
Spectral Invariant Learning for Dynamic Graphs
under Distribution Shifts

(Appendix)

Zeyang Zhang1∗, Xin Wang1†, Ziwei Zhang1, Zhou Qin2,
Weigao Wen2, Hui Xue2, Haoyang Li1, Wenwu Zhu1†

1Department of Computer Science and Technology, BNRist, Tsinghua University, 2Alibaba Group
zy-zhang20@mails.tsinghua.edu.cn, {xin_wang, zwzhang}@tsinghua.edu.cn,

{qinzhou.qinzhou, weigao.wen, hui.xueh}@alibaba-inc.com,
lihy18@mails.tsinghua.edu.cn, wwzhu@tsinghua.edu.cn

A Notations

Table 1: The summary of the notations and their descriptions
Notations Descriptions

G = (V, E) A graph with the node set and edge set
Gt = (Vt, Et) Graph slice at time t

Xt,At Features and adjacency matrix of a graph at time t
G1:t, Y t,G1:t,Yt Graph trajectory, label and their corresponding random variable
G1:t
v , yt

v,G
1:t
v ,yt

v Ego-graph trajectory, the node’s label and their corresponding random variable
p(·) Probability distribution
P,P Pattern and its corresponding random variable

dv,1,dv,2 The degrees of node v varying by time
g,w The parameters of linear classifiers
m,M The mask to filter node representations
ŷv The prediction for the node v

Rtr(w) The risks of the classifier w in training data
Φ The Fourier bases
x The conjugate of x

MSG(·),AGG(·) Message and Aggregation functions
ht
u Hidden embeddings for node u at time t

H,Z Node representations in the temporal domain and spectral domain
d The dimensionality of node representations

Amp(Z), ϕ(Z) The amplitudes and phases of the representations Z
xH The Hermitian transpose of x
T,K The number of time stamps and the number of frequency components
f(·) Predictors
ℓ Loss function

L,Lm,LINV Task loss, mixed loss and invariance loss

∗This work was done during the author’s internship at Alibaba Group
†Corresponding authors

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

B Theoretical Analyses

B.1 Proof of Proposition 1

Proposition 1. For any mask m ∈ RT×1, for the optimal classifier in the training data w∗ =
argminw Rtr(w) , if ||m ⊙w∗||2 ̸= 0, there exist OOD nodes with unbounded error, i.e., ∃v s.t.
lim||dv,2||→∞(ŷv − yv)

2 =∞.

Proof. For any mask m ∈ RT×1, the predictions of the model is
ŷv = w⊤(m⊙ (dv,1 + dv,2)). (1)

We assume that ||m ⊙ w|| ≠ 0, otherwise the classifier is a trivial solution and always predicts
ŷv = 0 for any node v. The empirical risk in training data is

Rtr(w) =
1

|Dtr|
∑

v∈Dtr

(ŷv − yv)
2. (2)

By setting ∂Rtr(w)
∂w = 0, we have the optimal classifier learned from the training data

w∗ =
m⊙

∑
v∈Dtr

(dv,1 + dv,2)g
⊤dv,1∑

v∈Dtr
(m⊙ (dv,1 + dv,2))⊤(m⊙ (dv,1 + dv,2))

. (3)

Then for a node v that has variant patterns dv,2 = αm ⊙ w∗ and α ∈ R, the loss of the model’s
prediction is

lv = (ŷv − yv)
2 =

(
w∗⊤(m⊙ (dv,1 + dv,2))− g⊤dv,1

)2

=
(
α||m⊙w∗||2 + (w∗⊤m⊙ dv,1 − g⊤dv,1)

)2

=
(
||dv,2||||m⊙w∗||+ (w∗⊤m⊙ dv,1 − g⊤dv,1)

)2

.

(4)

Then ∀ϵ > 0, when ||dv,2|| >
√
ϵ−(w∗⊤m⊙dv,1−g⊤dv,1)

||m⊙w∗|| , i.e., α >
√
ϵ−(w∗⊤m⊙dv,1−g⊤dv,1)

||m⊙w∗||2 , (ŷv −
yv)

2 > ϵ, indicating that lim||dv,2||→∞(ŷv − yv)
2 =∞. Thus we conclude the proof.

