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Theorem 2. The total variance condition (12) is satisfied for both I2SB and InDI.

Proof. Here, we further show that the condition is satisfied for I2SB for completeness.
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B Details on Table 1

I2SB βmin = 0.0001, βmax = 0.02. The same βt schedule is used regardless of being implemented
as deterministic or not. For the former, σt = σ2

s|t = 0.

InDI The speed of the base degradation process is parametrized with constant time-speed t. For
deterministic methods, ϵt = 0 and hence σt = σ2

s|t = 0. For stochastic methods, ϵt = 0.01 such that
σ2
s|t = 0.

IR-SDE (PF-ODE) As mentioned in the main text, IR-SDE can also be considered a type of
DDB as it obeys the marginal distribution that is characterized by (8), but with a different sampling
method. Specifically, we can set αt = 1 − e−θ̄t , σ2

t = λ2(1 − e−2θ̄t), with δ = 0.008. λ2 is the
stationary variance of the OU-process, which is set to the noise variance of the degraded image. For
all non-noisy inverse problems that we mostly consider in this work, λ2 is still set to 10/255.

C Experimental Details

C.1 Implementation Details

Models All the models that are used throughout the work are based on pre-trained models from
I2SB5. All the models are fine-tuned from the ADM [11] ImageNet 256×256 model, hence share the
same architecture as well as the specific model hyper-parameter settings.

Inverse problem setting All the forward operators A are used in the same manner as in [26], which
are adopted from DDRM [21].

Step size, gradient For both Algorithms 1,2, we use constant step size, but scaled to match the
signal ratio of the intermediate reconstructions x̂0|i: ρi = (1− α2

i|i+1)c, where c is some constant.
For SR and deblurring tasks, we take c = 1.0. For JPEG restoration, we take c = 0.5.

When implementing the gradient computation for CDDB, we do not explicitly compute A⊤, but rely
on automatic differentiation for simplicity. This lets us unify the implementations of Algorithm 1,2
in a similar manner.

Compute All experiments were run using a single RTX 3090 GPU. On average, I2SB and CDDB
with 1000 NFE take about 82 seconds (∼ 0.08 sec. / iter). CDDB-deep takes about 193 seconds (∼
0.19 sec. / iter).

Code Availability Code is available at https://github.com/HJ-harry/CDDB

C.2 Comparison Methods

I2SB We follow the default setting advised in [26] and set the default sampling schedule to be
the quadratic schedule [35] with 1000 NFE. As we leverage the pre-trained checkpoints provided,
deblurring and inpainting models are set to OT-ODE with no additive Gaussian noise during the
sampling process.

DPS, ΠGDM Pre-trained ADM models that were used in the original work [5, 36] are used. For
DPS, we use the constant step size of 1.0 with 1000 NFE. For ΠGDM , we use the constant step size
of 1.0 with 100 NFE. We initially experimented with higher NFE for ΠGDM but did not find a boost
in performance.

DDRM We use 20 NFE DDIM sampling with η = 0.85, ηb = 1.0 as advised.

DDNM We use 100 NFE sampling with η = 0.85 as advised. We do not use time travel for all
experiments.

5https://github.com/NVlabs/I2SB
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CDDB CDDB-deep
c = 0.0 0.25 0.5 0.75 1.0 1.5 2.0 3.0 0.0 0.25 0.5 0.75 1.0 1.5 2.0 3.0

PSNR (↑) 25.07 26.14 26.28 26.31 26.31 26.30 26.24 25.70 25.07 26.21 26.42 26.51 26.56 26.59 26.57 26.06
SSIM (↑) 0.692 0.744 0.752 0.753 0.753 0.751 0.747 0.729 0.692 0.745 0.756 0.760 0.761 0.762 0.760 0.747
LPIPS (↓) 0.271 0.218 0.206 0.203 0.201 0.202 0.207 0.244 0.271 0.226 0.214 0.209 0.205 0.202 0.202 0.227
FID (↓) 37.78 32.81 30.76 29.89 29.33 28.99 29.85 37.22 37.78 35.07 33.17 32.25 29.29 29.97 29.71 34.22

Table 4: Step size ablation on the step size for CDDB c := ρi/(1− α2
i|i+1) using 100 test images on

SR×4-bicubic task, NFE=100. I2SB [26], Chosen step size.

(a) # GD steps vs. PSNR (↑) (b) # GD steps vs. RMSE (↓)

Figure 6: Effect of gradient descent (GD) steps in CDDB applied to intermediate samples x̂0|i. Mean
± 0.1 std indicated as colored region.

DDS We use 100 NFE sampling with η = 0.85 since we did not observe additional performance
gain with larger NFE.

PnP-ADMM, ADMM-TV Following [5], we use the implementation provided in the scico
library [2]. For PnP-ADMM, we use ρ = 0.2, maxiter= 12 with the DnCNN [42] denoiser. For
ADMM-TV, we use as the regularization term λ∥Dx0∥2,1 with (λ, ρ) = (2.7e − 2, 1.4e − 1) for
deblurring and (λ, ρ) = (2.7e− 2, 1.0e− 2) for SR.

C.3 Evaluation

Out of the default 10k evaluation images from 256×256 ImageNet [10] used in [26], we use 1k
images by interleaved sampling: i.e. Images of index 0, 10, 20, . . . are used. When computing the
FID score, we use the pytorch-fid package and compare the distribution of the ground truth
images vs. the reconstructed images, rather than comparing against the training data, following the
setting of [5].

D Ablation Studies

D.1 Step size

In Table 4, we summarize the effect of the choice of step size when implementing CDDB/CDDB-deep.
Note that for all choice of step sizes, the quantitative metrics are superior to the I2SB counterpart,
which states that CDDB stably improves the performance. We observe that for both methods, c = 1.0
strikes a good balance between the distortion and the perception metrics. For CDDB-deep, taking
a slightly larger step size (e.g. c = 1.5) improves performance for certain problems, but we keep
c = 1.0 for unity.
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D.2 Effect of gradients during sampling

In Fig. 6, we investigate the effect of the CDDB gradient steps when applied to x̂0|i (i.e. intermediate
denoised estimate) with i = N//26, 10 NFE for 300 test samples on SR×4-bicubic task. Note that
we can apply multiple GD steps to the intermediate denoised sample x̂0|i, which is indicated in the
x-axis of the figures. Even when we apply multiple GD steps, we observe that the metrics constantly
get better, establishing the stability of the proposed method.

6python notation
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