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Abstract

Transfer learning – i.e., further fine-tuning a pre-trained model on a downstream
task – can confer significant advantages, including improved downstream perfor-
mance, faster convergence, and better sample efficiency. These advantages have
led to a proliferation of task-specific fine-tuned models, which typically can only
perform a single task and do not benefit from one another. Recently, model merging
techniques have emerged as a solution to combine multiple task-specific models
into a single multitask model without performing additional training. However,
existing merging methods often ignore the interference between parameters of
different models, resulting in large performance drops when merging multiple
models. In this paper, we demonstrate that prior merging techniques inadvertently
lose valuable information due to two major sources of interference: (a) interfer-
ence due to redundant parameter values and (b) disagreement on the sign of a
given parameter’s values across models. To address this, we propose our method,
TRIM, ELECT SIGN & MERGE (TIES-MERGING), which introduces three novel
steps when merging models: (1) resetting parameters that only changed a small
amount during fine-tuning, (2) resolving sign conflicts, and (3) merging only the
parameters that are in alignment with the final agreed-upon sign. We find that
TIES-MERGING outperforms several existing methods in diverse settings covering
a range of modalities, domains, number of tasks, model sizes, architectures, and
fine-tuning settings. We further analyze the impact of different types of interference
on model parameters, and highlight the importance of resolving sign interference.1

1 Introduction

Pre-trained models (PTMs) have become widespread in many real-world applications [91, 6]. Using
PTMs typically involves fine-tuning them to specialize on a specific task [69, 12], which can lead to
improved performance with less task-specific labeled data. These benefits have resulted in the release
of thousands of finetuned checkpoints [81] derived from popular PTMs such as ViT [14] for vision
and T5 [58] for language. However, having a separate fine-tuned model for each task has various
drawbacks: (1) for each new application, a separate model has to be stored and deployed [17, 89], and
(2) models trained in isolation cannot leverage information from related tasks to improve in-domain
performance or out-of-domain generalization [66, 58, 75]. Multitask learning [66, 57] could address
these concerns but requires costly training and simultaneous access to all tasks [17]. Moreover, it can
be complex and resource-intensive to determine how best to mix datasets to ensure that multitask
training is beneficial for all tasks [55, 54, 80, 52, 2, 17].

1Our code is available at https://github.com/prateeky2806/ties-merging
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Figure 1: A depiction of the steps involved in TIES-MERGING. We visualize each parameter in
a model as a square. The arrows depict the update (task vector, τ ) to a parameter produced by
fine-tuning on different tasks (coded by colors), with direction denoting sign and length denoting
magnitude. We first trim the task vector values based on their magnitude, then we elect the sign for
each parameter (γm, green vector containing +1 or −1) by resolving sign conflicts. Finally, we pick
only the values that align with the elected sign and take their mean as the final parameter value.

Recently, a growing body of research has focused on model merging [40]. One application of merging
involves combining multiple task-specific models into a single multitask model without performing
additional training. Previous works merge models by summing the individual model weights with
different weighting schemes, either via a simple average [9, 28, 83], via more sophisticated means
that incorporate parameter importance [45] or account for permutation invariances [1, 31, 70, 74, 42].
Combining fine-tuned models in this way can be seen as adding together task vectors [29] that are
computed by subtracting the pre-trained model’s parameter values from those of the fine-tuned model.

Original Values

 No Interference  Redundant  Sign Conflict

 Mean TIES
Merged Values

Model 1 Model 2

Figure 2: Different types of conflict and
merged outputs produced by either averaging
or TIES-MERGING. The parameters causing
interference are denoted by dotted arrows.

While weighted averaging of model parameters has
proven effective for merging, all of these methods
ignore the possibility that values may interfere across
models, thereby harming the performance of the
merged model. In this paper, we first demonstrate
that interference can stem from two major causes
(see Fig. 2), both of which can reduce parameter
magnitudes in the merged model and eliminate sub-
tle distinctions among values: (1) INTERFERENCE
FROM REDUNDANT PARAMETERS: Previous studies
on model pruning [25, 76] have shown that during
fine-tuning, many model parameters can change over
the course of fine-tuning [63] but only have a small
impact on performance. However, when merging
a parameter that is influential for one model but re-
dundant (i.e. not influential) for other models, the
influential value may be obscured by the redundant
values, lowering the overall model performance (# in
Fig. 2). (2) INTERFERENCE FROM SIGN DISAGREEMENT: A given parameter might have a positive
value for some models and a negative value for others. Consequently, employing simple averaging
might compromise the performance on both tasks (7 in Fig. 2). In both of these situations, simply
aggregating the values lead to interference that shrinks the parameter’s value in the merged model.
This interference between influential parameters might explain why the performance gap between the
merged model and multitask-trained model increases as the number of models increases [31].

To address these sources of interference, we propose TIES-MERGING (TRIM, ELECT SIGN &
MERGE) method, a method for merging models by combining task vectors that has three steps
(visualized in Fig. 1): First, we trim each task vector to retain only the influential parameter values
by setting the redundant values in each task vector to zero (or, equivalently, resetting the fine-tuned
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parameter value back to the value from the pre-trained model). After this step, sign conflicts may still
persist among influential parameter values, as visualized in Fig. 4. Our second step therefore resolves
the sign conflicts between different values and our last step only averages parameters whose sign
agrees with the direction of the largest total movement across models.

We demonstrate the effectiveness of our proposed TIES-MERGING method in various setups with: (1)
different modalities, including language and vision benchmarks, (2) distinct model sizes and families,
such as T5-base and T5-large [58] as well as ViT-B/32 and ViT-L/14 [14], (3) in-domain and out-of-
domain tasks, (4) full finetuning or parameter-efficient finetuning, and (5) in the presence or absence
of a validation set for setting merging hyperparameters. We show that TIES-MERGING outperforms
other merging methods, such as Task Arithmetic [29], RegMean [31], Fisher Merging [45], and
weight averaging [9, 82] across all these experimental settings. Notably, for in-domain evaluation,
TIES-MERGING outperforms the strongest baseline by an average of 2.3% and 1.7% absolute in
NLP and vision settings (Table 1), respectively. For out-of-domain generalization (Table 2), TIES-
MERGING outperforms the strongest baseline by 1.0% and 4.4% absolute for T5-base and T5-large
models respectively. In Section 7, we perform ablations on our method components and demonstrate
the impact of interference on parameter values. Additionally, we showcase the increased advantage of
TIES-MERGING over task arithmetic [29] as the number of tasks increases. Finally, we examine the
importance of obtaining the correct sign vector. Our results and analysis establish TIES-MERGING as
a powerful and effective method for combining fine-tuned models into a single multi-task model.

2 Related Work

Loss Landscape and Weight Interpolation. While the loss function of a neural network is
generally non-convex, recent work has demonstrated that the parameter values from different training
runs can sometimes be interpolated without increasing the loss (i.e. they are mode-connected) [15,
20, 21, 32, 22]. For example, Frankle et al. [19] showed that if a part of the optimization trajectory is
shared between two neural networks then they can be interpolated without lowering accuracy. On
the other hand, Neyshabur et al. [48] showed that naively interpolating two neural networks with
completely disjoint optimization trajectories can result in a catastrophic drop in their accuracies.
Entezari et al. [16] hypothesized that if we account for the permutation symmetry of neural networks,
then all neural networks of a given architecture trained on the same dataset are linear mode connected.
Ainsworth et al. [1], Singh and Jaggi [70], Wang et al. [79] therefore used techniques based on finding
permutations [79, 1] and optimal transport [70] to better align neural networks trained from scratch
so that they can be interpolated without increasing the loss.

Model Merging and Different Use Cases. Different fine-tuned models initialized from the same
pre-trained model effectively share a part of the optimization trajectory, and can therefore often be
merged without accounting for permutation symmetry [82, 83, 29, 31]. Therefore, merging fine-tuned
models can improve performance on a single target task [30, 23, 82, 9], improving out-of-domain
generalization [31, 29, 7, 4, 60, 59], creating a multitask models from different tasks [31, 29, 38],
for federated learning [46, 41], compression [39], multimodal merging models [72], continual
learning [86, 85], and other settings [38, 13]. The range of applications has led to a proliferation
of methods to improve beyond simple parameter averaging. RegMean [31] proposed a closed-form
solution for the merged model’s parameters by solving a local linear regression problem for each
individual linear layer in the model. However, this requires transmitting additional data statistics
that are the same size as the model and requires additional inference steps to calculate them. Fisher
Merging [45] goes beyond simple averaging to identify the importance of individual parameters using
Fisher Information Matrix [18, 3, 34] and uses it to weigh the parameters in each model when merging.
However, this shows little gains when merging multiple checkpoints and also requires computing
gradients which has a high memory cost. Task Arithmetic [29] presented a method for merging
models by generating task vectors and performing arithmetic operations, such as addition, to obtain a
multitask checkpoint. A concurrent work by Ortiz-Jiménez et al. [51] provided theoretical insights
on model merging based on the weight disentanglement property that arises during pretraining. They
showed that finetuning models in their tangent space enhance this property, leading to better-merged
models. Our method follows these past works on model merging but additionally takes into account
the interference between different parameters during merging.
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Figure 3: Performance depends on a small
fraction of high-magnitude parameters. For
each task vector, we keep only the largest - top-
k% parameters and plot the average performance
across eleven tasks. Keeping only the top-20% of
the parameter does not degrade the performance.
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Figure 4: Sign conflicts occur even after trim-
ming and increase with the number of models.
We plot the fraction of parameters that have a sign
conflict after trimming versus the number of mod-
els being merged.

