
Supplementary Materials for
FeCAM: Exploiting the Heterogeneity of Class

Distributions in Exemplar-Free Continual Learning

Dipam Goswami1,2 Yuyang Liu3,4,5 Bartłomiej Twardowski 1,2,6 Joost van de Weijer1,2

1Department of Computer Science, Universitat Autònoma de Barcelona
2Computer Vision Center, Barcelona 3University of Chinese Academy of Sciences

4State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences
5Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences 6IDEAS-NCBR

{dgoswami, btwardowski, joost}@cvc.uab.es, sunshineliuyuyang@gmail.com

1 Definitions

The Mahalanobis distance is generally used to measure the distance between a data sample x and
a distribution D. Given the distribution has a mean representation µ and an invertible covariance
matrix Σ ∈ RD×D, then the squared Mahalanobis distance can be expressed as:

DM (x, µ) = (x− µ)TΣ−1(x− µ) (1)

where Σ−1 is the inverse of the covariance matrix.

The covariance matrix is symmetric in nature and can be defined as:

Σ(i, j) =

{
var(i) i = j
cov(i, j) i ̸= j

(2)

where i, j ∈ 1, ...D, var(i) denotes the variance of the data along the ith dimension and cov(i, j)
denotes the covariance between the dimensions i and j. The diagonals of the matrix represent the
variances and the non-diagonal entries are the covariance values.

In euclidean space, Σ = I , where I is an identity matrix. Thus, in euclidean space, we consider
identical variance along all dimensions and ignore the positive and negative correlations between the
variables.

2 Implementation Details

We analyze the effect of the covariance shrinkage hyperparamaters γ1 and γ2 in Fig. 1 for the many-
shot setting (T=5) on Cifar100. Based on the observations, we see that the chosen parameters γ1 = 1
and γ2 = 1 obtain good results. Similarly, we use γ1 = 1 and γ2 = 1 for all many-shot experiments
on CIFAR100, TinyImageNet and ImageNet-Subset. We use γ1 = 1 and γ2 = 0 for the experiments
on Split-CIFAR100 and Core50 datasets. For Split-ImageNet-R, We use γ1 = 10 and γ2 = 10. For
all the few-shot CIL settings, we obtain better results with γ1 = 100 and γ2 = 100.

Since the Resnet-18 feature extractor uses a ReLU activation function, the feature representation
values are all non-negative, so the inputs to tukey’s ladder of powers transformation are all valid.
However, when using the ViT encoder pre-trained on ImageNet-21K, we also have negative values
in the feature representations, hence we do not apply the tukey’s transformation on the features for
those experiments.

Evaluation. Similar to [5, 11, 10], we evaluate the methods in terms of average incremental accuracy.
Average incremental accuracy Ainc is the average of the accuracy at of all incremental tasks (including

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Figure 1: Impact of covariance shrinkage hyperparameters on many-shot CIFAR100 (T=5) setting
using the proposed FeCAM method

the first task) and is a fair metric to compare the performances of different methods across multiple
tasks.

Ainc =
1

T

t=T∑
t=1

at (3)

3 Further Analysis

Storage requirements. We analyze the storage requirements of FeCAM and compare it with the
exemplar-based CIL methods in Table 1 for ImageNet-Subset (T=5) setting. Due to the symmetric
nature of covariance matrices, we can store half (lower or upper triangular) of the covariance matrices
and reduce the storage to half. While most of the exemplar-based methods preferred a constant
storage requirement of 2000 exemplars, storage requirement for FeCAM gradually increases across
steps and is still less by about 206 MBs after the last task.

Table 1: Analysis of storage requirements across tasks for FeCAM and the exemplar-based methods
(storing 2000 exemplars) for the ImageNet-Subset (T=5) setting.

Method Task 0 Task 1 Task 2 Task 3 Task 4 Task 5
Exemplar-based 312 MB 312 MB 312 MB 312 MB 312 MB 312 MB
FeCAM (ours) 53 MB 63 MB 75 MB 85 MB 96 MB 106 MB

Pre-training with dissimilar classes. Similar to [2], we perform experiments using the DeiT-S/16
vision transformer pretrained on the ImageNet data with different pre-training data splits and then
evaluate the performance of NCM (with euclidean distance) and the proposed FeCAM method on
Split-CIFAR100 (10 tasks with 10 classes in each task). In order to make sure that the pretrained
classes are not similar to the classes of CIFAR100, [2] manually removed 389 classes from the 1000
classes in ImageNet. We take the publicly available DeiT-S/16 weights pre-trained on remaining 611
classes of ImageNet by [2] and evaluate NCM and FeCAM as shown in Table 2. As expected, the
performance of both methods drops a bit when the pre-training is not done on the similar classes.
Still FeCAM outperforms NCM by about 10% on the final accuracy. Thus, this experiment further
validates the effectiveness of modeling the covariance relations using our FeCAM method in settings
where images from the initial task are dissimilar to new task images.

