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Abstract

Diffusion-based manifold learning methods have proven useful in representation1

learning and dimensionality reduction of modern high dimensional, high through-2

put, noisy datasets. Such datasets are especially present in fields like biology and3

physics. While it is thought that these methods preserve underlying manifold struc-4

ture of data by learning a proxy for geodesic distances, no specific theoretical links5

have been established. Here, we establish such a link via results in Riemannian6

geometry explicitly connecting heat diffusion to manifold distances. In this process,7

we also formulate a more general heat kernel based manifold embedding method8

that we call heat geodesic embeddings. This novel perspective makes clearer the9

choices available in manifold learning and denoising. Results show that our method10

outperforms existing state of the art in preserving ground truth manifold distances,11

and preserving cluster structure in toy datasets. We also showcase our method on12

single cell RNA-sequencing datasets with both continuum and cluster structure,13

where our method enables interpolation of withheld timepoints of data. Finally, we14

show that parameters of our more general method can be configured to give results15

similar to PHATE (a state-of-the-art diffusion based manifold learning method) as16

well as SNE (an attraction/repulsion neighborhood based method that forms the17

basis of t-SNE).18

1 Introduction19

The advent of high throughput and high dimensional data in various fields of science have made20

dimensionality reduction and visualization techniques an indispensable part of exploratory analysis.21

Diffusion-based manifold learning methods, based on the data diffusion operator, first defined in22

[5], have proven especially useful due to their ability to handle noise and density variations while23

preserving structure. As a result, diffusion-based dimensionality reduction methods, such as PHATE24

[21], T-PHATE [3], and diffusion maps [5], have emerged as methods for analyzing high throughput25

noisy data in various situations. While these methods are surmised to learn manifold geodesic26

distances, no specific theoretical links have been established. Here, we establish such a link by using27

Varadhan’s formula [31] and a parabolic Harnack inequality [16, 23], which relate manifold distances28

to heat diffusion directly. This lens gives new insight into existing dimensionality reduction methods,29

including when they preserve geodesics, and suggests a new method for dimensionality reduction to30

explicitly preserve geodesics, which we call heat geodesic embeddings1. Furthermore, based on our31

understanding of other methods [21, 5], we introduce theoretically justified parameter choices that32

allow our method to have greater versatility in terms of distance denoising and emphasis on local33

versus global distances.34

1Anonymized code https://anonymous.4open.science/r/anon-heatgeo-CE2A/
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Generally, data diffusion operators are created by first computing distances between datapoints,35

transforming these distances into affinities by pointwise application of a kernel function (like a36

Gaussian kernel), and then row normalizing with or without first applying degree normalization into a37

Markovian diffusion operator P [5, 8, 13, 20, 30]. The entries of P (x, y) then contain probabilities38

of diffusing (or random walk probabilities) from one datapoint to another. Diffusion maps and39

PHATE use divergences between these diffusion or random walk-based probability distributions40

P (x, ·) and P (y, ·) to design a diffusion-based distance that may not directly relate to manifold41

distance. Our framework directly utilizes a heat-kernel based distance, and offers a framework to42

study these diffusion methods from a more comprehensive perspective. By configuring parameters43

in our framework, we show how we can navigate a continuum of embeddings from PHATE-like to44

SNE-like methods.45

In summary, our contributions are as follows:46

• We define the heat-geodesic dissimilarity based on Varadhan’s formula.47

• Based on this dissimilarity, we present a versatile geodesic-preserving method for dimensionality48

reduction which we call heat geodesic embedding.49

• We establish a relationship between diffusion-based distances and the heat-geodesic dissimilarity.50

• We establish connections between our method and popular dimensionality reduction techniques51

such as PHATE and t-SNE, shedding light on their geodesic preservation and denoising properties52

based on modifications of the computed dissimilarity and distance preservation losses.53

• We empirically demonstrate the advantages of Heat Geodesic Embedding in preserving manifold54

geodesic distances in several experiments showcasing more faithful manifold distances in the55

embedding space, as well as our ability to interpolate data within the manifold.56

Figure 1: Embeddings of the Swiss roll (top) and Tree (bottom) datasets for different manifold
learning methods. Our HeatGeo method correctly unrolls the Swiss roll while t-SNE and UMAP
create undesirable artificial clusters.

2 Preliminaries57

First, we introduce fundamental notions that form the basis of our manifold learning methods: Varad-58

han’s formula [31] on a manifold, diffusion processes on graphs, efficient heat kernel approximations,59

and multidimensional scaling [4, 11, 15].60

Varadhan’s formula Varadhan’s formula is a powerful tool in differential geometry that establishes61

a connection between the heat kernel and the shortest path (geodesic) distance on a Riemannian62

manifold. Its versatility has led to widespread applications in machine learning [6, 9, 14, 25–27]. Let63

(M, g) be a closed Riemannian manifold, and ∆ the Laplace-Beltrami operator onM . The heat kernel64

ht(x, y) onM is the minimal positive fundamental solution of the heat equation ∂u
∂t = ∆u with initial65

condition h0(x, y) = δx(y). In Euclidean space the heat kernel is ht(x, y) = (4πt)−n/2 e−d(x,y)2/4t66

so that −4t log ht(x, y) = 2nt log(4πt) + d2(x, y) and we observe the following limiting behavior:67

lim
t→0
−4t log ht(x, y) = d2(x, y). (1)

Varadhan [31] (see also [19]) proved that eq. 1 (now Varadhan’s formula) holds more generally68

on complete Riemannian manifolds M , where d(x, y) is the geodesic distance on M , and the69
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convergence is uniform over compact subsets of M . A related result for complete Riemannian70

manifolds that satisfy the parabolic Harnack inequality (which includes convex domains in Euclidean71

space and Riemannian manifolds with non-negative Ricci curvature) is the two-sided heat kernel72

bound [23, 16], showing that for any ϵ ∈ (0, 1) there exist constants c(ϵ) and C(ϵ) such that73

c(ϵ)

V (x,
√
t)

exp

(
− d(x, y)2

4(1 + ϵ)t

)
≤ ht(x, y) ≤

C(ϵ)

V (x,
√
t)

exp

(
− d(x, y)2

4(1− ϵ)t

)
(2)

We denote this relation by ht(x, y) ≃ V (x,
√
t)−1 exp(−d(x, y)2/t) and note that it again recovers74

eq. 1 in the t → 0 limit, which is unsurprising as Varadhan’s result holds more generally. More75

important for our purposes is that ht(x, y) ≃ V (x,
√
t)−1 exp(−d(x, y)2/t) holds for t > 0 which76

will allow us to calculate geodesic distances d(x, y) from a diffusion based estimation of the heat77

kernel ht(x, y) and volume on point cloud data.78

Graph construction and diffusion Our construction starts by creating a graph from a point cloud79

dataset X . We use a kernel function κ : Rd×Rd → R+, such that the (weighted) adjacency matrix is80

Wij := κ(xi, xj) for all xi, xj ∈X . The kernel function could be a Gaussian kernel, or constructed81

from a nearest neighbor graph. The resulting graph G is characterized by the set of nodes (an ordering82

of the observations), the adjacency matrix, and the set of edges, i.e. pairs of nodes with non-zero83

weights. The graph Laplacian is an operator acting on signals on G such that it mimics the negative84

of the Laplace operator. The combinatorial graph Laplacian matrix is defined as L := Q−W and85

its normalized version as L = In −Q−1/2WQ−1/2, where Q is a diagonal degree matrix with86

Qii :=
∑

j Wij . The Laplacian is symmetric positive semi-definite, and has an eigen-decomposition87

L = ΨΛΨT . Throughout the presentation, we assume that Qii > 0 for all i ∈ [n]. The Laplacian88

allows us to define the heat equation on G, with respect to an initial signal f0 ∈ Rn on G:89

∂

∂t
f(t) +Lf(t) = 0, s.t. f(0) = f0 t ∈ R+. (3)

The solution of the above differential equation is obtained with the matrix exponential f(t) = e−tLf0,90

and we define the heat kernel on the graph as Ht := e−tL. By eigendecomposition, we have91

Ht = Ψe−tΛΨT . The matrix Ht is a diffusion matrix that characterizes how a signal propagate92

through the graph according to the heat equations.93

Other diffusion matrices on graphs have also been investigated in the literature. The transition matrix94

P := Q−1W characterizing a random walk on the graph is another common diffusion matrix used95

for manifold learning such as PHATE and diffusion maps [5]. It is a stochastic matrix that converges96

to a stationary distribution πi := Qii/
∑

i Qii, under mild assumptions.97

Fast computation of Heat diffusion Exact computation of the (discrete) heat kernel Ht is com-98

putationally costly, requiring a full eigendecomposition in O(n3) time. Fortunately, multiple fast99

approximations have been proposed, including using orthogonal polynomials or the Euler backward100

methods. In this work, we use Chebyshev polynomials, as they have been shown to converge faster101

than other polynomials on this problem [12].102

Chebyshev polynomials are defined by the recursive relation {Tk}k∈N with T0(y) = 0, T1(y) = y103

and Tk(y) = 2yTk−1(y) − Tk−2(y) for k ≥ 2. Assuming that the largest eigenvalue is less than104

two (which holds for the normalized Laplacian), we approximate the heat kernel with the truncated105

polynomials of order K106

Ht ≈ pK(L, t) :=
bt,0
2

+

K∑
k=1

bt,kTk(L− In), (4)

where the K + 1 scalar coefficients {bt,i} depend on time and are evaluated with the Bessel function.107

Computing pK(L, t)f requires K matrix-vector product and K + 1 Bessel function evaluation.108

The expensive part of the computation are the matrix-vector products, which can be efficient if the109

Laplacian matrix is sparse. Interestingly, we note that the evaluation of Tk do not depend on the110

diffusion time. Thus, to compute multiple approximations of the heat kernel {pK(L, t)}t∈T , only111

necessitates reweighting the truncated polynomial {Tk}k∈[1,...,K] with the corresponding |T | sets of112

Bessel coefficients. The overall complexity is dominated by the truncated polynomial computation113

which takes O(K(E + n)) time where E is the number of non-zero values in L.114
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Another possible approximation is using the Euler backward method. It requires solvingK systems of115

linear equations f(t) = (In + (t/K)L)−Kf(0), which can be efficient for sparse matrices using the116

Cholesky decomposition [9, 26]. We quantify the differences between the heat kernel approximations117

in Appendix C.118

Multidimensional scaling Given a dissimilarity function d between data points, multidimensional119

scaling (MDS) [15] finds an embedding ϕ such that the difference between the given dissimilarity120

and the Euclidean distance in the embedded space is minimal across all data points. Formally, for a121

given function d : Rd × Rd → R+, MDS minimizes the following objective:122

L(X) =

(∑
ij

(
d(xi, xj)− ∥ϕ(xi)− ϕ(xj)∥2

)2)1/2

, (5)

In metric MDS the solution is usually found by the SMACOF algorithm [28], or stochastic gradient123

descent [34], while classic MDS is defined by eigendecomposition.124

3 Related Work125

We review state-of-the-art embedding methods and contextualize them with respect to Heat Geodesic126

Embedding. A formal theoretical comparison of all methods is given in Section 5. Given a set of127

high-dimensional datapoints, the objective of embedding methods is to create a map that embeds128

the observations in a lower dimensional space, while preserving distances or similarities. Different129

methods vary by their choice of distance or dissimilarity functions, as shown below.130

Diffusion maps In diffusion maps [5], an embedding in k dimensions is defined via the first k non-131

trivial right eigenvectors of P t weighted by their eigenvalues. The embedding preserves the diffusion132

distance DMP (xi, xj) := ∥(δiP t − δjP
t)(1/π)∥2, where δi is a vector such that (δi)j = 1 if133

j = i and 0 otherwise, and π is the stationary distribution of P . Intuitively, DMP (xi, xj) considers134

all the t-steps paths between xi and xj . A larger diffusion time can be seen as a low frequency135

graph filter, i.e. keeping only information from the low frequency transitions such has the stationary136

distributions. For this reason, using diffusion with t > 1 helps denoising the relationship between137

observations.138

PHATE This diffusion-based method preserves the potential distance [21] PHP := ∥−log δiP t+139

log δjP
t∥2, and justifies this approach using the log transformation to prevent nearest neighbors from140

dominating the distances. An alternative approach is suggested using a square root transformation.141

