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Abstract

Queueing systems are widely applicable stochastic models with use cases in com-
munication networks, healthcare, service systems, etc. Although their optimal
control has been extensively studied, most existing approaches assume perfect
knowledge of the system parameters. Of course, this assumption rarely holds in
practice where there is parameter uncertainty, thus motivating a recent line of work
on bandit learning for queueing systems. This nascent stream of research focuses
on the asymptotic performance of the proposed algorithms.
In this paper, we argue that an asymptotic metric, which focuses on late-stage
performance, is insufficient to capture the intrinsic statistical complexity of learning
in queueing systems which typically occurs in the early stage. Instead, we propose
the Cost of Learning in Queueing (CLQ), a new metric that quantifies the maximum
increase in time-averaged queue length caused by parameter uncertainty. We
characterize the CLQ of a single-queue multi-server system, and then extend
these results to multi-queue multi-server systems and networks of queues. In
establishing our results, we propose a unified analysis framework for CLQ that
bridges Lyapunov and bandit analysis, provides guarantees for a wide range of
algorithms, and could be of independent interest.1

1 Introduction

Queueing systems are widely used stochastic models that capture congestion when services are
limited. These models have two main components: jobs and servers. Jobs wait in queues and have
different types. Servers differ in capabilities and speed. For example, in content moderation of online
platforms [28], jobs are user posts with types defined by contents, languages and suspected violation
types; servers are human reviewers who decide whether a post is benign or harmful. Moreover, job
types can change over time upon receiving service. For instance, in a hospital, patients and doctors
can be modeled as jobs and servers. A patient in the queue for emergent care can become a patient
in the queue for surgery after seeing a doctor at the emergency department [3]. That is, queues can
form a network due to jobs transitioning in types. Queueing systems also find applications in other
domains such as call centers [16], communication networks [36] and computer systems [17].

The single-queue multi-server model is a simple example to illustrate the dynamics and decisions in
queueing systems. In this model, there is one queue and K servers operating in discrete periods. In
each period, a new job arrives with probability λ. Servers have different service rates µ1, . . . , µK .
The decision maker (DM) selects a server to serve the first job in the queue if there is any. If server j
is selected, the first job in the queue leaves with probability µj . The DM aims to minimize the
average wait of each job, which is equivalent to minimizing the queue length. The optimal policy
thus selects the server with the highest service rate µ⋆ = maxj µj ; the usual regime of interest is one
where the system is stabilizable, i.e., µ⋆ > λ, which ensures that the queue length does not grow to

1A full version of this paper [12] can be found at https://arxiv.org/abs/2308.07817v2.
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infinity under an optimal policy. Of course, this policy requires perfect knowledge of the service
rates. Under parameter uncertainty, the DM must balance the trade-off between exploring a server
with an uncertain rate or exploiting a server with the highest observed service rate.

A recent stream of work studies efficient learning algorithms for queueing systems. First proposed
by [41], and later used by [24, 38], queueing regret is a common metric to evaluate learning efficiency
in queueing systems. In the single-queue multi-server model, let Q(T, π) and Q⋆(T ) be the number of
jobs in period T under a policy π and under the optimal policy respectively. Queueing regret is defined
as either the last-iterate difference in expected queue length, i.e., E [Q(T, π)−Q⋆(T )][41, 24], or
the time-average version 1

T E
[∑T

t=1 Q(t, π)−Q⋆(t)
]
[38]. In the stabilizable case (λ < µ⋆), the

goal is to bound its scaling relative to the time horizon; examples include o(T ) [41], Õ(1/T ) [24],
and O(1/T ) [38].

In this paper, we argue that an asymptotic metric for per-period queue length does not capture the
statistical complexity of learning in queueing systems. This is because, in a queueing system, learning
happens in initial periods while queueing regret focuses only on late periods. Whereas cumulative
regret in multi-armed bandits is non-decreasing in T , the difference in queue lengths between a
learning policy and the benchmark optimal policy eventually decreases since the policy eventually
learns the parameters (see Figure 1). This leads to the two main questions of this paper:

1. What metric characterizes the statistical complexity of learning in queueing systems?

2. What are efficient learning algorithms for queueing systems?

Our work studies these questions in general queueing systems that go beyond the single-queue
multi-server model and can capture settings such as the hospital and content moderation examples.
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Figure 1: Expected per-period and time-averaged queue lengths of UCB and Q-UCB [24] in a single-
queue setting with K = 5, λ = 0.45,µ = (0.045, 0.35, 0.35, 0.35, 0.55); results are averaged over
50 runs. The difference between both algorithms’ queue lengths is indistinguishable asymptotically
(left figure) though they clearly differ in their learning efficiency for early periods as illustrated by
Cost of Learning in Queueing, the metric that our work introduces (right figure).

