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A Intra-veiw clustering with mean-shift

An image can be represented as an empirical probability density function that comprises amorphous
clusters of features. Given a dense representation of an image Z = {zi}Ni=1 and the mean-shift
clustering scheme, the conditional probability of zj given zi indicates the probability of feature zi
being assigned to the cluster of zj , which is defined as follows:
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where ⌧ is the inverse temperature, ci is the set of indices of points contained in the cluster of zi,
[N ] = {1, . . . , N}, and �ij is the cluster separation with respect to zi, defined as
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measuring the gain of similarity between zi and an in-cluster point zj over the similarity between zi
and the out-cluster point zk that is closest to zi.

To achieve locally semantic representations, our objective is for the points within each cluster to be in
close proximity to each other or, equivalently, close to their cluster representative. This proximity
ensures consistency in encoded semantics. Additionally, we aim for these in-cluster points to be
distinctly separated from the points outside the cluster. This separation encourages well-defined
clusters to accurately reflect different semantics, i.e., a large �ij and a small in-cluster variance.
As � becomes sufficiently large (with a proper inverse temperature), the RHS of Eq. 15 can be
approximated as 1/
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The resulting return of a single mean-shift update becomes
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which is essentially a weighted sum of the in-cluster points only. To promote the aforementioned
property while maintaining low in-cluster variance, one approach is to drive the point closer to its
cluster representative by optimizing

min

NX

i=1

kzi � ẑik22, with ẑi = Zsoftmax(⌧z>
i
Z). (19)

Notably, with a large inverse temperature ⌧ � 1, a single mean-shift update becomes the single-step
pattern retrieval mechanism in dense associative memory (DAM) [37, 48].
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B The GMM formulation of the constrained k-means objective

The k-means objective with generalized non-empty cluster constraint [4] can be expressed as

min
M
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ẑ2 Ẑ
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where M is a set of K centroids {µ1, · · · ,µK}, Ẑ is a set of cluster representatives over the entire
dataset, N 0

= |Ẑ|, k(ẑ)=argminkkµk � ẑk2, �ij is the Kronecker delta, with �ij=1 iff i=j, and
0 otherwise, [p̄][i] = 1/N 0

P
ẑ �ik(ẑ), and ⇡ is the prior, e.g., a vector of the preset proportion for

each cluster.

As mentioned in the main paper, a common approach to tackle the optimization problem above is
to relax the hard cluster assignment constraint �ij 2 {0, 1} to [0, 1] with a classification head to ẑ.
This relaxes Eq. 20 to the more general Gaussian Mixture Model (GMM) formulation, allowing each
point to have a partial membership of each cluster with a certain probability. The GMM ELBO can
be expressed by the average term-by-term reconstruction and KL to prior as
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where d(z,µ;⌃µ) = (z � µ)> ⌃�1
µ (z � µ) is the Mahalanobis distance, C is a constant under the

assumption of homoscedastic and isotropic Gaussian kernel. With a classification head, the posterior
of ẑ belonging to cluster k is
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where ⌧
0 is the inverse temperature, and WM is a matrix of K concatenated centroids with its kth

column corresponding to µk. Particularly, we assume all vectors are `2-normalized. This further
simplifies the posterior to q(µ|ẑ)=softmax(⌧ 0W>

Mẑ + log⇡), which conforms with the output of a
classification head as a mixing proportion.

The hard cluster assignment in Eq. 20 can be recovered by sharpening the posterior with a small
covariance, or equivalently, a large inverse temperature ⌧
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Mẑ + log⇡)
⇤
k

= lim
⌧ 0!1

⇥
softmax(⌧ 0W>

Mẑ)
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With a sufficiently large inverse temperature, the KL-divergence term of Eq. 21 becomes
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where N
0
k
=
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ẑ2Ẑ 1[k(ẑ)=k]. By defining [p̄]k=
N

0
k

N 0 and adding back the non-empty constraint as the
negative entropy of p̄, the resulting GMM ELBO recovers Eq. 9 with d(ẑ,µ;⌃µ) / kẑ � µk(ẑ)k22 .