Part of our contributions is to justify the log transformation from a geometric point of view. The142

embedding is defined using multidimensional scaling, which we present below.143

SNE, t-SNE, UMAP Well-known attraction/repulsion methods such as SNE [10], t-SNE [29], and144

UMAP [18] define an affinity matrix with entries pij in the ambient space, and another affinity matrix145

with entries qij in the embedded space. To define the embedding, a loss between the two affinity146

matrices is minimized. Specifically, the loss function is DKL(p||q) :=
∑

ij pij log pij/qij in SNE147

and t-SNE, whereas UMAP adds DKL(1− p||1− q) [2]. While these methods preserves affinities,148

they do not preserve any types of distances in the embedding.149

4 Heat-Geodesic Embedding150

In this section, we present our Heat Geodesic Embedding which is summarized in Alg. 1. We start by151

introducing the heat-geodesic dissimilarity, then present a robust transformation, and a heuristic to152

choose the optimal diffusion time. Proofs not present in the main text are given in the AppendixA.153

We consider the discrete case, where we have a set of n points {xi}ni=1 =: X in a high dimensional154

Euclidean space xi ∈ Rd. From this point cloud, we want to define a map ϕ : Rd → Rk that embeds155

the observation in a lower dimensional space. An important property of our embedding is that we156

preserve manifold geodesic distances in a low dimensional space.157
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Heat-geodesic Dissimilarity Inspired by Varadhan’s formula and the Harnack inequalities, we de-158

fined a heat-geodesic dissimilarity based on heat diffusion on graphs. From observations (datapoints)159

in Rn, we define an undirected graph G, and compute its heat kernel Ht = e−tL, where L is the160

combinatorial or symmetrically normalized graph Laplacian (the heat kernel is thus symmetric).161

Definition 4.1. For a diffusion time t > 0 and tunable parameter σ > 0, we define the heat-geodesic162

dissimilarity between xi, xj ∈X as163

dt(xi, xj) := [−4t log(Ht)ij − σ4t log(Vt)ij ]
1/2

where Ht is the heat kernel on the graph G, and (Vt)ij := 2[(Ht)ii + (Ht)jj ]
−1.164

Here the log is applied elementwise, and the term −4t log(Ht)ij corresponds to the geodesic165

approximation when t → 0 as in Varadhan’s formula. In practice one uses a fixed diffusion time166

t > 0, so we add a symmetric volume correction term as in the Harnack inequality, ensuring that167

dt(xi, xj) is symmetric. From Sec. 2, we have ht(x, x) ≃ V (x,
√
t)−1, and we use the diagonal168

of Ht to approximate the inverse of the volume. With this volume correction term and σ = 1, the169

dissimilarity is such that dt(xi, xi) = 0 for all t > 0. When σ = 0 or the manifold has uniform170

volume growth (as in the constant curvature setting) we show that the heat-geodesic dissimilarity is171

order preserving:172

Proposition 4.2. When σ = 0 or the manifold has uniform volume growth, i.e. (Ht)ii = (Ht)jj , we173

have for triples x, y, z ∈X that |x− y| > |x− z| implies dt(x, y) > dt(x, z), i.e. the heat-geodesic174

dissimilarity is order preserving.175

Proof. When σ = 0 or the manifold has uniform volume growth we need only consider the176

−4t log(Ht)ij terms. The assumption that |x− y| > |x− z| implies Ht(x, y) <Ht(x, z). We are177

able to conclude that −4t logHt(x, y) > −4t logHt(x, z) and thus dt(x, y) > dt(x, z).178

Denoising Distances with Triplet Computations We note that both diffusion maps and PHATE179

compute a triplet distance between datapoints, i.e., rather than using the direct diffusion probability180

between datapoints, they use the a distance between corresponding rows of a diffusion operator. In181

particular, diffusion maps using Euclidean distance, and PHATE uses an M-divergence. Empirically,182

we notice that this step acts as a denoiser for distances. We formalize this observation in the183

following proposition. We note DT the triplet distance. The triplet distance compares the distances184

relative to other points. Intuitively, this is a denoising step, since the effect of the noise is spread185

across the entire set of points. For a reference dissimilarity like the heat-geodesic, it is defined as186

DT(xi, xj) := ∥dt(xi, ·) − dt(xj , ·)∥2. For linear perturbations of the form dt(xi, xj) + ϵ, where187

ϵ ∈ R, the effect of ϵ on DT(xi, xj) is less severe than on dt(xi, xj).188

Proposition 4.3. Denote the perturbed triplet distance by D̃T(xi, xj) = ||d̃t(xi, ·) − d̃t(xj , ·)||2189

where d̃t(xi, xj) := dt(xi, xj) + ϵ and d̃t(xi, xk) := dt(xi, xk) for k ̸= j. Then the triplet distance190

DT is robust to perturbations , i.e., for all ϵ > 0,191 (
D̃T(xi, xj)

DT(xi, xj)

)2

≤
(
dt(xi, xj) + ϵ

dt(xi, xj)

)2

.

Optimal diffusion time Varadhan’s formula suggests a small value of diffusion time t to approxi-192

mate geodesic distance on a manifold. However, in the discrete data setting, geodesics are based on193

graph constructions, which in turn rely on nearest neighbors. Thus, small t can lead to disconnected194

graphs. Additionally, increasing t can serve as a way of denoising the kernel (which is often computed195

from noisy data) as it implements a low-pass filter over the eigenvalues, providing the additional196

advantage of adding noise tolerance. By computing a sequence of heat kernels (Ht)t and evaluating197

their entropy H(Ht) := −
∑

ij(Ht)ij log(Ht)ij , we select t with the knee-point method [24] on198

the function t 7→ H(Ht). We show in Sec. 6.1 that our heuristic for determining the diffusion time199

automatically leads to better overall results.200

Weighted MDS The loss in MDS (eq.5) is usually defined with uniform weights. Here, we201

optionally weight the loss by the heat kernel. In Sec. 5, we will show how this modification relates our202

method to the embedding defined by SNE[10]. For xi, xj ∈X , we minimize (Ht)ij(dt(xi, xj)−203

∥ϕ(xi)− ϕ(xj)∥2)2. This promotes geodesic preservation of local neighbors, since more weights204

are given to points with higher affinities.205
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Heat-geodesic embedding To define a lower dimensional embedding of a point cloud X , we206

construct a matrix from the heat-geodesic dissimilarity, and then use MDS to create the embedding.207

Our embedding defines a map ϕ that minimizes
(
dt(xi, xj)−∥ϕ(xi)−ϕ(xj)∥2

)2
, for all xi, xj ∈X .208

Hence, it preserves the heat-geodesic dissimilarity as the loss decreases to zero. In Alg. 1, we present209

the main steps of our algorithm using the heat-geodesic dissimilarity. A detailed version is presented210

in the Appendix A.211

Algorithm 1 Heat Geodesic Embedding
1: Input: N × d dataset matrix X , denoising parameter ρ ∈ [0, 1], Harnack regularization σ > 0,

output dimension k.
2: Returns: N × k embedding matrix E.
3: Ht ← pK(L, t) ▷ Heat approximation
4: t← Kneedle{H(Ht)}t ▷ Knee detection e.g. [24]
5: D ← −4t logHt + tσV ▷ log is applied elementwise
6: D ← (1− ρ)D + ρDT ▷ Triplet interpolation step
7: Return E ← MetricMDS(D, ∥ · ∥2, k)

5 Relation to other manifold learning methods212

In this section, we elucidate theoretical connections between the Heat Geodesic Embedding and other213

manifold learning methods. We relate embeddings via the eigenvalues of Ht or P t with Laplacian214

eigenmaps and diffusion maps. We then present the relation between our methods and PHATE and215

SNE. We provide further analysis in the Appendix A. In particular, we introduce a new definition216

of kernel preserving embeddings; either via kernel-based distances (diffusion maps, PHATE) or via217

similarities (e.g. t-SNE, UMAP).218

Diffusion maps with the heat kernel Diffusion maps [5] define an embedding with the first k219

eigenvectors (ϕi)i of P , while Laplacian eigenmaps [1] uses the eigenvectors (ψi)i of L. In the220

following, we recall the links between the two methods, and show that a rescaled Laplacian eigenmaps221

preserves the diffusion distance with the heat kernel Ht.222

Lemma 5.1. Rescaling the Laplacian eigenmaps embedding with xi 7→ (e−2tλ1ψ1,i, . . . , e
−2tλkψk,i)223

preserves the diffusion distance DMHt
.224

Relation to PHATE The potential distance in PHATE (Sec. 3) is defined by comparing the transition225

probabilities of two t-steps random walks initialized from different vertices. The transition matrix P t226

mimics the heat propagation on a graph. The heat-geodesic dissimilarity provides a new interpretation227

of PHATE. In the following proposition, we show how the heat-geodesic relates to the PHATE228

potential distance with a linear combination of t-steps random walks.229

Proposition 5.2. The PHATE potential distance with the heat kernel PHHt can be expressed in230

terms of the heat-geodesic dissimilarity with σ = 0231

PHHt
= (1/4t)2∥dt(xi, ·)− dt(xj , ·)∥22,

and it is equivalent to a multiscale random walk distance with kernel
∑

k>0mt(k)P
k, where232

mt(k) := tke−t/k!.233

Proof. We present a simplified version of the proof, more details are available in Appendix A. For234

σ = 0, we have dt(xi, xj) = −4t log(Ht)ij , the relation between the PHATE potential and the235

heat-geodesic follows from the definition236

PHHt(xi, xj) =
∑
k

(
− logHt(xi, xk) + logHt(xj , xk)

)2
= (1/4t)2∥dt(xi, ·)− dt(xj , ·)∥22.

Using the heat kernel Ht with the random walk Laplacian Lrw = Q−1L = In−Q−1W corresponds237

to a multiscale random walk kernel. We can write Lrw = SΛS−1, where S := Q−1/2Ψ. Since238

P = In −Rrw, we have P t = S(In − Λ)tS−1. Interestingly, we can relate the eigenvalues of Ht239

and P with the Poisson distribution. The probability mass function of a Poisson distribution with240
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mean t is given by mt(k) := tke−t/k!. For t ≥ 0, we have e−t(1−µ) =
∑

k≥0mt(k)µ
k. With this241

relationship, we can express Ht as a linear combination of P t weighted by the Poisson distribution.242

Indeed, substituting λ = 1− µ in yields243

Ht = Se−tΛS−1 = S

∞∑
k=0

mt(k)(In − Λ)kS−1 =

∞∑
k=0

mt(k)P
k.

244

Remark 5.3. In the previous proposition, the same argument holds for the symmetric Laplacian and245

the affinity matrix A := Q−1/2WQ−1/2 used in other methods such as diffusion maps [5]. This is246

valid since we can write Lsym = Q−1/2ΨΛΨTQ−1/2, and A = In −Lsym.247

Remark 5.4. This proposition shows that, as the denoising parameter ρ → 1, Heat Geodesic248

Embedding interpolates to the PHATE embeddings with a weighted kernel
∑∞

k=0mt(k)P
k.249

Relation to SNE The heat-geodesic method also relates to the Stochastic Neighbor Embedding250

(SNE) [10], and its variation using the Student distribution t-SNE [17]. In SNE, the similarity between251

points is encoded via transition probabilities pij . The objective is to learn an affinity measure q, that252

usually depends on the embedding distances ∥yi− yj∥, such that it minimizes DKL(p||q). Intuitively,253

points that have a strong affinity in the ambient space, should also have a strong affinity in the254

embedded space. Even though the heat-geodesic minimization is directly on the embedding distances,255

we can show an equivalent with SNE. In Appendix A, we provide additional comparisons between256

SNE and our method.257

Proposition 5.5. The Heat-Geodesic embedding with squared distances minimization weighted by258

the heat kernel is equivalent to SNE with the heat kernel affinity in the ambient space, and a Gaussian259

kernel in the embedded space qij = exp(−∥yi − yj∥2/t).260

6 Results261

In this section, we show the versatility of our method, showcasing its performance in terms of262

clustering and preserving the structure of continuous manifolds. We compare the performance of263

Heat Geodesic Embedding with multiple state-of-the-art baselines on synthetic datasets and real-264

world datasets. For all models, we perform sample splitting with a 50/50 validation-test split. The265

validation and test sets each consists of 5 repetitions with different random initializations. The266

hyper-parameters are selected according to the performance on the validation set. We always report267

the results on the test set, along with the standard deviations computed over the five repetitions. We268

use the following methods in our experiments: our Heat Geodesic Embedding, diffusion maps [5],269

PHATE [21], shortest-path which estimates the geodesic distance by computing the shortest path270

between two nodes in a graph built on the point clouds, t-SNE [29], and UMAP [18]. Details about271

each of these methods, and results for different parameters (graph type, heat approximation, etc.) are272

given in Appendix C.273

Table 1: Pearson and Spearman correlation between the inferred and ground truth distance matrices
on the Swiss roll and Tree datasets (higher is better). Best models on average are bolded.