3 Background and Motivation

Problem Setting Given a set of tasks {t1, . . . , tn} and a pre-trained model such as T5 [58] or
ViT [14], we either finetune the entire model or employ a parameter-efficient finetuning (PEFT)
method [43, 26]. In both cases, we denote the trainable parameters as θ, the initialization as θinit, and
the finetuned parameters as θft. In this paper, we assume access to finetuned model parameters θft
for multiple tasks and devise a method to merge the weights of these models into a single multitask
model proficient on both in-domain and out-of-domain datasets. We follow Ilharco et al. [29] and
perform merging with task vectors. Specifically, for a task t, the task-vector τt ∈ Rd is defined as
τt = θtft − θtinit. This operation allows us to focus on the changes that happen during the fine-tuning
phase of each task-specific model and is equivalent to computing a weighted average of the models’
weights with appropriate scaling.

Algorithm 1 TIES-MERGING Procedure.
Input: Fine-tuned models {θt}nt=1, Initialization θinit,

k, and λ.
Output: Merged Model θm
forall t in1, ..., n do

▷ Create task vectors.

τt = θt − θinit
▷ Step 1: Trim redundant parameters.

τ̂t ← keep_topk_reset_rest_to_zero(τt, k)
γ̂t ← sgn(τ̂t)
µ̂t ← |τ̂t|

end
▷ Step 2: Elect Final Signs.

γm = sgn(
∑n

t=1 τ̂t)
▷ Step 3: Disjoint Merge.

forall p in1, ..., d do
Ap = {t ∈ [n] | γ̂p

t = γp
m}

τpm = 1
|Ap|

∑
t∈Ap τ̂

p
t

end
▷ Obtain merged checkpoint

θm ← θinit + λ ∗ τm
return θm

Redundancies in Model Parameters.
First, we demonstrate that in a given task
vector, many values are redundant (denoted
by # in Fig. 2), and removing them does
not affect the performance of the task.
Specifically, Fig. 3 shows the average
performance across eleven task-specific
models when "trimming" each task vector
to retain only the top-k% largest-magnitude
values and resetting the rest to their initial
value (i.e. setting the corresponding value
in the task vector to 0). Fig. 3 shows the
average performance across varying values
of k, demonstrating that keeping only the
top-20% of values delivers comparable
results to retaining all parameters. For
additional details and the results on the
T5 model, please refer to Appendix C.3.
This shows that many parameter changes
introduced during fine-tuning are redundant.
Hence, disregarding those values during
merging could prevent interference with the
influential parameters without compromising
the task’s performance.

Disagreement between Parameter Signs: Different fine-tuned models might introduce opposing
changes to a parameter in their task vectors, causing interference due to conflicting signs (denoted
by 7 in Fig. 2). Fig. 4 presents an analysis of the frequency of sign conflicts when merging varying
numbers of models. We first trim the task vectors for eleven tasks by keeping only the top 20% of
influential parameters. Then, we plot the percentage of parameters that have a sign conflict as we
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increase the number of models to be merged from 2 to 11. Notably, sign conflicts occur even when
merging only 2 models from different tasks or when merging multiple models from the same task
(see Appendix Figure 10), and the likelihood of a sign conflict increases with the number of models
being merged. For additional details and the results on the T5 model, please refer to Appendix C.3.

4 TIES-MERGING: TRIM, ELECT SIGN & MERGE

To address the aforementioned issues, we present TIES-MERGING (TRIM, ELECT SIGN & MERGE),
which aims to address the kinds of interference mentioned above before performing merging.

4.1 Preliminaries

A task vector τt ∈ Rd represents a direction and the amount of movement required in the d-
dimensional parameter space relative to the initialization that leads to a low loss region for the task
t. Each entry in τt (corresponding to a particular parameter) can be thought of as an axis in the
d-dimensional space. The sign of a parameter denotes the direction along this axis (positive or
negative) that decreases the loss on task t. Hence, a given task-vector τt can be decomposed into a
sign vector γt ∈ Rd and a magnitude vector µt ∈ Rd as τt = γt ⊙ µt, where ⊙ is the elementwise
product. Formally, γt = sgn(τt), where sgn(x) ∗ |x| = x and returns a value of +1, 0, or −1. The
magnitude vector µt is defined as µt = |τt| and the value µi

t tells us the movement required in the
i-th dimension from the initialization.

4.2 Steps in TIES-MERGING

To merge multiple task-specific models {θt}nt=1, we first create corresponding task vectors {τt}nt=1.
Given these task vectors, TIES-MERGING method follows three steps in order to perform a merge
(see Fig. 1 for a diagram and Algorithm 1):

1. Trim: For each task t, we trim the redundant parameters from the task vector τt to create τ̂t by
keeping the top-k% values according to their magnitude and trimming the bottom (100−k)% of
the redundant parameters by resetting them to 0. This can be decomposed further as τ̂t = γ̂t⊙ µ̂t.

2. Elect: Next, we create an aggregate elected sign vector γm for the merged model that resolves
the disagreements in the sign for each parameter p across different models. To create the elected
sign vector, we choose the sign with the highest total magnitude across all relevant models. For
each parameter p ∈ {1, 2, . . . , d}, we separate the values {τ̂pt }nt=1 based on their sign (+1 or
−1) and take their sum to calculate the total mass (i.e., total magnitude) in the positive and the
negative direction. We then assign γp

m as the sign with greater total movement. This can be
efficiently computed using γp

m = sgn(
∑n

t=1 τ̂
p
t ).

3. Disjoint Merge: Then, for each parameter p, we compute a disjoint mean by only keeping
the parameter values from the models whose signs are the same as the aggregated elected sign
and calculate their mean. Formally, let Ap = {t ∈ [n] | γ̂p

t = γp
m}, then τpm = 1

|Ap|
∑

t∈Ap τ̂
p
t .

Note that the disjoint mean always ignores the zero values.

Given the final merged task vector τm, we scale it and add it to the initial parameter values to obtain
the merged model parameters θm as θm = θinit + λ ∗ τm, where λ is a scaling hyperparameter (as
used in past work [29]).

5 Experimental Setup

Baseline Methods. We compare TIES-MERGING with four baseline merging methods: (1) Sim-
ple Averaging [9, 82] calculates the element-wise mean of all the individual models and can be
expressed as θm =

∑n
t=1 θt/n. (2) Fisher Merging [45] uses a diagonal approximation of the Fisher

Information Matrix F̂t [34, 3, 18] to measure the importance of each parameter for task t, where
F̂t = Ex∼Dt

Ey∼pθt (y|x)∇θt(log pθt(y|xt))
2. The final merged model is obtained by reweighting

each parameter in each fine-tuned model by the corresponding value in the model’s approximate
Fisher matrix as θm =

∑n
t=1 F̂tθt/

∑n
t=1 F̂t. (3) RegMean [31] computes a closed-form solution to
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Method (↓) Validation PEFT Full Finetuning

Model (→) (IA)3 T5-Base T5-Large ViT-B/32 ViT-L/14
FINE-TUNED - 71.4 82.8 88.8 90.5 94.2
MULTITASK - 73.1 83.6 88.1 88.9 93.5

AVERAGING [82, 9] ✗ - 65.9 59.6 65.8 79.6
TASK ARITHMETIC [29] ✗ - 73.2 73.5 60.4 83.3
TIES-MERGING ✗ - 69.7 [-3.2] 74.4 [+0.9] 72.4 [+6.6] 86.0 [+2.7]

FISHER MERGING [45] ✓ 62.2 68.9 64.6 68.3 82.2
REGMEAN [31] ✓ 58.0 71.2 73.2 71.8 83.7
TASK ARITHMETIC [29] ✓ 63.9 73.2 73.3 70.1 84.5
TIES-MERGING ✓ 66.4 [+2.5] 73.9 [+0.7] 76.9 [+3.6] 73.6 [+1.8] 86.0 [+1.5]

Table 1: Comparing model merging methods across multiple fine-tuning settings and modalities
(NLP and Vision) with and without the availability of a validation set.

a least-squares regression problem that aims to minimize the distance between the merged model’s ac-
tivations and the individual models’ activations as θm = (

∑n
t=1 X

T
t Xt)

−1
∑n

t=1(X
T
t Xtθt), where

Xt is the input activation of a given layer. (4) Task Artithmetic [29] scales and then adds the task
vectors to the initial model to produce the merged model as θm = θinit + λ ∗

∑n
t=1 τt. In addition

to these baselines, we present the performance of the individual fine-tuned models involved in the
merging process as well as the performance of a multi-task model trained on the concatenation
of all tasks’ datasets. For more details on compute resources, dataset licenses, and the finetuning
procedures, refer to Appendix C.1, C.2, and C.6.

Merging in Absence of the Validation Set. Prior works [29, 45, 82] on model merging assume
access to a validation set, which is utilized to compute the Fisher matrix or tune hyper-parameters.
To avoid the need for a validation set, RegMean [31] proposed storing and transmitting inner product
matrices of the training data for each task that are the same size as the original model. This can
quickly become expensive for large models as the storage and transmission scale linearly with model
size and the number of tasks.

To consider the setting where no validation set is available, we developed a generic recipe of TIES-
MERGING with fixed hyperparameters that could be applied in any setting without hyperparameter
tuning on a validation set. The recipe keeps the top-20% parameters in the task vector resetting the
rest to 0 and sets λ = 1. We chose this recipe based on results in the parameter-efficient fine-tuning
(PEFT) setting, so we only apply it to the unseen settings of full model fine-tuning on ViT (vision)
and T5 (language) models. We also compare TIES-MERGING with the Task Arithmetic method
without a validation set by utilizing the recommended value of λ = 0.4 [29]. For further details on
how this recipe was created please refer to Appendix C.4.

6 Main Results

Our main goal is to merge multiple task-specific models into a single multitask model that can perform
well on both in-domain and out-of-domain scenarios. In this section, we evaluate the performance of
TIES-MERGING with other methods across multiple different experimental settings.