C The cross-entropy formulation of the constrained k-means with positive
samples

With positive pairs (ẑ+
, ẑ) created via data augmentation, the constrained k-means objective in

Eq. 20 can be formulated as k-means clustering with an extra separation margin for ẑ+.

Here, we present the derivation of Eq. 11 in the main paper, considering a more general setting that
involves multiple positive samples {ẑ(a)}A

a=1 anchored on ẑ(0)
= ẑ through data augmentation. The

objective in Eq. 10 from the main paper is essentially a special case of the following expression,
where the number of positive pairs A equal to 1:
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which imposes that a point and its positive samples reside in the same cluster.
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The above optimization problem can be tackled by minimizing its upper bound with a relaxed hard
assignment. Specifically, the term inside the parenthesis is bounded by
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AX

a=1

�
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which is bounded by
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with 0 < ✏⌧ 1.

To our interest, we assume all vectors are `2-normalized. Thus, the bound in Eq. 28 can be further
simplified to
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By relaxing the hard assignment �kk(ẑ) 2 {0, 1} to [0, 1] using a classification head to ẑ as in
the GMM formulation in Appendix B with a sufficiently large inverse temperature ⌧

0 � 1, the
optimization in Eq. 25 can be approached by
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where p(ẑ) = q(µ|ẑ) = softmax
�
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Mẑ
�
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log y. When A = 1, i.e., only
considering a single positive pair, the above objective degenerates to Eq. 11 in the main paper.

model #blocks dim #heads #tokens #params im/s
ViT-S/16 12 384 6 196 21M 1,007
ViT-S/8 12 384 6 785 21M 180
ViT-B/16 12 768 12 196 85M 312

Table 8: VIT CONFIGURATION

D Other related works

Unsupervised learning with grouping This is intimately connected to self-supervised learning.
Early research employed dimensionality reduction techniques, such as PCA and LDA, in conjunction
with clustering algorithms like k-means and spectral clustering. The objective was to enable iterative
subspace selection paired with clustering. In recent years, the use of non-linear transformations
through deep neural networks has been explored. [56] introduces an autoencoder based on Restricted
Boltzmann Machines (RBMs) for t-SNE embedding. Meanwhile, in [71], a deep neural network is
employed to concurrently learn cluster centroids and feature embeddings. This ensures that the soft
assignments of embeddings, based on the centroids, align with a specific target distribution.

Recent works go beyond nonlinear embedding by jointly optimizing the feature and the cluster
assignment. DeepCluster [7, 8] utilize k-means to generate pseudo-class labels and applies supervised
learning to iteratively fine-tune the model. Local Aggregation (LA) [79] determines a neighborhood
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for each instance via clustering and conducts instance-level discrimination solely within these
neighborhoods. Conversly, CLD [64] incorporates local clustering into contrastive metric learning
and utilizing a cross-level instance-group discrimination approach. PCL [39] compares instance
features with group centroids obtained through global clustering per epoch. Meanwhile, SegSort [34]
extends representation learning from classification to segmentation. It achieves this by learning a
feature for each pixel, operating under the assumption that pixels within the same region inherently
form a cluster in the feature space.

Unsupervised object discovery Recent success of unsupervised object discovery is highly relevant
to the underlying clustering problem of common SSL. A notable approach involves formulating the
clustering problem as an optimization of region proposals, while maximizing the cumulative similarity
of these proposed regions over a collection of images [59, 60, 61]. Particularly, rOSD [60] utilizes
hierarchical saliency clusters constructed from feature maps to generate region proposals. Features
within a thresholded vicinity of a local maximum of the saliency map are grouped together, while
LOST [53] localizes the position of the smallest object in an image by finding a group of features
with the minimum cumulative similarity. Notably, one critical component for the aforementioned
methods to be effective is the feature-level clustering manifested by the topological data clustering
algorithm, e.g. selective search [55], persistence [12] in rOSD, or the feature clusters transferred
from an SSL-pretrained model (DINO [10]) in LOST. Still, none of them is involved in training or
differentiable, leading to sub-optimal solutions.