Cost of learning in queueing. Tackling the first question, we propose the Cost of Learning in
Queueing (CLQ) to capture the efficiency of a learning algorithm in queueing systems. The CLQ of
a learning policy is defined as the maximum difference of its time-averaged queue length and that of
any other policy (with knowledge of parameters) over the entire horizon (see Fig 1 on the right). In
contrast to queueing regret, CLQ is 1) a finite-time metric that captures the learning efficiency in
early periods and 2) focused on time-averaged queue length instead of per-period queue length. This
is favorable as for any periods 1, . . . , T , the time-averaged queue length is related to the average wait
time by Little’s Law. The formal definition of CLQ can be found in Section 3.

Lower bound of CLQ (Theorem 1). To characterize the statistical complexity of learning in
queueing systems, we consider the simplest non-trivial stabilizable setting that involves one queue
and K servers. It is known that the queue length scales as O(1/ε) under the optimal policy, where
ε = µ⋆ − λ is the traffic slackness of the system. Fixing ε and the number of servers K, we establish
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a worst-case lower bound Ω(Kε ) of CLQ. That is, for any ε,K and a fixed policy, there always exists
a setting of arrival and service rates, such that the CLQ of this policy is at least Ω(Kε ). Combined
with the O(1/ε) optimal queue length, this lower bound result shows that the effect of learning
dominates the performance of queueing systems when K is large (as it may increase the maximum
time-averaged queue length by a factor of K). This is shown in Figure 1 (right) where the peak of
time-averaged queue lengths of the optimal policy with knowledge of parameters is much lower than
that of the other two policies (our Algorithm 1 and Q-UCB [24]).

An efficient algorithm for single-queue multi-server systems (Theorem 2). Given the above
lower bound, we show that the Upper Confidence Bound (UCB) algorithm attains an optimal CLQ
up to a logarithmic factor in the single-queue multi-server setting. Our analysis is motivated by Fig. 1
(right) where the time-averaged queue length initially increases and then decreases. Based on this
pattern, we divide the horizon into an initial learning stage and a later regenerate stage.

In the learning stage, the queue length increases similar to the multi-armed bandit regret. We formalize
this observation by coupling the queue under a policy π with a nearly-optimal queue and show that
their difference is captured by the satisficing regret of π. Satisficing regret resembles the classical
multi-armed bandit regret but disregards the loss of choosing a nearly optimal server (see Eq. (6));
this concept is studied from a Bayesian perspective in multi-armed bandits [32]. Nevertheless, our
result in the learning stage is not sufficient as the satisficing regret eventually goes to infinity.

In the regenerate stage, queue lengths decrease as the policy has learned the parameters sufficiently
well; the queue then behaves similarly as under the optimal policy and stabilizes the system. To
capture this observation, we use Lyapunov analysis and show that the time-averaged queue length for
the initial T periods scales as the optimal queue length, but with an additional term depending on
the second moment of satisficing regret divided by T . Hence, as T increases, the impact of learning
gradually disappears. Combining the results in the learning and regenerate stages, we obtain a tight
CLQ bound of UCB for the single-queue multi-server setting.

Efficient algorithms for queueing networks (Theorem 3) We next generalize the above result to
queueing networks that include multiple queues, multiple servers, and transitions of served jobs from
servers to queues. For this setting, we build on the celebrated BACKPRESSURE policy that stabilizes a
queueing network with knowledge of system parameters [39]. We propose BACKPRESSURE-UCB as
a new algorithm to transform BACKPRESSURE into a learning algorithm with appropriate estimates
for system parameters and show that its cost of learning scales near-optimally as Õ(1/ε) with
respect to the traffic slackness ε (Definition 2). This result extends our framework for single-queue
multi-server settings through a coupling approach that reduces the loss incurred by learning in a
high-dimensional vector of queue-lengths to a scalar-valued potential function. To the best of our
knowledge, this is the first efficient learning algorithm for general queueing networks (see related
work for a discussion).