Swiss roll Tree

Method Pearson Spearman Pearson Spearman

Diffusion Map 0.476± 0.226 0.478± 0.138 0.656± 0.054 0.653± 0.057
PHATE 0.457± 0.01 0.404± 0.024 0.766± 0.023 0.743± 0.028
Shortest Path 0.497± 0.144 0.558± 0.134 0.780± 0.009 0.757± 0.019
HeatGeo (ours) 0.702± 0.086 0.700± 0.073 0.822± 0.008 0.807± 0.016

6.1 Distance matrix comparison274

We start by evaluating the ability of the different methods to recover the ground truth distance matrix275

of a point cloud. For this task, we use point clouds from the Swiss roll and Tree datasets, for which276

the ground truth geodesic distance is known. The Swiss roll dataset consists of data points sampled on277

a smooth manifold (see Fig. 1). The Tree dataset is created by connecting multiple high-dimensional278

Brownian motions in a tree-shape structure. In Fig. 1, we present embeddings of both datasets. Our279
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method recovers the underlying geometry, while other methods create artificial clusters or have too280

much denoising. Because we aim at a faithful relative distance between data points, we compare the281

methods according to the Pearson and Spearman correlations of the estimated distance matrices with282

respect to ground truth. Results are displayed in Tab. 1. We observe that Heat Geodesic Embedding283

typically outperforms previous methods in terms of the correlation with the ground truth distance284

matrix, confirming the theoretical guarantees provided in Sec. 4 & 2. Additional results with different285

noise levels and ambient dimensions are available in Appendix C.286

Figure 2: Evolution of the correla-
tion between estimated and ground
truth distance matrices in function
of the diffusion time t.

Optimal diffusion time In Section 4, we described a heuristic287

to automatically choose the diffusion time based on the entropy288

of Ht. In Fig. 2, we show that the knee-point of t 7→ H(Ht),289

corresponds to a high correlation with the ground distance, while290

yielding a low approximation error of the distance matrix (mea-291

sured by the Frobenius norm of the difference between D and292

the ground truth).293

6.2 Preservation of the inherent data structure294

A crucial evaluation criteria of manifold learning methods is295

the ability to capture the inherent structure of the data. For296

instance, clusters in the data should be visible in the resulting297

low dimensional representation. Similarly, when the dataset298

consists of samples taken at different time points, one expects299

to be able to characterize this temporal evolution in the low300

dimensional embedding [21]. We thus compare the different301

embedding methods according to their ability to retain clusters302

and temporal evolution of the data.303

Figure 3: Embeddings of 2000 differentiating cells from embryoid body [21] over 28 days. UMAP
and t-SNE do not capture the continuous manifold representing the cells’ evolution.

Identifying clusters. We use the PBMC dataset, the Swiss roll, and the Tree dataset. The PBMC304

dataset consists of single-cell gene expressions from 3000 individual peripheral blood mononuclear305

cells. Cells are naturally clustered by their cell type. For the Tree dataset, we use the branches as306

clusters. For the Swiss roll dataset, we sample data points on the manifold according to a mixture of307

Gaussians and use the mixture component as the ground truth cluster labels. For each method, we308

run k-means on the two-dimensional embedding and compare the resulting cluster assignments with309

ground truth. Tab. 10 reports the results in terms of homogeneity and adjusted mutual information310

(aMI). Heat Geodesic Embedding is competitive with PHATE and outperforms t-SNE and UMAP311

on all metrics. Yet, we show in Appendix C that all methods tend to perform equally well when the312

noise level increases. In Fig. 4, we present the PBMC embeddings of PHATE and HeatGeo, showing313

that HeatGeo interpolates to PHATE for ρ→ 1.314

Table 2: Clustering quality metrics for different methods. We report the homogeneity and the adjusted
mutual information (aMI). Best models on average are bolded (higher is better).

Swiss roll Tree PBMC

Method Homogeneity aMI Homogeneity aMI Homogeneity aMI

UMAP 0.810± 0.036 0.726± 0.045 0.678± 0.086 0.681± 0.086 0.177± 0.037 0.148± 0.035
t-SNE 0.748± 0.067 0.668± 0.068 0.706± 0.054 0.712± 0.055 0.605± 0.019 0.544± 0.022
PHATE 0.731± 0.035 0.652± 0.046 0.550± 0.042 0.555± 0.042 0.798± 0.012 0.785± 0.01
Diffusion Maps 0.643± 0.053 0.585± 0.051 0.341± 0.103 0.358± 0.093 0.026± 0.001 0.038± 0.001
HeatGeo (ours) 0.820± 0.008 0.740± 0.018 0.784± 0.051 0.786± 0.051 0.734± 0.009 0.768± 0.017
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Figure 4: Embeddings on PBMC using the triplet distance with the heat-geodesic for different
regularization parameter ρ.

Temporal data representation. For this task, we aim at representing data points from population315

observed at consecutive points in time. We use single cell gene expression datasets collected across316

different time points, including the Embryoid Body (EB), IPSC [21], and two from the 2022 NeurIPS317

multimodal single-cell integration challenge (Cite & Multi). To quantitatively evaluate the quality318

of the continuous embeddings, we first embed the entire dataset and obfuscate all samples from a319

particular time point (e.g., t = 2). We then estimate the distribution of the missing time point by320

using displacement interpolation [32] between the adjacent time points (e.g., t = 1 and t = 3). We321

report the Earth Mover Distance (EMD) between the predicted distribution and true distribution.322

A low EMD suggests that the obfuscated embeddings are naturally located between the previous323

and later time points, and that the generated embedding captures the temporal evolution of the data324

adequately. Results are presented in Tab. 3. Heat Geodesic Embedding outperforms other methods325

on the EB, Multi, and IPSC datasets and is competitive with other approaches on Cite. We show a326

graphical depiction of the different embeddings for the embryoid (EB) dataset in Fig. 3.327

Table 3: EMD between a linear interpolation of two consecutive time points t − 1, t + 1, and the
time points t. Best models on average are bolded (lower is better).

Method Cite EB Multi IPSC

UMAP 0.791 ± 0.045 0.942 ± 0.053 1.418 ± 0.042 0.866 ± 0.058
t-SNE 0.905 ± 0.034 0.964 ± 0.032 1.208 ± 0.087 1.006 ± 0.026
PHATE 1.032 ± 0.037 1.088 ± 0.012 1.254 ± 0.042 0.955 ± 0.033
Diffusion Maps 0.989 ± 0.080 0.965 ± 0.077 1.227 ± 0.086 0.821 ± 0.039
HeatGeo (ours) 0.890 ± 0.046 0.733 ± 0.036 0.958 ± 0.044 0.365 ± 0.056

7 Conclusion and Limitations328

The ability to visualize complex high-dimensional data in an interpretable and rigorous way is a329

crucial tool of scientific discovery. In this work, we took a step in that direction by proposing a330

general framework for understanding diffusion-based dimensionality reduction methods through331

the lens of Riemannian geometry. This allowed us to define a novel embedding based on the heat332

geodesic dissimilarity—a more direct measure of manifold distance. Theoretically, we showed that333

our methods brings greater versatility than previous approaches and can help gaining insight into334

popular manifold learning methods such as diffusion maps, PHATE, and SNE. Experimentally, we335

demonstrated that it also results in better geodesic distance preservation and excels both at clustering336

and preserving the structure of a continuous manifold. This contrasts with previous methods that are337

typically only effective at a single of these tasks.338

Despite the strong theoretical and empirical properties, our work presents some limitations. For339

instance, our method is based on a similarity measure, which is a relaxation of a distance metric.340

Additionally, the Harnack equation suggests that our parameters for the volume correction could be341

tuned depending on the underlying manifold. We envision that further analysis of this regularization342

is a fruitful direction for future work.343
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A Theory and algorithm details453

A.1 Kernel preserving embeddings454

In this section, we attempt to create a generalized framework for dimensionality reduction methods.455

These methods often have been viewed as disparate or competing but here we show that many of them456

are related to one another given the right template for methodology comparison. In order to do this,457

we introduce a general definition suited for distance-preserving dimensionality reduction methods.458

With this definition, we can cast many dimensionality reduction methods within the same framework,459

and easily compare them. We recall that the observations in the ambient space are denoted x, and460

those in the embedded space are denoted y. The definition relies on kernel functions Hx
t , Hy

t defined461

respectively on the ambient and embedded spaces and on transformations T x, T y applied to the462

kernels. We recall that a divergence f : R× R→ R+ is such that f(a, b) = 0 if and only if a = b463

and f(a, a+ δ) is a positive semi-definite quadratic form for infinitesimal δ.464

Definition A.1. We define a kernel features preserving embedding as an embedding which465

minimizes a loss L between a transformation T x of the ambient space kernel Hx
t and its embedded466

space counterpart467

L := f(T x(Hx
t ), T

y(Hy
t′)), (6)

where f is any C2 divergence on R≥0.468

Example 1. We formulate MDS as a kernel feature-preserving embedding. Suppose we want to469

preserve the Euclidean distance, we have Hx
t (xi, xj) = ∥xi − xj∥2, Hy

t (yi, yj) = ∥yi − yj∥2,470

f(a, b) = ∥a− b∥2, and T x = T y = I .471

In the following, we present popular dimensionality reduction methods that are kernel features472

preserving embeddings. With this definition, we can distinguish between methods that a preserve a473

kernel via affinities or distances. For the methods considered in this work, Hx
t is an affinity kernel,474

but its construction varies from one method to another. In PHATE and Diffusion maps, Hx
t is a475

random walk P , while in Heat Geodesic Embedding we use the heat kernel Ht. t-SNE defines Hx
t476

as a symmetrized random walk matrix from a Gaussian kernel, while UMAP uses an unnormalized477

version. Methods such as PHATE and diffusion maps define a new distance matrix from a kernel in478

the ambient space and preserve these distances in the embedded space. Other methods like t-SNE479

and UMAP define similarities from a kernel and aim to preserve these similarities in the ambient480

space and embedded space via an entropy-based loss. We note the Kullback–Leibler divergence481

DKL(a, b) =
∑

ij aij log[aij/bij ].482

Proposition A.2. The embeddings methods HeatGeo, PHATE, Diffusion Maps, SNE, t-SNE, and483

UMAP are kernel feature-preserving embeddings.484

Proof. We assume that the affinity kernel in the ambient space Hx
t , is given, to complete the proof485

we need to define f,Hy
t , T

x, T y for all methods.486

We start with the distance preserving embeddings; HeatGeo, PHATE, and Diffusion Maps. For these487

methods, the kernel in the embed space is simply Hy
t (yi, yj) = ∥yi − yj∥2, without transformation,488

i.e. T y = I . Since they preserve a distance, the loss is f(T x(Hx
t ), T

y(Hy
t′)) = ∥Hx

t −H
y
t′∥2.489

In the Heat Geodesic Embedding we apply a transformation on Hx
t = Ht to define a dissimilarity,490

hence T x(Hx
t ) = −t logHx

t (for σ = 0), where log is applied elementwise.491

In PHATE, the potential distance is equivalent to (T x(Hx
t ))ij = ∥ − log(Hx

t )i + log(Hx
t )j∥2. In492

Diffusion Maps, the diffusion distance is (T x(Hx
t ))ij = ∥(Hx

t )i − (Hx
t )j∥2.493

SNE, t-SNE, and UMAP preserve affinities from a kernel. For these three methods, the loss is494

a divergence between distributions, namely f = DKL. They vary by defining different affinity495

kernel and transformation in the embedded space. SNE uses the unnormalized kernel Hy
t (yi, yj) =496

exp(−(1/t)∥yi − yj∥22), with T x = T y = I . Whereas, t-SNE uses (Hy
1 )ij = (1 + ∥yi − yj∥2)−1,497

and T x = T y = I . UMAP define a pointwise transformation in the embedded space with (Hy
1 )ij =498

(1 + ∥yi − yj∥2)−1, (T x(Hx
t ))ij = (Hy

1 )ij/(1− (Hy
1 )ij), and T x = I .499

We summarize the choice of kernels and functions in Tab. 4500
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Table 4: Overview of kernel preserving methods.