Self-attention as clustering Concurrently with our research, several studies have demonstrated the
connection between attention and the clustering process. For example, [77] interprets the attention
mechanism using the lens of the information bottleneck (IB), which is also tied to clustering. The IB
formulation presented in this study is essentially an EM-fitting of a GMM with soft assignment, based
on key assumptions such as the Gaussian approximation in KL minimization and a minor smoothing
scale, as detailed in the appendix. In contrast with soft GMM, mean-shift clustering operates
non-parametrically (KDE) and does not impose prior assumptions on the structure of the clusters.
For instance, it does not predefine the number of clusters and does not involve KL minimization.
This characteristic makes mean-shift clustering more aligned with the attention mechanism, which
typically doesn’t impose many assumptions on its input.

E Implementation details

E.1 Network configuration

We follow the implementation used in DeiT [54] for all the ViT variants used in our experiments, and
their configurations are summarized in Table 8.

In the table, “#blocks” is the number of transformer blocks, “dim” is the channel dimension, “#heads”
is the number of heads in multi-head attention, “#tokens” is the length of the token sequence when
considering 224

2 resolution inputs, “#params” is the total number of parameters (without counting
the projection head), and “im/s” is the inference speed on a NVIDIA V100 GPU with 128 samples
per forward.

E.2 Training details

The implementation of ViT in our experiments mostly follows DeiT [54], with the exception of
excluding the [class] token. During pretext training, we set the coefficients in the FLSL objective
as follows: � = .03, ⌘ = 1.0, and � = 5.0, and assume a uniform prior, i.e., ⇡k = 1/K, 8k, with the
number of centroids K=4096. We pretrain the models on ImageNet-1k dataset without labels using
AdamW optimizer [45] and a batch size of 512. In line with DINO, the learning rate linearly ramps up
during the first 10 epochs to the base value determined with the linear scaling rule [26]: lr=0.00025

with the reference batch_size=256. The warm-up is followed by the learning rate decay governed by
cosine schedule [44] with the target learning rate 10

�6. The weight decay also governed by a cosine
schedule from 0.05 to 0.5. The update rule for teacher network is ✓t  �✓t + (1 � �)✓s, with �

following a cosine schedule from 0.996 to 1. The inverse temperature for student classification head,
⌧s, is set to 1/0.1, while the inverse temperature for teacher classification head, ⌧t, follows a linear
warm-up from 1/0.04 to 1/0.07 during the first 30 epochs. For data augmentation, we employ the
method from DINO [10] (e.g., color jittering of brightness, contrast, saturation and hue, Gaussian blur
and solarization) with preceding random crops and resizing (to 224⇥224) and make them asymmetric.
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The exact settings of augmentation are provided in the next section. Regarding the training cost,
when using the ViT-S/16 model and identical hardware configurations, the per-epoch training time of
FLSL is 1.19x longer than DINO. Meanwhile, Self-patch’s training duration is comparable to FLSL,
being 1.21x longer than DINO.

E.3 Data Augmentation

The augmentation settings in FLSL are based on the augmentation pipeline of DINO [10] with one
key modification: the random cropping operation is made asymmetric for the teacher and student
networks. In our approach, we begin by sampling two random crops from the input image using a
large ratio (e.g., 0.8 ⇠ 1.0) at the same location but with different pixel treatments. From each of
the crops, we further sample a smaller crop using a ratio of (e.g., 0.5 ⇠ 1.0). The smaller crops are
then assigned to the student network, while the larger crop are passed to the teacher network. This
asymmetry ensures that the queries from the student exist within the teacher’s view. Conversely,
using symmetric random cropping for both networks adversely affects training performance and leads
to collapse. Details of the data augmentation pipeline are listed below. The operations are performed
sequentially to produce each view.

• For Teacher network, random cropping an area uniformly sampled with a size ratio be-
tween 0.8 to 1.0, followed by resizing to 224

2. transforms.RandomResizedCrop(224,
scale=(0.8, 0.1)) in PyTorch.