4 Few-Shot CIL results

FeCAM can easily be adapted to available few-shot methods in CIL since most methods obtain class
prototypes from few-shot data of new classes and then use the euclidean distance for classification.

2

Table 2: Performance of FeCAM and NCM-euclidean using Deit-S/16 pretrained transformer on
Split-CIFAR100 dataset.

DeiT pre-trained on 1k classes DeiT pre-trained on 611 classes [2]Method Last Acc Avg Acc Last Acc Avg Acc

Euclidean-NCM 60.5 71.4 58.5 69.2
FeCAM (ours) 70.2 78.5 68.6 76.9

We show in our paper that starting from the base task model from ALICE and simply using the
FeCAM metric for classification significantly improves the performance across all tasks for the
standard few-shot CIL benchmarks.

We report the average accuracy after each task for all methods on Cifar100 in Table 3, on CUB200
in Table 4 and on miniImageNet in Table 5.

Table 3: Detailed accuracy of each incremental session on CIFAR100 dataset. Best among columns
in bold.

Method Accuracy in each session (%) Avg A0 1 2 3 4 5 6 7 8
Finetune 64.10 39.61 15.37 9.80 6.67 3.80 3.70 3.14 2.65 16.54
D-Cosine [6] 74.55 67.43 63.63 59.55 56.11 53.80 51.68 49.67 47.68 58.23
CEC [7] 73.07 68.88 65.26 61.19 58.09 55.57 53.22 51.34 49.14 59.53
LIMIT [9] 73.81 72.09 67.87 63.89 60.70 57.77 55.67 53.52 51.23 61.84
MetaFSCIL [1] 74.50 70.10 66.84 62.77 59.48 56.52 54.36 52.56 49.97 60.79
Data-free Replay [3] 74.40 70.20 66.54 62.51 59.71 56.58 54.52 52.39 50.14 60.78
FACT [8] 74.60 72.09 67.56 63.52 61.38 58.36 56.28 54.24 52.10 62.24
ALICE [4] 80.03 70.38 66.6 62.72 60.28 58.06 56.83 55.35 53.56 62.65
ALICE+FeCAM 80.03 74.15 70.16 65.57 62.82 60.25 58.46 56.86 54.94 64.80

Table 4: Detailed accuracy of each incremental session on CUB200 dataset. Best among columns in
bold.

Method Accuracy in each session (%) Avg A0 1 2 3 4 5 6 7 8 9 10
Finetune 68.68 43.70 25.05 17.72 18.08 16.95 15.10 10.06 8.93 8.93 8.47 21.97
D-Cosine [6] 75.52 70.95 66.46 61.20 60.86 56.88 55.40 53.49 51.94 50.93 49.31 59.36
CEC [7] 75.85 71.94 68.50 63.50 62.43 58.27 57.73 55.81 54.83 53.52 52.28 61.33
LIMIT [9] 76.32 74.18 72.68 69.19 68.79 65.64 63.57 62.69 61.47 60.44 58.45 66.67
MetaFSCIL [1] 75.90 72.41 68.78 64.78 62.96 59.99 58.30 56.85 54.78 53.82 52.64 61.93
Data-free Replay [3] 75.90 72.14 68.64 63.76 62.58 59.11 57.82 55.89 54.92 53.58 52.39 61.52
FACT [8] 77.92 74.94 71.57 66.32 65.96 62.49 61.23 59.76 57.94 57.56 56.41 64.70
FACT+FeCAM 77.92 75.34 72.23 67.56 67.02 63.50 62.39 61.25 59.84 59.10 57.89 65.80
ALICE [4] 77.34 72.64 70.17 66.68 65.34 62.78 61.81 60.84 59.22 59.26 58.70 64.98
ALICE+FeCAM 77.34 74.64 72.22 69.02 67.50 64.82 63.74 62.70 61.20 61.14 60.30 66.78

Table 5: Detailed accuracy of each incremental session on miniImageNet dataset. Best among
columns in bold.

Method Accuracy in each session (%) Avg A0 1 2 3 4 5 6 7 8
Finetune 61.31 27.22 16.37 6.08 2.54 1.56 1.93 2.6 1.4 13.45
D-Cosine [6] 70.37 65.45 61.41 58.00 54.81 51.89 49.10 47.27 45.63 55.99
CEC [7] 72.00 66.83 62.97 59.43 56.70 53.73 51.19 49.24 47.63 57.75
LIMIT [9] 72.32 68.47 64.30 60.78 57.95 55.07 52.70 50.72 49.19 59.06
MetaFSCIL [1] 72.04 67.94 63.77 60.29 57.58 55.16 52.90 50.79 49.19 58.85
Data-free Replay [3] 71.84 67.12 63.21 59.77 57.01 53.95 51.55 49.52 48.21 58.02
FACT [8] 72.56 69.63 66.38 62.77 60.6 57.33 54.34 52.16 50.49 60.70
ALICE [4] 81.87 70.88 67.77 64.41 62.58 60.07 57.73 56.21 55.31 64.09
ALICE+FeCAM 81.87 76.06 72.24 67.92 65.49 62.69 59.98 58.54 57.16 66.88

For further analysis to demonstrate the applicability of FeCAM, we take the base task model from
FACT [8] and use FeCAM in the incremental tasks for the CUB200 dataset. FeCAM improves the
performance on all tasks when applied to FACT as shown in Table 4.