Method Hy
t (yi, yj) T x(Hx

t ) T y(Hy
t ) f

PHATE ∥yi − yj∥2 ∥ − log(Hx
t )i + log(Hx

t )j∥2 Hy
t ∥ · ∥2

Heat Geodesic ∥yi − yj∥2 −t log(Hx
t )ij Hy

t ∥ · ∥2
Diffusion Maps ∥yi − yj∥2 ∥(Hx

t )i − (Hx
t )j∥2 Hy

t ∥ · ∥2
SNE exp(−( 1t )∥yi − yj∥

2
2) Hx

t Hy
t DKL

t-SNE (1 + ∥yi − yj∥2)−1 Hx
t Hy

t DKL

UMAP (1 + ∥yi − yj∥2)−1 Hx
t

(Hy
1 )ij

(1−(Hy
1 )ij)

DKL

A.2 Proofs501

Proposition 4.3. Denote the perturbed triplet distance by D̃T(xi, xj) = ||d̃t(xi, ·) − d̃t(xj , ·)||2502

where d̃t(xi, xj) := dt(xi, xj) + ϵ and d̃t(xi, xk) := dt(xi, xk) for k ̸= j. Then the triplet distance503

DT is robust to perturbations , i.e., for all ϵ > 0,504 (
D̃T(xi, xj)

DT(xi, xj)

)2

≤
(
dt(xi, xj) + ϵ

dt(xi, xj)

)2

.

Proof of Proposition 4.3. The effect of the noise on the square distance is (dt(xi, xj) +505

ϵ)2/d(xi, xj)
2 = 1+ (2ϵdt(xi, xj) + ϵ2)/d(xi, xj)

2. Denoting the perturbed triplet distance by D̃T,506

we have507

D̃T(xi, xj)
2

DT(xi, xj)2
=

∑
k ̸=i,j

(
dt(xi, xk)− dt(xj , xk)

)2
+ 2(dt(xi, xj) + ϵ)2

DT(xi, xj)2
= 1 +

4ϵd(xi, xj) + 2ϵ2

DT(xi, xj)2
,

and we have508
4ϵd(xi, xj) + 2ϵ2

DT (xi, xj)2
≤ 2ϵdt(xi, xj) + ϵ2

dt(xi, xj)2

For ϵ > 0, this gives

ϵ ≥ 4dt(xi, xj)
3 − 2dt(xi, xj)DT (xi, xj)

2

Dt(xi, xj)2 − 2dt(xi, xj)2
= −2dt(xi, xj).

For ϵ < 0, we have

ϵ ≤ 4dt(xi, xj)
3 − 2dt(xi, xj)DT (xi, xj)

2

Dt(xi, xj)2 − 2dt(xi, xj)2
= −2dt(xi, xj).

Thus ϵ ∈ (−∞,−2dt(xi, xj)) ∪ (0,∞). As we require the perturbation factor ϵ << dt(xi, xj),509

hence we choose ϵ ∈ (0,∞).510

511

Lemma 5.1. Rescaling the Laplacian eigenmaps embedding with xi 7→ (e−2tλ1ψ1,i, . . . , e
−2tλkψk,i)512

preserves the diffusion distance DMHt
.513

Proof of Lemma 5.1. Since the eigendecompotision of Ht form an orthonormal basis of Rn, and514

since its first eigenvector is constant, we can write the diffusion distance ∥δiHt − δiHt∥22 =515 ∑
k≥0 e

−2tλk(ψki−ψkj)
2 =

∑
k≥1 e

−2tλk(ψki−ψkj)
2. In particular, this defines the k dimensional516

embedding x 7→ (e−tλ1ψ1(x), . . . , e
−tλkψk(x)).517

Proposition 5.2. The PHATE potential distance with the heat kernel PHHt
can be expressed in518

terms of the heat-geodesic dissimilarity with σ = 0519

PHHt = (1/4t)2∥dt(xi, ·)− dt(xj , ·)∥22,

and it is equivalent to a multiscale random walk distance with kernel
∑

k>0mt(k)P
k, where520

mt(k) := tke−t/k!.521
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Proof of Proposition 5.2. For σ = 0, we have dt(xi, xj) = −4t log(Ht)ij , the relation between the522

PHATE potential and the heat-geodesic follows from the definition523

PHHt =
∑
k

(
− logHt(xi, xk) + logHt(xj , xk)

)2
= (1/4t)2∥dt(xi, ·)− dt(xj , ·)∥22.

Using the heat kernel Ht with the random walk Laplacian Lrw = Q−1L = In−Q−1W corresponds524

to a multiscale random walk kernel. Recall that we can write Lrw in terms of the symmetric525

Laplacian Lrw = Q−1/2LsQ
1/2, meaning that the two matrices are similar, hence admit the same526

eigenvalues Λ. We also know that Ls is diagonalizable, since we can write Ls = Q−1/2LQ−1/2 =527

Q−1/2ΨΛΨTQ−1/2. In particular, we have Lrw = SΛS−1, where S := Q−1/2Ψ. The random528

walk matrix can be written as P = In −Rrw, hence its eigenvalues are (In − Λ), and we can write529

P t = S(In − Λ)tS−1. Similarly, the heat kernel with the random walk Laplacian can be written530

as Ht = Se−tΛS−1. Interestingly, we can relate the eigenvalues of Ht and P with the Poisson531

distribution. Note the probability mass function of a Poisson as mt(k) := tke−t/k!, for t ≥ 0, we532

have533

e−t(1−µ) = e−t
∑
k≥0

(tµ)k

k!
=
∑
k≥0

mt(k)µ
k. (7)

We note that (7) is the probability generating function of a Poisson distribution with parameter t, i.e.534

E[µX ], where X ∼ Poisson(t). With this relationship, we can express Ht as a linear combination of535

P t weighted by the Poisson distribution. Indeed, substituting λ = 1− µ in (7) links the eigenvalues536

of Ht and P . We write the heat kernel as a linear combination of random walks weighted by the537

Poisson distribution, we have538

Ht = Se−tΛS−1 = S

∞∑
k=0

mt(k)(In − Λ)kS−1 =

∞∑
k=0

mt(k)P
k.

539

Proposition 5.5. The Heat-Geodesic embedding with squared distances minimization weighted by540

the heat kernel is equivalent to SNE with the heat kernel affinity in the ambient space, and a Gaussian541

kernel in the embedded space qij = exp(−∥yi − yj∥2/t).542

Proof of Proposition 5.5. The squared MDS weighted by the heat kernel corresponds to543 ∑
ij

ht(xi, xj)(d
2
ij − ∥yi − yj∥2)2 =

∑
ij

ht(xi, xj)(−t log ht(xi, xj)− ∥yi − yj∥2)2

=
∑
ij

ht(xi, xj)t
2(log ht(xi, xj)− log exp(−∥yi − yj∥2/t)2.

If there exists an embedding that attain a zero loss, then it is the same as544 ∑
ij ht(xi, xj)(log ht(xi, xj)− log exp(−∥yi − yj∥2/t) = DKL(ht||q).545

A.3 Algorithm details546

We present a detailed version of the Heat Geodesic Embedding algorithm in Alg.2.547

For the knee-point detection we use the Kneedle algorithm [24]. It identifies a knee-point as a point548

where the curvature decreases maximally between points (using finite differences). We summarize549

the four main steps of the algorithm for a function f(x), and we refer to [24] for additional details.550

1. Smoothing with a spline to preserve the shape of the function.551

2. Normalize the values, so the algorithm does not depend on the magnitude of the observations.552

3. Computing the set of finite differences for x and y := f(x), e.g. ydi
:= f(xi)− xi.553

4. Evaluating local maxima of the difference curve ydi
, and select the knee-point using a554

threshold based on the average difference between consecutive x.555
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Algorithm 2 Heat Geodesic Embedding
1: Input: N × d dataset matrix X , denoising parameter ρ ∈ [0, 1], Harnack regularization σ > 0,

output dimension k.
2: Returns: N × e embedding matrix E.
3: ▷ 1. Calculate Heat Operator Ht ◁
4: if t is "auto" then
5: t← Kneedle{H(Ht)}t ▷ Knee detection e.g. [24]
6: W ← kernel(X)
7: L← Q−W
8: if Exact then
9: Ht ← Ψe−tΛΨT

10: else
11: Ht ← pK(L, t)
12: ▷ 2. Calculate Pairwise Distances D ◁
13: D ← −4t logHt ▷ log is applied elementwise
14: D ← (1− ρ)D + ρDT ▷ Triplet interpolation step
15: Return E ← MetricMDS(D, ∥ · ∥2, k)

B Experiments and datasets details556

Our experiments compare our approach with multiple state-of-the-art baselines for synthetic datasets557

(for which the true geodesic distance is known) and real-world datasets. For all models, we perform558

sample splitting with a 50/50 validation-test split. The validation and test sets each consist of 5559

repetitions with different random initializations. The hyper-parameters are selected according to560

the performance on the validation set. We always report the results on the test set, along with the561

standard deviations computed over the five repetitions. We use the following state-of-the-art methods562

in our experiments: our Heat Geodesic Embedding, diffusion maps[5], PHATE [21], Heat-PHATE (a563

variation of PHATE using the Heat Kernel), Rand-Geo (a variation of Heat Geodesic Embedding564

where we use the random walk kernel), Shortest-path which estimates the geodesic distance by565

computing the shortest path between two nodes in a graph built on the point clouds, t-SNE[29], and566

UMAP[18].567

B.1 Datasets568

We consider two synthetic datasets, the well known Swiss roll and the tree datasets. The exact569

geodesic distance can be computed for these datasets. We additionally consider real-world datasets:570

PBMC, IPSC [21], EB [21], and two from the from the 2022 NeurIPS multimodal single-cell571

integration challenge2.572

B.1.1 Swiss Roll573

The Swiss roll dataset consists of data points samples on a smooth manifold inspired by shape of the574

famous alpine pastry. In its simplest form, it is a 2-dimensional surface embedded in R3 given by575

x = t · cos(t)
y = h

z = t · sin(t)

where t ∈ [T0, T1] and h ∈ [0,W ]. In our experiments we used T0 = 3
2π, T1 = 9

2π, and W = 5.576

We use two sampling mechanisms for generating the data points : uniformly and clustered. In the577

first, we sample points uniformly at random in the [T0, T1]× [0,W ] plane. In the second, we sample578

according to a mixture of isotropic multivariate Gaussian distributions in the same plane with equal579

weights, means [(7,W/2), (12,W/2)], and standard deviations [1, 1]. In the clustered case, data580

samples are given a label y according to the Gaussian mixture component from which they were581

sampled.582

2https://www.kaggle.com/competitions/open-problems-multimodal/
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We consider variations of the Swiss roll by projecting the data samples in higher dimension using583

a random rotation matrix sampled from the Haar distribution. We use three different ambient584

dimensions: 3, 10, and 50.585

Finally, we add isotropic Gaussian noise to the data points in the ambient space with a standard586

deviation σ.587

B.1.2 Tree588

The tree dataset is created by generating K branches from a D-dimensional Brownian motion that589

are eventually glued together. Each branch is sampled from a multidimensional Brownian motion590

dXk = 2dW(t) at times t = 0, 1, 2, ..., L − 1 for k ∈ [K]. The first branch is taken as the main591

branch and the remaining branches are glued to the main branch by setting Xk = Xk +X0[ik] where592

ik is a random index of the main branch vector. The total number of samples is thus L ·K593

In our experiments, we used L = 500, K = 5, and D = 5, 10 (i.e., two versions with different594

dimensions of the ambient space).595

B.2 Evaluation Metrics596

We compare the performance of the different methods according to several metrics. For synthetic597

datasets, where ground truth geodesic distance is available, we directly compare the estimated distance598

matrices and ground truth geodesic distance matrices. For real-world datasets, we use clustering599

quality and continuous interpolation as evaluation metrics.600

B.2.1 Distance matrix evaluation601

The following methods use an explicit distance matrix: diffusion maps, Heat Geodesic Embedding,602