• For Student network, random cropping the crops from teacher network with an area uni-
formly sampled with a size ratio between 0.5 to 1.0, followed by resizing to 224

2. This
results in an effective scale ratio of (0.4, 1.0). transforms.RandomResizedCrop(224,
scale=(0.5, 1.0)) in PyTorch.

• Color jittering of brightness, contrast, saturation and hue, with a probability of 0.8.
ColorJitter(0.4, 0.4, 0.2, 0.1) in PyTorch.

• Grayscale with a probability of 0.2. transforms.RandomGrayscale(p=0.2) in PyTorch.
• Gaussian blur with a probability of 0.5 and uniform random radius from 0.1 to 2.0.
• Solarization with a probability of 0.2.
• Color normalization with mean (0.485, 0.456, 0.406) and standard deviation
(0.229, 0.224, 0.225).
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E.4 PyTorch Pseudocode of FLSL

Algorithm 1 FLSL PYTORCH PSEUDO-CODE
# fs, ft: student and teacher transformer branches
# sa, ca: self-attention and cross-attention head
# fc: fully-connected layer
# tp_s, tp_t: student and teacher inverse temperatures
# a, g, r: coefficient for the three loss terms
# l: network momentum rates
ft.params = fs.params

for x in Loader:# load a minibatch x with B samples
# random augmentation
x1, x2 = transforms_t(x)
x1_s, x2_s = transforms_s(x1, x2)
s1, s2 = fs(x1_s), fs(x2_s)# [B, N, D]
t1, t2 = ft(x1), ft(x2)# [B, N, D]

loss = 0.5 * M(s1, t2) + 0.5 * M(s2, t1)
loss.backward()# back-propagation

# student and teacher updates
updates(fs)# SGD
ft.params = l*ft.params + (1� l)*fs.params

def H(s, t):
# s, t:[B, N, D]
zs, zt = fc(s), fc(t) # [B, N, K]
ps, pt = softmax(zs/tp_s, dim=-1), softmax(zt/tp_t, dim=-1)

ps_b = ps.sum(dim=-2).mean(dim=-1)
return - (pt * log(ps)).sum(dim=-1).mean(), ps_b*log(ps_b)

def M(s, t):
t.detach()# stop gradient
s0 = s.normalize(dim=-1)
s = sa(s)
t = ca(s, t, t)
s0_a = s.normalize(dim=-1)

h1, h2 = H(s, t)
ds = ((s0 � s0_a) * (s0 � s_a)).sum(dim=-1).mean()
return a * ds + g * h1 + r * h2

Note that a constant logK (as a result of a uniform prior ⇡ = 1/K) is omitted in the algorithm table.
Specifically, with a uniform prior ⇡ = 1/K, the KL divergence term in the objective function (13)
reduces to the entropy of the student prediction plus a constant logK, the latter of which is omitted in
the algorithm table.

F Protocol for hyperparameter tuning

As discussed in the main paper, we need a protocol to evaluate the quality of the learned dense features
during the FLSL training for hyperparameter tuning. However, standard evaluation protocols, such
as k-NN classifier or linear probing are not suitable. We therefore propose a bounding box-aligned
k-NN classification by leveraging the bounding box information provided by ILSVRC [51].

As shown in Figure 4(a), we partition the bounding box into s ⇥ s grids and find the coordinates
of the center for each grid (the green dots). We then locate the s

2 features in the feature map, Ẑ,
from the nearest neighbor as shown in Figure 4(b), and store them into the memory bank with label
information. For images with multiple bounding box annotations, we pick the largest one. An image
is considered correctly classified as long as there is one of the s

2 features matching its true category
with the prediction. We set s = 3 for our training and inflate the number of the nearest neighbors k
by a scale factor cs as the memory bank increases 9 times. We set k = 20 and cs = 7 for the best
performance.
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(a) (b)

Figure 4: The alignment between bounding box grid centers and the feature centers. We first construct
a 3⇥ 3 grid from the bounding box and locate the grid centers. As shown in (a), the 9 grid center
points are marked in green. Given the patch size (e.g., 16⇥ 16) for each grid center, we then locate
the patch with its center closest to the grid center, as shown in (b).