Merging PEFT Models. Consider the setting where task vectors are computed based on parameters
introduced during parameter-efficient fine-tuning. Specifically, we focus on (IA)3 [43], a PEFT
method that scales the base model activations with learned vectors. We follow Liu et al. [43] and use
T0-3B [66] as the base model and finetune (IA)3 models on the train split of eleven datasets including
sentence completion (COPA [61], H-SWAG [88], and Story Cloze [68] datasets), natural language
inference (ANLI [49], CB [44], and RTE [11]), coreference resolution (WSC [37] and Winogrande
[64]), and word sense disambiguation (WiC [53]). When fine-tuning (IA)3 parameters added to the
T0-3B model, we use prompt templates from the Public Pool of Prompts (P3 [5]) to convert each
example in each dataset to a prompted text-to-text format where each label corresponds to a different
string. For experiments with (IA)3, for each dataset, we report the median score across all templates.
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Model T5-Base T5-Large
Zeroshot 31.1 27.6

Simple Averaging [9, 82] 31.7 30.4
Fisher [45] 33.8 32.0
RegMean [31] 34.3 36.0
Task Arithmetic [29] 31.9 32.3
TIES-MERGING 35.3 [+1.0] 40.4 [+4.4]

Table 2: TIES-MERGING generalizes better.
Out of Distribution Generalization for T5-Base
and T5-Large on six held-out tasks.

2 3 4 5 6 7

0.7

0.8

0.9

1

1.1
Simple Averaging Task Arithmetic TIES

Number of Tasks

A
vg

. N
or

m
al

iz
ed

 P
er

f.

Figure 5: TIES-MERGING scales better. Aver-
age performance when merging a different num-
ber of tasks.

Table 1 using TIES-MERGING to merge models trained with (IA)3 exceeds the performance of all
other merging methods – with a validation set, TIES-MERGING shows an average enhancement of
2.5% across 11 tasks compared to the top baseline. For detailed results, refer to Appendix Table 8.

Merging Fully Finetuned Vision Models. For image classification, we adhere to the experimental
setting from Ilharco et al. [29, 28]. We employ two variants of the CLIP model [56] with ViT-B/32
and ViT-L/14 models [14] as visual encoders. Subsequently, we finetune the visual encoder on the
eight tasks derived from Ilharco et al. [28, 29], Radford et al. [56] while keeping the text encoder fixed.
This setting considers a variety of classification domains such as remote sensing, traffic classification,
and satellite imagery recognition. Specifically, we work with the following datasets: Cars [35], DTD
[10], EuroSAT [24], GTSRB [71], MNIST [36], RESISC45 [8], SUN397 [84], and SVHN [47].

Table 1 shows that using TIES-MERGING to merge fully fine-tuned ViT-B/32 and ViT-L/14 models
leads to an average improvement of 1.8% and 1.5% over 8 tasks, given the availability of a validation
set. In the absence of a validation set, TIES-MERGING improves by 6.6% and 2.7% over other
methods for ViT-B/32 and ViT-L/14, respectively. Notably, TIES-MERGING without validation
outperforms Task Arithmetic [29] with validation by 2.3% and 1.5% for ViT-B/32 and ViT-L/14. For
more detailed results, refer to Appendix Table 11 and 12.

Merging Fully Finetuned NLP Models. For the NLP domain, we use the T5-base and T5-large
[57] models, which are encoder-decoder transformers [77] pretrained via masked language modeling
on a large text corpus. We finetune both T5-base and T5-large on seven tasks: question answering
(QASC [33], WikiQA [87], and QuaRTz [73]), Paraphrase Identification (PAWS [90]), Sentence
Completion (Story Cloze [68]), and Coreference Resolution (Winogrande [64] and WSC [37]).

Table 1 shows that using TIES-MERGING on T5-base and T5-large models with a validation set
produces an improvement of 0.7% and 3.6% respectively over 7 tasks compared to the state-of-the-art.
Moreover, for T5-large TIES-MERGING without validation outperforms all baselines (even with a
validation set) by 1.1%. For more detailed results, refer to Appendix Table 9 and 10.

Out-of-Domain Generalization. In many use-cases, multitask models are used for their ability to
generalize better to domain shift. Hence, we use the T5-base and T5-large models merged on the
seven in-domain datasets from the previous experiments and evaluate them on six held-out datasets
from T0 mixture [65] to measure out-of-domain generalization. Specifically, we report the average
performance over the following tasks and datasets: Cosmos QA [27], Social IQA [67], and QuAIL
[62] for question answering; WiC [53] for word sense disambiguation; and COPA [61], and H-SWAG
[88] for sentence completion. Table 2 shows that TIES-MERGING outperforms the strongest baseline
for both T5-base and T5-Large by 1.0% and 4.4% respectively, demonstrating better out-of-domain
generalization. For more elaborate results please refer to Appendix B.6 and Table 13 and 14.

Merging Different Number of Tasks. We evaluate the performance of the merged model on the
in-domain tasks as we vary the number of tasks being merged. In Fig. 5, we normalize the accuracy
of each task by its fine-tuned model performance and report the average normalized accuracy on
the in-domain tasks. We compare with the strongest baseline – Task Arithmetic [29] – as well as
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RTE MRPC WNLI
Averaging 59.9 78.2 56.3
Fisher 65.7 81.4 52.1
Ensembling 70.8 86.0 45.1

Task Arithmetic 71.8 86.0 59.2
TIES-MERGING 72.2 86.8 58.8

Table 3: Model soups experimental setup. TIES
improves performance when merging check-
points on the same tasks. For each task, we
merge 10 checkpoints from Huggingface hub and
evaluate on the one task they were trained on.

Init Method RTE MRPC WNLI
PTM Init 66.4 81.8 56.3
Average 75.8 86.5 56.3
Task Arithmetic 78.3 86.2 50.7

TIES-MERGING 80.1 88.0 54.9

Table 4: A TIES-merged model is a better ini-
tialization for finetuning. For each task, we
merge the checkpoints from the 7 other GLUE
tasks and then finetune and evaluate on the se-
lected task.
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(a) Redundant Parameter Interference.
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(b) Sign Interference.

Figure 6: Trimming Parameters and Electing Signs prevents interference. Demonstration of
parameter interference between different models and its impact on parameter values. The Standard
Mean (red) shrinks magnitudes and does it more when there is less agreement on the sign (right) or
the parameter is influential for multiple tasks (left).

simple averaging [82]. Each data point signifies merging a subset of the tasks, with the solid line
representing the mean performance across multiple subsets. For similar results with the T5-base
model, please refer to Appendix C.5 and Figure 13.

From Fig. 5, we observe the following: (1) As the number of merged tasks increases, the performance
of all methods decreases. (2) When merging two tasks, both TIES-MERGING and Task Arithmetic
achieve an average normalized accuracy close to one, indicating negligible performance loss. In
contrast, Simple Averaging suffers from a 10% performance drop. (3) As the number of tasks
increases, the merging performance of Task Arithmetic declines more rapidly than TIES-MERGING.
This suggests that task interference is present when merging multiple tasks and that TIES-MERGING
is more effective at mitigating this issue.

Merging Checkpoints of the Same Task For Better Robustness We perform additional experi-
ments to merge multiple checkpoints trained on the same task (as done in ModelSoups [82]) to see if
it can improve robustness. Typically, ensembling is used to combine different models on the same
task for better generalization. We use the experimental setting and the code from Fisher Merging [45]
to merge top-10 fine-tuned base sized BERT models from huggingface for RTE, MRPC, and WNLI
datasets from GLUE. From the results presented in Table 3, we observe that TIES-MERGING works
the best in all cases except WNLI, where it only slightly underperforms Task Vectors. Notably,
TIES-MERGING provides a dramatic boost over both Fisher Merging, averaging, and outperforms
ensembling in all cases. Moreover, in Appendix B.4, we show that interference exists even between
differently finetuned checkpoints of the same tasks.

Merging Models for Better Initialization. Next, we perform experiments following the setting
[9], where we merge checkpoints from different tasks for a better initialization when fine-tuning on
a downstream task. We take the finetuned bert-base-uncased checkpoints for 8 GLUE [78]
tasks (wnli, sst2, rte, qnli, mrpc, cola, mnli, qqp) from Huggingface [81]. We consider three of
these GLUE tasks (RTE, MRPC, WNLI) as our downstream tasks. When fine-tuning on a particular
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Figure 7: Flipping the signs of high magnitude pa-
rameters leads to catastrophic performance drops.
Average Performance when flipping the directions of
Top-k% and Bottom-k% parameters for each task. We
report the results averaged over eleven (IA)3 tasks.

Method Average
Fine-Tuned 71.4
Multitask 73.1

Averaging [9, 82] 58.0
Task Vectors [29] 63.9
TIES-MERGING 66.4
TIES-MERGING (Oracle Sign) 72.0 [+5.6]

Table 5: TIES-MERGING can perform
close to multitask models if the signs can
be estimated correctly. We use the signs
from the multitask vector as the elected sign
and perform merging and report the perfor-
mance.

downstream task (say RTE), we merge all the checkpoints from the other seven tasks together (apart
from the chosen task). From Table 4, we find that TIES-MERGING works well in this setting and
outperforms all other merging methods by a significant margin (apart from Averaging for WNLI).

7 Additional Results and Analysis

7.1 Types of Interference and Their Effect on Merging

(a) Importance of Removing Redundant Parameters. To better disentangle the effect of re-
dundant parameters on the resulting magnitude of merged parameters, we separate the parameters
into three groups: redundant parameters (using a trimming threshold of 20%), parameters that are
influential to exactly one model, and parameters that are influential to more than one model. We then
compare the parameter values when they are directly merged versus when they are first trimmed and
then (disjointly) merged without electing signs. Specifically, we only take the mean of non-trimmed
values. The results are shown for the PEFT setting in Fig. 6a, which demonstrates that redundant
parameters cause interference. Specifically, we find that when a parameter is not an influential
parameter for any of the task-specific models, the mean value is low, and therefore may be considered
noise. However, when only one model sees the parameter as influential, the merged value can still be
low since other models assign a small value to this parameter. The merged value is larger when more
models see the parameter as influential. When trimming, we see this interference is mostly avoided,
and the average size is mostly the same whether one or more models consider a parameter influential.
This is because we remove the effect of noisy parameters that unnecessarily decrease the magnitude
(see # in Fig. 2). In the Appendix B.5, we bring a more detailed view, including a comparison to
applying TIES-MERGING and show reducing interference encourages diversity in specific parameter
values (std) together with the similarity of their influence (mean).