B.2 Proof of Proposition 2

Proposition 2. If
(
Φdv,1 ⊙ Φdv,1

)
⊙

(
Φdv,2 ⊙ Φdv,2

)
= 0,∀dv,1,dv,2, then ∃m ∈ CT×1

such that the optimal spectral classifier in the training data has bounded error, i.e., for w∗ =
argminw Rtr(w), ∃ϵ > 0, ∀v, lim||dv,2||→∞(ŷv − yv)

2 < ϵ.

Proof. Let the mask in the spectral domain m ∈ CK×1 be

mi =

{
0 if ∃v,

(
Φdv,2 ⊙Φdv,2

)
i
̸= 0

1 otherwise
. (5)

Since the frequency bandwidths of invariant and variants patterns do not have overlap, i.e.,
(
Φdv,1⊙

Φdv,1

)
⊙

(
Φdv,2 ⊙Φdv,2

)
= 0,∀dv,1,dv,2, we have mi ⊙ zv,1 = zv,1 and mi ⊙ zv,2 for any

node v. Let w1 = Φg, then the prediction for any node v is
ŷv = (Φg)H(m⊙ (zv,1 + zv,2))

= g⊤ΦH(zv,1)

= g⊤ΦH(Φdv,1)

= g⊤dv,1.

(6)

For any node v, we have (ŷv−yv)2 = 0, so that w1 = argminw Rtr(w), and ∀v, lim||dv,2||→∞(ŷv−
yv)

2 < 1. Thus we conclude the proof.

2

10 6 10 5 10 4 10 3 10 2
65

70

75

80

85

Pe
rfo

rm
an

ce
 (%

)

Collab

10 4 10 3 10 2 10 1 100

65

70

75

80

Yelp

10 6 10 5 10 4 10 3 10 2

42

44

46

48

50

52

54
Aminer

10 4 10 3 10 2 10 1 100

70

75

80

85

Link-Synthetic

10 4 10 3 10 2 10 1 100

32

34

36

38

40

Node-Synthetic

Figure 1: Sensitivity of hyperparameter λ. The area shows the average AUC and standard deviations
in the test stage. The dashed line represents the average AUC of the best performed baseline.

C Additional Experiments and Analyses

C.1 Hyperparameter Sensitivity

We analyze the sensitivity of hyperparameter λ in SILD for each dataset by altering the hyperpa-
rameter on a base ten logarithmic scale. As shown in Figure 1, when the hyperparameter λ is too
small or too large, the performance of the model deteriorates in most datasets, which verifies that the
hyperparameter λ is the tradeoff between the sufficiency and invariance conditions of the patterns
captured by the model.

C.2 Complexity Analysis

We analyze the computational complexity of SILD as follows. Denote the total number of nodes
and edges in the graph as |V| and |E|, and the dimensionality of the hidden representation as d. The
snapshot-wise message passing has a time complexity of O(|E|d+ |V|d2). The fast Fourier transform
has a time complexity of O(|V|d log T). The disentangled spectrum mask has a time complexity of
O(|V|d). Denote |Np| as the number of nodes or edges to predict and S as the sampling number of
variant patterns. Our invariant spectral filtering has a time complexity of O(|Np|Sd) in training, and
does not put extra time complexity in inference. Therefore, the overall time complexity of SILD
is O(|E|d+ |V|d2 + |V|d+ |V|d log T + |Np|Sd). In summary, the time complexity of SILD has
a linear time complexity with respect to the number of nodes and edges, which is on par with the
existing dynamic GNNs.

D Reproducibility Details

D.1 Training & Evaluation

Hyperparameters Following [1], for all methods, we adopt the hidden dimension as 32 for Aminer
and 16 for other datasets. The number of layers is set to 2, and the models are optimized with the
Adam optimizer [2] with a learning rate 1e-2 and weight decay 5e-7. The early stopping strategy on
the validation splits is adopted, with 100 epochs for Node-Synthetic datasets and 50 epochs for other
datasets. For SILD, we set the sampling number of variant patterns as 1000 for Collab and Yelp, and
100 for other datasets, and λ as 1e-4,1e-3,1e-2,1e-2,1e-2 for Collab, Aminer, Yelp, Link-Synthetic,
and Node-Synthetic datasets respectively.

