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Abstract

Despite the rapid advance of 3D-aware image synthesis, existing studies usually
adopt a mixture of techniques and tricks, leaving it unclear how each part
contributes to the final performance in terms of generality. Following the most
popular and effective paradigm in this field, which incorporates a neural radiance
field (NeRF) into the generator of a generative adversarial network (GAN),
we build a well-structured codebase, dubbed Carver, through modularizing the
generation process. Such a design allows researchers to develop and replace each
module independently, and hence offers an opportunity to fairly compare various
approaches and recognize their contributions from the module perspective. The
reproduction of a range of cutting-edge algorithms demonstrates the availability
of our modularized codebase. We also perform a variety of in-depth analyses,
such as the comparison across different types of point feature, the necessity of
the tailing upsampler in the generator, the reliance on the camera pose prior, etc.,
which deepen our understanding of existing methods and point out some further
directions of the research work. We release code and models here to facilitate the
development and evaluation of this field.

1 Introduction

Learning a 3D-aware generative model has received growing attention considering its practical
applications, such as digital avatar and virtual reality. In addition to image quality and diversity,
which are widely pursued by 2D generation, 3D-aware image synthesis also requires the output
images to be spatially consistent across different viewing directions. Due to the lack of large-scale
3D data, previous attempts [46, 39, 20, 8, 56, 40, 58] propose to learn the 3D-aware model with 2D
images as the only supervision. To accomplish such a challenging task, the most popular solution
is to introduce neural radiance fields (NeRFs) into generative adversarial networks (GANs) as the
inductive bias. In this way, the GAN generator acquires the awareness of the underlying geometry
when rendering an image, whose fidelity is promised by the competition with the discriminator [19].

Towards an effective incorporation between NeRFs and GANs, many techniques have been proposed,
such as SIREN activation [6] and tri-plane representation [8]. However, the popularity of this field
unintentionally leads to some problems. (1) Existing algorithms are usually developed with different
codebases [7, 21, 57, 9], which adopt different 3D coordinate systems and rendering pipelines,
making it hard to transfer well-trained models from one codebase to another. (2) State-of-the-art
performance is usually achieved through an adequate combination of many techniques and tricks,
where some are novel while some are inherited from prior arts. However, existing codebases typically
hold an entangled implementation, making it hard to recognize the contribution of each part. (3)
A follow-up problem of an entangled implementation is the inconvenience of drawing merits from
different approaches, causing additional burden to the advance of this field.
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Table 1: Analyses of 3D-aware image synthesis performed with our modularized codebase.
Module Analysis Observation

Point Embedder
MLP v.s Volume v.s Tri-plane Different point features exhibit competitive capacities.
Combination of multiple types of point feature The contribution is marginal compared to a single type of point feature.
Number of planes Bi-planes performs on par with tri-planes.

Feature Decoder
Decoder depth (i.e., number of layers) The depth only matters for MLP-based point embedder.
Activation function SIREN is better than ReLU when upsampler module is absent.

Volume Renderer Density-based v.s SDF-based SDF-based representation currently lags behind the density-based one.
Upsampler Effects on the generation quality and consistency Upsamplers benefit the quality but harm the multi-view consistency.
Pose Sampler Effects of the pre-defined pose priors The more accurate the poses are, the better the generation quality is.

This work fills in this gap with a modularized codebase for 3D-aware image synthesis. In particular,
we reformulate the generation process into a bunch of modules, as shown in Fig. 1, including
a pose sampler, a stochasticity mapper, a point sampler, a point embedder, a feature decoder, a
volume renderer [36], and an upsampler. Besides, we also integrate a visualizer and an evaluator
into our codebase to facilitate online evaluation. With such a design, we are able to share the 3D
coordinate system and the rendering pipeline for all methods, and hence leave the research effort to
the improvement of each individual module. In summary, our contributions are three-fold.

• We build a highly-modularized easy-to-use codebase for 3D-aware image synthesis, and also use it
to re-implement a range of classic algorithms in this field. The on-par or even better reproduction
results suggest that existing approaches can be easily reformulated into a module combination
following our pipeline, demonstrating the availability of our toolkit.

• Our codebase allows users to replace a particular module (e.g., from the function perspective)
arbitrarily and independently, facilitating the per-module evaluation as well as the design integration
from various methods. We believe our codebase could help the community with a more convenient
algorithm development.

• Thanks to the modularity, we perform a variety of in-depth analyses regarding different modules,
which is beyond the capacity of previous functionally entangled codebases. The studies and
observations are summarized in Tab. 1. Besides deepening our understanding of this field, these
analyses also help point out some further directions of the research work, as discussed in Sec. 4.3.

2 Background

Task setting. 3D-aware image synthesis aims at generating multi-view images only from 2D image
collections. Basically, it always incorporates 3D inductive bias into 2D generative models, enabling
the generation of 3D models from 2D images without any 3D data. Previous efforts always concentrate
on 3D shape generation [53, 5, 29, 54], which typically demands extensively annotated 3D datasets
for training models. Thanks to the progress of neural implicit fields [36, 42, 35, 32, 18, 1, 2, 44, 51]
and generative models [19, 28, 3, 45, 24] especially GANs [25–27], 3D-aware image synthesis has
been advanced significantly in terms of the 3D consistency and visual quality.