Method Arch. #params #epochs im/s k-NN
Supervised RN-50 23M 300 1237 79.3
SOTA SSL methods with Big CNNs
SwAV RN50w5 586 800 76 67.1
BYOL RN200w2 250 1000 123 73.9
SimCLR-v2 RN152w3+SK 794 1000 76 73.1
Supervised ViT-S/16 21M 300 1007 79.8
BYOL ViT-S/16 21M 600 1007 66.6
MoCov2 ViT-S/16 21M 600 1007 64.4
MoCov3 ViT-S/16 21M 1200 1007 66.5
SwAV ViT-S/16 21M 2400 1007 66.3
iBOT ViT-S/16 21M 3200 1007 75.2
DINO ViT-S/16 21M 3200 1007 74.5
FLSL ViT-S/16 21M 1600 1007 76.7*
Comparison across transformer variants
DINO ViT-B/16 85M 1200 312 76.1
MoCov3 ViT-B/16 85M 1200 312 69.7
EsViT Swin-S 49M 600 467 76.8
EsViT Swin-B 87M 600 297 77.7
iBOT Swin-T 28M 1200 726 75.3
iBOT ViT-B/16 85M 1600 312 77.1
iBOT ViT-L/16 307M 1000 102 78.0
DINO ViT-B/8 85M 1200 63 77.4
DINO ViT-S/8 21M 3200 180 78.3
EsViT Swin-S/W=14 49M 600 383 77.3
EsViT Swin-B/W=14 87M 600 254 78.3
iBOT Swin-T/W=14 28M 1200 593 76.2
FLSL ViT-B/16 85M 600 312 77.8*

Table 9: K-NN CLASSIFICATION ON IMAGENET

We present the evaluation results of the bounding box-aligned k-NN of FLSL with the standard
instance-level k-NN of other methods in Table 9. These results provide insights into the global and
local semantic coherence of the learned representations. As the bounding box-aligned k-NN results in
representations with less noise, we mark our results with (⇤) symbol to indicate a biased comparison.
Note that FLSL is designed for dense prediction tasks and not for instance-level image classification.
This Bbox-aligned k-NN classification is employed only for hyperparameter tuning and ablation
study of the FLSL pipeline.

G Transfer learning settings

MS-COCO setup We evaluate the performance of the pretrained models on the MS-COCO object
detection and instance segmentation tasks with different two-staged frameworks. For ViT-S/16 and
ViT-S/8 with Mask R-CNN [28] and FPN [41], we employ multi-scale training following [6] and
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resize the image to ensure the short side falls within the range of 480 to 800 pixels, while ensuring
the long side does not exceed 1, 333 pixels. For a fair comparison, we primarily adhere to the training
setting utilized in [75]. Specifically, we employ the AdamW optimizer with a batch size of 16.
Learning rate is linearly warmed up for the first 1, 000 iterations to reach 5e�5 and subsequently
decayed at step 8 and 11. Models are trained under 1x schedule. For ViT-B/16 with Mask R-CNN
and a simple FPN, we follow the training methodology outlined in Li et al. (2022) [40]. Specifically,
the input images are resized to 1, 024⇥1, 024 and augmented with large-scale color jitter ranging
from 0.1 to 2.0. The model is fine-tuned for 100 epochs using the AdamW optimizer with a weight
decay of 0.1. To adjust the learning rate, we employ a step-wise decay strategy. During the training,
the base learning rate is set to 0.0001, which is gradually increased from 0.0 to the base rate for the
first 250 iterations as a warm-up phase. Additionally, we apply a layer-wise learning rate decay of
0.7.

UAVDT setup The UAVDT dataset contains 23, 258 images for training and 15, 069 images for
test. The resolution of the images is about 1, 080⇥540 pixels. The dataset is acquired with a UAV
platform at a number of locations in urban areas. The categories of the annotated objects are car, bus,
and truck. The training configuration is adapted from the original setting in [74]. The input size is
rescaled to 1, 072⇥528. The model is trained under 1x schedule. We adopt SGD optimizer with 0.9

momentum, 0.0001 weight decay and a batch size of 16. The base learning rate sets to 0.0005 with a
linear warm-up for the first 300 iterations. The learning rate decreases at the 8th epoch.