(b) Importance of Resolving Sign Interference. To quantify the impact of sign interference,
we group the parameters by their sign agreement. A value of 0.5 indicates an equal number of
positive and negative signs for a given parameter across different models, whereas 1 implies all the
parameters have the same sign. We compare the parameter values when those are merged, or when
sign disagreement is first resolved by election and then they are (disjointly) merged. The results in
the PEFT setting are shown in Fig. 6b, where we demonstrate that the ELECT step preserves the
relative parameter magnitudes to avoid sign interference. Specifically, we find that resolving signs
increases the overall parameter magnitudes across different ranges of sign agreements. Parameters
with low agreement tend to be smaller on average regardless of the interference. One potential cause
could be that the sign from noisy parameters pulls the average down, as seen in Fig. 6a. We show
in Appendix B.5 that combining both methods indeed reduces some of the difference, but not all,
suggesting that a high agreement is correlated with overall influential parameters.
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7.2 Relevance of Signs of the Top-k% Parameters

In this experiment, we work with the (IA)3 models and aim to quantify the importance of the top-k%
parameters and their directions on a task’s performance. For each task vector τt, we flip the direction
of each of the top-k% parameters (by magnitude) with a probability p to obtain τ̃t. Flipping the
direction is done by multiplying the parameters with −1. Then we add back this direction flipped τ̃t
to the initialization to get θ̃t = θinit+ τ̃t. Finally, we evaluate θ̃t and compute the average performance
over all tasks t for each value of k and p. As a baseline, we also flip the directions of the bottom
(100− k)% of the parameters. We report the results averaged over three independent runs.

In Fig. 7, we plot the average performance as a function of p, the probability of flipping the direction.
A probability of 0 means that the direction of none of the top-k% parameters is flipped and a value
of 1 means that the direction of all the top-k% parameters is flipped. For the top-20/30% of the
parameters (solid lines), we observe that the performance monotonically decreases as we increase the
probability of flipping the direction. In contrast, flipping the directions of the bottom-80/70% of the
parameters (dashed lines) has little impact on the performance. These results establish the importance
of having the right directions for the parameters with a high magnitude and show the catastrophic
performance drop that happens with incorrect directions.

7.3 Ablation of TIES-MERGING Components

Method T5-base (IA)3

TIES-MERGING 74.5 70.7
− TRIM 73.0 70.6
− ELECT 73.1 69.6
− DISJOINT MEAN 72.6 67.5
− SCALE 72.0 65.5

Table 6: Ablation on all the steps of
TIES-MERGING.

We perform ablations on the individual components of
TIES-MERGING to assess their importance. In Table 6,
we start with TIES-MERGING and remove one component
at a time and report the performance on the validation
set for full model merging (T5-base) and merging PEFT
models ((IA)3 on T03B). Removing elect while keeping
the disjoint mean refers to taking the mean of values with
signs +1 and −1 but not including the 0 values of the
trimmed task vectors in the mean. Removing disjoint
mean but trimming and electing refers to taking the mean
of the values with the elected signs and the 0 for the trimmed values. Removing scaling means
using λ = 1. Table 6 shows that all components of the method are crucial for optimal performance.
Specifically, scaling and the disjoint mean emerge as the most crucial, causing performance declines
of 2.5% and 1.9% in T5-base, and 5.2% and 3.2% in (IA)3, respectively.

7.4 Importance of Estimating Correct Signs When Merging Models

Given the importance of sign vectors, we now aim to understand the performance that can be obtained
by TIES-MERGING if we can use the oracle sign vector from the multitask model. To test this, we
train a multitask (IA)3 model, θmult, on the eleven tasks under consideration (as in § 6). We then
create the multitask vector τmult and the multitask sign vector γmult. Next, while merging models
using TIES-MERGING, we assume access to the oracle multitask-sign-vector γmult. Hence, we skip
the conflict resolution step and directly set γm = γmult. Surprisingly, from Table 5, we observe that
when merging tasks by using the oracle sign vector, we get a performance of 72% compared to 73.1%
for the multitask trained model. Moreover, on average the merged model performs better task-specific
models. This implies that if we can obtain the correction directions for the merged model, then we
can closely bridge the gap to multitask models. In Appendix B.1 and Table 7, we attempt to estimate
the multitask-sign-vector by using limited data.

8 Conclusion

We introduced TIES-MERGING to address interference when merging models. TIES-MERGING trims
low-magnitude changes in fine-tuned model’s values and then resolves sign disagreements across the
models being merged. We found experimentally that TIES-MERGING enhances the performance of
the merged multitask model across various settings and domains, despite being simple with fixed
hyperparameters. Our study also sheds light on the impact of different types of interference on model
parameters and emphasizes the importance of signs in the merging process. For some discussion on
limitations and future directions please refer to Appendix A.

10



Acknowledgements

We thank Yi-Lin Sung, Shiyue Zhang, Archiki Prasad, and the reviewers for their valuable feedback
on this paper. This work is supported by NSF-AI Engage Institute DRL211263, NSF-CAREER
Award 1846185, DARPA MCS Grant N66001-19-2-4031, and NSF Grant 2145822. The views,
opinions, and/or findings contained in this article are those of the authors and not of the funding
agency.

References
[1] S. K. Ainsworth, J. Hayase, and S. Srinivasa. Git re-basin: Merging models modulo permutation

symmetries, 2022. https://arxiv.org/abs/2209.04836.

[2] A. Albalak, C. Raffel, and W. Y. Wang. Improving few-shot generalization by exploring and
exploiting auxiliary data. arXiv preprint arXiv:2302.00674, 2023.

[3] S. Amari. Neural learning in structured parameter spaces - natural riemannian gradient. In
NIPS, 1996.

[4] D. Arpit, H. Wang, Y. Zhou, and C. Xiong. Ensemble of averages: Improving model selection
and boosting performance in domain generalization. arXiv preprint arXiv:2110.10832, 2021.

[5] S. H. Bach, V. Sanh, Z.-X. Yong, A. Webson, C. Raffel, N. V. Nayak, A. Sharma, T. Kim, M. S.
Bari, T. Févry, et al. PromptSource: An integrated development environment and repository for
natural language prompts. arXiv preprint arXiv:2202.01279, 2022.

[6] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein,
J. Bohg, A. Bosselut, E. Brunskill, et al. On the opportunities and risks of foundation models,
2021. https://arxiv.org/abs/2108.07258.

[7] J. Cha, S. Chun, K. Lee, H.-C. Cho, S. Park, Y. Lee, and S. Park. Swad: Domain generalization
by seeking flat minima. Advances in Neural Information Processing Systems, 34:22405–22418,
2021.

[8] G. Cheng, J. Han, and X. Lu. Remote sensing image scene classification: Benchmark and state
of the art. Proceedings of the Institute of Electrical and Electronics Engineers (IEEE), 2017.
https://ieeexplore.ieee.org/abstract/document/7891544.

[9] L. Choshen, E. Venezian, N. Slonim, and Y. Katz. Fusing finetuned models for better pretraining,
2022. https://arxiv.org/abs/2204.03044.

[10] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi. Describing
textures in the wild. In Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2014. https://openaccess.thecvf.com/content_cvpr_2014/
html/Cimpoi_Describing_Textures_in_2014_CVPR_paper.html.

[11] I. Dagan, O. Glickman, and B. Magnini. The pascal recognising textual entailment challenge.
In Machine Learning Challenges Workshop, 2005. https://link.springer.com/
chapter/10.1007/11736790_9.

[12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[13] S. Don-Yehiya, E. Venezian, C. Raffel, N. Slonim, Y. Katz, and L. Choshen. Cold fusion:
Collaborative descent for distributed multitask finetuning, 2022. https://arxiv.org/
abs/2212.01378.

[14] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16
words: Transformers for image recognition at scale. In International Conference on Learning
Representations (ICLR), 2021. https://openreview.net/forum?id=YicbFdNTTy.

11

https://arxiv.org/abs/2209.04836
https://arxiv.org/abs/2108.07258
https://ieeexplore.ieee.org/abstract/document/7891544
https://arxiv.org/abs/2204.03044
https://openaccess.thecvf.com/content_cvpr_2014/html/Cimpoi_Describing_Textures_in_2014_CVPR_paper.html
https://openaccess.thecvf.com/content_cvpr_2014/html/Cimpoi_Describing_Textures_in_2014_CVPR_paper.html
https://link.springer.com/chapter/10.1007/11736790_9
https://link.springer.com/chapter/10.1007/11736790_9
https://arxiv.org/abs/2212.01378
https://arxiv.org/abs/2212.01378
https://openreview.net/forum?id=YicbFdNTTy


[15] F. Draxler, K. Veschgini, M. Salmhofer, and F. Hamprecht. Essentially no barriers in neural
network energy landscape. In International Conference on Machine Learning (ICML), 2018.
https://arxiv.org/abs/1803.00885.

[16] R. Entezari, H. Sedghi, O. Saukh, and B. Neyshabur. The role of permutation invariance in
linear mode connectivity of neural networks. arXiv preprint arXiv:2110.06296, 2021.

[17] C. Fifty, E. Amid, Z. Zhao, T. Yu, R. Anil, and C. Finn. Efficiently identifying task groupings
for multi-task learning. Advances in Neural Information Processing Systems, 34:27503–27516,
2021.