One of the main drawbacks of the many-shot continual learning methods is overfitting on few-shot
data from new classes and hence these methods are not suited for few-shot settings. FeCAM is a

3

single solution for both many-shot and few-shot settings and thus can be applied in both continual
learning settings.

5 Pseudo Code

In Algorithm 1, we present the pseudo code for using FeCAM classifier.

Algorithm 1 FeCAM

Require: Training data (D1, D2, .., DT), Test data for evaluation (Xe
1 , X

e
2 , .., X

e
T), Model ϕ

1: for task t ∈ [1, 2, .., T] do
2: if t == 1 then
3: Train ϕ on D1 = (X1, Y1) ▷ Train the feature extractor
4: end if
5: for y ∈ Yt do
6: µy = 1

|Xy|
∑

x∈Xy
ϕ(x) ▷ Compute the prototypes

7: ˜ϕ(Xy) = Tukeys(ϕ(Xy)) ▷ Tukeys transformation Eq. (9)
8: Σy = Cov(˜ϕ(Xy)) ▷ Compute the covariance matrices
9: (Σy)s = Shrinkage(Σy) ▷ Apply covariance shrinkage Eq. (8)

10: ˆ(Σy)s = Normalization((Σy)s) ▷ Apply correlation normalization Eq. (7)
11: end for
12: for x ∈ Xe

t do
13: y∗ = argmin

y=1,...,Yt

DM (ϕ(x), µy) where

14: DM (ϕ(x), µy) = (˜ϕ(x)− µ̃y)
T ˆ(Σy)

−1

s (˜ϕ(x)− µ̃y)
15: ▷ Compute the squared mahalanobis distance to prototypes
16: end for
17: end for

References
[1] Zhixiang Chi, Li Gu, Huan Liu, Yang Wang, Yuanhao Yu, and Jin Tang. Metafscil: a meta-learning ap-

proach for few-shot class incremental learning. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2022.

[2] Gyuhak Kim, Bing Liu, and Zixuan Ke. A multi-head model for continual learning via out-of-distribution
replay. In Conference on Lifelong Learning Agents (CoLLAs), 2022.

[3] Huan Liu, Li Gu, Zhixiang Chi, Yang Wang, Yuanhao Yu, Jun Chen, and Jin Tang. Few-shot class-
incremental learning via entropy-regularized data-free replay. In European Conference on Computer Vision
(ECCV), 2022.

[4] Can Peng, Kun Zhao, Tianren Wang, Meng Li, and Brian C Lovell. Few-shot class-incremental learning
from an open-set perspective. In European Conference on Computer Vision (ECCV), 2022.

[5] Grégoire Petit, Adrian Popescu, Hugo Schindler, David Picard, and Bertrand Delezoide. Fetril: Feature
translation for exemplar-free class-incremental learning. In Winter Conference on Applications of Computer
Vision (WACV), 2023.

[6] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one shot
learning. Advances in Neural Information Processing Systems (NeurIPS), 2016.

[7] Chi Zhang, Nan Song, Guosheng Lin, Yun Zheng, Pan Pan, and Yinghui Xu. Few-shot incremental learning
with continually evolved classifiers. In Conference on Computer Vision and Pattern Recognition (CVPR),
2021.

[8] Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, Liang Ma, Shiliang Pu, and De-Chuan Zhan. Forward compatible
few-shot class-incremental learning. In Conference on Computer Vision and Pattern Recognition (CVPR),
2022.

4

[9] Da-Wei Zhou, Han-Jia Ye, Liang Ma, Di Xie, Shiliang Pu, and De-Chuan Zhan. Few-shot class-incremental
learning by sampling multi-phase tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 2022.

[10] Fei Zhu, Xu-Yao Zhang, Chuang Wang, Fei Yin, and Cheng-Lin Liu. Prototype augmentation and self-
supervision for incremental learning. In Conference on Computer Vision and Pattern Recognition (CVPR),
2021.

[11] Kai Zhu, Wei Zhai, Yang Cao, Jiebo Luo, and Zheng-Jun Zha. Self-sustaining representation expansion
for non-exemplar class-incremental learning. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2022.

5

	Definitions
	Implementation Details
	Further Analysis
	Few-Shot CIL results
	Pseudo Code