H ADE20K semantic segmentation

We also evaluate semantic segmentation performances of pre-trained models on ADE20K, which
includes 150 fine-grained semantic categories and 25k training data. In line with SelfPatch, all models
are fine-tuned with Semantic FPN under the standard 40k iteration schedule, other major settings
include input size 512x512, feature layer=[2,5,8,11], Adam optimizer w/ lr=6e-5, poly-scheduler w/
p=1.0, weight decay=0.01 excluding positional embedding and layer norm. Results are reported in
table

Method Arch Backbone #Iter. mIoU aAcc mAcc
MoCo-v2 FPN RN50 40k 35.8 77.6 45.1
SwAV FPN RN50 40k 35.4 77.5 44.9
ReSim FPN RN50 40k 36.6 78.4 46.4
DenseCL FPN RN50 40k 37.2 78.5 47.1
MoCo-v3 FPN ViT-S/16 40k 35.3 78.9 47.1
MoBY FPN ViT-S/16 40k 39.5 79.9 47.1
DINO FPN ViT-S/16 40k 38.3 79.0 47.1
DINO+SelfPatch FPN ViT-S/16 40k 41.2 80.7 52.1
ADCLR FPN ViT-S/16 40k 42.4 81.1 54.2
FLSL FPN ViT-S/16 40k 42.9 81.5 55.1

Table 10: ADE20K Performances of the recent self-supervised approaches pre-trained on ImageNet-
1K. The metrics mIoU, aAcc, and mAcc refer to the mean intersection of union, all pixel accuracy,
and mean class accuracy, respectively. FLSL consistently outperforms all the baselines.

I Ablation study

I.1 Impact of batch size

We study the impact of the batch size on the features extracted by FLSL. Table 11 shows that FLSL
can achieve high performance with small batch sizes. Unlike the instance-level SSL methods that
tend to focus on foreground contents (e.g., objects), FLSL considers all the semantics in an image,
i.e., all the features zs find their own cluster representatives ẑs through the self-attention (mean-shift)
update. This enriches feature diversity and improves the variance of a mini-batch and benefits the
training with small batch sizes.
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Batch size 64 128 256 512 1024 2048
k-NN top-1 66.1 69.8 71.7 72.4 72.4 71.9

Table 11: IMPACT OF BATCH SIZE

I.2 Impact of random pooling
In FLSL, contrasting among dense features can be computationally expensive, i.e., 142 = 196

representations to be considered in the objective. Therefore, we apply a random pooling to the queries
from the last ViT layer and study the impact of different window sizes of the random pooling.

Window size 2⇥ 2 4⇥ 4
k-NN top-1 72.4 71.1

Table 12: IMPACT OF RANDOM POOLING

I.3 Impact of the number of centroids K
We formulate FLSL as an explicit clustering problem. Therefore, the output dimension of the last
fully-connected layer is equal to the number of centroids K. As shown in Table 13, FLSL enjoys
a smaller output dimension compared to its instance-level counterpart, DINO (K = 65, 536) [10].
This is mainly due to the higher variance of features in an image than that of a feature cluster. Take
ImageNet for instance, the content of an image may range from a single object and stuff to a melange
of them from different categories. This requires a large number of centroids to cover the image
distribution. While for a semantic cluster, it tends to contain features of high correlation, e.g., features
of similar texture, or multiple adjacent objects from the same category, hence requires less centroids
to cover its distribution. From the experiment, we find that a large number of centriods improves the
performance, but is detrimental and costly when being too large. We pick K = 4, 096 for all our
experiments as it strikes a good balance between performance and cost-effectiveness.

