
A Learning and Sampling

A.1 Deep generative modelling

A complete trajectory is denoted by

ζ “ ts0, a0, s1, a1, ¨ ¨ ¨ , aT´1, sT u, (1)

where T is the maximum length of all observed trajectories. The joint distribution of state and action
sequences can be factorized according to the causal assumptions in nMDP:

pθpζq “ pps0qpαpa0|s0qpβps1|s0, a0q ¨ ¨ ¨ pαpaT´1|s0:T´1qpβpsT |sT´1, aT´1q

“ pps0q
źT´1

t“0
pαpat|s0:tqpβpst`1|st, atq,

(2)

where pαpat|s0:t´1q is the policy model with parameter α, pβpst|st´1, at´1q is the transition model
with parameter β, both of which are parameterized with neural networks, θ “ pα, βq. pps0q is the
initial state distribution, which can be sampled as a black box.

The density families of policy and transition are consistent with the conventional setting of IRL [4].
The transition describes the predictable change in state space, which is often possible to express the
random variable st`1 as a deterministic variable st`1 “ gβpst, at, ϵq, where ϵ is an auxiliary variable
with independent marginal ppϵq, and gβp.q is some vector-valued function parameterized by β. The
policy accounts for bounded rationality as a Boltzmann distribution with state-action value as the
unnormalized energy:

pαpat|s0:tq “
1

Zpα, s0:tq
exp pfαpat; s0:tqq, (3)

where fαpat; s0:tq is the negative energy, Zpα, s0:tq “
ş

exppfαpat; s0:tqqdat is the normalizing
constant given the history s0:t.

Since we can only observe state sequences, the aforementioned generative model can be understood
as a sequential variant of LEBM [16], where the transition serves as the generator and the policy
is a history-conditioned latent prior. The marginal distribution of state sequences and the posterior
distribution of action sequences are:

pθps0:T q “

ż

pθps0:T , a0:T´1qda0:T´1, pθpa0:T´1|s0:T q “
pθps0:T , a0:T´1q

pθps0:T q
. (4)

A.2 Maximum likelihood learning

We need to estimate θ “ pα, βq. Suppose we observe training examples: tξiu, i “ 1, 2, ¨ ¨ ¨ , n, ξi “

rsi0, s
i
1, ..., s

i
T s. The log-likelihood function is:

Lpθq “
ÿn

i“1
log pθpξiq. (5)

Denote posterior distribution of action sequence pθpa0:T´1|s0:T q as pθpA|Sq for convenience where
A and S means the complete action and state sequences in a trajectory. The gradient of log-likelihood
is:

∇θ log pθpξq “ ∇θ log pθps0, s1, ¨ ¨ ¨ , sT q

“ EpθpA|Sqr∇θ log pθps0, s1, ¨ ¨ ¨ , sT qs

“ EpθpA|Sqr∇θ log pθps0, s1, ¨ ¨ ¨ , sT qs ` EpθpA|Sqr∇θ log pθpA|Sqs

“ EpθpA|Sqr∇θ log pθps0, a0, s1, a1, ¨ ¨ ¨ , aT´1, sT qs

“ EpθpA|Sqr∇θ log pps0qpαpa0|s0q ¨ ¨ ¨ pαpaT´1|s0:T´1qpβpsT |sT´1, aT´1qs

“ EpθpA|Sqr∇θ

ÿT´1

t“0
plog pαpat|s0:tq ` log pβpst`1|st, atqqs

“ EpθpA|Sqr
ÿT´1

t“0
p∇α log pαpat|s0:tq
loooooooooomoooooooooon

policy/prior

`∇β log pβpst`1|st, atq
loooooooooooomoooooooooooon

transition

qs,

(6)

16

where the third equation is because of a simple identity Eπθpaq r∇θ log πθpaqs “ 0 for any probability
distribution πθpaq. Applying this simple identiy, we also have:

0 “ Epαpat|s0:tq r∇α log pαpat|s0:tqs

“ Epαpat|s0:tq r∇αfαpat; s0:tq ´ ∇α logZpα, s0:tqs

“ Epαpat|s0:tq r∇αfαpat; s0:tqs ´ ∇α logZpα, s0:tq.