[18] R. A. Fisher. On the mathematical foundations of theoretical statistics. Philosophical transac-
tions of the Royal Society of London. Series A, containing papers of a mathematical or physical
character, 222(594-604):309–368, 1922.

[19] J. Frankle, G. K. Dziugaite, D. Roy, and M. Carbin. Linear mode connectivity and the
lottery ticket hypothesis. In International Conference on Machine Learning (ICML), 2020.
https://proceedings.mlr.press/v119/frankle20a.html.

[20] C. D. Freeman and J. Bruna. Topology and geometry of half-rectified network optimization.
arXiv preprint arXiv:1611.01540, 2016.

[21] T. Garipov, P. Izmailov, D. Podoprikhin, D. Vetrov, and A. G. Wilson. Loss surfaces, mode
connectivity, and fast ensembling of dnns. In Advances in Neural Information Processing
Systems (NeurIPS), 2018. https://arxiv.org/abs/1802.10026.

[22] A. Gueta, E. Venezian, C. Raffel, N. Slonim, Y. Katz, and L. Choshen. Knowledge is a region
in weight space for fine-tuned language models. arXiv preprint arXiv:2302.04863, 2023.

[23] V. Gupta, S. A. Serrano, and D. DeCoste. Stochastic weight averaging in parallel: Large-batch
training that generalizes well. International Conference on Learning Representations, 2020.

[24] P. Helber, B. Bischke, A. Dengel, and D. Borth. Eurosat: A novel dataset and deep learning
benchmark for land use and land cover classification. Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 2019. https://arxiv.org/abs/1709.00029.

[25] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste. Sparsity in deep learning: Pruning
and growth for efficient inference and training in neural networks. The Journal of Machine
Learning Research, 22(1):10882–11005, 2021.

[26] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, and W. Chen. LoRA: Low-rank
adaptation of large language models. ArXiv, abs/2106.09685, 2021.

[27] L. Huang, R. Le Bras, C. Bhagavatula, and Y. Choi. Cosmos qa: Machine reading compre-
hension with contextual commonsense reasoning. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pages 2391–2401, 2019.

[28] G. Ilharco, M. Wortsman, S. Y. Gadre, S. Song, H. Hajishirzi, S. Kornblith, A. Farhadi, and
L. Schmidt. Patching open-vocabulary models by interpolating weights. In Advances in
Neural Information Processing Systems (NeurIPS), 2022. https://arXiv.org/abs/
2208.05592.

[29] G. Ilharco, M. T. Ribeiro, M. Wortsman, L. Schmidt, H. Hajishirzi, and A. Farhadi. Editing mod-
els with task arithmetic. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=6t0Kwf8-jrj.

[30] P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. G. Wilson. Averaging weights
leads to wider optima and better generalization. In Conference on Uncertainty in Artificial
Intelligence (UAI), 2018. https://arxiv.org/abs/1803.05407.

[31] X. Jin, X. Ren, D. Preotiuc-Pietro, and P. Cheng. Dataless knowledge fusion by merging weights
of language models. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=FCnohuR6AnM.

12

https://arxiv.org/abs/1803.00885
https://proceedings.mlr.press/v119/frankle20a.html
https://arxiv.org/abs/1802.10026
https://arxiv.org/abs/1709.00029
https://arXiv.org/abs/2208.05592
https://arXiv.org/abs/2208.05592
https://openreview.net/forum?id=6t0Kwf8-jrj
https://arxiv.org/abs/1803.05407
https://openreview.net/forum?id=FCnohuR6AnM


[32] K. Jordan, H. Sedghi, O. Saukh, R. Entezari, and B. Neyshabur. REPAIR: REnormalizing per-
muted activations for interpolation repair. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=gU5sJ6ZggcX.

[33] T. Khot, P. Clark, M. Guerquin, P. Jansen, and A. Sabharwal. Qasc: A dataset for question
answering via sentence composition. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 8082–8090, 2020.

[34] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan,
J. Quan, T. Ramalho, A. Grabska-Barwinska, et al. Overcoming catastrophic forgetting in
neural networks. Proceedings of the National Academy of Sciences (PNAS), 2017. https:
//arxiv.org/abs/1612.00796.

[35] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object representations for fine-grained
categorization. In International Conference on Computer Vision Workshops (ICML),
2013. https://www.cv-foundation.org/openaccess/content_iccv_
workshops_2013/W19/html/Krause_3D_Object_Representations_2013_
ICCV_paper.html.

[36] Y. LeCun. The mnist database of handwritten digits, 1998. http://yann.lecun.com/
exdb/mnist/.

[37] H. Levesque, E. Davis, and L. Morgenstern. The winograd schema challenge. Thirteenth
International Conference on the Principles of Knowledge Representation and Reasoning, 2012.

[38] M. Li, S. Gururangan, T. Dettmers, M. Lewis, T. Althoff, N. A. Smith, and L. Zettlemoyer.
Branch-train-merge: Embarrassingly parallel training of expert language models, 2022. https:
//arxiv.org/abs/2208.03306.

[39] P. Li, Z. Zhang, P. Yadav, Y.-L. Sung, Y. Cheng, M. Bansal, and T. Chen. Merge, then compress:
Demystify efficient smoe with hints from its routing policy, 2023.

[40] W. Li, Y. Peng, M. Zhang, L. Ding, H. Hu, and L. Shen. Deep model fusion: A survey. arXiv
preprint arXiv:2309.15698, 2023.

[41] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang. On the convergence of fedavg on non-iid
data. In International Conference on Learning Representations, 2019.

[42] Y. Li, J. Yosinski, J. Clune, H. Lipson, and J. Hopcroft. Convergent learning: Do different
neural networks learn the same representations? arXiv preprint arXiv:1511.07543, 2015.

[43] H. Liu, D. Tam, M. Muqeeth, J. Mohta, T. Huang, M. Bansal, and C. A. Raffel. Few-shot
parameter-efficient fine-tuning is better and cheaper than in-context learning. Advances in
Neural Information Processing Systems, 35:1950–1965, 2022.

[44] M.-C. d. Marneffe, M. Simons, and J. Tonhauser. The CommitmentBank: Investigating
projection in naturally occurring discourse. Proceedings of Sinn und Bedeutung 23, 2019.

[45] M. Matena and C. Raffel. Merging models with fisher-weighted averaging. In Advances in
Neural Information Processing Systems (NeurIPS), 2021. https://arxiv.org/abs/
2111.09832.

[46] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient
learning of deep networks from decentralized data. In Artificial intelligence and statistics, pages
1273–1282. PMLR, 2017.

[47] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in nat-
ural images with unsupervised feature learning. In Advances in Neural Information Pro-
cessing Systems (NeurIPS) Workshops, 2011. https://storage.googleapis.com/
pub-tools-public-publication-data/pdf/37648.pdf.

[48] B. Neyshabur, H. Sedghi, and C. Zhang. What is being transferred in transfer learning?
Advances in neural information processing systems, 33:512–523, 2020.

13

https://openreview.net/forum?id=gU5sJ6ZggcX
https://arxiv.org/abs/1612.00796
https://arxiv.org/abs/1612.00796
https://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W19/html/Krause_3D_Object_Representations_2013_ICCV_paper.html
https://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W19/html/Krause_3D_Object_Representations_2013_ICCV_paper.html
https://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W19/html/Krause_3D_Object_Representations_2013_ICCV_paper.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/2208.03306
https://arxiv.org/abs/2208.03306
https://arxiv.org/abs/2111.09832
https://arxiv.org/abs/2111.09832
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/37648.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/37648.pdf


[49] Y. Nie, A. Williams, E. Dinan, M. Bansal, J. Weston, and D. Kiela. Adversarial NLI: A new
benchmark for natural language understanding. arXiv preprint arXiv:1910.14599, 2019.

[50] H. Orgad, B. Kawar, and Y. Belinkov. Editing implicit assumptions in text-to-image diffusion
models. arXiv preprint arXiv:2303.08084, 2023.

[51] G. Ortiz-Jiménez, A. Favero, and P. Frossard. Task arithmetic in the tangent space: Improved
editing of pre-trained models. NeurIPS, 2023. https://arxiv.org/abs/2305:12827.

[52] J. Phang, T. Févry, and S. R. Bowman. Sentence encoders on stilts: Supplementary training on
intermediate labeled-data tasks. arXiv preprint arXiv:1811.01088, 2018.

[53] M. T. Pilehvar and J. Camacho-Collados. WiC: The word-in-context dataset for evaluating
context-sensitive meaning representations. In Proceedings of NAACL-HLT, 2019.

[54] C. Poth, J. Pfeiffer, A. Rücklé, and I. Gurevych. What to pre-train on? Efficient intermediate task
selection. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 10585–10605, Online and Punta Cana, Dominican Republic, Nov. 2021.

[55] Y. Pruksachatkun, J. Phang, H. Liu, P. M. Htut, X. Zhang, R. Y. Pang, C. Vania, K. Kann, and
S. R. Bowman. Intermediate-task transfer learning with pretrained language models: When
and why does it work? In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 5231–5247, Online, July 2020.

[56] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from
natural language supervision. In International Conference on Machine Learning (ICML), 2021.
https://arxiv.org/abs/2103.00020.

[57] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J.
Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of
Machine Learning Research (JMLR), 2020. http://jmlr.org/papers/v21/20-074.
html.

[58] C. Raffel, N. M. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J.
Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. ArXiv,
abs/1910.10683, 2020.

[59] A. Ramé, K. Ahuja, J. Zhang, M. Cord, L. Bottou, and D. Lopez-Paz. Model ratatouille: Recy-
cling diverse models for out-of-distribution generalization. arXiv preprint arXiv:2212.10445,
2022.

[60] A. Ramé, M. Kirchmeyer, T. Rahier, A. Rakotomamonjy, P. Gallinari, and M. Cord. Diverse
weight averaging for out-of-distribution generalization. ICML, 2023.