Heat-Phate, Phate, Rand-Geo and Shortest Path. For these methods, we compare their ability their603

ability to recover the ground truth distance matrix several metrics. Letting D and D̂ the ground truth604

and inferred distance matrices respectively, and N the number of points in the dataset, we use the605

following metrics.606

Pearson ρ We compute the average Pearson correlation between the rows of the distance matrices,607
1
N

∑N
i=1 rDi,D̂i

, where rx,y is the Pearson correlation coefficient between vectors x and y. Di stands608

for the i-th row of D.609

Spearman ρ We compute the average Spearman correlation between the rows of the distance610

matrices, 1
N

∑N
i=1 rDi,D̂i

, where rx,y is the Spearman correlation coefficient between vectors x and611

y. Di stands for the i-th row of D.612

Frobenius Norm We use ∥D − D̂∥F , where ∥A∥F =
√∑N

i=1

∑N
j=1|Ai,j |2613

Maximum Norm We use ∥D − D̂∥∞, where ∥A∥∞ = maxi,j |Ai,j |614

B.2.2 Embedding evaluation615

Some methods produce low-dimensional embeddings without using an explicit distance matrix for616

the the data points. This is the case for UMAP and t-SNE. To compare against these methods, we617

use the distance matrix obtained by considering euclidean distance between the low-dimensional618

embeddings. We used 2-dimensional embeddings in our experiments. For diffusion maps, we obtain619

these embeddings by using the first two eigenvectors of the diffusion operator only. For Heat Geodesic620

Embedding, Heat-PHATE, PHATE, Rand-GEO and Shortest Path, we use multidimensional scaling621

(MDS) on the originally inferred distance matrix.622

Clustering We evaluate the ability of Heat Geodesic Embedding to create meaningful embeddings623

when clusters are present in the data. To this end, we run a k-means clustering on the two dimensional624

embeddings obtained with each method and compare them against the ground truth labels. For the625
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Tree dataset, we use the branches as clusters. For the Swiss roll dataset, we sample data points on the626

manifold according to a mixture of Gaussians and use the mixture component as the ground truth627

cluster label.628

Interpolation To quantitatively evaluate the quality of the continuous embeddings, we first embed629

the entire dataset and obfuscate all samples from a particular time point (e.g., t = 2). We then630

estimate the distribution of the missing time point by using displacement interpolation [32] between631

the adjacent time points (e.g., t = 1 and t = 3). We report the Earth Mover Distance (EMD) between632

the predicted distribution and true distribution. A low EMD suggests that the obfuscated embeddings633

are naturally located between the previous and later time points, and that the generated embedding634

captures the temporal evolution of the data adequately.635

B.3 Hyperparameters636

In Table 5, we report the values of hyperparameters used to compute the different embeddings.637

Hyperparameter Description Values

Heat Geodesic Embedding

k Number of neighbours in k-NN graph 5,10,15
order order of the approximation 30
t Diffusion time 0.1,1,10,50,auto
Approximation method Approximation method for Heat Kernel Euler, Chebyshev
Laplacian Type of laplacian Combinatorial
Harnack ρ Harnack Regularization 0,0.25,0.5,0.75,1,1.5

PHATE

n-PCA Number of PCA components 50,100
t Diffusion time 1,5,10,20,auto
k Number of neighbours 10

Diffusion Maps

k Number of neighbours in k-NN graph 5,10,15
t Diffusion time 1,5,10,20

Shortest Path

k Number of neighbours in k-NN graph 5,10,15

UMAP

k Number of neighbours 5,10,15
min-dist Minimum distance 0.1,0.5,0.99

t-SNE

p Perplexity 10,30,100
early exageration Early exageration parameter 12

Table 5: Hyperparameters used in our experiments

B.4 Hardware638

The experiments were performed on a compute node with 16 Intel Xeon Platinum 8358 Processors639

and 64GB RAM.640
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C Additional results641

C.1 HeatGeo weighted642

Following Sec. 5, we know that weighting the MDS loss by the heat kernel corresponds to a specific643

parametrization of SNE, and thus promote the identification of cluster. In Fig. 5, we show the644

embeddings of four Gaussian distributions in 10 dimensions (top), and the PBMC dataset (bottom).645

The reference embedding is using t-SNE, as it models as it also minimizes the KL between the646

ambient and embedded distributions. We see that HeatGeo weighted form cluster that are shaped like647

a Gaussian. This is expected as Prop. 5.5, indicates that this is equivalent to minimizing the DKL648

between the heat kernel and a Gaussian affinity kernel.649

Figure 5: Embeddings of four Gaussian distributions in 10 dimensions (top), and the PBMC dataset
(bottom). HeatGeo with weight is equivalent to minimizing the DKL between the heat kernel and a
Gaussian affinity kernel, hence produces clusters shaped similar to a Gaussian.

C.2 Truncated distance650

In Fig.6, we discretize the interval [0, 51] in 51 nodes, and we compute the heat-geodesic distance651

of the midpoint with respect to the other points, effectively approximating the Euclidean distance.652

Using Chebyshev polynomials of degree of 20, we see that the impact of the truncation is greater as653

the diffusion time increases. The backward Euler methods does not result in a truncated distance.654

Figure 6: Approximation of the squared Euclidean distance with the Heat-geodesic for the exact
computation, Backward Euler approximation, and Chebyshev polynomials. For larger diffusion time,
the Chebyshev approximation results in a thresholded distance. The Harnack regularization unsures
dt(x, x) = 0.
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Figure 7: Impact of the Checbyshev approximation order on the embedding of HeatGeo for the
PBMC dataset.

C.3 Harnack inequality655

For complete Riemannian manifolds that satisfy the parabolic Harnack inequality (PHI) we have656

ht(x, y) ≃ V −1(x,
√
t) e−d(x,y)2/t so that −t log ht(x, y) ≃ t log V (x,

√
t) + d2(x, y) [23].657

ht(x, x) =
1

V (x,
√
t)

(8)

V (x,
√
t) = ht(x, x)

−1 (9)

We then have,658

d2(x, y) ≃ −t log ht(x, y)− t log V (x,
√
t)

d2(x, y) ≃ −t log ht(x, y)− t log ht(x, x)−1

d2(x, y) ≃ −t log ht(x, y) + t log ht(x, x)

C.3.1 Case studies for specific manifolds659

The circle - S1 We now show that our expression for the Heat Geodesic Embedding-distance is660

monotonically increasing with respect to the ground truth geodesic distance d ∈ R+ for a fixed661

diffusion time t and for any Harnack regularization in S1. Therefore, the662

20



Our expression for the Heat Geodesic Embedding-distance is663

d̂ =
√
−4t log(ht(d)) + 4t log(ht(0))

As the square-root is monotonic, and 4t log ht(0) is constant with respect to d, we need to show that664

f(d) = −log(ht(d)) is monotonically increasing.665

For S1, we have666

ht(d) =
∑
m∈Z

1√
4πt

e−
(d+2πm)2

4t

As log is monotonically increasing, it suffices to show that
∑

m∈Z e
− (d+2πm)2

4t is monotonically667

decreasing, which is the case as for any d′ > d, ∀m ∈ Z, we have668

e−
(d+2πm)2

4t > e−
(d′+2πm)2

4t .

In general, one can see that (1) the heat kernel depending only on the geodesic distance and (2)669

the heat kernel being monotonically decreasing with respect to the geodesic distance are sufficient670

conditions for preserving ordering of pair-wise distances with Heat Geodesic Embedding.671

The sphere - Sn The above result can be applied to the higher-dimensional sphere Sn. It is known672

that the heat kernel on manifold of constant curvatures is a function of the the geodesic distance (d)673

and time only. For Sn the heat kernel is given by674

ht(x, y) =

∞∑
l=0

e−l(l+n)−2t 2l + n− 2

n− 2
C

n
2 −1

l (cos(d))

with I the regularized incomplete beta function and C the Gegenbauer polynomials.675

Furthermore, Nowak et al. [22] showed that the heat kernel of the sphere is monotonically decreasing.676

The distance inferred from Heat Geodesic Embedding thus preserves ordering of the pair-wise677

distances.678

Euclidean (R3) For the euclidean space, we have for the volume of
√
t-geodesic ball and for the679

heat kernel:680

V√t =
4

3
πt3/2

ht(x, y) =
1

(4πt)3/2
e−

ρ2

4t .

Recalling Harnack inequality,681

c1

V (x,
√
t)
e−

d(x,y)2

c2t ≤ ht(x, y) ≤
c3

V (x,
√
t)
e−

d(x,y)2

c4t

With c2 = c4 = 4, we have682
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c1

V (x,
√
t)
≤ 1

(4πt)3/2
≤ c3

V (x,
√
t)

In this case, the bound can be made tight, by setting683

c1 = c3 =
V (x,

√
t)

(4πt)3/2

=
4
3πt

3/2

(4πt)3/2

=
1

3
√
4π

=
1

6
√
π
,

we recover the exact geodesic distance.684

C.4 Quantitative results685

C.4.1 Distance matrix evaluation686

We report the performance of the different methods in terms of the ground truth geodesic matrix687

reconstruction in Table. 6 for the Swiss roll dataset and in Table. 7, for the Tree dataset.688

C.4.2 Distance matrix evaluation via two-dimensional embeddings689

We report the performance of the different methods in terms of the ground truth geodesic matrix690

reconstruction in Table 8 for the Swiss roll dataset and in Table 9, for the Tree dataset.691

C.4.3 Clustering quality evaluation692

On Tables 10, we report the performance on clustering quality for the synthetic datasets with different693

noise level.694

C.5 Impact of the different hyperparameters695

We investigate the impact of the different hyperparameters on the quality of the embeddings. In696

Figure 8, we show the embeddings of HeatGeo for different values of diffusion time, number of697

neighbours, order, and Harnack regularization.698

In Figures 9, 10, 11, and 12, we show the impact of different hyperparameters on the Pearson699

correlation between the estimated distance matrix and ground truth distance matrix for different700

methods on the Swiss roll dataset.701

C.6 Graph construction702

We compare the embeddings of the heat-geodesic distance for different graph construction. Through-703

out the paper we used the graph construction from PHATE [21]. In the following we present additional704

results depending on the choice of kernel to construct the graph. Specifically, we use a simple nearest705

neighbor (kNN) graph implemented in [7], the graph from UMAP [18], and the implementation in706

the package Scanpy [33] for single-cell analysis. In figure, we present the embeddings 2500 points707

of a tree with five branches in 10 dimensions, where the observations are perturbed with a standard708

Gaussian noise. All methods used five nearest neighbors and a diffusion time of 20. In Figure 13, we709

show the evolution of the Pearson correlation between estimated and ground truth distance matrices710

for the 10-dimensional Swiss roll dataset for various graph constructions. We note that the results are711

stable across different graph construction strategies.712

713
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data Noise level Method PearsonR SpearmanR Norm Fro N2 Norm inf N2

Swiss roll 0.1 Diffusion Map 0.974± 0.01 0.983± 0.007 0.018± 0.0 0.026± 0.0
Swiss roll 0.1 Heat-Geo 0.992± 0.003 0.995± 0.002 0.002± 0.0 0.003± 0.0
Swiss roll 0.1 Heat-PHATE 0.99± 0.002 0.997± 0.001 0.079± 0.002 0.1± 0.003
Swiss roll 0.1 PHATE 0.621± 0.006 0.58± 0.01 0.022± 0.0 0.026± 0.0
Swiss roll 0.1 Rand-Geo 0.956± 0.003 0.993± 0.001 0.009± 0.0 0.012± 0.0
Swiss roll 0.1 Shortest Path 1.0± 0.0 1.0± 0.0 0.0± 0.0 0.001± 0.0

Swiss roll 0.5 Diffusion Map 0.982± 0.003 0.987± 0.002 0.018± 0.0 0.026± 0.0
Swiss roll 0.5 Heat-Geo 0.994± 0.002 0.996± 0.001 0.002± 0.0 0.004± 0.0
Swiss roll 0.5 Heat-PHATE 0.993± 0.001 0.998± 0.0 0.064± 0.001 0.083± 0.002
Swiss roll 0.5 PHATE 0.649± 0.007 0.615± 0.006 0.023± 0.0 0.028± 0.0
Swiss roll 0.5 Rand-Geo 0.969± 0.002 0.995± 0.001 0.009± 0.0 0.011± 0.0
Swiss roll 0.5 Shortest Path 0.999± 0.0 0.999± 0.0 0.001± 0.0 0.002± 0.0