(7)

Due to the normalizing constant Zpα, s0:tq in the energy-based prior pα, the gradient for the policy
term involves both posterior and prior samples:

δα,tpSq “ EpθpA|Sq r∇α log pαpat|s0:tqs

“ EpθpA|Sq r∇αfαpat; s0:tq ´ ∇α logZpα, s0:tqs

“ EpθpA|Sq

“

∇αfαpat; s0:tq ´ Epαpat|s0:tq r∇fαpat; s0:tqs
‰

“ EpθpA|Sq r∇αfαpat; s0:tqs ´ Epαpat|s0:tq r∇αfαpat; s0:tqs ,

(8)

where δα,tpSq denotes the surrogate loss of policy term for time step t. Intuition can be gained from
the perspective of adversarial training [34, 35]: On one hand, the model utilizes action samples from
the posterior pθpA|Sq as pseudo-labels to supervise the unnormalized prior at each step pαpat|s0:tq.
On the other hand, it discourages action samples directly sampled from the prior. The model converges
when prior samples and posterior samples are indistinguishable.

To ensure the transition model’s validity, it needs to be grounded in real-world dynamics when
jointly learned with the policy. Otherwise, the agent would be purely hallucinating based on the
demonstrations. Throughout the training process, we allow the agent to periodically collect self-
interaction data with pαpat|s0:tq and mix transition data from two sources with weight wβ :

δβ,tpSq “ wβEpθpA|Sq r∇β log pβpst`1|st, atqs ` p1´wβqEpαpat|s0:tq,Tr r∇β log pβpst`1|st, atqs .
(9)

A.3 General transition model

We need to compute the gradient of β for the logarithm of transition probability in Equation 9, and
as we will see in section 3.3, we also need to compute the gradient of the action during sampling
actions. The reparameterization [43] is useful since it can be used to rewrite an expectation w.r.t
pβpst`1|st, atq such that the Monte Carlo estimate of the expectation is differentiable, so we use
delta function δp.q to rewrite probability as an expectation:

pβpst`1|st, atq “

ż

δpst`1 ´ s1
t`1qpβps1

t`1|st, atqds
1
t`1

“

ż

δpst`1 ´ gβpst, at, ϵqqppϵqdϵ.

(10)

Taking advantage of the properties of δp.q:
ż

fpxqδpxqdx “ fp0q, δpfpxqq “ Σn
1

|f 1pxnq|
δpx ´ xnq, (11)

where f is differentiable and have isolated zeros, which is xn, we can rewrite the transition probability
as:

pβpst`1|st, atq “

ż

ÿ

n

1

| B
Bϵgβpst, at, ϵq|ϵ“ϵn

δpϵ ´ ϵnqppϵqdϵ

“
ÿ

n

ppϵnq

| B
Bϵgβpst, at, ϵq|ϵ“ϵn

,

(12)

where ϵn is the zero of st`1 “ gβpst, at, ϵq. Therefore, if we have a differentiable simula-
tor ∇at

log pβpst`1|st, atq and the analytical form of ppϵq , then gradient of both at and β for
log pβpst`1|st, atq can be computed.

The simplest situation is:

st`1 “ gβpst, atq ` ϵ, ϵ „ ppϵq “ N p0, σ2q. (13)

17

In this case, there is only one zero ϵ˚ for the transition function, st`1 “ gβpst, atq ` ϵ˚, and the
gradient of log probability is:

∇ log pβpst`1|st, atq “ ∇ log
ppϵ˚q

| B
Bϵ pgβpst, atq ` ϵq|ϵ“ϵ˚

“ ∇ log ppϵ˚q

“ ∇ log ppst`1 ´ gβpst, atqq

“
1

σ2
pst`1 ´ gβpst, atqq∇gβpst, atq.

(14)

A.4 Prior and posterior sampling

The maximum likelihood estimation requires samples from the prior and the posterior distributions of
actions. It would not be a problem if the action space is quantized. However, since we target general
latent action learning, we proceed to introduce sampling techniques for continuous actions.