Common solution. Neural Radiance Field (NeRF) [36] F(x,v) → (c, σ) regresses color
c ∈ R3 and volume density σ ∈ R from coordinate x ∈ R3 and viewing direction v ∈ S2,
parameterized with multi-layer perceptron (MLP) networks. Recent attempts on 3D-aware image
synthesis propose to condition NeRF with a latent code z, resulting in their generative forms
like GRAF [46], G(x,v, z) → (c, σ), to generate multi-view images of the object. Many
recent attempts have been made to improve generative NeRF, including the incorporation of
convolutional upsamplers [39, 20, 8, 56, 40, 58], hybrid representations[56, 8, 4, 61], other implicit
fields [41, 40, 55], patch-wise training [50], and MPI-based rendering [63, 14]. Some works have
leveraged alternative 3D representations, such as meshes [17, 30], voxel grids [47, 64, 37, 38, 16, 22],
and depth [48], to achieve 3D-aware image synthesis, which is not the primary focus of our paper.

Datasets. We benchmark 3D-aware image synthesis on three datasets, including FFHQ [26],
ShapeNet Cars [10] and Cats [62]. FFHQ [26] is a 2D dataset with 70K unique high-quality
face images of resolution 1024×1024. A variety of accessories are also covered in the dataset,
including eyeglasses, earrings, etc. The face images are shot from frontal views and near-frontal
views. ShapeNet Cars [10] is the car subset of ShapeNet [10], which consists of 8K CAD model.
Both the geometry and texture are stored for each model. We random sample camera poses that span
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Figure 1: Overview of our modularized pipeline for 3D-aware image synthesis, which modularizes
the generation process in a universal way. Each module can be improved independently, facilitating
algorithm development. Note that the discriminator is omitted for simplicity.

the entire 360◦ camera azimuth and 180◦ camera elevation distributions to render CAD model into
2D images. Cats [62] contains 6,444 cat face images of resolution 256×256. The camera poses
are generally on the front and near-front of the cat. Discussion. Typically, the datasets used for
3D-aware image synthesis comprise single-object datasets with an easy-to-define camera pose prior,
as opposed to compositional scene datasets. The objects in these datasets have similar zoom, scale,
and geometry, making them suitable for learning 3D representation from 2D observations. Previous
studies [6, 46, 20, 56, 8] commonly use these datasets for evaluation, while other datasets, such as
CARLA [15], LSUN Bedroom [60], and CelebA [33], are not covered in this work.

Metrics. We include Fréchet Inception Distance, reprojection error, face identity consistency, pose
error and depth error to evaluate the methods. Fréchet Inception Distance (FID) [23] is adopted to
evaluate the quality and the diversity of the synthesized images from 3D-aware image synthesis model.
Reprojection Error (RE) [56] measures the distance between two adjacent views by warping them to
each other based on the rendered depth maps. Identity Consistency (ID) [8] is designed for facial
identity consistency evaluation. For each generated identity, mean Arcface [12] cosine similarity score
is calculated between pairs of views rendered from random camera poses. Pose Error (PE) [8, 56]
measures the accuracy of the rendered objects’ poses. A pre-trained pose estimator (e.g., head
pose estimator) is leveraged to estimate the pose from the rendered image. Pose error calculates the
distance between the estimated pose and the given camera pose for rendering. Depth Error (DE) [8] is
used to evaluate the quality of the underlying shape in 3D-aware image synthesis, where a pre-trained
depth estimator is adopted to predict the depth for the rendered 2D image. The predicted depth is
then compared with the rendered depth to indicate the shape quality.

3 Modularized pipeline for 3D-aware image synthesis

We propose a modularized framework that employs GANs to generate 3D representations from
single-view images. The overall pipeline can be seen in Fig. 1. Our framework aims to achieve
modularity in the design, and thus enables easy integration of different components. By providing a
modularized platform that grants easy usage and flexible configurations, our framework can foster
collaborative efforts toward improving the codebase over the long term. The following sections will
provide details of each module.

Pose sampler. 3D-aware generative models rely on camera pose θ to regulate the synthesized view
of an object. As a result, pose sampler is proposed to sample poses as the model input during training.
The pose sampler in our framework supports two kinds of pose sampling: stochastic pose sampling
and deterministic pose sampling. Stochastic pose sampling enables sampling pose from a random
or pre-defined pose distribution, i.e., Gaussian distribution or uniform distribution. Deterministic
pose sampling allows for sampling poses for each sample with its ground-truth pose. Ground-truth
poses are easily accessible for some datasets, such as ShapeNetCars [10]. Although the FFHQ [26]
and Cats [62] datasets do not include ground-truth poses, we utilize a readily available face pose
estimator [13] to approximate these poses, treating the results as our ground-truth. By offering both
types of pose sampling, our framework provides flexibility in pose selection for users.