Related work A recent line of work studies online learning in queueing systems [40]. To capture
uncertainty in services, [41] studies a single-queue setting in which the DM selects a mode of service
in each period and the job service time varies between modes (the dependence is a priori unknown
and revealed to the DM after the service). The metric of interest is the queueing regret, i.e., the
difference of queue length between an algorithm and the optimal policy, for which the authors show
a sublinear bound. [24] considers the same single-queue multi-server setting as ours and show
that a forced exploration algorithm achieves a queueing regret scaling of Õ(1/T ) (under strong
structural assumptions this result extends to multiple queues). [38] shows that by probing servers
when the queue is idle, it is possible to give an algorithm with queueing regret converging as O(1/T ).
However, with respect to the traffic slackness ε → 0+, both bounds yield suboptimal CLQ: [24]
gives at least O(1/ε2) and [38] gives at least O(1/ε4) (see Appendices A.1, A.2 in [12]). In the
analysis of [24], forced exploration is used for low adaptive regret, i.e., regret over any interval
[19]; no such guarantee is known for adaptive exploration. But as noted by our Figure 1 and [24,
Figure 2], an adaptive exploration algorithm like UCB has a better early-stage performance than
Q-UCB. Using our framework in Section 4, we show that UCB indeed has a near-optimal CLQ that
scales as O(Kε ln K

ε ). Our framework also allows us to show that Q-UCB enjoys a CLQ scaling
as O(Kε ln K

ε + ln3 K
ε ) (Appendix A.1 in [12]). This improves the guarantee implied by [24] and
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shows the inefficiency due to forced exploration is about O(ln3 K
ε ) and that Q-UCB has both strong

transient (CLQ) and asymptotic (queueing regret) performance.

Focusing on the scaling of queueing regret, [23] and [43] study the scheduling in multi-queue settings
(with [43] also considering job abandonment), [9, 14] study learning for a load balancing model, [8]
studies pricing and capacity sizing for a single-queue single-server model with unknown parameters.
For more general settings, [1] designs a Bayesian learning algorithm for Markov Decision Processes
with countable state spaces (of which queueing systems are special cases) where parameters are
sampled from a known prior over a restricted parameter space; in contrast, our paper does not assume
any prior of the unknown parameters. The main difference between all of these works and ours is that
we focus on how the maximum time-averaged queue lengths scales with respect to system parameters
(traffic slackness and number of queues and servers), not on how the queue lengths scale as time
grows. Apart from the stochastic learning setting we focus on, there are works that tackle adversarial
learning in queueing systems [21, 26]; these require substantially different algorithms and analyses.

Going beyond queueing regret, there are papers focusing on finite-time queue length guarantees. In a
multi-queue multi-server setting, it is known that the MaxWeight algorithm has a polynomial queue
length for stabilizable systems. However, it requires knowledge of system parameters. For a joint
scheduling and utility maximization problem, [30] combines MaxWeight with forced exploration to
handle parameter uncertainty. By selecting a suitable window for sample collection, their guarantee
corresponds to a CLQ bound of at least O(K4/ε3) for our single-queue setting (see Appendix A.3 in
[12]). [37] studies a multi-queue multi-server setting and propose a frame-based learning algorithm
based on MaxWeight. They focus on a greedy approximation which has polynomial queue lengths
when the system is stabilizable with twice of the arrival rates. [42] considers a non-stationary
setting and shows that combining MaxWeight with discounted UCB estimation leads to stability and
polynomial queue length that scales as Õ(1/ε3) (Appendix A.4 in [12]). There is also a line of work
studying decentralized learning in multi-queue multi-server settings. [15] assumes queues are selfish
and derives conditions under which a no-regret learning algorithm is stable; this is generalized to
queueing networks in which queues and servers form a directed acyclic graph by [13]. [33] allows
collaborative agents and gives an algorithm with maximum stability, although the queue length scales
exponentially in the number of servers. [11] designs a decentralized learning version of MaxWeight
and shows that the algorithm always stabilizes the system with polynomial queue lengths Õ(1/ε3)
(Appendix A.5 in [12]). In contrast to the above, our work shows for the centralized setting that
MaxWeight with UCB achieves the near-optimal time-averaged queue length guarantee of Õ(1/ε).

Our paper extends the ability of online learning to general single-class queueing networks [7]. The
literature considers different complications that arise in these settings, including jobs of different
classes and servers that give service simultaneously to different jobs [39, 10, 7]. For the class of
networks we consider, it is known that BACKPRESSURE can stabilize the system with knowledge
of system parameters [39]. Noted in [7], one potential drawback of BACKPRESSURE is its need of
full knowledge of job transition probabilities. In this regard, our paper contributes to the literature
by proposing the first BACKPRESSURE-based algorithm that stabilizes queueing networks without
knowledge of system parameters.