When sampling from a continuous energy space, short-run Langevin dynamics [17] can be an efficient
choice. For a target distribution πpaq, Langevin dynamics iterates ak`1 “ ak ` s∇ak

log πpakq `
?
2sϵk, where k indexes the number of iteration, s is a small step size, and ϵk is the Gaussian white

noise. πpaq can be either the prior pαpat|s0:tq or the posterior pθpA|Sq. One property of Langevin
dynamics that is particularly amenable for EBM is that we can get rid of the normalizing constant. So
for each t the iterative update for prior samples is

at,k`1 “ at,k ` s∇at,k
fαpat,k; s0:tq `

?
2sϵk. (15)

Given a state sequence s0:T from the demonstrations, the posterior samples at each time step at come
from the conditional distribution ppat|s0:T q. Notice that with Markov transition, we can derive

pθpa0:T´1|s0:T q “
źT´1

t“0
pθpat|s0:T q “

źT´1

t“0
pθpat|s0:t`1q. (16)

The point is, given the previous and the next subsequent state, the posterior can be sampled at each
step independently. So the posterior iterative update is

at,k`1 “ at,k ` s∇at,k
log pθpat,k|s0:t`1q `

?
2sϵk

“ at,k ` s∇at,k
log pθps0:t, at,k, st`1q `

?
2sϵk

“ at,k ` s∇at,k
plog pαpat,k|s0:tq
loooooooomoooooooon

policy/prior

` log pβpst`1|st, atq
loooooooooomoooooooooon

transition

q `
?
2sϵk.

(17)

Intuitively, action samples at each step are updated with the energy of all subsequent actions and
a single-step forward by back-propagation. However, while gradients from the transition term are
analogous to the inverse dynamics in BCO [37], it may lead to poor training performance due to
non-injectiveness in forward dynamics [38].

We develop an alternative posterior sampling method with importance sampling to overcome this
challenge. Leveraging the learned transition, we have

pθpat|s0:t`1q “
pβpst`1|st, atq

Epαpat|s0:tq rpβpst`1|st, atqs
pαpat|s0:tq. (18)

Let cpat; s0:t`1q “ Epαpat|s0:tq rpβpst`1|st, atqs, posterior sampling from pθpa0:T´1|s0:T q can be
realized by adjusting importance weights of independent samples from the prior pαpat|s0:tq, in which
the estimation of weights involves another prior sampling. In this way, we avoid back-propagating
through non-injective dynamics and save some computation overhead in Eq. (17).

To train the policy, Eq. (8) can now be rewritten as

δα,tpSq “ Epαpat|s0:tq

„

pβpst`1|st, atq

cpat; s0:t`1q
∇αfαpat; s0:tq

ȷ

´ Epθpat|s0:tq r∇αfαpat; s0:tqs . (19)

A.5 Algorithm

The learning and sampling algorithms with MCMC and with importance sampling for posterior
sampling are described in Algorithm 1 and Algorithm 2.

18

Algorithm 1: LanMDP without importance sampling
Input: Learning iterations N , learning rate for energy-based policy ηα, learning rate for transition
model ηβ , initial parameters θ0 “ pα0, β0q, expert demonstrations ts0:Hu, context length L, batch
size m, number of prior and posterior sampling steps tK0,K1u, prior and posterior sampling step
sizes ts0, s1u.
Output: θN “ pαN , βN q.
Reorganize ts0:Hu to to state sequenec segments pst´L`1, ¨ ¨ ¨ , st`1q with length L ` 1.
Use energy-based policy with α0 collect transitions to fill in the replay buffer.
Use transitions in replay buffer to pre-train transition model β0.
for t “ 0 to N ´ 1 do

Demo sampling Sample observed examples pst´L`1, ¨ ¨ ¨ , st`1q
m
i“1.

Posterior sampling: Sample tatu
m
i“1 using Eq. (17) with K1 iterations and stepsize s1.