Point sampler. Sampling points is an essential step for NeRF because it requires a set of points along
a single ray for rendering. However, various methods use different coordinate systems to sample
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points, which can make it challenging to study components from different methods. To alleviate this
issue, we develop a unified point sampler that allows users to sample points in a consistent coordinate
system. Initially, we sample coordinates in pixel space and then transform them into camera space
using camera intrinsics. We then use the sampled camera-to-world matrix (i.e., camera extrinsic)
to transform the coordinates into world space. Our point sampler facilitates the combination of
components from different methods by providing a simple workflow for point sampling in a unified
coordinate system. This simplifies the sampling process, making it easier for users to sample points
and integrate components from various methods.

Stochasticity mapper. Following the StyleGAN family [26, 27], we learn a stochasticity mapper
that takes a random noise z ∼ N (0, 1) as input, and outputs an intermediate latent code w ∈ W
to modulate the styles of 3D-aware synthesis modules (e.g., feature decoder, and upsampler). The
learnable latent space W can better simulate the native distribution of real data. Moreover, we can
incorporate camera parameters θ as conditions into the stochasticity mapper to enhance the 3D
consistency of synthesized images. This allows the target view to influence the scene synthesis
process, leading to more realistic and accurate 3D-aware synthesized images.

Point embedder. The point embedder is responsible for transforming raw point coordinates into point
features. Our framework provides several options for this transformation, including extracting from
a multi-layer perceptron (MLP), querying from a feature volume, a tri-plane or multiplane image
(MPI) representation, or their combinations. By leveraging explicit structure information encoded
in a volume or tri-plane representation, the point embedder can provide a more detailed description,
leading to a significant impact on the quality of the final rendering. Therefore, the design of the
point embedder is of great importance. Our framework offers a unified interface for extracting MLP,
volume, tri-plane, and MPI-based point features, providing users with a convenient development
experience.

Feature decoder. The feature decoder is a module that converts the extracted point features from
the point embedder into color, density, or SDF values. Typically, the feature decoder consists of a
multi-layer perceptron (MLP) that uses ReLU as an activation function. However, recent research
has demonstrated that SIREN [49], which employs periodic activation functions, exhibits greater
capability in modeling fine details than ReLU-based representations. Our framework supports both
ReLU and SIREN-based MLP decoders, as well as some other choices, providing users with the
flexibility to choose the most suitable decoder for their specific application needs.

Volume renderer. The volume renderer is a critical component that transforms decoded colors,
densities, or other properties into 2D images, making it easy to receive supervision from 2D training
datasets. Our framework includes support for the basic integration formula in NeRF [36] and offers
a range of clamping modes for color and density values, as well as additional options for volume
rendering. These features provide users with the flexibility to customize their rendering process
according to their specific needs, enabling them to achieve high-quality results that meet the demands
of their particular application.

Upsampler. Volumetric rendering can result in a large memory footprint and slow rendering speeds
when generating high-resolution images. To maintain efficiency, many recent approaches [40, 20,
56, 8] employ convolutional upsamplers to render high-resolution images. These methods first
generate a low-resolution feature map and then use an upsampler to progressively add appearance
information and increase the resolution of the rendering. The typical upsampler consists of upsampling
layers with 1 × 1 or 3 × 3 convolutional layers. Our framework provides users with a range of
upsamplers [40, 20, 56, 8] to choose from, allowing them to customize their upsampling process to
meet their specific needs.

Evaluator. The current codebase for 3D GANs lacks systematic evaluation metrics. To address
this issue, our codebase includes support for various evaluation metrics for 3D generation, such as
FID [23], reprojection error [56], face identity consistency [8], depth error [8], and pose error [8]. We
have integrated widely used 3D face reconstruction model [13] and face recognition model [12] into
our framework, making it convenient to test various metrics. The inclusion of these metrics enables
quantitative evaluation and allows the community to gain a better understanding of the effects of the
key components from various methods.
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Table 2: Overview of methods supported by our codebase. We provide an outline of the modules in
our supported methods and present the reproduced results with our codebase on FFHQ [26], with the
FID [23] used as the evaluation metric.

Method Pose
Sampler

Point
Embedder

Feature
Decoder

Volume
Renderer Upsampler Resolution Official Reproduction

GRAF [46] Stochastic MLP ReLU Density, Color No 128×128 46.30 45.50
π-GAN [6] Stochastic MLP SIREN Density, Color No 128×128 29.90 27.81

StyleSDF [40] Stochastic MLP SIREN SDF, Color, Feature Yes
256×256 11.50 10.96
512×512 10.07 10.71

1024×1024 10.01 10.14

StyleNeRF [20] Stochastic MLP ReLU Density, Color, Feature Yes
256×256 8.00 8.31
512×512 7.80 7.37

1024×1024 8.10 8.08
VolumeGAN [56] Stochastic Volume LeakyReLU Density, Color, Feature Yes 256×256 9.10 10.37
GRAM [14] Deterministic MPI SIREN Occupancy, Color No 256×256 14.50 13.83
EpiGRAF [50] Deterministic Tri-plane LeakyReLU Density, Color No 512×512 9.92 9.19

EG3D [8] Deterministic Tri-plane Softplus Density, Color, Feature Yes
256×256 4.80 4.72
512×512 4.70 4.63

Visualizer. In addition to quantitative metrics, our framework also supports qualitative visualization
of generated images and extraction of the underlying geometry. With our developed codebase, users
can easily generate multi-view images, as well as obtain 3D shapes of each generated sample.