[61] M. Roemmele, C. A. Bejan, and A. S. Gordon. Choice of plausible alternatives: An evaluation
of commonsense causal reasoning. 2011 AAAI Spring Symposium Series, 2011.

[62] A. Rogers, O. Kovaleva, M. Downey, and A. Rumshisky. Getting closer to AI complete question
answering: A set of prerequisite real tasks. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 8722–8731. AAAI
Press, 2020. URL https://aaai.org/ojs/index.php/AAAI/article/view/
6398.

[63] S. Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

[64] K. Sakaguchi, R. Le Bras, C. Bhagavatula, and Y. Choi. Winogrande: An adversarial winograd
schema challenge at scale. In Proceedings of the AAAI Conference on Artificial Intelligence,
2020.

14

https://arxiv.org/abs/2305:12827
https://arxiv.org/abs/2103.00020
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aaai.org/ojs/index.php/AAAI/article/view/6398
https://aaai.org/ojs/index.php/AAAI/article/view/6398


[65] V. Sanh, A. Webson, C. Raffel, S. H. Bach, L. Sutawika, Z. Alyafeai, A. Chaffin, A. Stiegler,
T. L. Scao, A. Raja, et al. Multitask prompted training enables zero-shot task generalization.
arXiv preprint arXiv:2110.08207, 2021.

[66] V. Sanh, A. Webson, C. Raffel, S. H. Bach, L. Sutawika, Z. Alyafeai, A. Chaffin, A. Stiegler,
T. L. Scao, A. Raja, et al. Multitask prompted training enables zero-shot task generalization.
In International Conference on Learning Representations (ICLR), 2021. https://arxiv.
org/abs/2110.08207.

[67] M. Sap, H. Rashkin, D. Chen, R. Le Bras, and Y. Choi. Social iqa: Commonsense reasoning
about social interactions. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 4463–4473, 2019.

[68] R. Sharma, J. Allen, O. Bakhshandeh, and N. Mostafazadeh. Tackling the story ending biases
in the story cloze test. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pages 752–757, 2018.

[69] E. Shnarch, A. Halfon, A. Gera, M. Danilevsky, Y. Katsis, L. Choshen, M. S. Cooper, D. Epel-
boim, Z. Zhang, D. Wang, et al. Label sleuth: From unlabeled text to a classifier in a few hours.
In Conference on Empirical Methods in Natural Language Processing, 2022.

[70] S. P. Singh and M. Jaggi. Model fusion via optimal transport. Advances in Neural Information
Processing Systems, 33:22045–22055, 2020.

[71] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. The german traffic sign recognition
benchmark: a multi-class classification competition. In International Joint Conference on Neural
Networks (IJCNN), 2011. https://ieeexplore.ieee.org/document/6033395.

[72] Y.-L. Sung, L. Li, K. Lin, Z. Gan, M. Bansal, and L. Wang. An empirical study of multimodal
model merging. Empirical Methods in Natural Language Processing (Findings), 2023.

[73] O. Tafjord, M. Gardner, K. Lin, and P. Clark. Quartz: An open-domain dataset of qualitative
relationship questions. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 5941–5946, 2019.

[74] N. Tatro, P.-Y. Chen, P. Das, I. Melnyk, P. Sattigeri, and R. Lai. Optimizing mode connectivity
via neuron alignment. Advances in Neural Information Processing Systems, 33:15300–15311,
2020.

[75] Y. Tay, M. Dehghani, V. Q. Tran, X. Garcia, J. Wei, X. Wang, H. W. Chung, D. Bahri, T. Schuster,
S. Zheng, et al. Ul2: Unifying language learning paradigms. In The Eleventh International
Conference on Learning Representations, 2022.

[76] G. Thimm and E. Fiesler. Evaluating pruning methods. In International Symposium on Artificial
Neural Networks, 1995.

[77] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in Neural Information Processing Systems
(NeurIPS), 2017. https://arxiv.org/abs/1706.03762.

[78] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. Glue: A multi-task bench-
mark and analysis platform for natural language understanding. In International Conference on
Learning Representations (ICLR), 2018. https://arxiv.org/abs/1804.07461.

[79] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khazaeni. Federated learning with
matched averaging. In International Conference on Learning Representations, 2020.

[80] O. Weller, K. Seppi, and M. Gardner. When to use multi-task learning vs intermediate fine-
tuning for pre-trained encoder transfer learning. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 2: Short Papers), pages 272–282,
Dublin, Ireland, May 2022.

15

https://arxiv.org/abs/2110.08207
https://arxiv.org/abs/2110.08207
https://ieeexplore.ieee.org/document/6033395
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1804.07461


[81] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,
M. Funtowicz, et al. Huggingface’s transformers: State-of-the-art natural language processing,
2019. https://arxiv.org/abs/1910.03771.

[82] M. Wortsman, G. Ilharco, S. Y. Gadre, R. Roelofs, R. Gontijo-Lopes, A. S. Morcos,
H. Namkoong, A. Farhadi, Y. Carmon, S. Kornblith, et al. Model soups: averaging weights
of multiple fine-tuned models improves accuracy without increasing inference time. In Inter-
national Conference on Machine Learning (ICML), 2022. https://arxiv.org/abs/
2203.05482.

[83] M. Wortsman, G. Ilharco, M. Li, J. W. Kim, H. Hajishirzi, A. Farhadi, H. Namkoong, and
L. Schmidt. Robust fine-tuning of zero-shot models. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2022. https://arxiv.org/abs/2109.01903.

[84] J. Xiao, K. A. Ehinger, J. Hays, A. Torralba, and A. Oliva. Sun database: Exploring a
large collection of scene categories. International Journal of Computer Vision (IJCV), 2016.
https://link.springer.com/article/10.1007/s11263-014-0748-y.

[85] P. Yadav and M. Bansal. Exclusive supermask subnetwork training for continual learning.
In Findings of the Association for Computational Linguistics: ACL 2023, pages 569–587,
Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
findings-acl.36. URL https://aclanthology.org/2023.findings-acl.36.

[86] P. Yadav, Q. Sun, H. Ding, X. Li, D. Zhang, M. Tan, P. Bhatia, X. Ma, R. Nallapati,
M. K. Ramanathan, M. Bansal, and B. Xiang. Exploring continual learning for code gen-
eration models. In Proceedings of the 61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers), pages 782–792, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-short.68. URL
https://aclanthology.org/2023.acl-short.68.

[87] Y. Yang, W.-t. Yih, and C. Meek. WikiQA: A challenge dataset for open-domain question
answering. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 2013–2018, Lisbon, Portugal, Sept. 2015. Association for Computational Lin-
guistics. doi: 10.18653/v1/D15-1237. URL https://aclanthology.org/D15-1237.

[88] R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi. HellaSwag: Can a machine really
finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

[89] Y. Zhang and Q. Yang. A survey on multi-task learning. IEEE Transactions on Knowledge and
Data Engineering, 34(12):5586–5609, 2021.

[90] Y. Zhang, J. Baldridge, and L. He. PAWS: Paraphrase Adversaries from Word Scrambling. In
Proc. of NAACL, 2019.

[91] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He. A comprehensive
survey on transfer learning. Proceedings of the IEEE, 2020. https://arxiv.org/abs/
1911.02685.

16

https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/2203.05482
https://arxiv.org/abs/2203.05482
https://arxiv.org/abs/2109.01903
https://link.springer.com/article/10.1007/s11263-014-0748-y
https://aclanthology.org/2023.findings-acl.36
https://aclanthology.org/2023.acl-short.68
https://aclanthology.org/D15-1237
https://arxiv.org/abs/1911.02685
https://arxiv.org/abs/1911.02685


Appendix for TIES-MERGING

A Limitations and Future Works

Our works share the same general limitations of existing merging methods, like (1) a limited
theoretical understanding of why and when weight interpolation works, what are the important
underlying factors, and its proper connections with mode connectivity. Recent works like [50]
have demonstrated interesting relationships between weight disentanglement and mergingability of
models; (2) that merging relies on common initialization and model architecture; and (3) merging
individual-task models to create a multitask still lags behind the simultaneous multitask training.
Moreover, it is not clear how to select the checkpoints for merging in order to create multitask models
useful for specific domains. In addition, while our method provides a way to choose signs when
merging task vectors, we still find that using the signs from a multitask model performs better. Some
potential future works include figuring out a good way to estimate multitask signs without having
access to the multitask model as this has the potential to bridge the gap between multitask merging
and multitask training (as demonstrated in Section 7.4).

B Additional Results

Method Estimating Sign Average
Multitask Samples Init.

Fine-Tuned - - - 71.4
Multitask - - - 73.1

Averaging [9, 82] - - - 58.0
Task Vectors [29] - - - 63.9
TIES-MERGING - - - 66.4

TIES-MERGING
✓ 32 scratch 66.5 [+0.1]
✓ 32 mean 67.7 [+1.2]
✓ All scratch 72.0 [+5.6]

Table 7: Merging Performance can be improved by estimating the Sign Vector by performing
few-shot multitask training. We use the estimated sign as the elected sign and perform merging.

B.1 Enhancing Performance by Estimating the Multitask Sign Vector.

Considering the findings, we inquire whether it is possible to efficiently acquire multitask sign vectors
without extensive multitask training. Our proposal involves utilizing a limited number of validation
samples from each task to cheaply train a multitask model and subsequently derive the relevant sign
vector. We create two multitask (IA)3 models: one developed from scratch and another initialized
using the average of task-specific (IA)3 models intended for merging. We use 32 validation examples
from each task to train this model. In Table 5, we notice using the sign vector from the fewshot
multitask model initialized with mean yielded a performance increase of 3.8% and 1.3% compared to
Task Arithmetic and TIES-MERGING. Interestingly, training fewshot multitask training from scratch
did not yield significant improvements over TIES-MERGING without sign estimation. We believe
that exploring this area further may result in improved merging techniques.