Prior sampling: Sample tâtu
m
i“1 using Eq. (15) with K0 iterations and stepsize s0.

Policy learning: Update αt to αt`1 by Eq. (8) with learning rate ηα.
Transition learning: Update replay buffer with trajectories from current policy model αt`1,
then update βt to βt`1 by Eq. (9) with learning rate ηβ .

end for

Algorithm 2: LanMDP with importance sampling
Input: Learning iterations N , learning rate for energy-based policy ηα, learning rate for transition
model ηβ , initial parameters θ0 “ pα0, β0q, expert demonstrations ts0:Hu, context length L, batch
size m, number of prior sampling steps K and step sizes s.
Output: θN “ pαN , βN q.
Reorganize ts0:Hu to to state sequenec segments pst´L`1, ¨ ¨ ¨ , st`1q with length L ` 1.
Use energy-based policy with α0 collect transitions to fill in the replay buffer.
Use transitions in replay buffer to pre-train transition model β0.
for t “ 0 to N ´ 1 do

Demo sampling Sample observed examples pst´L`1, ¨ ¨ ¨ , st`1q
m
i“1.

Prior sampling: Sample tâtu
m
i“1 using Eq. (15) with K0 iterations and stepsize s0.

Policy learning: Update αt to αt`1 by Eq. (19) with learning rate ηα.
Transition learning: Update replay buffer with trajectories from current policy model αt`1,
then update βt to βt`1 by Eq. (9) with learning rate ηβ .

end for

19

B A Decision-making Problem in MLE

Let the ground-truth distribution of demonstrations be p˚ps0:T q, and the learned marginal distributions
of state sequences be pθps0:T q. Eq. (5) is an empirical estimate of

Ep˚ps0:T qrlog pθps0:T qs “ Ep˚ps0q

“

log p˚ps0q ` Ep˚ps1:T |s0qrlog pθps1:T |s0qs
‰

. (20)

We can show that a sequential decision-making problem can be constructed to maximize the same
objective. To start off, suppose the MLE yields the maximum, we will have pθ˚ “ p˚.

Define V ˚ps0q :“ Ep˚ps1:T |s0qrlog p˚ps1:T |s0qs, we can generalize it to have a V function

V ˚ps0:tq :“ Ep˚pst`1:T |s0:tqrlog p˚pst`1:T |s0:tqs, (21)

which comes with a Bellman optimality equation:

V ˚ps0:tq “ Ep˚pst`1|s0:tq rrpst`1, s0:tq ` V ˚ps0:t`1qs , (22)

with rpst`1, s0:tq :“ log p˚pst`1|s0:tq “ log
ş

pα˚ pat|s0:tqpβ˚ pst`1|st, atqdat, V ˚ps0:T q :“ 0. It
is worth noting that the r defined above involves the optimal policy, which may not be known a priori.
We can resolve this by replacing it with rα for an arbitrary policy pαpat|s0:tq. All Bellman identities
and updates should still hold. Anyways, involving the current policy in the reward function should
not appear to be too odd given the popularity of maximum entropy RL [20, 24].

The entailed Bellman update, value iteration, for arbitrary V and α is

V ps0:tq “ Ep˚pst`1|s0:tq rrαps0:t, st`1q ` V ps0:t`1qs . (23)

We then define rpst`1, at, s0:tq :“ rpst`1, s0:tq ` log pα˚ pat|s0:tq to construct a Q function:

Q˚pat; s0:tq :“ Ep˚pst`1|s0:tq rrpst`1, at, s0:tq ` V ˚ps0:t`1qs , (24)

which entails a Bellman update, Q backup, for arbitrary α, Q and V

Qpat; s0:tq “ Ep˚pst`1|s0:tq rrαps0:t, at, st`1q ` V ps0:t`1qs . (25)

Also note that the V and Q in identities Eq. (23) and Eq. (25) respectively are not necessarily
associated with the policy pαpat|s0:tq. Slightly overloading the notations, we use Qα, V α to denote
the expected returns from policy pαpat|s0:tq.

By now, we finish the construction of atomic algebraic components and move on to check if the
relations between them align with the algebraic structure of a sequential decision-making problem [9].

