively. These results underscore two findings: 1) learning query-based flow for each segment
requires the learned queries from the key frame, for extracting meaningful motion features for each
segment; 2) integrating segment-level information benefits the learning of pixel-wise flow. Therefore,
we incorporate a refinement step using the enhanced pixel-wise flow for producing each query-based
flow, which results in the best performance on both backbones. The outcomes highlight that warping
mask predictions using our query-based flow consistently outperforms the methods using traditional
optical flow on VSS.

Effects of the key frame interval. In Fig. 3a and Fig. 3b, we show the mIoU scores and TFLOPs
versus key frame interval for our MPVSS with different backbones, respectively. Overall, all the results
achieve significant FLOPs reduction with decent accuracy drop, which smoothly trade in accuracy
for computational resource and fit different application needs flexibly. In Fig. 3c, we present the
performance of warping mask predictions using our query-based flow and traditional optical flow, as
well as direct copying version, on Swin-T. We observe that, when the key frame interval increases
from 2 to 10, the performance of the proposed query-based flow only slightly degraded by 1.1%
and 0.7% in terms of mIoU and WIoU score, while the scores are decreased by 2.63% and 2.96%
using optical flow. These results indicates that the proposed query-based flow is more robust to
capture long-term temporal changing for videos. We provide comparisons on other backbones in the
supplementary material.
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Figure 3: Effects of the key frame interval. We compare the trade-off between accuracy and efficiency
on variant backbones and warping strategies with respect to key frame interval. The number of
FLOPs (T) is calculated based on a clip of 15 frames with a resolution of 480× 853.

4.4 Qualitative Results

In Fig. 4, we present two examples from VSPW dataset to visually compare the prediction quality
of the per-frame baseline, the method using optical flow, and the proposed MPVSS. We observe that
the proposed query-based flow exhibits superior performance in capturing the movement of small
objects when compared to optical flow. Additionally, the proposed mask propagation framework
demonstrates enhanced category consistency compared to the per-frame baseline. For instance,
the per-frame baseline exhibits category inconsistency as each frame is independently predicted.
This highlights the advantage of our proposed approach in maintaining category coherence across
consecutive frames.

(a)

(b)

(c)

(d)

Figure 4: Qualitative results. We present two examples from VSPW dataset. In each example, we
display a series of consecutive frames from left to right. From top to bottom: (a) the ground truth;
(b) the predictions of per-frame baseline, (c) the predictions of method using optical flow; (d) the
predictions of the proposed MPVSS.

5 Conclusion and Future Work

In this paper, we have presented a simple yet effective mask propagation framework, dubbed MPVSS,
for efficient VSS. Specifically, we have employed a strong query-based image segmentor to process
key frames and generate accurate binary masks and class predictions. Then we have proposed to
estimate specific flow maps for each segment-level mask prediction of the key frame. Finally, the
mask predictions from key frames were subsequently warped to other non-key frames via the proposed
query-based flow maps. Extensive experiments on VSPW and Cityscapes have demonstrated that
our MPVSS achieves SOTA accuracy and efficiency trade-off. Future work could explore extending
MPVSS to other video dense prediction tasks, e.g., video object and instance segmentation.

Limitations and broader impacts. Although our framework significantly reduces computational
costs for processing videos, the new module leads to an increase in the number of parameters
in the models. Additionally, there might be a need for fine-tuning the new module or optimizing
hyperparameters to achieve the best performance. It can lead to increased carbon emissions, indicating
the potential negative societal impact.
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