Swiss roll 1.0 Diffusion Map 0.476± 0.226 0.478± 0.138 0.018± 0.0 0.026± 0.0
Swiss roll 1.0 Heat-Geo 0.702± 0.086 0.7± 0.073 0.01± 0.0 0.012± 0.0
Swiss roll 1.0 Heat-PHATE 0.623± 0.144 0.633± 0.114 0.01± 0.002 0.019± 0.004
Swiss roll 1.0 PHATE 0.457± 0.01 0.404± 0.024 0.024± 0.0 0.028± 0.0
Swiss roll 1.0 Rand-Geo 0.521± 0.042 0.608± 0.025 0.01± 0.0 0.014± 0.0
Swiss roll 1.0 Shortest Path 0.497± 0.144 0.558± 0.134 0.011± 0.001 0.015± 0.002

Swiss roll high 0.1 Diffusion Map 0.98± 0.003 0.986± 0.001 0.018± 0.0 0.026± 0.0
Swiss roll high 0.1 Heat-Geo 0.992± 0.003 0.996± 0.002 0.002± 0.0 0.003± 0.0
Swiss roll high 0.1 Heat-PHATE 0.991± 0.002 0.997± 0.001 0.079± 0.002 0.101± 0.004
Swiss roll high 0.1 PHATE 0.625± 0.013 0.582± 0.017 0.022± 0.0 0.026± 0.0
Swiss roll high 0.1 Rand-Geo 0.956± 0.002 0.993± 0.001 0.009± 0.0 0.012± 0.0
Swiss roll high 0.1 Shortest Path 1.0± 0.0 1.0± 0.0 0.001± 0.0 0.002± 0.0

Swiss roll high 0.5 Diffusion Map 0.98± 0.002 0.985± 0.002 0.018± 0.0 0.026± 0.0
Swiss roll high 0.5 Heat-Geo 0.997± 0.001 0.997± 0.0 0.005± 0.0 0.007± 0.0
Swiss roll high 0.5 Heat-PHATE 0.995± 0.0 0.997± 0.0 0.041± 0.001 0.054± 0.002
Swiss roll high 0.5 PHATE 0.717± 0.004 0.707± 0.005 0.026± 0.0 0.034± 0.001
Swiss roll high 0.5 Rand-Geo 0.984± 0.0 0.996± 0.0 0.008± 0.0 0.01± 0.0
Swiss roll high 0.5 Shortest Path 0.999± 0.0 0.998± 0.0 0.006± 0.0 0.009± 0.0

Swiss roll high 1.0 Diffusion Map 0.555± 0.155 0.526± 0.081 0.018± 0.0 0.026± 0.0
Swiss roll high 1.0 Heat-Geo 0.705± 0.065 0.695± 0.052 0.011± 0.0 0.012± 0.0
Swiss roll high 1.0 Heat-PHATE 0.63± 0.106 0.625± 0.074 0.011± 0.001 0.014± 0.002
Swiss roll high 1.0 PHATE 0.473± 0.026 0.419± 0.024 0.027± 0.0 0.039± 0.001
Swiss roll high 1.0 Rand-Geo 0.563± 0.05 0.644± 0.033 0.01± 0.0 0.012± 0.0
Swiss roll high 1.0 Shortest Path 0.384± 0.02 0.461± 0.017 0.011± 0.0 0.015± 0.0

Swiss roll very high 0.1 Diffusion Map 0.977± 0.005 0.984± 0.004 0.018± 0.0 0.026± 0.0
Swiss roll very high 0.1 Heat-Geo 0.992± 0.002 0.996± 0.001 0.002± 0.0 0.003± 0.0
Swiss roll very high 0.1 Heat-PHATE 0.991± 0.001 0.997± 0.001 0.079± 0.003 0.101± 0.003
Swiss roll very high 0.1 PHATE 0.631± 0.01 0.594± 0.011 0.023± 0.0 0.028± 0.001
Swiss roll very high 0.1 Rand-Geo 0.957± 0.002 0.994± 0.001 0.009± 0.0 0.012± 0.0
Swiss roll very high 0.1 Shortest Path 0.999± 0.0 0.999± 0.0 0.006± 0.0 0.007± 0.0

Swiss roll very high 0.5 Diffusion Map 0.978± 0.002 0.984± 0.001 0.018± 0.0 0.026± 0.0
Swiss roll very high 0.5 Heat-Geo 0.997± 0.0 0.998± 0.0 0.008± 0.0 0.01± 0.0
Swiss roll very high 0.5 Heat-PHATE 0.996± 0.001 0.997± 0.0 0.016± 0.0 0.02± 0.001
Swiss roll very high 0.5 PHATE 0.815± 0.002 0.823± 0.004 0.032± 0.0 0.049± 0.002
Swiss roll very high 0.5 Rand-Geo 0.986± 0.0 0.996± 0.0 0.008± 0.0 0.009± 0.0
Swiss roll very high 0.5 Shortest Path 0.998± 0.0 0.998± 0.0 0.019± 0.001 0.027± 0.001

Swiss roll very high 1.0 Diffusion Map 0.324± 0.061 0.399± 0.033 0.018± 0.0 0.026± 0.0
Swiss roll very high 1.0 Heat-Geo 0.466± 0.007 0.506± 0.006 0.011± 0.0 0.013± 0.0
Swiss roll very high 1.0 Heat-PHATE 0.369± 0.011 0.43± 0.019 0.011± 0.0 0.014± 0.0
Swiss roll very high 1.0 PHATE 0.377± 0.011 0.425± 0.009 0.036± 0.0 0.062± 0.004
Swiss roll very high 1.0 Rand-Geo 0.398± 0.009 0.516± 0.008 0.01± 0.0 0.012± 0.0
Swiss roll very high 1.0 Shortest Path 0.367± 0.018 0.443± 0.016 0.012± 0.0 0.015± 0.0

Table 6: Comparison of the estimated distance matrices with the ground truth geodesic distance
matrices on the Swiss roll dataset. Best models on average are bolded (not necessarily significant).
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data Noise level Method PearsonR SpearmanR Norm Fro N2 Norm inf N2

Tree 1.0 Diffusion Map 0.748± 0.125 0.733± 0.111 0.113± 0.012 0.161± 0.019
Tree 1.0 Heat-Geo 0.976± 0.019 0.977± 0.02 0.092± 0.011 0.135± 0.018
Tree 1.0 Heat-PHATE 0.918± 0.032 0.885± 0.04 0.03± 0.005 0.044± 0.007
Tree 1.0 PHATE 0.671± 0.021 0.398± 0.052 0.051± 0.008 0.084± 0.017
Tree 1.0 Rand-Geo 0.926± 0.011 0.966± 0.019 0.076± 0.01 0.117± 0.018
Tree 1.0 Shortest Path 0.965± 0.026 0.963± 0.027 0.039± 0.008 0.06± 0.008

Tree 5.0 Diffusion Map 0.656± 0.054 0.653± 0.057 0.113± 0.012 0.161± 0.019
Tree 5.0 Heat-Geo 0.822± 0.008 0.807± 0.016 0.1± 0.012 0.146± 0.019
Tree 5.0 Heat-PHATE 0.765± 0.025 0.751± 0.023 0.043± 0.006 0.08± 0.01
Tree 5.0 PHATE 0.766± 0.023 0.743± 0.028 0.055± 0.007 0.093± 0.008
Tree 5.0 Rand-Geo 0.806± 0.014 0.795± 0.018 0.094± 0.011 0.139± 0.018
Tree 5.0 Shortest Path 0.78± 0.009 0.757± 0.019 0.075± 0.009 0.117± 0.014

Tree 10.0 Diffusion Map 0.538± 0.05 0.471± 0.089 0.113± 0.012 0.161± 0.019
Tree 10.0 Heat-Geo 0.62± 0.025 0.59± 0.033 0.1± 0.012 0.146± 0.019
Tree 10.0 Heat-PHATE 0.63± 0.018 0.588± 0.031 0.046± 0.005 0.083± 0.012
Tree 10.0 PHATE 0.623± 0.016 0.583± 0.029 0.07± 0.01 0.112± 0.017
Tree 10.0 Rand-Geo 0.578± 0.043 0.558± 0.053 0.095± 0.011 0.14± 0.018
Tree 10.0 Shortest Path 0.539± 0.041 0.513± 0.055 0.072± 0.01 0.118± 0.017

Tree high 1.0 Diffusion Map 0.754± 0.049 0.741± 0.057 0.267± 0.021 0.369± 0.026
Tree high 1.0 Heat-Geo 0.996± 0.001 0.999± 0.001 0.242± 0.02 0.338± 0.026
Tree high 1.0 Heat-PHATE 0.927± 0.011 0.875± 0.032 0.062± 0.003 0.084± 0.006
Tree high 1.0 PHATE 0.528± 0.085 0.141± 0.061 0.209± 0.023 0.307± 0.027
Tree high 1.0 Rand-Geo 0.85± 0.014 0.944± 0.011 0.227± 0.02 0.323± 0.025
Tree high 1.0 Shortest Path 0.998± 0.001 0.999± 0.001 0.009± 0.002 0.018± 0.005

Tree high 5.0 Diffusion Map 0.706± 0.124 0.705± 0.113 0.267± 0.021 0.369± 0.026
Tree high 5.0 Heat-Geo 0.97± 0.01 0.975± 0.009 0.253± 0.021 0.353± 0.026
Tree high 5.0 Heat-PHATE 0.932± 0.022 0.919± 0.03 0.072± 0.004 0.112± 0.008
Tree high 5.0 PHATE 0.913± 0.014 0.872± 0.034 0.19± 0.017 0.278± 0.025
Tree high 5.0 Rand-Geo 0.968± 0.01 0.971± 0.009 0.245± 0.019 0.342± 0.024
Tree high 5.0 Shortest Path 0.952± 0.016 0.95± 0.019 0.137± 0.017 0.209± 0.024

Tree high 10.0 Diffusion Map 0.598± 0.117 0.613± 0.103 0.267± 0.021 0.369± 0.026
Tree high 10.0 Heat-Geo 0.861± 0.039 0.87± 0.038 0.254± 0.021 0.353± 0.026
Tree high 10.0 Heat-PHATE 0.844± 0.05 0.838± 0.051 0.168± 0.015 0.27± 0.025
Tree high 10.0 PHATE 0.837± 0.052 0.838± 0.049 0.204± 0.018 0.301± 0.024
Tree high 10.0 Rand-Geo 0.845± 0.041 0.86± 0.038 0.248± 0.02 0.346± 0.025
Tree high 10.0 Shortest Path 0.779± 0.051 0.777± 0.054 0.159± 0.018 0.257± 0.026

Table 7: Comparison of the estimated distance matrices with the ground truth geodesic distance
matrices on the Tree roll dataset. Best models on average are bolded (not necessarily significant).
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data Noise level Method PearsonR SpearmanR Norm Fro N2 Norm inf N2

Swiss roll 0.1 Diffusion Map 0.974± 0.01 0.983± 0.007 0.018± 0.0 0.026± 0.0
Swiss roll 0.1 Heat-Geo 0.995± 0.003 0.996± 0.002 0.018± 0.0 0.026± 0.0
Swiss roll 0.1 Heat-PHATE 0.99± 0.002 0.997± 0.001 0.018± 0.0 0.026± 0.0
Swiss roll 0.1 PHATE 0.677± 0.02 0.697± 0.014 0.018± 0.0 0.026± 0.0
Swiss roll 0.1 Rand-Geo 0.917± 0.003 0.915± 0.002 0.018± 0.0 0.026± 0.0
Swiss roll 0.1 Shortest Path 1.0± 0.0 1.0± 0.0 0.018± 0.0 0.026± 0.0
Swiss roll 0.1 TSNE 0.905± 0.005 0.897± 0.004 0.006± 0.0 0.008± 0.0
Swiss roll 0.1 UMAP 0.802± 0.013 0.79± 0.012 0.011± 0.0 0.016± 0.001

Swiss roll 0.5 Diffusion Map 0.982± 0.003 0.987± 0.002 0.018± 0.0 0.026± 0.0
Swiss roll 0.5 Heat-Geo 0.997± 0.0 0.996± 0.001 0.018± 0.0 0.026± 0.0
Swiss roll 0.5 Heat-PHATE 0.993± 0.001 0.997± 0.0 0.018± 0.0 0.026± 0.0
Swiss roll 0.5 PHATE 0.696± 0.011 0.711± 0.008 0.018± 0.0 0.026± 0.0
Swiss roll 0.5 Rand-Geo 0.932± 0.002 0.932± 0.002 0.018± 0.0 0.026± 0.0
Swiss roll 0.5 Shortest Path 0.999± 0.0 0.999± 0.0 0.018± 0.0 0.026± 0.0
Swiss roll 0.5 TSNE 0.899± 0.01 0.892± 0.008 0.006± 0.0 0.008± 0.0
Swiss roll 0.5 UMAP 0.838± 0.019 0.819± 0.017 0.012± 0.0 0.016± 0.001