We first prove the construction above is valid at optimality.
Lemma 1. When fαpat; s0:tq “ Q˚pat; s0:tq ´ V ˚ps0:tq, pαpat|s0:tq is the optimal policy.
Proof. Note that the construction gives us

Q˚pat; s0:tq “ Ep˚pst`1|s0:tq rrpst`1, s0:tq ` log pα˚ pat|s0:tq ` V ˚ps0:t`1qs

“ log pα˚ pat|s0:tq ` Ep˚pst`1|s0:tq rrpst`1, s0:tq ` V ˚ps0:t`1qs

“ log pα˚ pat|s0:tq ` V ˚ps0:tq.

(26)

Obviously, Q˚pat; s0:tq lies in the hypothesis space of fαpat; s0:tq.

Lemma 1 indicates that we need to either parametrize fαpat; s0:tq or Qpat; s0:tq.

While Qα and V α are constructed from the optimality, the derived Qα and V α measure the perfor-
mance of an interactive agent when it executes with the policy pαpat|s0:tq. They should be consistent
with each other.
Lemma 2. V αps0:tq and Epαpat|s0:tqrQαpat; s0:tqs yield the same optimal policy pα˚ pat|s0:tq.
Proof.

Epαpat|s0:tqrQαpat; s0:tqs :“ Epαpat|s0:tq

“

Ep˚pst`1|s0:tq rrpst`1, at, s0:tq ` V αps0:t`1qs
‰

“Epαpat|s0:tq

“

Ep˚pst`1|s0:tq rlog pαpat|s0:tq ` rpst`1, s0:tq ` V αps0:t`1qs
‰

“Ep˚pst`1|s0:tq rrpst`1, s0:tq ´ Hαpat|s0:tq ` V αps0:t`1qs

“V αps0:tq ´ Hαpat|s0:tq ´
ÿT´1

k“t`1
Ep˚pst`1:k|s0:tqrHαpak|s0:kqs,

(27)

20

where the last line is derived by recursively applying the Bellman equation in the line above until s0:T
and then applying backup with Eq. (23). As an energy-based policy, pαpat|s0:tq’s entropy is inherently
maximized [66]. Therefore, within the hypothesis space, pα˚ pat|s0:tq that optimizes V αps0:tq also
leads to optimal expected return Epαpat|s0:tqrQαpat; s0:tqs.

If we parametrize the policy as pαpat|s0:tq9 exppQαpat; s0:tqq, the logarithmic normalizing constant
logZαkps0:tq will be the soft V function in maximum entropy RL [21–23]

V α
softps0:tq :“ log

ż

exppQαpat; s0:tqqdat, (28)

even if the reward function is defined differently. We can further show that Bellman identities and
backup updates above can entail RL algorithms that achieve optimality of the decision-making
objective V α, including soft policy iteration [20]

pαk`1
pat|s0:tq Ð

exppQαkpat; s0:tqq

Zαkps0:tq
,@s0:t, k P r0, 1, ...M s; (29)

and soft Q iteration [21]

Qαk`1pat; s0:tq Ð Ep˚pst`1|s0:tq

”

rαps0:t, at, st`1q ` V αk

softps0:t`1q

ı

,@s0:t, at,

V
αk`1

soft ps0:tq Ð log

ż

exppQαkpa; s0:tqqda,@s0:t, k P r0, 1, ...M s.
(30)

Lemma 3. If p˚pst`1|s0:tq is accessible and pβ˚ pst`1|st, atq is known, soft policy iteration and
soft Q learning both converge to pα˚ pat|s0:tq “ pQ˚ pat|s0:tq9 exppQ˚pat; s0:tqq under certain
conditions.
Proof. See the convergence proof by Ziebart [20] for soft policy iteration and the proof by Fox et al.
[21] for soft Q learning. The latter requires Markovian assumption. But under some conditions, it can
be extended to non-Markovian domains in the same way as proposed by Majeed and Hutter [67].