4 Experiments

This section commences with a concise overview of the implementation details of our experiments.
Following this, we review the methods that are supported by our codebase. We then present our
observations and analyses of the primary modules in our framework, highlighting which components
are essential in 3D GANs. Finally, based on our experimental settings, we discuss promising future
directions for 3D-aware image synthesis.

Implementation details. We employ our developed codebase to conduct extensive experiments
on the main modules in 3D GANs. To ensure a systematic evaluation, we use the state-of-the-art
3D-aware GAN, EG3D [8], as our backbone model and substitute each module with alternative
choices. For instance, to investigate the point embedder, we substitute its tri-plane with feature volume
or other representations. We benchmark 3D-aware image synthesis on FFHQ [26], Cats [62], and
ShapeNet Cars [10] datasets. The models are trained on the FFHQ and Cats datasets at a resolution
of 256, and the ShapeNet Cars dataset at a resolution of 128. We train all models on 8 NVIDIA A100
GPUs for 25 million images, with a batch size of 32. Following the approach in EG3D [8], we set the
generator learning rate to 0.0025 and the discriminator learning rate to 0.002. More details of our
experimental settings can be found in Appendix A.

4.1 Supported methods and reproduced results

We support all highly representative models in the field of 3D-aware image synthesis, as they
encompass almost all mainstream point embedders, including MLP [46, 6, 40, 20, 14], volume [56],
tri-plane [50, 8] and MPI [14]. As for feature decoder activation, they include both SIREN [6, 40, 14],
ReLU [46, 20] or some other activations [56, 8, 50]. Additionally, some of these methods include an
upsampler [40, 20, 56, 8], while others do not [46, 6, 14, 50]. We then provide a brief introduction to
each of these methods, which are supported by our codebase. GRAF [46] is the first work that learns
a generative model for implicit radiance fields in 3D-aware image synthesis. πππ-GAN [6] introduces
a mapping network to condition layers in the SIREN [49] using feature-wise linear modulation
(FiLM) [43], a novel architecture in 3D GANs. StyleSDF [40] is another method that incorporates
signed distance functions (SDFs) into 3D generative models and achieves impressive results in terms
of visual and geometric quality. StyleNeRF [20] integrates the neural radiance field (NeRF) [36]
into a style-based generator to improve rendering efficiency and 3D consistency for high-resolution
image generation. VolumeGAN [56] uses a feature volume to represent the underlying geometry,
enabling high-fidelity 3D-aware image synthesis. GRAM [14] adopts the multiplane image (MPI)
representation to constrain point sampling and radiance field learning on 2D manifolds, facilitating
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Figure 2: Qualitative comparison across various single point embedders on FFHQ [26], Cats [62] and
ShapeNet Cars [10], where the MLP-based, volume-based, and tri-plane-based point features exhibit
on-par performance in generating multi-view consistent images and high-quality geometries.

fine-detail learning. EpiGRAF [50] proposes a new patch sampling strategy to stabilize training and
accelerate convergence. Finally, EG3D [8] proposes a tri-plane-based 3D GAN framework that is
efficient and expressive for high-resolution geometry-aware image synthesis.

Meanwhile, to evaluate the performance of our implementation, we conduct experiments on the
FFHQ dataset, and the results are presented in Tab. 2. Upon comparison of our reproduction with the
original implementation, we have observed a similar level of performance in terms of the officially
reported metrics. The marginal differences observed in the FID for all methods indicate that our
codebase is capable of precisely replicating the official results. The convenience afforded by the
shared coordinate system and the versatility of each module has allowed us to retrain various models
in a unified and optimized setting, leading to generally improved results in our reproduction compared
to the official implementation.

4.2 Analyses

Types of different point embedders. Based on Tab. 3 and Fig. 2, we can conclude that point
features extracted by different point embedders exhibit competitive capacities when combined with
the upsampler. The reason may be that the upsampler enhances the modeling ability of scene
appearance and relieves the burden of encoding appearance with neural fields in 3D space. Note that
tri-plane-based point embedder is more computationally efficient than MLP-based and volume-based
point embedders.

Table 3: Analysis of different types of point features.
Point Embedder FFHQ [26] Cats [62] Cars [10]

MLP Volume Tri-plane FID↓ ID↑ DE↓ PE↓ RE↓ FID↓ FID↓
✓ ✗ ✗ 5.15 0.777 0.470 5.0e−4 0.091 4.05 2.42

✗ ✓ ✗ 4.65 0.778 0.413 5.1e−4 0.085 3.59 2.25
✗ ✗ ✓ 4.72 0.743 0.547 4.5e−4e−4e−4 0.111 3.99 2.75

✓ ✓ ✗ 4.70 0.773 0.334 5.1e−4 0.086 3.87 2.55

✓ ✗ ✓ 4.69 0.748 0.465 5.3e−4 0.104 4.42 2.59

✗ ✓ ✓ 4.68 0.735 0.378 4.6e−4 0.100 4.41 2.78

✓ ✓ ✓ 4.62 0.769 0.467 4.7e−4 0.091 4.70 2.65

Combination of multiple
point embedders. The results
in Tab. 3 and Fig. 3 show
that combining the outputs
of multiple embedders has
a negligible impact on the
final outcome. When training
the model using multiple
embedders, the network tends
to find the simplest way to
obtain the desired outcome,
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Figure 3: Qualitative comparison across various composite point embedders on FFHQ [26], Cats [62]
and ShapeNet Cars [10], where these compound point features exhibit on-par performance in
generating multi-view consistent images and high-quality geometries.

which may result in the output features of certain embedders being overlooked. Therefore, using a
single type of point feature is sufficient for model training.