Moving beyond our focus on uncertainties in services, an orthogonal line of work studies uncertainties
in job types. [2] considers a single server setting where an arriving job belongs to one of two types;
but the true type is unknown and is learned by services. They devise a policy that optimizes a linear
function of the numbers of correctly identified jobs and the waiting time. [6] studies a similar setting
with two types of servers where jobs can route from one server to the others. They focus on the
impact on stability due to job type uncertainties. [29, 34] consider multiple job types and server
types. Viewing Bayesian updates as job type transitions, they use queueing networks to model the
job learning process and give stable algorithms based on BACKPRESSURE. [22, 20] consider online
matchings between jobs with unknown payoffs and servers where the goal is to maximize the total
payoffs subject to stability. As noted in [29, 34, 22], one key assumption of this line of work is
the perfect knowledge of server types and transition probability. Our result thus serves as a step to
consider both server uncertainties and job uncertainties, at least in a context without payoffs.

Concurrently to our work, [31] proposes a frame-based MaxWeight algorithm with sliding-window
UCB for scheduling in a general multi-queue multi-server system with non-stationary service rates.
With a suitable frame size (depending on the traffic slackness), they show stability of the algorithm
and obtain a queue length bound of Õ(1/ε3) in the stationary setting (Appendix A.6 in [12]).
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2 Model

We consider a sequential learning setting where a decision maker (DM) repeatedly schedules jobs to
a set of servers of unknown quality over discrete time periods t = 1, 2, . . .. For any T , we refer to
the initial T periods as the time horizon T . To ease exposition, we first describe the simpler setting
where there is only one job type (queue) and subsequently extend our approach to a general setting
with multiple queues that interact through a network structure.

Single-queue multi-server system. A single-queue multi-server system is specified by a tuple
(K, λ,µ). There is one queue of jobs and a set of servers K with |K| = K. The arrival rate of jobs is
λ, that is, in each period there is a probability λ that a new job arrives to the queue. The service rate
of a server k ∈ K, that is, the probability it successfully serves the job it is scheduled to work on, is
µk. Let Q(t) be the number of jobs at the start of period t. Initially there is no job and Q(1) = 0.

Figure 2 summarizes the events that occur in each period t. If there is no job in the queue, i.e.,
Q(t) = 0, then the DM selects no server; to ease notation, they select the null server J(t) =⊥.2
Otherwise, the DM selects a server J(t) ∈ K and requests service for the first job in the queue. The

Start of Period t Queue: Q(t) > 0 DM Selects Server J(t) Service Job from Queue

Job Leaves System
(Prob. µJ(t))

New Job Arrival (Prob. λ) Start of Period t+ 1

Yes

No
Successful

Unsuccessful

Figure 2: Flowchart for a single-queue multi-server system.

service request is successful with probability µJ(t) and the job then leaves the system; otherwise,
it remains in the queue. At the end of the period, a new job arrives with probability λ. We assume
that arrival and service events are independent. Let A(t) and {Sk(t)}k∈K be a set of independent
Bernoulli random variables such that E [A(t)] = λ and E [Sk(t)] = µk for k ∈ K; for the null server,
µ⊥ = S⊥(t) = 0 for all t. The queue length dynamics are thus given by

Q(t+ 1) = Q(t)− SJ(t)(t) +A(t).

A non-anticipatory policy π for the DM maps for every period t the historical observations until t, i.e.,
(A(τ), SJ(τ)(τ))τ<t, to a server J(t) ∈ K ∪ {⊥}. We define Q(t, π) as the queue length in period t
under policy π. The DM’s goal is to select a non-anticipatory policy π such that for any time horizon
T ≥ 1, the expected time-averaged queue length 1

T

∑
t≤T E [Q(t, π)] is as small as possible.

When service rates are known, the policy π⋆ selecting the server with the highest service rate µ⋆

in every period (unless the queue is empty) minimizes the expected time-averaged queue length
for any time horizon [24, 38]. If λ ≥ µ∗, even under π⋆, the expected time-averaged queue length
goes to infinity as the time horizon increases. We thus assume λ < µ⋆, in which case, the system is
stabilizable, i.e., the expected time-averaged queue length under π⋆ is bounded by a constant over
the entire time horizon. We next define the traffic slackness of this system:

Definition 1. A single-queue multi-server system has a traffic slackness ε ∈ (0, 1] if λ+ ε ≤ µ⋆.