B.2 Effect of Hyper-Parameters λ and K on the Performance.

In Figure 8 (left and middle), we plot the effect of λ on the performance when merging T5-base
and T5-large models trained on GLUE (Similar to Table-1). For TIES-MERGING, we vary around
the value 1 because TIES takes the mean of task vectors, whereas task arithmetic adds up the task
vectors. Hence, a value of 1 for TIES is similar to using 1

#tasks for Task Arithmetic [29]. The range
of 0.8-1.8 for TIES was selected based on preliminary experiments on the PEFT setting (as mentioned
in Section 5). We find that TIES-MERGING is much less sensitive to changes in (with an accuracy
range of 68-75% across the considered values of λ) compared to Task Arithmetic (with an accuracy
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Figure 8: Performance as a function of hyperparameters. For more details please refer to the
response to our general response.
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Figure 9: Sign conflict increases as we trim less parameters. For each task, we merge 10 different
checkpoints from hunggingface hub and plot the sign conflict as a function of keeping only the
top-k% parameters.
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Figure 10: Sign Conflict exists even when merging multiple checkpoints for the same task. The
first three plots are for RTE, MRPC, WNLI datasets when merging 10 Huggingface checkpoints,
while the last one is when merging different tasks (Figure 4 from the main paper).

range of 55-75). Figure 8 (right) demonstrates the effect of k as we increment the value of k in
steps of 10 and skip k = 0 as that would select no parameters. We observe that as k increases the
performance drops and then saturates. However, we would like to note that this curve might change
based on the distribution of the parameter values in the task vector.

B.3 Sign Conflict Increases as We Trim Less Parameters

In Figure 9, we merge 10 bert-base-uncased checkpoints from huggingface finetuned on for
three different glue tasks (RTE, MRPC, and WNLI) and plot the sign conflict as a function of k. As
we keep more and more parameters, the sign conflict increases and reaches almost 80%. This is also
expected as there are many more nonzero parameters that can create conflict even if their magnitude
is small.

B.4 Sign Conflicts Exists Between Different Checkpoints for the Same Task

In Figure 10, we show that sign conflicts exist even within models trained on the same task. We
plotted the sign conflict (similar to Figure 4) between the 10 checkpoints of RTE, MRPC, and WNLI
from Huggingface. As the number of checkpoints increases, sign conflict increases. We also compare
this with the sign interference when merging different task checkpoints and find a similar degree
of interference in all of these cases. Hence, sign conflicts exist even within models trained on the
same dataset. We suspect that this is because models are highly overparameterized and hence there
are multiple subnetworks (subsets of parameters) that could lead to the same performance where
different finetuning runs update the same parameters in different directions.
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Figure 11: Effect of different types of Merging on the Magnitudes of the Parameters. Here we
additionally compare with TIES-MERGING and also provide the standard deviation of parameter
values. A high std implies that there is some diversity in magnitude values across different parameters.
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Figure 12: Plots for T5-Base model.

Method Validation Average rte cb winogrande wic wsc copa h-swag story cloze anli-r1 anli-r2 anli-r3
Zeroshot - 55.3 79.8 46.4 52.8 54.1 45.2 85 36.1 91 39.7 37.6 40.5
Fine-Tuned - 71.4 82.7 95.8 75.1 71.7 65.3 85.3 44.4 94.9 70.2 46.5 53
Multitask (All, scratch) - 73.1 88.6 95.8 75.5 61.1 80.6 94.1 42.3 97.6 70.5 49.8 47.7
Multitask (32, scratch) - 60.9 74.9 79.2 59.3 49.2 63.9 80.9 39.5 91.6 49.4 41.9 40.1
Multitask (32, mean) - 65.2 79.8 83.3 61.6 54.2 66.7 85.3 41.1 94.4 58.1 46.0 46.5

Averaging ✗ 58 81.2 58.3 53.8 55.2 53.5 80.9 40.1 92.5 43.3 39.2 40.2
Task Arithmetic ✗ 59.2 76.5 79.2 57.7 51.6 51.4 66.2 31.4 81.5 59.8 47.5 48.2
TIES-MERGING ✗ 64.9 81.2 87.5 60.8 59.9 58.3 80.2 42.6 91.1 58.1 46.5 47.4

Fisher Merging ✓ 62.2 83.3 83.3 56.7 54.2 58.3 83.1 42.2 94.1 45.9 41.0 42.2
RegMean ✓ 58 81.2 58.3 53.8 55.2 53.5 80.9 40.1 92.5 43.3 39.2 40.2
Task Arithmetic ✓ 63.9 74.1 83.3 62.8 49.1 49.3 87.5 41.5 95.3 60.8 49.4 50.0
TIES-MERGING ✓ 66.4 78.0 83.3 67.9 57.6 59.7 81.7 42.8 90.3 66.9 51.3 51.1

Table 8: Test set performance when merging IA3 models on eleven tasks. Please refer to Section 6
for experimental details.

B.5 Detailed Results for Types of Interference and Their Effect on Merging

In Section 7.1 and Figure 6, we showed the effect of redundant parameters and sign conflicts on
parameter magnitudes when comparing simple averaging vs disjoint mean after either trimming
or electing and showed that performing these operations helps with the parameter magnitudes. In
Figure 11, we additionally compare with TIES-MERGING and show that performing both trimming
and electing usually results in higher magnitude and also higher standard deviation in parameter
magnitudes. Higher std denotes that all parameter values in the merged model are the same and
that there is a significant variation in the magnitude which is in contrast to simple averaging as it
decreases the magnitude of not redundant parameters and reduces the magnitude of the influential
parameters in the merged model. Similar plots for the T5-base model are provided in Figure 12.
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B.6 Comprehensive Task-Level Results

We provide the task level for all the in-domain evaluation experiments in the main Table 1. Ta-
ble 8, 9, 10, 11, and 12 provide the task level results IA3 [43], T5-Base, T5-Large [58], ViT-B/32,
and ViT-L/14 [14] respectively. The task level results of the out-of-domain experiments for T5-Base
and T5-Large can be found in Table 13, and 14. Lastly, Figure 13, shows the scaling of the T5-Base
model as we merge different numbers of tasks.

Method Vailidation Average paws qasc quartz story_cloze wiki_qa winogrande wsc
Zeroshot - 53.5 49.9 35.8 53.3 48.1 76.2 50 61.1
Fine-tuned - 82.8 94.3 98.3 80.4 84.7 95.5 64.1 62.5
Multitask - 83.6 94 97.9 82.5 86.7 95 64.1 65.3

Averaging ✗ 65.9 66.4 82.6 60.2 49.5 94.1 50.4 58.3
Task Arithmetic ✗ 73.9 73.3 93.5 68.2 76.5 93.7 55.5 56.9
TIES-MERGING ✗ 69.7 74 83.3 70.3 64.2 84.7 55.9 55.6

Fisher Merging ✓ 68.9 69.3 85.7 63.6 56.4 93.8 50.9 62.5
RegMean ✓ 71.2 76.8 96.2 62.5 55 94.8 51.9 61.1
Task Arithmetic ✓ 73.2 73.4 93.3 67.1 71.7 94.1 52.9 59.7
TIES-MERGING ✓ 73.9 79.3 88.6 71.8 72.9 82.5 61.3 61.1

Table 9: Test set performance when merging T5-base models on seven tasks. Please refer to Section
6 for experimental details.

Method Validation Average paws qasc quartz story_cloze wiki_qa winogrande wsc
Zeroshot - 51.7 55.4 14.3 54.1 54.1 71 49.3 63.9
Fine-tuned - 88.8 94.4 98.9 87.8 90.8 96 74.7 79.2
Multitask - 88.1 94.2 98.5 89.3 92 95.4 73.5 73.6

Averaging ✗ 59.6 61.3 82.6 70.5 53.7 63.2 49.7 36.1
Task Arithmetic ✗ 73.5 79.2 96.8 80.2 83.6 58.6 60.2 55.6
TIES-MERGING ✗ 74.4 80.5 96.2 81.8 78.6 62 61.9 59.7

Fisher Merging ✓ 64.6 60.4 81.7 75 60.1 88.6 50 36.1
RegMean ✓ 73.2 86 96.9 80.7 78.6 82.6 51.8 36.1
Task Arithmetic ✓ 73.3 77.8 96 78.6 86.4 59.1 62.3 52.8
TIES-MERGING ✓ 76.9 81.5 96.2 80.1 83.6 64.9 66.5 65.3

Table 10: Test set performance when merging T5-large models on seven tasks. Please refer to Section
6 for experimental details.

Method Validation Average SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD
Individual - 90.5 75.3 77.7 96.1 99.7 97.5 98.7 99.7 79.4
Multitask - 88.9 74.4 77.9 98.2 98.9 99.5 93.9 72.9 95.8

Averaging ✗ 65.8 65.3 63.4 71.4 71.7 64.2 52.8 87.5 50.1
Task Arithmetic ✗ 60.4 36.7 41 53.8 64.4 80.6 66 98.1 42.5
TIES-MERGING ✗ 72.4 59.8 58.6 70.7 79.7 86.2 72.1 98.3 54.2

Fisher Merging ✓ 68.3 68.6 69.2 70.7 66.4 72.9 51.1 87.9 59.9
RegMean ✓ 71.8 65.3 63.5 75.6 78.6 78.1 67.4 93.7 52
Task Arithmetic ✓ 70.1 63.8 62.1 72 77.6 74.4 65.1 94 52.2
TIES-MERGING ✓ 73.6 64.8 62.9 74.3 78.9 83.1 71.4 97.6 56.2

Table 11: Test set performance when merging ViT-B/32 models on eight tasks. Please refer to
Section 6 for experimental details.