Swiss roll 1.0 Diffusion Map 0.476± 0.226 0.478± 0.138 0.018± 0.0 0.026± 0.0
Swiss roll 1.0 Heat-Geo 0.672± 0.221 0.676± 0.193 0.018± 0.0 0.026± 0.0
Swiss roll 1.0 Heat-PHATE 0.674± 0.169 0.684± 0.134 0.018± 0.0 0.026± 0.0
Swiss roll 1.0 PHATE 0.287± 0.03 0.349± 0.028 0.018± 0.0 0.026± 0.0
Swiss roll 1.0 Rand-Geo 0.39± 0.029 0.43± 0.022 0.018± 0.0 0.026± 0.0
Swiss roll 1.0 Shortest Path 0.467± 0.17 0.511± 0.163 0.018± 0.0 0.026± 0.0
Swiss roll 1.0 TSNE 0.721± 0.183 0.724± 0.151 0.008± 0.002 0.014± 0.003
Swiss roll 1.0 UMAP 0.727± 0.181 0.713± 0.167 0.012± 0.001 0.018± 0.001

Swiss roll 5.0 Diffusion Map 0.157± 0.021 0.173± 0.015 0.018± 0.0 0.026± 0.0
Swiss roll 5.0 Heat-PHATE 0.203± 0.014 0.239± 0.013 0.018± 0.0 0.026± 0.0
Swiss roll 5.0 PHATE 0.201± 0.014 0.237± 0.013 0.018± 0.0 0.026± 0.0
Swiss roll 5.0 Rand-Geo 0.201± 0.014 0.238± 0.012 0.018± 0.0 0.026± 0.0
Swiss roll 5.0 Shortest Path 0.2± 0.011 0.233± 0.01 0.018± 0.0 0.026± 0.0
Swiss roll 5.0 TSNE 0.2± 0.011 0.233± 0.01 0.012± 0.0 0.018± 0.001
Swiss roll 5.0 UMAP 0.205± 0.013 0.239± 0.012 0.015± 0.0 0.022± 0.0

Swiss roll high 0.1 Diffusion Map 0.98± 0.003 0.986± 0.001 0.018± 0.0 0.026± 0.0
Swiss roll high 0.1 Heat-Geo 0.996± 0.002 0.997± 0.001 0.018± 0.0 0.026± 0.0
Swiss roll high 0.1 Heat-PHATE 0.991± 0.002 0.997± 0.001 0.018± 0.0 0.026± 0.0
Swiss roll high 0.1 PHATE 0.678± 0.027 0.698± 0.019 0.018± 0.0 0.026± 0.0
Swiss roll high 0.1 Rand-Geo 0.917± 0.003 0.915± 0.002 0.018± 0.0 0.026± 0.0
Swiss roll high 0.1 Shortest Path 1.0± 0.0 1.0± 0.0 0.018± 0.0 0.026± 0.0
Swiss roll high 0.1 TSNE 0.903± 0.004 0.896± 0.003 0.006± 0.0 0.008± 0.0
Swiss roll high 0.1 UMAP 0.806± 0.014 0.794± 0.01 0.011± 0.0 0.016± 0.001

Swiss roll high 0.5 Diffusion Map 0.98± 0.002 0.985± 0.002 0.018± 0.0 0.026± 0.0
Swiss roll high 0.5 Heat-Geo 0.998± 0.0 0.997± 0.0 0.018± 0.0 0.026± 0.0
Swiss roll high 0.5 Heat-PHATE 0.995± 0.0 0.997± 0.0 0.018± 0.0 0.026± 0.0
Swiss roll high 0.5 PHATE 0.754± 0.01 0.756± 0.006 0.018± 0.0 0.026± 0.0
Swiss roll high 0.5 Rand-Geo 0.945± 0.001 0.945± 0.002 0.018± 0.0 0.026± 0.0
Swiss roll high 0.5 Shortest Path 0.999± 0.0 0.998± 0.0 0.018± 0.0 0.026± 0.0
Swiss roll high 0.5 TSNE 0.905± 0.006 0.899± 0.003 0.006± 0.0 0.008± 0.0
Swiss roll high 0.5 UMAP 0.876± 0.017 0.86± 0.024 0.012± 0.0 0.017± 0.001

Swiss roll high 1.0 Diffusion Map 0.555± 0.155 0.526± 0.081 0.018± 0.0 0.026± 0.0
Swiss roll high 1.0 Heat-Geo 0.643± 0.173 0.693± 0.114 0.018± 0.0 0.026± 0.0
Swiss roll high 1.0 Heat-PHATE 0.609± 0.17 0.611± 0.121 0.018± 0.0 0.026± 0.0
Swiss roll high 1.0 PHATE 0.271± 0.025 0.343± 0.011 0.018± 0.0 0.026± 0.0
Swiss roll high 1.0 Rand-Geo 0.41± 0.038 0.446± 0.03 0.018± 0.0 0.026± 0.0
Swiss roll high 1.0 Shortest Path 0.343± 0.013 0.4± 0.007 0.018± 0.0 0.026± 0.0
Swiss roll high 1.0 TSNE 0.737± 0.124 0.723± 0.099 0.008± 0.001 0.015± 0.003
Swiss roll high 1.0 UMAP 0.893± 0.055 0.889± 0.083 0.014± 0.001 0.02± 0.001

Swiss roll high 5.0 Diffusion Map 0.164± 0.016 0.174± 0.009 0.018± 0.0 0.026± 0.0
Swiss roll high 5.0 Heat-PHATE 0.202± 0.01 0.236± 0.009 0.018± 0.0 0.026± 0.0
Swiss roll high 5.0 PHATE 0.201± 0.01 0.234± 0.008 0.018± 0.0 0.026± 0.0
Swiss roll high 5.0 Rand-Geo 0.192± 0.009 0.228± 0.008 0.018± 0.0 0.026± 0.0
Swiss roll high 5.0 Shortest Path 0.187± 0.01 0.221± 0.009 0.018± 0.0 0.026± 0.0
Swiss roll high 5.0 TSNE 0.182± 0.011 0.213± 0.01 0.013± 0.0 0.019± 0.001
Swiss roll high 5.0 UMAP 0.195± 0.009 0.227± 0.008 0.016± 0.0 0.024± 0.001

Swiss roll very high 0.1 Diffusion Map 0.977± 0.005 0.984± 0.004 0.018± 0.0 0.026± 0.0
Swiss roll very high 0.1 Heat-Geo 0.996± 0.001 0.997± 0.001 0.018± 0.0 0.026± 0.0
Swiss roll very high 0.1 Heat-PHATE 0.991± 0.001 0.997± 0.001 0.018± 0.0 0.026± 0.0
Swiss roll very high 0.1 PHATE 0.683± 0.023 0.701± 0.016 0.018± 0.0 0.026± 0.0
Swiss roll very high 0.1 Rand-Geo 0.918± 0.002 0.917± 0.002 0.018± 0.0 0.026± 0.0
Swiss roll very high 0.1 Shortest Path 0.999± 0.0 0.999± 0.0 0.018± 0.0 0.026± 0.0
Swiss roll very high 0.1 TSNE 0.905± 0.006 0.897± 0.004 0.006± 0.0 0.008± 0.0
Swiss roll very high 0.1 UMAP 0.785± 0.024 0.781± 0.017 0.011± 0.0 0.016± 0.001

Swiss roll very high 0.5 Diffusion Map 0.978± 0.002 0.984± 0.001 0.018± 0.0 0.026± 0.0
Swiss roll very high 0.5 Heat-Geo 0.997± 0.0 0.998± 0.0 0.018± 0.0 0.026± 0.0
Swiss roll very high 0.5 Heat-PHATE 0.996± 0.001 0.997± 0.0 0.018± 0.0 0.026± 0.0
Swiss roll very high 0.5 PHATE 0.827± 0.003 0.815± 0.002 0.018± 0.0 0.026± 0.0
Swiss roll very high 0.5 Rand-Geo 0.944± 0.001 0.944± 0.001 0.018± 0.0 0.026± 0.0
Swiss roll very high 0.5 Shortest Path 0.998± 0.0 0.997± 0.0 0.018± 0.0 0.026± 0.0
Swiss roll very high 0.5 TSNE 0.917± 0.009 0.917± 0.007 0.006± 0.0 0.008± 0.001
Swiss roll very high 0.5 UMAP 0.928± 0.01 0.929± 0.012 0.012± 0.0 0.017± 0.001

Swiss roll very high 1.0 Diffusion Map 0.324± 0.061 0.399± 0.033 0.018± 0.0 0.026± 0.0
Swiss roll very high 1.0 Heat-Geo 0.364± 0.008 0.425± 0.015 0.018± 0.0 0.026± 0.0
Swiss roll very high 1.0 Heat-PHATE 0.352± 0.022 0.411± 0.018 0.018± 0.0 0.026± 0.0
Swiss roll very high 1.0 PHATE 0.326± 0.009 0.388± 0.007 0.018± 0.0 0.026± 0.0
Swiss roll very high 1.0 Rand-Geo 0.357± 0.007 0.404± 0.005 0.018± 0.0 0.026± 0.0
Swiss roll very high 1.0 Shortest Path 0.335± 0.014 0.39± 0.011 0.018± 0.0 0.026± 0.0
Swiss roll very high 1.0 TSNE 0.515± 0.014 0.522± 0.01 0.012± 0.0 0.016± 0.0
Swiss roll very high 1.0 UMAP 0.765± 0.059 0.737± 0.058 0.015± 0.0 0.021± 0.0

Swiss roll very high 5.0 Diffusion Map 0.151± 0.011 0.161± 0.008 0.018± 0.0 0.026± 0.0
Swiss roll very high 5.0 Heat-PHATE 0.175± 0.009 0.208± 0.009 0.018± 0.0 0.026± 0.0
Swiss roll very high 5.0 PHATE 0.181± 0.006 0.212± 0.006 0.018± 0.0 0.026± 0.0
Swiss roll very high 5.0 Rand-Geo 0.005± 0.002 0.004± 0.002 0.018± 0.0 0.026± 0.0
Swiss roll very high 5.0 Shortest Path 0.145± 0.011 0.173± 0.011 0.018± 0.0 0.026± 0.0
Swiss roll very high 5.0 TSNE 0.155± 0.008 0.188± 0.008 0.015± 0.0 0.022± 0.001
Swiss roll very high 5.0 UMAP 0.155± 0.003 0.183± 0.005 0.017± 0.0 0.024± 0.0

Table 8: Comparison of the estimated distance matrices with the ground truth geodesic distance
matrices on the Swiss roll dataset, using a two-dimensional embedding. Best models on average are
bolded (not necessarily significant).
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data Noise level Method PearsonR SpearmanR Norm Fro N2 Norm inf N2

Tree 0.1 Diffusion Map 0.748± 0.125 0.733± 0.111 0.113± 0.012 0.161± 0.019
Tree 0.1 Heat-Geo 0.943± 0.037 0.94± 0.037 0.113± 0.012 0.161± 0.019
Tree 0.1 Heat-PHATE 0.872± 0.04 0.83± 0.061 0.113± 0.012 0.161± 0.019
Tree 0.1 PHATE 0.564± 0.039 0.469± 0.052 0.113± 0.011 0.161± 0.018
Tree 0.1 Rand-Geo 0.868± 0.017 0.85± 0.019 0.113± 0.012 0.161± 0.019
Tree 0.1 Shortest Path 0.937± 0.037 0.931± 0.041 0.113± 0.012 0.161± 0.019
Tree 0.1 TSNE 0.847± 0.034 0.824± 0.045 0.082± 0.012 0.123± 0.022
Tree 0.1 UMAP 0.692± 0.058 0.671± 0.047 0.107± 0.012 0.153± 0.019