A larger traffic slackness implies that a system is easier to stabilize. It is known that the policy π⋆

obtains an expected time-averaged queue length of the order of 1
ε [36].

Queueing network. A queueing network extends the above case by having multiple queues and
probabilistic job transitions after service completion; our model here resembles the one in [7].
A queueing network is defined by a tuple (N ,K,Λ,µ,A,Σ,B,D,P ) , where B = {Bn}n∈N ,
D = {Dk}k∈K and P = (pk,n)k∈K,n∈N∪{⊥} such that

∑
n∈N∪{⊥} pk,n = 1,∀k. In contrast to the

single-queue case, there is now a set of queues N with cardinality N and a virtual queue ⊥ to which
jobs transition once they leave the system. Each queue n ∈ N has a set of servers Bn, each of which

2Compared to common assumptions in the literature, e.g., [38, 11, 42], this makes for a more challenging
setting as algorithms cannot learn service rates by querying servers in periods when they have no jobs.

5



belongs to a single queue. As before, the service rate of server k is µk. The set Dk contains the
destination queues of server k (and can include the virtual queue ⊥).

In each period t, the DM selects a set of servers to schedule jobs to and, if a service request from
queue n to server k is successful, a job from queue n transitions to a queue n′ ∈ Dk with probability
pk,n′ (this implies pk,n′ = 0 if n′ ̸∈ Dk). The selected set of servers comes from a set of feasible
schedules Σ ⊆ {0, 1}K, which captures interference between servers. We require that for any queue,
the number of selected servers is no larger than the number of jobs in this queue.3 Formally, letting
σk = 1 if schedule σ ∈ Σ selects server k and denoting Q(t) = (Qn(t))n∈N as the queue length
vector at the beginning of period t, the set of feasible schedules in this period is

Σt = {σ ∈ Σ :
∑
k∈Bn

σk ≤ Qn(t),∀n ∈ N}

and the DM’s decision in period t is to select a schedule σ(t) ∈ Σt. Following [39], we assume that
any subset of a feasible schedule is still feasible, i.e., if σ ∈ Σ and σ′

k ≤ σk ∀k ∈ K, then σ′ ∈ Σ.

We now formalize the arrival and service dynamics in every period, which are captured by the
independent random variables {A(t), {Sk(t)}k∈K}t. The arrival vector A(t) = {An(t)}n∈N
consists of (possibly correlated) random variables An(t) taking value in A ⊆ {0, 1}N ; we denote
its distribution by Λ and let E [An(t)] = λn(Λ) with λ = (λn(Λ))n∈N . The service Sk(t) for each
server k ∈ K is a Bernoulli random variable indicating whether the selected service request was
successful.4 To formalize the job transition, let Lk(t) = (Lk,n(t))n∈N∪{⊥} be a random vector over
{0, 1}N∪{⊥} for server k independent of other randomness such that P{Lk,n(t) = 1} = pk,n and∑

n∈N∪{⊥} Lk,n(t) = 1. The queueing dynamic is given by

Qn(t+ 1) = Qn(t)−
∑
k∈Bn

σk(t)Sk(t) +An(t) +
∑
k′∈K

σk′(t)Sk′(t)Lk′,n(t). (1)

We assume that the DM has knowledge of which policies are allowed, i.e., they know Σ and B, but
has no prior knowledge of the rates λ,µ,P and the set D . In period t, the observed history is the set(
{An(τ)}n∈N , {Sk(τ)Lk,n(τ)}n∈N̄ ,k∈K : σk(τ)=1

)
τ<t

that includes transition information on top
of arrivals and services. Note that a job transition is only observed when the server is selected and the
service is successful. Similar to before, a non-anticipatory policy π maps an observed history to a
feasible schedule; we let Qn(t, π) be the length of queue n in period t under this policy.