Lemma 3 means given p˚pst`1|s0:tq and pβ˚ pst`1|st, atq, we can recover pα˚ through reinforcement
learning methods, instead of the proposed MLE. So pαpat|s0:tq is a viable policy space for the
constructed sequential decision-making problem.

Together, Lemma 1, Lemma 2 and Lemma 3 provide constructive proof for a valid sequential
decision-making problem that maximizes the same objective of MLE, described by Theorem 1.
Theorem 1. Assuming the Markovian transition pβ˚ pst`1|st, atq is known, the ground-truth
conditional state distribution p˚pst`1|s0:tq for demonstration sequences is accessible, we can
construct a sequential decision-making problem, based on a reward function rαpst`1, s0:tq :“
log

ş

pαpat|s0:tqpβ˚ pst`1|st, atqdat for an arbitrary energy-based policy pαpat|s0:tq. Its objective
is

ÿT

t“0
Ep˚ps0:tqrV pαps0:tqs “ Ep˚ps0:T q

”

ÿT

t“0

ÿT

k“t
rαpsk`1; s0:kq

ı

,

where V pαps0:tq :“ Ep˚pst`1:T |s0:tqr
řT

k“t rαpsk`1; s0:kqs is the value function for pα. This objective
yields the same optimal policy as the Maximum Likelihood Estimation Ep˚ps0:T qrlog pθps0:T qs.

If we further define a reward function rαpst`1, at, s0:tq :“ rαpst`1, s0:tq ` log pαpat|s0:tq to con-
struct a Q function for pα

Qpαpat; s0:tq :“ Ep˚pst`1|s0:tq rrαpst`1, at, s0:tq ` V pαps0:t`1qs .

The expected return of Qpαpat; s0:tq forms an alternative objective

Epαpat|s0:tqrQpαpat; s0:tqs “ V pαps0:tq ´ Hαpat|s0:tq ´
ÿT´1

k“t`1
Ep˚pst`1:k|s0:tqrHαpak|s0:kqs

that yields the same optimal policy, for which the optimal Q˚pat; s0:tq can be the energy function.

Only under certain conditions, this sequential decision-making problem is solvable through non-
Markovian extensions of the maximum entropy reinforcement learning algorithms.

21

C More results on Curve Planning

The energy function is parameterized by a small MLP with one hidden layer and 4˚L hidden neurons,
where L is the context length. In short-run Langevin dynamics, the number of samples, the number of
sampling steps, and the stepsize are 4, 20 and 1 respectively. We use Adam optimizer with a learning
rate 1e-4 and batch size 64. Here we present the complete result in Fig. A1 with different training
steps under context length 1 2 4 6, the acceptance rate and residual error of the testing trajectories, as
well as the behavior cloning results. We can see that even with sufficient context, BC performs worse
than LanMDP. Also, from the result of context length 6 we can see that excessive expressivity does
not impair performance, it just requires more training.

Acceptance Rate Residual Error BC Markovian BC Context Length 4

M
ar

ko
vi

an
Co

nt
ex

t
Le

ng
th

 2
Co

nt
ex

t
Le

ng
th

 4

Training Step 1500

Co
nt

ex
t

Le
ng

th
 6

Training Step 2500 Training Step 3000 Training Step 4000

Figure A1: More results for cubic curve generation

D Implementation Details of MuJoCo Environment

This section delineates the configurations for the MuJoCo environments utilized in our research. In
particular, we employ standard environment horizons of 500 and 50 for Cartpole-v1 and Reacher-
v2, respectively. Meanwhile, for Swimmer-v2, Hopper-v2, and Walker2d-v2, we operate within
an environment horizon set at 400 as referenced in previous literature [52, 68–72]. Additional
specifications are made for Hopper-v2 and Walker2d-v2, where the velocity of the center of mass was
integrated into the state parameterization [52, 68, 70, 72]. We leverage PPO [45] approach to train the
expert policy until it reaches (approximately) 450, -10, 40, 3000, 2000 for Cartpole-v1, Reacher-v2,