Table 4: Analysis of plane-based point features.

Point Embedder
FFHQ [26] Cats [62] Cars [10]

FID↓ ID↑ DE↓ PE↓ RE↓ FID↓ FID↓
Bi-plane (XY + XZ) 4.55 0.738 0.398 4.6e−4 0.083 4.33 3.21

Bi-plane (XY + ZY) 4.38 0.746 0.379 4.4e−4e−4e−4 0.104 3.95 2.81

Bi-plane (XZ + ZY) 4.52 0.754 0.385 5.5e−4 0.095 4.77 2.50
Tri-plane 4.72 0.743 0.547 4.5e−4 0.111 3.99 2.75

Number of planes. We also inves-
tigate the plane-based point embed-
ders by examining the necessity of
using three planes, as in [8]. To
accomplish this, we substitute the tri-
plane with both single-plane and bi-
plane representations. As expected,
the single-plane representation per-
forms poorly, as the model cannot
accurately determine a point’s location in 3D space with only one plane. However, the bi-plane
representation slightly outperforms the tri-plane representation, as shown in Tab. 4. The bi-plane
model accurately determines 3D point positions without ambiguities and has fewer parameters. Thus
the bi-plane representations are on par with the tri-plane representations in 3D GANs. Nonetheless,
this does not necessarily imply that fewer planes are always superior. The datasets we trained on are
object-level and relatively simple, making the bi-plane representation sufficient. In more complex
tasks, additional planes may be required.

Depth of feature decoder. As illustrated in Tab. 5, the depth of the feature decoder plays a crucial role
in the accuracy of MLP-based point features. However, for volume and plane-based point features,
the depth of the feature decoder appears to be less significant. This can be attributed to the fact that,
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Table 5: Analysis of the depth of feature decoder.

Point Embedder Depth
FFHQ [26]

FID↓ ID↑ DE↓ PE↓ RE↓

MLP
4 17.22 0.761 0.807 12.2e−4 0.105

8 7.39 0.782 0.552 7.3e−4 0.087
16 5.15 0.777 0.470 5.0e−4e−4e−4 0.091

Volume
4 5.65 0.784 0.437 4.4e−4 0.095

8 5.18 0.787 0.381 4.0e−4e−4e−4 0.100

16 4.65 0.778 0.413 5.1e−4 0.085

Tri-plane
2 4.72 0.743 0.547 4.5e−4 0.111

4 4.77 0.750 0.414 4.4e−4e−4e−4 0.101
8 5.58 0.750 0.566 5.6e−4 0.108

in the case of volume or tri-plane-based
point features, the feature volume or
feature plane predominantly determines
the point representation’s capability, while
the feature decoder serves as a simple
mapper to convert the point features into
corresponding density or color values.
Conversely, for MLP-based point features,
the model relies solely on the feature
decoder to transform the raw coordinates
to the density or color values, and thus the
depth of feature decoder determines the
model’s capacity.

Table 6: Analysis of the activation type used in
feature decoder.

Activation Type
FFHQ [26]

FID↓ ID↑ DE↓ PE↓ RE↓
- w/ upsampler 256 × 256

SIREN 11.66 0.763 0.352 9.1e−4 0.089

ReLU 7.39 0.782 0.552 7.3e−4e−4e−4 0.087
- w/o upsampler 64 × 64

SIREN 6.58 0.741 0.340 6.6e−4 0.071
ReLU 7.30 0.729 0.498 4.6e−4e−4e−4 0.084

Activation type of feature decoder. As il-
lustrated in Tab. 6, we find that without the
upsampler, SIREN-based MLP outperforms the
ordinary MLP while with the upsampler the result
turns out to be the opposite. One plausible
explanation for this observation could be the
design of the upsampler module, which may have
the tendency to amplify the “ripple” artifacts
induced by the SIREN-based layers [6], while
mitigating the blurry artifacts produced by the
ordinary layers.

Table 7: Analysis of the underlying geometric
representation.

Geometric
Representation

FFHQ [26]
FID↓ ID↑ DE↓ PE↓ RE↓

MLP
SDF 8.87 0.610 0.874 5.9e−4 0.184

Density 5.15 0.777 0.470 5.0e−4e−4e−4 0.091

Volume
SDF 7.27 0.676 0.938 5.0e−4e−4e−4 0.200

Density 4.65 0.778 0.413 5.1e−4 0.085

Tri-plane
SDF 13.31 0.534 0.626 10.9e−4 0.161

Density 4.72 0.743 0.547 4.5e−4e−4e−4 0.111

Geometric representation. The results pre-
sented in Tab. 7 indicate that the SDF-based
representations generally yields inferior quanti-
tative metrics compared to vanilla density-based
representations for all point embedders. These
findings are consistent with previous works [59].
Moreover, we observe that utilizing sphere
initialization and additional regularization terms,
such as eikonal loss and minimal surface
loss [40], can adversely affect GAN training,
leading to flawed results. Thus, incorporating
SDF does not offer superior generation quality compared to density-based representations.