Evaluation For link prediction tasks, we randomly sample negative links from the nodes that
actually do not have links in-between, and the number of negative links is the same as the number of
positive links. All the negative and positive samples for validation and testing set are kept the same
for all methods. We use the inner product of the two node representations to predict links, use cross-
entropy as the loss function ℓ, and use Area under the ROC Curve (AUC) as the evaluation metric.
For node classification tasks, we use a two-layer MLP for the node classifier, use cross-entropy as the
loss function ℓ, and use Accuracy (ACC) as the evaluation metric. We randomly run the experiments
three times, and report the average results and standard deviations.

Details of SILD For the node classification dataset Aminer, we conduct the missing graph
trajectory complementation as follows. In practice, dynamic graphs usually encounter with the issues

3

of incomplete trajectories, i.e., the nodes have missing historical trajectories for some reasons. For
example, on academic citation networks, the papers on dynamic graphs are always different each
year and they only have structures (cite other papers) at the published year, which means that they
only have a one-year trajectory. In these cases, the modeling of dynamics would be difficult and also
inaccurate. To complement the missing historical graph trajectories, we utilize the current structure
as the virtual past structure to help model the neighborhood evolution for the node to predict at t′,
and the message passing is

mt
u→v ← MSG(ht

u,h
t
v),h

t
v ← AGG({mt

u→v | u ∈ N t(v)
⋃
N t′(v)},ht

v}). (7)

In this way, the node embedding ht
u for node u which appears at time t ≤ t′ denotes the neighborhood

information it may aggregate if it appears at time t. Note that in Eq. (7), the target is to predict the
node labels at time t′, where the current neighborhood N t′(v) is known to all methods and this
method does not exploit extra future information. For the message and aggregation functions, we
adopt DIDA [1] for Yelp dataset and GAT [3] for other datasets. We adopt two-layer MLPs for both
the invariant and variant node classifiers.

D.2 Dataset Details

We summarize the dataset statistics in Table 2 and describe the dataset details as follows.

Collab [4, 1]3 is an academic collaboration dataset with papers that were published during 1990-2006,
where the nodes and edges represent author and coauthorship respectively. The author features
are obtained by averaging the embeddings of the author-related papers, which are extracted by
word2vec [5] from the paper abstracts. The distribution shift comes from different fields, including
"Data Mining", "Database", "Medical Informatics", "Theory" and "Visualization". We use 10,1,5
chronological graph slices for training, validation and testing respectively.

Yelp [6, 1]4 is a business review dataset, where the nodes and edges represent customers or businesses
and review behaviors respectively. We utilize the data from January 2019 to December 2020, and
select users and reviews with interactions of more than 10. We use word2vec [5] to extract 32-
dimensional features from the reviews and average to obtain the user and business features. The
distribution shift comes from the out-break of COVID-19 midway as well as the different business
categories including "Pizza", "American (New) Food", "Coffee & Tea ", "Sushi Bars" and "Fast
Food". We use 15,1,8 chronological graph slices for training, validation and testing respectively.

Aminer [7, 8] is a citation network extracted from DBLP, ACM, MAG, and other sources. We select
the top 20 venues, and the task is to predict the venues of the papers. We use word2vec [5] to extract
128-dimensional features from paper abstracts and average to obtain paper features. The distribution
shift may come from the out-break of deep learning. We train on papers published between 2001 -
2011, validate on those published in 2012-2014, and test on those published since 2015.

Link-Synthetic [1] introduces manual-designed distribution shift on Collab dataset. Denote the
original features and structures in Collab as Xt

1 and structures as At. We introduce features Xt
2 with a

variable correlation with the labels, which are obtained by training the embeddings Xt
2 ∈ RN×d with

the reconstruction loss ℓ(Xt
2X

t
2
⊤
, Ãt+1), where Ãt+1 refers to the sampled links, and ℓ refers to the

cross-entropy loss function. In this way, the generated features can have strong correlations with the
sampled links. For each time t, we uniformly sample p(t)|Et+1| positive links and (1− p(t))|Et+1|
negative links in At+1 and the sampling probability p(t) = clip(p + σcos(t), 0, 1) refers to the
intensity of shifts. By controlling the parameter p, we can control the correlations of Xt and labels
At+1 to vary in training and test stage. Since the model observes the Xt = [Xt

1||Xt
2] simultaneously

and the variant features are not marked, the model should discover and get rid of the variant features
to handle distribution shifts. Similar to Collab dataset, we use 10,1,5 chronological graph slices for
training, validation and test respectively.