22

Swimmer-v2, Hopper-v2, Walker2d-v2 respectively. It should be noted that all results disclosed in the
experimental section represent averages over five random seeds. Comparative benchmarks include
BC [46], BCO [37], GAIL [35], and GAIFO [7]. MobILE [52] is a recent method for Markovian
model-based imitation from observation. However, we failed to reproduce the expected performance
utilizing various sets of demonstrations, so it is prudently omitted from the present displayed result.
We specifically point out that BC/GAIL algorithms are privy to expert actions, however, our algorithm
is not. We report the mean of the best performance achieved by BC/BCO with five random seeds, even
though these peak performances may transpire at varying epochs. For BC, we executed the supervised
learning algorithm for 200 iterations. The BCO/GAIL algorithms are run with an equivalent number
of online samples as LanMDP for a fair comparison. All benchmarking is performed using a single
3090Ti GPU and implemented using the PyTorch framework. Notably, in our codebase, the modified
environments of Hopper-v2 and Walker2d-v2 utilize MobILE’s implementation [52]. Referring to
the results in the main text, our presentation of normalized results in bar graph form is derived by
normalizing each algorithm’s performance (mean/standard deviation) against the expert mean. For
Reacher-v2, due to the inherently negative rewards, we first add a constant offset of 20 to each
algorithm’s performance, thus converting all values to positive before normalizing them against the
mean of expert policy.

We parameterize both the policy model and the transition model as MLPs, and the non-linear
activation function is Swish and LeakyReLU respectively. We use AdamW to optimize both policy
and transition. To stabilize training, we prefer using actions around which the transition model is
more certain for computing the expectation over importance-weighted prior distribution in Eq. (19).
Therefore, we use a model ensemble with two transition models and use the disagreement between
these two models to measure the uncertainty of the sampled actions. We implement Algorithm 2 for
all experiments to avoid expensive computation of the gradient for the transition model in posterior
sampling. As for better and more effective short-run Langevin sampling, we use a polynomially
decaying schedule for the step size as recommended in [73]. We also use weakly L2 regularized
energy magnitudes and clip gradient steps like [74], choosing to clip the total amount of change
value, i.e. after the gradient and noise have been combined. To realize more delicate decision-making,
another trick in Implicit Behavior Clone [75] is also adopted for the inference/testing stage that we
continue running the MCMC chain after the step size reaches the smallest in the polynomial schedule
until we get twice as many inference Langevin steps as were used during training.

Hyper-parameters are listed in Table 3. Other hyperparameters that are not mentioned here are left
as default in PyTorch. Also, note that the Cartpole-v1 task has no parameters for sampling because
expectation can be calculated analytically.

Table 3: Hyper-parameter list of MuJoCo experiments
Parameter Cartpole-v1 Reacher-v2 Swimmer-v2 Hopper-v2 Walker2d-v2

Environment Specification
Horizon 500 50 400 400 400

Expert Performance («) 450 -10 40 3000 2000

Transition Model
Architecture(hidden;layers) MLP(64;4) MLP(64;4) MLP(128;4) MLP(512;4) MLP(512;4)

Optimizer(LR) 3e-3 3e-3 3e-3 3e-3 3e-3

Batch Size 2500 20000 20000 32768 32768

Replay Buffer Size 2500 20000 20000 200000 200000

Policy Model (with context length L)
Architecture(hidden;layers) MLP(150*L;4) MLP(150*L;4) MLP(150*L;4) MLP(512*L;4) MLP(512*L;4)

Learning rate 1e-3 1e-2 1e-2 1e-2 5e-3

Batch Size 2500 20000 20000 32768 32768

Number of test trajectories 5 20 20 50 50

Sampling Parameters
Number of prior samples z 8 8 8 8

Number of Langevin steps z 100 100 100 100

Langevin initial stepsize z 10 10 10 10

Langevin ending stepsize z 1 1 1 1

23

	Learning and Sampling
	Deep generative modelling
	Maximum likelihood learning
	General transition model
	Prior and posterior sampling
	Algorithm

	A Decision-making Problem in MLE
	More results on Curve Planning
	Implementation Details of MuJoCo Environment