K 1024 2048 4096 8192 16384
k-NN top-1 68.1 72.1 72.4 72.5 72.1

Table 13: IMPACT OF NUMBER OF CENTROIDS K

I.4 Ablation on the FLSL objective function

The FLSL objective contains three components: (1) similarity between `2-normalized z (features)
and ẑ (modes), (2) cross-entropy of the probabilities of an augmented pair H(p(ẑ+

), p(ẑ)), and (3)
the non-empty constraint DKL (p̄k⇡):

min
1

N 0

X

Z2Z

X

z2Z

�kz�ẑk2F+⌘

X

z2Z

H(p(ẑ+
),p(ẑ)) + �DKL (p̄k⇡) , (31)

with ẑ = SA(z,Z,Z), ẑ+
= CA(z,Z+

,Z+
).

It is computationally expensive to optimally determine the values of more than two coefficients by
performing grid search, especially when the ratios among them are large. We tackle this problem
by first fixing ⌘ = 1 and setting � = 1 along with the Sinkhorn normalization [19] to perform a
grid search on the value of � with the empirical base condition �  1 and � � 1 [75, 1]. With
the fixed �, we then perform another grid search on � without the Sinkhorn normalization. We
implement Sinkhorn normalization [19] as the softmax operation along the batch dimension. Table 5
summerizes the score of k-NN evaluation using different coefficient settings. We also visualize
the impact of different ratios of the first and second level clustering �/⌘ of the FLSL objective in
Figure 5 by visualizing the aggregated similarity score (ASS) map. As the ratio increases, the ASS
map shifts from being clear and bright to becoming cluttered and dark. This change occurs because
the self-attention for each query becomes more focused, attending to a smaller neighborhood. A
smaller ratio leads to larger clusters, which aggregate more attention scores in the region, resulting
in a brighter map, particularly in the background. Conversely, a large ratio leads to small, cluttered
clusters with fewer attention scores aggregated, resulting in a darker map. A smaller ratio may smooth
out small details, while a larger ratio causes the model to focus excessively on local features. From
the results in Table 14, a ratio of 0.03 strikes a good balance in between.
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image �/⌘ = .01 �/⌘ = .02 �/⌘ = .03 �/⌘ = .1 image �/⌘ = .01 �/⌘ = .02 �/⌘ = .03 �/⌘ = .1

Figure 5: Impact of the ratio �/⌘ on local semantic consistency with the FLSL-learned representations.
The figure presents a visualization of the aggregated similarity scores (ASS) map. As the ratio �/⌘

increases, the attention for each query becomes more focused, specifically attending to regions of
closer proximity, resulting in more cluttered and smaller dark regions in the ASS map.

Sinkhorn ⌘ � � = 0.0 � = .01 � = .02 � = .03 ⇠ � = 0.1
X 1.0 1.0 0.1 68.7 70.7 71.2 ⇠ 65.1
⇥ 1.0 1.0 - - - 66.6 - -
⇥ 1.0 5.0 - - - 72.4 - -

Table 14: IMPACT OF THE COEFFICIENTS IN THE FLSL OBJECTIVE.

J Aggregated attention score visualizations

To further evaluate the caliber of the learned representations, we contrast the ASS visualization
of FLSL with that of DINO, which is a representative instance-level SSL. The input images for
this comparison are randomly selected from an ImageNet-1K subset. As shown in Figure 6, the
aggregated similarity score (ASS) maps of the tokens from the last layer of a ViT-S/16 trained via
FLSL and DINO are visualized and juxtaposed for comparison. For well-clustered tokens at the
object-level, the shade distribution of an object in ASS should align with the object shape and be
proportional to the object size, i.e., darker shades for smaller objects. To better illustrate, we draw
bounding boxes around conspicuous objects in "dimmed" images (in “bboxes” column). Apparently,
FLSL leads to ASS better aligned with underlying objects or stuff (e.g., images of “ostrich”, “junco”,
“cowboy boot”, “teddy bear”, “seashore”, “swimming trunks”, “sax” etc.), and captures more objects
alongside the label-related object in an image (e.g., images of “quail”, “plectron”, “bloodhound”,
“tiger shark”, etc.), while DINO tends to single out the label-related tokens and drives the tokens in
the rest of an image to be highly correlated (e.g., image of “quail”, “junco”, “blood hound”).
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Figure 6: ASS visual comparison between FLSL and DINO
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