Node-Synthetic introduces manually designed distribution shifts for node classification tasks, by
simulating that some frequency components on dynamic graphs have invariant correlations with
labels while some others do not. We adopt a stochastic block model (SBM) [9] to generate links

3https://www.aminer.cn/collaboration.
4https://www.yelp.com/dataset

4

Table 2: The summary of the dataset statistics.
Dataset # Snapshots # Nodes # Links Time Granularity # Features Evolving Features
Collab 16 23,035 151,790 Year 32 No
Yelp 24 13,095 65,375 Month 32 No

Link-Synthetic 16 23,035 151,790 - 64 Yes
Aminer 17 43,141 851,527 Year 128 No

Node-Synthetic 100 5,000 11,252,385 - 4 No

between nodes. For brevity, we denote the SBM model as SBM(pin, pout), where pin ∈ [0, 1]C×1

and pout denotes the link probability between the nodes belonging to the same class and the link
probability between the nodes from different classes respectively. We adopt C = 5 classes. Based
on the class label, each node has two types of parameters flow ∈ {0.02, 0.04, 0.08, 0.10, 0.12} and
fhigh ∈ {0.22, 0.24, 0.28, 0.30, 0.32}. The correlation of flow with labels is set to 0.4, 0.6, 0.8
respectively for training and validation and 0 for testing, and the correlation of fhigh with labels is
set to 1 for all data splits. The dynamic graph Gt at time t is constructed by mixing multiple graphs
together, including a random graph Gtr generated from Gaussian noises, a graph constructed by the
invariant parameter GtI = SBM(phigh

in (t), pout) and a graph constructed by the variant parameter
GtI = SBM(plow

in (t), pout). The relationship between the parameters and the link probability is
plow
in (t, f) = S1(2 + cos(2πft)) and phigh

in (t, f) = S2(2 + cos(2πft)). We set 1e-3, 1e-2, 5e-3 for
pout, S1 and S2 respectively. We generate 4-dimensional random features for each node. On this
dataset, to have better generalization ability, the model should discover and focus on the dynamic
graph constructed with the invariant parameter to make predictions.

D.3 Configurations

All the experiments are conducted with:

• Operating System: Ubuntu 20.04.5 LTS

• CPU: Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz

• GPU: NVIDIA GeForce RTX 3090 with 24 GB of memory

• Software: Python 3.9.12, Cuda 11.3, PyTorch [10] 1.12.1, PyTorch Geometric [11] 2.0.4.

References
[1] Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Zhou Qin, and Wenwu Zhu. Dynamic

graph neural networks under spatio-temporal distribution shift. In Advances in Neural Informa-
tion Processing Systems, 2022.

[2] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[3] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[4] Jie Tang, Sen Wu, Jimeng Sun, and Hang Su. Cross-domain collaboration recommendation. In
KDD’2012, 2012.

[5] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[6] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dysat: Deep neural
representation learning on dynamic graphs via self-attention networks. In Proceedings of the
13th International Conference on Web Search and Data Mining, pages 519–527, 2020.

[7] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer: Extraction
and mining of academic social networks. In KDD’08, pages 990–998, 2008.

5

[8] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-june Paul Hsu, and Kuansan
Wang. An overview of microsoft academic service (mas) and applications. In Proceedings of
the 24th international conference on world wide web, pages 243–246. ACM, 2015.

[9] Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels:
First steps. Social Networks, 5(2):109–137, 1983.

[10] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[11] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

6

	Notations
	Theoretical Analyses
	Proof of Proposition 1
	Proof of Proposition 2

	Additional Experiments and Analyses
	Hyperparameter Sensitivity
	Complexity Analysis

	Reproducibility Details
	Training & Evaluation
	Dataset Details
	Configurations