Unlike the single-queue case, it is usually difficult to find the optimal policy for a queueing
network even with known system parameters. Fortunately, if the system is stabilizable, i.e.,
limt→∞

1
T

∑
t≤T E [∥Q(t)∥1] <∞ under some scheduling policy, then the arrival rate vector must

be within the capacity region of the servers [39]. Formally, let Φ = {ϕ ∈ [0, 1]Σ :
∑

σ∈Σ ϕσ = 1}
be the probability simplex over Σ. A distribution ϕ in Φ can be viewed as the frequency of a
policy using each schedule σ ∈ Σ, and the effective service rate queue n can get is given by
µnet
n (ϕ) =

∑
σ∈Σ ϕσ

(∑
k∈Bn

σkµk −
∑

k′∈K σk′µk′pk′,n

)
; this includes both job inflow and out-

flow. We denote the effective service rate vector for a schedule distribution ϕ by µnet(ϕ). Then, the
capacity region is S(µ,Σ,B,P ) = {µnet(ϕ) : ϕ ∈ Φ}. For a queueing network to be stabilizable,
we must have λ(Λ) ∈ S(µ,Σ,B,P ) [39]. As in the single-queue case, we further assume that the
system has a positive traffic slackness and let 1 denote a vector of 1s with suitable dimension.

Definition 2. A queueing network has traffic slackness ε ∈ (0, 1] if λ(Λ) + ε1 ∈ S(µ,Σ,B,P ).

We also study a special case of queueing networks, multi-queue multi-server systems, where jobs
immediately leave after a successful service, i.e., Dk = {⊥} for all k ∈ K; this extends the models
in [11, 42] mentioned above. Since the transition probability matrix P is trivial (pk,⊥ = 1,∀k), we
denote the capacity region of a multi-queue multi-server system by S(µ,Σ,B).

3Though this reflects the feature from the single-queue setting, that Q(t) = 0 =⇒ J(t) =⊥, it maintains
the flexibility to have a queue that has multiple jobs served in a single period.

4This formulation captures settings where arrivals are independent of the history, such as the example of each
queue having independent arrivals (e.g., the bipartite queueing model in [11]) and the example of feature-based
queues [35] where jobs have features; each type of feature has one queue; at most one job arrives among all
queues in each period. Our formulation cannot capture state-dependent arrivals such as queues with balking [18].
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3 Main results: the statistical complexity of learning in queueing

This section presents our main results on the statistical complexity of learning in queueing systems.
We first define the Cost of Learning in Queueing, or CLQ as a shorthand, a metric capturing this
complexity and provide a lower bound for the single-queue multi-server setting. Motivated by this,
we design an efficient algorithm for the single-queue multi-server setting with a matching CLQ and
then extend this to the multi-queue multi-server and queueing network systems.

3.1 Cost of Learning in Queueing

We first consider learning in the single-queue multi-server setting. Previous works on learning in
queueing systems focus on the queueing regret E [Q(T, π)−Q(T, π⋆)] in the asymptotic regime of
T →∞. The starting point of our work stems from the observation that an asymptotic metric, which
measures performance in late periods, cannot capture the complexity of learning as learning happens
in initial periods (recall the left of Figure 1). In addition, a guarantee on per-period queue length
cannot easily translate to the service experience (or wait time) of jobs.

Motivated by the above insufficiency of queueing regret, we define the Cost of Learning in Queueing
(or CLQ) as the maximum increase in expected time-averaged queue lengths under policy π compared
with the optimal policy. Specifically, we define the single-queue CLQ as:

CLQsingle(λ,µ, π) = max
T≥1

∑T
t=1 E [Q(t, π)−Q(t, π⋆)]

T
. (2)

As shown in Figure 1 (right), CLQ is a finite-time metric and explicitly takes into account how fast
learning occurs in the initial periods. In addition, a bound on the maximum increase in time-averaged
queue length translates approximately (via Little’s Law [27]) to a bound on the increase in average
job wait times.

Given that the traffic slackness measures the difficulty of stabilizing a system, we also consider the
worst-case cost of learning in queueing over all pairs of (λ,µ) with a fixed traffic slackness ε. In a
slight abuse of notation, we overload CLQsingle to also denote this worst-case value, i.e.,

CLQsingle(K, ε, π) = sup
λ∈[0,1),µ∈[0,1]K : λ+ε≤maxk µk

CLQsingle(λ,µ, π). (3)

Our goal is to design a policy π, without knowledge of the arrival rate, the service rates, and the
traffic slackness, that achieves low worst-case cost of learning in a single-queue multi-server system.