Tree 0.5 Diffusion Map 0.656± 0.054 0.653± 0.057 0.113± 0.012 0.161± 0.019
Tree 0.5 Heat-Geo 0.806± 0.019 0.787± 0.009 0.113± 0.012 0.161± 0.019
Tree 0.5 Heat-PHATE 0.746± 0.024 0.744± 0.031 0.113± 0.012 0.161± 0.019
Tree 0.5 PHATE 0.766± 0.023 0.746± 0.03 0.113± 0.011 0.161± 0.018
Tree 0.5 Rand-Geo 0.721± 0.024 0.694± 0.024 0.113± 0.012 0.161± 0.019
Tree 0.5 Shortest Path 0.765± 0.01 0.738± 0.011 0.113± 0.012 0.161± 0.019
Tree 0.5 TSNE 0.795± 0.046 0.766± 0.055 0.083± 0.012 0.128± 0.018
Tree 0.5 UMAP 0.783± 0.06 0.757± 0.054 0.11± 0.011 0.157± 0.018

Tree 1.0 Diffusion Map 0.538± 0.05 0.471± 0.089 0.113± 0.012 0.161± 0.019
Tree 1.0 Heat-Geo 0.613± 0.025 0.58± 0.036 0.113± 0.012 0.161± 0.019
Tree 1.0 Heat-PHATE 0.614± 0.02 0.571± 0.044 0.113± 0.012 0.161± 0.019
Tree 1.0 PHATE 0.615± 0.017 0.572± 0.036 0.113± 0.011 0.161± 0.018
Tree 1.0 Rand-Geo 0.487± 0.064 0.465± 0.071 0.113± 0.012 0.161± 0.019
Tree 1.0 Shortest Path 0.542± 0.047 0.514± 0.06 0.113± 0.012 0.161± 0.019
Tree 1.0 TSNE 0.583± 0.042 0.553± 0.045 0.086± 0.011 0.135± 0.017
Tree 1.0 UMAP 0.595± 0.032 0.562± 0.036 0.111± 0.011 0.158± 0.019

Tree high 0.1 Diffusion Map 0.754± 0.049 0.741± 0.057 0.267± 0.021 0.369± 0.026
Tree high 0.1 Heat-Geo 0.956± 0.014 0.957± 0.015 0.267± 0.021 0.369± 0.026
Tree high 0.1 Heat-PHATE 0.831± 0.082 0.764± 0.115 0.267± 0.021 0.369± 0.026
Tree high 0.1 PHATE 0.484± 0.036 0.4± 0.028 0.267± 0.02 0.369± 0.025
Tree high 0.1 Rand-Geo 0.817± 0.013 0.774± 0.022 0.267± 0.021 0.369± 0.026
Tree high 0.1 Shortest Path 0.958± 0.014 0.956± 0.017 0.267± 0.021 0.369± 0.026
Tree high 0.1 TSNE 0.89± 0.039 0.866± 0.043 0.233± 0.021 0.327± 0.026
Tree high 0.1 UMAP 0.8± 0.031 0.764± 0.034 0.259± 0.021 0.36± 0.028

Tree high 0.5 Diffusion Map 0.706± 0.124 0.705± 0.113 0.267± 0.021 0.369± 0.026
Tree high 0.5 Heat-Geo 0.932± 0.022 0.928± 0.023 0.267± 0.021 0.369± 0.026
Tree high 0.5 Heat-PHATE 0.923± 0.023 0.921± 0.022 0.267± 0.021 0.369± 0.026
Tree high 0.5 PHATE 0.844± 0.048 0.79± 0.07 0.267± 0.02 0.369± 0.025
Tree high 0.5 Rand-Geo 0.875± 0.042 0.855± 0.048 0.267± 0.021 0.369± 0.026
Tree high 0.5 Shortest Path 0.917± 0.025 0.91± 0.03 0.267± 0.021 0.369± 0.026
Tree high 0.5 TSNE 0.922± 0.035 0.91± 0.045 0.237± 0.021 0.334± 0.027
Tree high 0.5 UMAP 0.823± 0.054 0.803± 0.041 0.261± 0.021 0.361± 0.026

Tree high 1.0 Diffusion Map 0.598± 0.117 0.613± 0.103 0.267± 0.021 0.369± 0.026
Tree high 1.0 Heat-Geo 0.794± 0.066 0.805± 0.049 0.267± 0.021 0.369± 0.026
Tree high 1.0 Heat-PHATE 0.826± 0.064 0.823± 0.067 0.267± 0.021 0.369± 0.026
Tree high 1.0 PHATE 0.827± 0.059 0.82± 0.062 0.267± 0.02 0.369± 0.025
Tree high 1.0 Rand-Geo 0.71± 0.043 0.686± 0.045 0.267± 0.021 0.369± 0.026
Tree high 1.0 Shortest Path 0.771± 0.064 0.753± 0.07 0.267± 0.021 0.369± 0.026
Tree high 1.0 TSNE 0.84± 0.066 0.821± 0.074 0.238± 0.02 0.335± 0.026
Tree high 1.0 UMAP 0.853± 0.051 0.839± 0.057 0.264± 0.021 0.365± 0.026

Table 9: Comparison of the estimated distance matrices with the ground truth geodesic distance
matrices on the Tree dataset, using a two-dimensional embedding. Best models on average are bolded
(not necessarily significant).
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data Noise level Method Homogeneity Adjusted Rand Score Adjusted Mutual Info Score

Swiss roll 0.1 Heat-Geo 0.82± 0.008 0.668± 0.034 0.74± 0.018
Swiss roll 0.1 Phate 0.731± 0.035 0.546± 0.044 0.652± 0.046
Swiss roll 0.1 TSNE 0.748± 0.067 0.537± 0.1 0.668± 0.068
Swiss roll 0.1 UMAP 0.81± 0.036 0.611± 0.039 0.726± 0.045

Swiss roll 0.5 Heat-Geo 0.813± 0.026 0.656± 0.049 0.733± 0.022
Swiss roll 0.5 Phate 0.735± 0.048 0.543± 0.064 0.656± 0.053
Swiss roll 0.5 TSNE 0.764± 0.07 0.564± 0.097 0.684± 0.065
Swiss roll 0.5 UMAP 0.826± 0.019 0.664± 0.073 0.744± 0.032

Swiss roll 1.0 Heat-Geo 0.722± 0.051 0.548± 0.091 0.652± 0.056
Swiss roll 1.0 Phate 0.482± 0.014 0.317± 0.031 0.428± 0.021
Swiss roll 1.0 TSNE 0.757± 0.037 0.562± 0.058 0.679± 0.042
Swiss roll 1.0 UMAP 0.726± 0.041 0.51± 0.077 0.65± 0.05

Swiss roll high 0.1 Heat-Geo 0.82± 0.015 0.666± 0.033 0.739± 0.019
Swiss roll high 0.1 Phate 0.705± 0.03 0.518± 0.048 0.628± 0.04
Swiss roll high 0.1 TSNE 0.757± 0.078 0.558± 0.115 0.677± 0.08
Swiss roll high 0.1 UMAP 0.796± 0.03 0.624± 0.048 0.714± 0.037

Swiss roll high 0.5 Heat-Geo 0.805± 0.021 0.655± 0.047 0.725± 0.035
Swiss roll high 0.5 Phate 0.745± 0.04 0.562± 0.061 0.664± 0.047
Swiss roll high 0.5 TSNE 0.747± 0.075 0.538± 0.11 0.668± 0.075
Swiss roll high 0.5 UMAP 0.787± 0.041 0.573± 0.067 0.703± 0.032

Swiss roll high 1.0 Heat-Geo 0.7± 0.045 0.534± 0.057 0.644± 0.032
Swiss roll high 1.0 Phate 0.552± 0.047 0.386± 0.056 0.496± 0.04
Swiss roll high 1.0 TSNE 0.754± 0.034 0.548± 0.068 0.675± 0.036
Swiss roll high 1.0 UMAP 0.76± 0.041 0.56± 0.077 0.68± 0.05

Swiss roll very high 0.1 Heat-Geo 0.818± 0.033 0.668± 0.074 0.738± 0.039
Swiss roll very high 0.1 Phate 0.688± 0.043 0.497± 0.053 0.614± 0.053
Swiss roll very high 0.1 TSNE 0.741± 0.07 0.544± 0.101 0.662± 0.075
Swiss roll very high 0.1 UMAP 0.816± 0.042 0.65± 0.069 0.733± 0.054

Swiss roll very high 0.5 Heat-Geo 0.73± 0.045 0.605± 0.093 0.701± 0.028
Swiss roll very high 0.5 Phate 0.758± 0.034 0.55± 0.037 0.676± 0.014
Swiss roll very high 0.5 TSNE 0.77± 0.054 0.557± 0.093 0.708± 0.031
Swiss roll very high 0.5 UMAP 0.789± 0.052 0.574± 0.101 0.707± 0.061

Swiss roll very high 1.0 Heat-Geo 0.592± 0.033 0.427± 0.063 0.545± 0.031
Swiss roll very high 1.0 Phate 0.531± 0.042 0.377± 0.046 0.486± 0.045
Swiss roll very high 1.0 TSNE 0.738± 0.019 0.551± 0.039 0.662± 0.025
Swiss roll very high 1.0 UMAP 0.736± 0.057 0.542± 0.102 0.66± 0.061

Tree 0.1 Heat-Geo 0.784± 0.051 0.734± 0.07 0.786± 0.051
Tree 0.1 Phate 0.55± 0.042 0.409± 0.064 0.555± 0.042
Tree 0.1 TSNE 0.706± 0.054 0.61± 0.075 0.712± 0.055
Tree 0.1 UMAP 0.678± 0.086 0.584± 0.12 0.681± 0.086

Tree 0.5 Heat-Geo 0.545± 0.121 0.411± 0.154 0.577± 0.094
Tree 0.5 Phate 0.529± 0.111 0.404± 0.151 0.555± 0.095
Tree 0.5 TSNE 0.647± 0.049 0.591± 0.065 0.65± 0.048
Tree 0.5 UMAP 0.645± 0.051 0.565± 0.058 0.652± 0.05

Tree 1.0 Heat-Geo 0.398± 0.07 0.3± 0.077 0.42± 0.07
Tree 1.0 Phate 0.418± 0.08 0.337± 0.093 0.43± 0.075
Tree 1.0 TSNE 0.405± 0.077 0.378± 0.074 0.405± 0.077
Tree 1.0 UMAP 0.432± 0.086 0.395± 0.098 0.432± 0.085

Table 10: Clustering results on swiss roll (with distribution) and tree. Best models on average are
bolded (not necessarily significant).

27



Figure 8: Embeddings of Heat Geodesic Embedding for different choices of hyperparameters on the
EB dataset. We evaluate the impact of the Harnack regularization, the diffusion time, the number of
neighbours in the kNN, and the order of the approximation for Euler and Checbyshev approximations.

28



Figure 9: Impact of diffusion time on the Pearson correlation between the estimated distance matrix
and ground truth distance matrix for different methods on the Swiss roll dataset.

Figure 10: Impact of Checbyshev approximation order on the Pearson correlation between the
estimated distance matrix and ground truth distance matrix for different methods on the Swiss roll
dataset.
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Figure 11: Impact of number of neighbours on the Pearson correlation between the estimated distance
matrix and ground truth distance matrix for different methods on the Swiss roll dataset.

Figure 12: Impact of Harnack regularization on the Pearson correlation between the estimated
distance matrix and ground truth distance matrix for HeatGeo on the Swiss roll dataset.
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Figure 13: Pearson correlation between estimated and ground truth distance matrices for the 10-
dimensional Swiss roll dataset for various graph constructions. Standard deviations are computed
over the 5 test folds.

31


	Introduction
	Preliminaries
	Related Work
	Heat-Geodesic Embedding
	Relation to other manifold learning methods
	Results
	Distance matrix comparison
	Preservation of the inherent data structure

	Conclusion and Limitations
	Appendix
	 Appendix
	Theory and algorithm details
	Kernel preserving embeddings
	Proofs
	Algorithm details

	Experiments and datasets details
	Datasets
	Swiss Roll
	Tree

	Evaluation Metrics
	Distance matrix evaluation
	Embedding evaluation

	Hyperparameters
	Hardware

	Additional results
	HeatGeo weighted
	Truncated distance
	Harnack inequality
	Case studies for specific manifolds

	Quantitative results
	Distance matrix evaluation
	Distance matrix evaluation via two-dimensional embeddings
	Clustering quality evaluation

	Impact of the different hyperparameters
	Graph construction