C Implementation Details

C.1 Compute Resources Used and Runtimes

We executed all our experiments on Nvidia A6000 GPUs equipped with 48GB RAM. Single-task
(IA)3 models for eleven tasks required 1-2 hours per model, while the multitask vector took around
24 hours on four GPUs. The T5-Base and T5-Large models, based on dataset size, needed between
15 minutes and 2 hours per task, and approximately eight hours for the multitask checkpoint. Vision
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Method Validation Average SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD
Fine-tuned - 94.2 82.3 92.4 97.4 100 98.1 99.2 99.7 84.1
Multitask - 93.5 90.6 84.4 99.2 99.1 99.6 96.3 80.8 97.6

Averaging ✗ 79.6 72.1 81.6 82.6 91.9 78.2 70.7 97.1 62.8
Task Arithmetic ✗ 83.3 72.5 79.2 84.5 90.6 89.2 86.5 99.1 64.3
TIES-MERGING ✗ 86 76.5 85 89.3 95.7 90.3 83.3 99 68.8

Fisher Merging ✓ 82.2 69.2 88.6 87.5 93.5 80.6 74.8 93.3 70
RegMean ✓ 83.7 73.3 81.8 86.1 97 88 84.2 98.5 60.8
Task Arithmetic ✓ 84.5 74.1 82.1 86.7 93.8 87.9 86.8 98.9 65.6
TIES-MERGING ✓ 86 76.5 85 89.4 95.9 90.3 83.3 99 68.8

Table 12: Test set performance when merging ViT-L/14 models on eight tasks. Please refer to Section
6 for experimental details.

models ViT-B/32 and ViT-L/14 were utilized, as supplied by Ilharco et al. [29].2 Merge experiments
were efficient, with evaluations consuming less than 2 minutes for the T5-Base, T5-Large, ViT-
B/32, and ViT-L/14 experiments. The assessment of (IA)3 models, due to the necessity of using
multiple templates from prompt sources and median result calculations across all templates, required
approximately one hour per 11 dataset evaluation.

Model Average cosmos_qa social_iqa quail wic copa h-swag
PAWS 35.9 18.8 25 24.8 68.8 56.2 21.9
QASC 34.9 15.6 21.9 25.1 75 53.1 18.8
QUARTZ 37.4 31.2 18.8 24.3 71.9 59.4 18.8
Story Cloze 35 6.2 25 25.6 75 65.6 12.5
Wiki QA 24.5 18.8 21.9 24.9 28.1 43.8 9.4
Winogrande 28.3 18.8 25 25.7 34.4 43.8 21.9
WSC 31.7 21.9 21.9 24.6 62.5 46.9 12.5

Pretrained 31.1 21.9 18.8 24.1 65.6 43.8 12.5
Averaging 31.7 21.9 21.9 24.6 68.8 37.5 15.6
Fisher Merging 33.8 15.6 21.9 24.9 65.6 53.1 21.9
Task Arithmetic 31.9 15.6 31.2 25.7 28.1 68.8 21.9
RegMean 34.3 23.1 28.1 24.9 48.4 62.5 18.8
TIES-MERGING 35.3 21.9 25 25.7 50 65.6 23.8

Table 13: Out-of-Distributon performance of T5-Base model checkpoints on six tasks. Please refer
to Section 6 for experimental details.

C.2 Employed Datasets and Associated Licences

We use the following datasets in the paper with the following licenses. ANLI [49], WiC [53], WSC
[37], and Story Cloze [68], QuaRTz [73], Cars [35], GTSRB [71] are under Creative Commons
License. Winogrande [64], QASC [33] are under Apache license. COPA [61] is under a BSD-2
Clause license. H-SWAG [88], EuroSAT [24], is under MIT Licence. MNIST [36] is under Gnu
General Public License. We could not find the licences of DTD [10], RESISC45 [8], SUN397 [84],
SVHN [47], CB [44], RTE [11]), and PAWS [90] but they are publically for research use.

C.3 Details of the Motivation Experiments

For both Figure 3, and 4 in Section 3, we perform experiment on the eleven (IA)3 models used in
our PEFT merging experiments (§ 6). For a Figure similar to Fig. 4 demonstrating the fraction of
parameters with a sign conflict for T5-base model, please refer to Fig. 12a.

2https://github.com/mlfoundations/task_vectors#checkpoints
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Model Average cosmos_qa social_iqa quail wic copa h-swag
PAWS 32.3 25 28.1 25.6 56.2 46.9 12.5
QASC 33.4 21.9 28.1 25.5 43.8 62.5 18.8
QUARTZ 28.7 25 25 25.1 25 53.1 18.8
Story Cloze 32.1 21.9 34.4 26.8 46.9 53.1 9.4
Wiki QA 27.1 25 28.1 25.2 28.1 46.9 9.4
Winogrande 32.4 31.2 18.8 25.6 43.8 62.5 12.5
WSC 29.7 25 25 25.1 37.5 56.2 9.4

Pretrained 27.6 21.9 21.9 24.9 28.1 56.2 12.5
Averaging 30.4 31.2 25 26.3 31.2 59.4 9.4
Fisher Merging 32 34.4 25 26.1 40.6 56.2 9.4
Task Arithmetic 33.3 21.9 34.4 24.6 40.6 59.4 18.8
RegMean 36 34.4 28.1 25.3 62.5 50 15.6
TIES-MERGING 40.4 31.2 43.8 26.6 59.4 59.4 21.9

Table 14: Out-of-Distributon performance of T5-Large model checkpoints on six tasks. Please refer
to Section 6 for experimental details.
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Figure 13: T5-Base with increasing number of task being merged. Average performance when
merging a different number of tasks.

C.4 Merging in the absence of the Validation Set

In our investigation into scenarios where a validation set is not available, we have devised a recipe
and identified the optimal hyperparameters, employing the PEFT experimental procedure detailed in
Section 6. This approach was applied to the eleven task-specific models presented in the same section,
utilizing the TIES-MERGING method for tuning the hyperparameters. Our preliminary estimates
for the hyperparameters were k = 20 and λ close to 1. The hyperparameter search was conducted
using the eleven task-specific (IA)3 models, with k ∈ {10, 20, 30}, and λ spanning from 0.8 to
3.0, in increments of 0.1. The results of this comprehensive search indicated an optimal value of
k = 20, with values of λ = 0.9, λ = 1.0, and λ = 1.1 demonstrating equivalent performance. To
maintain simplicity in our model, we chose a λ value of 1. Thus, the final selection of parameters for
TIES-MERGING is k = 20, signs based on mass, the disjoint mean, and a λ value of 1.

C.5 Merging Different Number of Tasks

Here we provide some additional details on the experiments when merging different numbers of tasks.
In Fig. 5, we perform the experiment with T5-Large when merging the seven tasks considered in
Tab. 1 and described in Sec. 6. The x-axis shows the different number of tasks being merged. Note
that when merging T tasks, we have a total of

(
7
T

)
combinations. However, in our experiment, we

sample at most 10 distinct combinations for each value of T . A similar plot for the T5-Base model is
shown in Fig. 13.
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In Figure 5, for each number of tasks we take at most 10 random subsets of the 8 tasks we were
considering. The solid line is the average of the merged model’s performance from these different
runs. Below we provide the optimal λ values for the different subsets of tasks we merged for both
TIES-MERGING and Task Arithmetic, note that for averaging the λ = 1

#tasks always. Each entry in
the list is the optimal λ for a particular subset of tasks selected on the validation set.

(2 tasks) TIES→ [1.7, 1.9, 2, 2, 1.1, 1.5, 1.6, 1.8, 1.9, 1., 5]
(2 tasks) Task Arithmetic→ [1, 0.9, 1, 1, 0.9, 1, 0.9, 0.9, 0.9, 1]

(3 tasks) TIES→ [1.2, 2, 1.5, 1.9, 1.8, 1.7, 1.4, 2, 3, 1.9]
(3 tasks) Task Arithmetic→ [1, 0.7, 0.7, 1, 1, 0.9, 0.7, 0.7, 0.9, 1]

(4 tasks) TIES→ [1.5, 1.3, 1.3, 1.8, 2.3, 1.7, 1.8, 1.7, 1.9, 1.5]
(4 tasks) Task Arithmetic→ [0.8, 0.7, 0.7, 0.7, 0.6, 0.7, 0.7, 0.8, 0.6, 0.7]

(5 tasks) TIES→ [2, 2, 2, 1.8, 1.7, 2, 1.6, 2.1, 1.6, 1.3]
(5 tasks)Task Arithmetic→ [0.7, 0.8, 0.6, 0.8, 0.7, 0.6, 0.6, 0.6, 0.6, 0.7]

(6 tasks) TIES→ [1.6, 1.7, 1.7, 1.2, 1.7, 1.7, 1.5]
(6 tasks) Task Arithmetic→ [0.6, 0.5, 0.5, 0.5, 0.7, 0.5, 0.6]

(7 tasks) TIES→ [1.7]
(7 tasks) Task Arithmetic→ [0.5]

C.6 Training Details

In our research, we utilized two variants of the T5 model, specifically the T5-base and T5-large
models, which were trained to a maximum of 75,000 steps. An effective training batch size of 1024
was implemented, alongside a learning rate (lr) of 0.0001. We instituted an early stopping mechanism
with a patience threshold of 5 to prevent overfitting. During the training process, bfloat16 was adopted
to curtail GPU memory expenditure, and the maximum sequence length was set at 128. In contrast,
for the PEFT configuration of the (IA)3 approach on the T0-3B model, we modified our parameters.
An effective training batch size of 16 was deployed along with an evaluation batch size of 32, while
maintaining the learning rate at 0.0001. To accommodate the model’s complexity, the early stopping
patience was augmented to 10. We do not use any lr scheduler and weight decay for any of our model
training.

For the purpose of evaluation, we perform rank classification. In this method, the model’s log
probabilities for all potential label strings are ranked. The model’s prediction is deemed accurate if
the choice ranked highest aligns with the correct answer. It should be noted that rank classification
evaluation can accommodate both classification tasks and multiple-choice tasks.
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