We can extend the definition of CLQ to the multi-queue multi-server and the queueing network
settings. Since the optimal policy is difficult to design, we instead define CLQ for a policy π by
comparing it with any non-anticipatory policy (which makes decisions only based on the history):

CLQmulti(Λ,µ,Σ,B, π) = max
non-anticipatory π′

max
T≥1

∑T
t=1

∑
n∈N E [Qn(t, π)−Qn(t, π

′)]

T
. (4)

CLQnet(Λ,µ,Σ,B,D,P , π) = max
non-anticipatory π′

max
T≥1

∑T
t=1

∑
n∈N E [Qn(t, π)−Qn(t, π

′)]

T
(5)

As in the single-queue setting, we can define the worst-case cost of learning for a fixed structure
A,Σ,B,D and a traffic slackness ε as the supremum across all arrival, service, and transition rates
with this traffic slackness. With the same slight abuse of notation as before, we denote these quantities
by CLQmulti(A,Σ,B, ε, π) and CLQnet(A,Σ,B,D, ε, π).

3.2 Lower bound on the cost of learning in queueing

Our first result establishes a lower bound on CLQsingle(K, ε, π). In particular, for any feasible policy
π, we show a lower bound of Ω(Kε ) for sufficiently large K. With known parameters, the optimal
time-averaged queue length is of the order of 1/ε. Hence, our result shows that the cost of learning
is non-negligible in queueing systems when there are many servers. For fixed K and ε, our lower
bound considers the cost of learning of the worst-case setting and is instance-independent.

Theorem 1. For K ≥ 214, ε ∈ (0, 0.25] and feasible policy π, we have CLQsingle(K, ε, π) ≥ K
214ε .
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Although our proof is based on the distribution-free lower bound Ω(
√
KT ) for classical multi-armed

bandits [5], this result does not apply directly to our setting. In particular, suppose the queue in our
system is never empty. Then the accumulated loss in service of a policy is exactly the regret in bandits
and the lower bound implies that any feasible policy serves at least Ω(

√
KT ) jobs fewer than the

optimal policy in the first T periods. However, due to the traffic slackness, the queue does get empty
under the optimal policy, and in periods when this occurs, the optimal policy also does not receive
service. As a result, the queue length of a learning policy could be lower than Θ(

√
KT ) despite the

loss of service compared with the optimal policy.

We next discuss the intuition (formal proof in Appendix C.1 of [12]). Fixing K and ε, suppose the
gap in service rates between the optimal server and others is 2ε. Then for any t in a time horizon
T = O(Kε2 ), the number of arrivals in the first t periods is around λt and the potential service of the
optimal server is around (λ + ε)t. By the multi-armed bandit lower bound, the total service of a
policy is at most around λt + εt −

√
Kt ≤ λt since t ≤ T = O(Kε2 ). Then the combined service

rate of servers chosen in the first T periods, i.e.,
∑

t≤T µJ(t), is strictly bounded from above by the
total arrival rate λt. A carefully constructed example shows that the number of unserved jobs is
around εt for every t ≤ T and thus the time-averaged queue length for the horizon T is of the order
of εT = O(Kε ).

Remark 1. In [24, Proposition 3], the authors established an instance-dependent lower bound on
E [Q(t, π)−Q⋆(t)]. The implied CLQ lower bound is weaker than ours (Ω̃(K), see Appendix C.2 in
[12]) and is constrained to α−consistent policy π (see definition 1 in [24]) whereas ours does not.

3.3 Upper bound on the cost of learning in queueing

Motivated by the lower bound, we propose efficient algorithms with a focus on heavy-traffic optimality,
i.e., ensuring CLQ = Õ(1/ε) as ε→ 0+. The rationale is that stabilizing the system with unknown
parameters is more difficult when the traffic slackness is lower as an efficient algorithm must strive to
learn parameters more accurately. We establish below that the classical upper confidence bound policy
(UCB, see Algorithm 1) achieves near-optimal CLQ = Õ(Kε ) for any K and ε in the single-queue
multi-server setting with no prior information of any system parameters.

Theorem 2. For any K ≥ 1, ε ∈ (0, 1], CLQsingle(K, ε, UCB) ≤ 323K+64K(lnK+2 ln 1/ε)
ε .

The proof of the theorem (Section 4) bridges Lyapunov and bandit analysis, makes an interesting
connection to satisficing regret, and is a main technical contribution of our work.

We next extend our approach to the queueing network setting. Fixing the system structure A,Σ,B,D,
we define MA = maxA∈A

∑
n∈N An and MΣ,B = maxσ∈Σ

∑
n∈N

∑
k∈Bn

σk, to be the maxi-
mum number of new job arrivals and the maximum number of selected servers per period. Further,
for queueing networks, we also define the quantity MD =

∑
k∈K |Dk|2, related to the number of

queues each server may see its jobs transition to. The following result shows that the worst-case cost
of learning of our algorithm BACKPRESSURE-UCB (BP-UCB as a short-hand, [12, Algorithm 3])
has optimal dependence on 1

ε . The proof of this Theorem is provided in [12, Section 6].