Table 8: Analysis of using different pose priors.

Pose Prior
FFHQ [26]

FID↓ ID↑ DE↓ PE↓ RE↓
MLP w/ RPD 14.56 0.413 1.513 5.8e−2 0.405

MLP w/ APD 9.96 0.788 1.659 5.9e−2 0.407

MLP w/ GTP 5.15 0.777 0.470 5.0e−4e−4e−4 0.091
Volume w/ RPD 10.47 0.429 1.562 5.5e−2 0.390

Volume w/ APD 7.34 0.731 1.125 4.8e−2 0.367

Volume w/ GTP 4.65 0.778 0.413 5.1e−4e−4e−4 0.085
Tri-plane w/ RPD 15.18 0.427 2.181 5.6e−2 0.379

Tri-plane w/ APD 5.45 0.764 1.502 5.4e−2 0.405

Tri-plane w/ GTP 4.72 0.743 0.547 4.5e−4e−4e−4 0.111

Pose priors. As shown in Tab. 8 and Fig. 4, the
pose priors significantly impacts the quality of
the generated 3D geometry. Specifically, when
training with the random pose distribution (RPD),
the generated 3D geometry lacks normal facial
structures and exhibits inconsistency in novel
view synthesis. On the other hand, when trained
solely with the accurate pose distribution (APD),
the model tends to overfit to a "flat face shape"
and consequently struggles with generating dif-
ferent views of faces. However, when provided
with ground-truth pose (GTP) information, the
model can produce photo-realistic images and
generate adequate and high-quality geometry.

Table 9: Analysis of the effect of upsampler, with tri-plane
point feature as an example.

Upsampler Resolution
FFHQ [26] Training

Time
Inference

SpeedFID↓ ID↑ DE↓ PE↓ RE↓
✓ 256×256 4.72 0.743 0.547 4.5e−4e−4e−4 0.111 2.7 Days 49 FPS
✗ 256×256 6.86 0.749 0.443 6.2e−4 0.104 6.9 Days 20 FPS

Upsampler. As evidenced in Tab. 9,
the model incorporating an upsam-
pler exhibits superior image quality,
owing to its capacity to enhance
image details. Nonetheless, the
inclusion of an upsampler, typically
accomplished through convolutional
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Figure 4: Qualitative comparison across different pose priors, where having ground-truth pose for
each training example plays a vital role in helping the model learn adequate geometry.

layers and non-linear activation, may compromise multi-view consistency. Conversely, eliminating
the upsampler yields heightened view consistency, albeit at the expense of significantly increased
computational cost, manifested in prolonged training and inference times.

4.3 Outlooks

Based on the developed codebase, our experimental analysis has revealed numerous unresolved
challenges in 3D GANs that warrant further investigation to enhance its applicability in downstream
domains. Here, we propose several promising avenues for future research in the realm of 3D-aware
image synthesis, with the aim of fostering continued progress and facilitating breakthroughs in this
rapidly evolving field.

Training stability. Training 3D-aware image synthesis models is often prone to mode collapse,
resulting in unsatisfactory image generation and inferior geometry. This may be due to a mismatch
between the distribution of physically meaningful factors, such as camera poses and rendering
parameters, and that of real images. Therefore, it is crucial to investigate the training stability of
3D-aware image synthesis models.

Efficiency. Training 3D-aware image synthesis models can take 3-10 days on multiple high-end
GPUs, and the models can be slow during inference, which limits their practicality in downstream
applications. Therefore, the need to improve the training efficiency of 3D generative models is
increasing, and enhancing the inference efficiency is crucial for their practical deployment in real-
world applications.

Pose acquisition. The role of pose in 3D GAN training is of great significance, but obtaining accurate
pose information from in-the-wild data is a non-trivial task. One potential solution is to incorporate a
pose estimator into the 3D GAN model. Further research may focus on improving pose acquisition
methods for 3D-aware image synthesis models.

Hybrid representations. The current representations employed in 3D GANs are primarily implicit
representations. However, in some complicated scenarios, these representations may prove insufficient.
For instance, when modeling a human head, the implicit representation is suitable for hair modeling,
while explicit representations such as meshes may be more appropriate for face modeling. To address
this issue, future research should focus on exploring hybrid representations that can handle more
complex data.

5 Conclusion

This paper proposes a modularized codebase for 3D-aware image synthesis development, enabling
researchers to independently develop and replace each module. This approach provides a means to
compare various methods fairly and recognize their key contributions from a module perspective.
Extensive experimental analyses reveal the potential future research directions for 3D-aware image
synthesis models.
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Broader Impact

The development of 3D-aware image synthesis has significant potential for impact in fields such
as entertainment, gaming, and virtual reality. This technology has the ability to revolutionize the
way we create and interact with virtual environments by generating realistic 3D models and images.
However, as with any emerging technology, ethical considerations must be taken into account to
prevent potential misuse for malicious purposes such as the creation of realistic fake images or
videos. Therefore, researchers and developers must consider the social and ethical implications of
this technology and work collaboratively with stakeholders to develop appropriate guidelines and
best practices, ensuring that it is developed and used ethically and responsibly. Open and transparent
discussions about the ethical implications of this technology can help maximize its potential benefits
while minimizing potential risks.
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Appendix

A Experimental details

A.1 Backbone

In this study, we adopt the state-of-the-art 3D-aware GAN, EG3D [8], as our backbone model,
which we have reproduced in our modularized codebase. This codebase is utilized to perform all
experiments presented in this paper. Our investigation involves substituting each module in 3D GANs
with alternative choices to study their individual effects. For instance, to explore the point embedder,
we replace its tri-plane with feature volume or other representations. Similarly, to investigate the
feature decoder, we alter the depth or activation function of the decoder. Given our modularized
design, these changes can be easily implemented by adjusting the parameters in the configuration
files.

In our experiments, we use only one-stage training to save computational resources. Specifically, we
perform the training only at a neural rendering resolution of 64×64, without stepping the resolution
up to 128× 128.

A.2 Point embedder

In this work, we mainly explore the capacity of three point embedders: MLP, volume, and tri-plane,
as well as their combinations. The MLP-based point embedder utilizes a multi-layer perceptron
(MLP) to transform raw point coordinates into point features. The volume-based point embedder
queries point features from the feature volume, while the tri-plane based point embedder queries
point features from the tri-plane feature representation.

The experimental settings for the tri-plane based point embedder are identical to those of [8]. For
the MLP-based point embedder, we adopt an MLP network to extract point features, similar to [20].
This network employs ReLU activation, 1×1 convolutions modulated by style vectors, and has a
depth of 16, with a hidden layer dimension of 128 and an output layer dimension of 64. Notably, for
MLP-based point features, the point embedder and the feature decoder are actually the same. As for
the volume-based point embedder, we generate the feature volume using a generator that utilizes 3D
convolutions, which is the same network architecture as [56]. The feature volume resolution is set
as 64×64. The feature decoder for volume-based point features is an MLP network with the same
architecture as the MLP-based point embedder. Other settings including geometric representation,
upsampler, pose priors, etc., remain consistent with our backbone model.

We also investigate the impact of composite point embedders, which entail combining two or more
point embedders. Specifically, we explore combinations of MLP and volume, MLP and tri-plane,
volume and tri-plane, and MLP, volume, and tri-plane. The combination of MLP and volume
involves concatenating the MLP-based point features and volume-based point features along the
feature channel dimension, while the other combinations follow the same principle. To conserve
computational resources during training with composite point embedders, we set the MLP-based
point features as the raw point coordinates, with the MLP serving as an identical mapping.
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A.3 Feature decoder

Considering that the feature decoder typically comprises a multi-layer perceptron, it is crucial to
investigate the impact of its depth and activation layer type on the performance. To this end, we
conduct an empirical study on the depth and activation type of the feature decoder. Specifically, we
perform experiments on three point features, including MLP, volume, and tri-plane, utilizing the
experimental setup inherited from Appendix A.2, but with varying depths of the MLP. In terms of the
activation type of feature decoder, we employ both SIREN-based layers and ordinary ReLU-based
layers in two settings: with and without an upsampler. And the depth of both MLPs was set to 8,
with a hidden dimension of 128 and an output dimension of 64. When training the model with a
SIREN-based layer, similar to [6], we set the generator learning rate to 0.00006 and the discriminator
learning rate to 0.0002.

A.4 Geometric representation

Prior works, such as NeuS [52], have incorporated the signed distance function (SDF) into the volume
rendering formula to enable the reconstruction of smooth surface models. Moreover, 3D GANs [40]
have explored the use of SDF as a geometric representation for consistent generation. Hence, our
goal is to examine the effects of two distinct geometric representations: density and SDF. We perform
experiments on three point embedders: MLP, volume, and tri-plane. The baseline models utilizing
vanilla density are identical to the model described in Appendix A.2. For SDF-based models, the
feature decoder outputs SDF values. We also incorporate sphere initialization, eikonal loss, and
minimal surface loss during training, with the same loss weight as [40].

A.5 Upsampler

Our study aims to analyze the influence of the upsampler in 3D GANs. To ensure a fair comparison,
we conduct experiments on the generation of 256×256 resolution images. When an upsampler is not
utilized, the neural rendering resolution is the same as the image resolution, resulting in significantly
longer training time and higher computational costs. We conduct experiments on a model without an
upsampler, and disable dual discrimination since the output images are only at a fixed resolution of
256×256. Other settings remain consistent with the backbone model.

A.6 Pose priors

We additionally explore pose priors on the FFHQ [26] dataset. To obtain the accurate pose distribution
(APD) of the dataset, we adopt the approach described in [6], where the pose distribution is modeled
as a Gaussian prior. Camera poses are sampled from a normal distribution with a vertical mean of
π/2 radians, standard deviation of 0.155 radians; and a horizontal mean of π/2 radians, a standard
deviation of 0.3 radians. Regarding the random pose distribution (RPD), a Gaussian distribution
is also assumed for the pose, with only the vertical/horizontal mean and standard deviation being
randomly assigned. And we introduce the acquisition of ground-truth poses in Appendix B.

B Dataset details

We conduct our experiments on three datasets, including FFHQ [26], Cats [62], and ShapeNet
Cars [10]. Since the original data of these datasets lacks pose labels, we perform preprocessing steps
for each dataset. We follow [8] to align, crop and get pose matrix for each image in the FFHQ [26]
dataset. Cats [62] contains more than 6K real-world cat images, and the data is preprocessed
following [14]. The ShapeNet Cars [10] dataset comprises various synthetic car models. We use the
dataset rendered from [8] which is composed of approximately 530K images. Unlike the forward-
facing datasets, its camera poses encompass the full range of 360◦ horizontal and 180◦ vertical
distributions. In our experiments, the resolution of 256 × 256 is employed for FFHQ and Cats
datasets, while for the ShapeNet Cars dataset, a resolution of 128 × 128 is used.
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Table A1: Training time and inference speed of models with different point embedders. The tri-plane-
based point embedder exhibits the highest computational efficiency.

Point Embedder FFHQ [26] 256×256 Cats [62] 256×256 Cars [10] 128×128
MLP Volume Tri-plane Training Time Inference Speed Training Time Inference Speed Training Time Inference Speed

✓ ✗ ✗ 5.6 Days 29 FPS 6.1 Days 29 FPS 6.9 Days 23 FPS
✗ ✓ ✗ 6.8 Days 24 FPS 7.3 Days 24 FPS 8.3 Days 20 FPS
✗ ✗ ✓ 2.7 Days 49 FPS 3.1 Days 49 FPS 2.7 Days 48 FPS
✓ ✓ ✗ 6.9 Days 24 FPS 7.5 Days 24 FPS 8.4 Days 20 FPS
✓ ✗ ✓ 2.8 Days 49 FPS 3.3 Days 49 FPS 2.8 Days 48 FPS
✗ ✓ ✓ 3.8 Days 38 FPS 4.4 Days 38 FPS 3.9 Days 35 FPS
✓ ✓ ✓ 3.9 Days 38 FPS 4.5 Days 38 FPS 4.0 Days 35 FPS

Figure A1: Samples synthesized on FFHQ [26] with truncation 0.7 using the model with an MLP-
based point embedder. For each generated identity, we show the underlying geometry under two
views and appearance under three views.

C More results

C.1 Efficiency comparison

We report the training time and inference speed of models utilizing various point embedders in
Tab. A1. The training time is computed by training our models on 8 NVIDIA A100 GPUs for 25
million images. Inference speed is measured on a single NVIDIA A100 GPU, where we processed 1K
images and calculated the average FPS. As shown in Tab. A1, tri-plane-based point embedders exhibit
superior computational efficiency compared to MLP-based and volume-based point embedders.
MLP-based point embedders require a larger number of layers to extract point features, leading to
longer processing times. Among these, volume-based point embedder is the least efficient, as it
involves 3D convolutions.

C.2 More qualitative results

We show more results of different point embedders on FFHQ [26] in Figs. A1 to A3. Interestingly, we
observe that models equipped with tri-plane-based point embedders generate 3D shapes with sharper
noses, while those equipped with MLP-based or volume-based point embedders do not exhibit this
characteristic. This phenomenon can be observed more clearly in Fig. A4. However, the underlying
reason for this remains unknown.
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Figure A2: Samples synthesized on FFHQ [26] with truncation 0.7 using the model with a volume-
based point embedder. For each generated identity, we show the underlying geometry under two
views and appearance under three views.

Figure A3: Samples synthesized on FFHQ [26] with truncation 0.7 using the model with a tri-plane-
based point embedder. For each generated identity, we show the underlying geometry under two
views and appearance under three views.
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Figure A4: Qualitative comparison across different single point embedders on FFHQ [26], zoom in
for better viewing. Models equipped with tri-plane-based point embedders generate 3D shapes with
sharper noses, which can appear unnatural.
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D Limitations and future work

Efficiency. Training our 3D GAN models is a time-consuming process, especially when utilizing
MLP-based and volume-based point embedders. To draw meaningful conclusions, we must conduct
a plethora of experiments. Currently we are uncertain about how to improve the efficiency of our
models’ training. Each experiment requires careful hyper-parameter tuning, which is a challenging
task. However, due to computational limitations, multiple runs of our experiments are infeasible.
Consequently, we identify the “optimal” settings using a limited number of attempts.

Training stability. We have observed that training 3D GANs can be rather unstable. Some
experiments are highly sensitive to hyper-parameters such as the γ value of R1 regularization [34],
learning rate, etc. However, our study does not investigate this aspect in depth. Future research
addressing hyper-parameter sensitivity and training stability may lead to significant reductions in
training costs and more compelling results.

Universality. We trained all our 3D-aware image synthesis models on simple, object-level datasets,
such as FFHQ [26] for face generation, and our conclusions are based on these datasets. However, our
paper does not explore the extension of 3D GANs to a higher degree of universality, which represents
a promising research direction for the future. This universality pertains to generating diverse objects
(e.g., ImageNet [11] or Microsoft CoCo [31]), dynamic objects or scenes, and large-scale scenes.
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