Theorem 3. For any A,Σ,B,D and traffic slackness ε ∈ (0, 1], we have

CLQnet(A,Σ,B,D, ε, BP-UCB) ≤
√
N

(
32MA + 212MDM2

Σ,B (1 + ln(MAMDMΣ,B/ε))
)

ε
.

Our proof builds on the special case of multi-queue multi-server systems, for which we provide
Algorithm MAXWEIGHT-UCB with a corresponding performance guarantee (see [12, Section 5]).

4 Proof for the single-queue multi-server setting (Theorem 2)

In this section, we bound the CLQ of UCB for the single-queue multi-server setting (Theorem 2). In
each period t, when the queue is non-empty, UCB selects a server with the highest upper confidence

bound estimation µ̄k(t) = min
(
1, µ̂k(t) +

√
2 ln(t)
Ck(t)

)
where µ̂k(t) is the sample mean of services

and Ck(t) is the number of times server k is selected in the first t− 1 periods.
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Algorithm 1: UCB for a single-queue multi-server system
Sample mean µ̂k(1)← 0, number of samples Ck(1)← 0 for k ∈ K ∪ {⊥}, queue Q(1)← 0
for t = 1 . . . do

µ̄k(t) = min
(
1, µ̂k(t) +

√
2 ln(t)
Ck(t)

)
,∀k ∈ K

if Q(t) > 0 then J(t)← argmaxk µ̄k(t); else J(t)←⊥
/* Update queue length & estimates based on SJ(t)(t), A(t), and J(t) */

1 Q(t+ 1)← Q(t)− SJ(t)(t) +A(t)

2 CJ(t)(t+ 1)← CJ(t)(t) + 1, µ̂J(t)(t+ 1)← CJ(t)(t)µ̂J(t)(t)+SJ(t)(t)

CJ(t)(t+1)

3 for k ̸= J(t) set Ck(t+ 1)← Ck(t), µ̂k(t+ 1)← µ̂k(t)

We establish a framework to upper bound CLQsingle for any policy by considering separately the
initial learning stage and the later regenerate stage. The two stages are separated by a parameter T1

that appears in our analysis: intuitively, during the learning stage (t < T1), the loss in total service of
a policy compared with the optimal server’s outweighs the slackness ε of the system (Definition 1),
i.e.,

∑t
τ=1 µ

⋆ − µJ(τ) > tε and thus the queue length grows linearly with respect to the left-hand
side. After the learning stage (t > T1), when

∑t
τ=1 µ

⋆ − µJ(τ) < tε, the queue regenerates to a
constant length independent of t. To prove the Õ(Kε ) bound on CLQsingle, we couple the queue with
an “auxiliary” queue where the DM always chooses a nearly optimal server in the learning stage.
Then we utilize a Lyapunov analysis to bound the queue length during the regenerate stage.

The framework establishes a connection between CLQsingle(λ,µ, π) and the satisficing regret defined
as follows. For any horizon T , the satisficing regret SaRsingle(π, T ) is the total service rate gap
between the optimal server and the server selected by π except for the periods where the gap is less
than ε

2 or the queue length is zero. That is, the selected server is satisficing as long as its service rate
is nearly optimal or the queue is empty. To formally define it, we denote max(x, 0) by x+ and define
the satisficing regret of a policy π over the first T periods by

SaRsingle(π, T ) =

T∑
t=1

(
µ⋆ − µJ(t) −

ε

2

)+

1 (Q(t) ≥ 1) (6)

We use the satisficing regret notation because our motivation is similar to that in multi-armed bandits
[32], initially considered for an infinite horizon and a Bayesian setting. In multi-armed bandits,
optimal bounds on regret

∑T
t=1(µ

⋆−µJ(t)) are either instance-dependentO
(∑

k : µk<µ⋆

(
lnT

µ⋆−µk

))
[4] or instance-independent O(

√
KT ) [5]. However, both are futile to establish a Õ(Kε ) bound for

CLQsingle(K, ε): The first bound depends on the minimum gap (which can be infinitesimal), whereas
the second is insufficient as we explain in the discussion after Lemma 4.2.

We circumvent these obstacles by connecting the time-averaged queue length of the system with
the satisficing regret of the policy via Lemma 4.1 (for the learning stage) and Lemma 4.2 (for the
regenerate stage). Lemma 4.1 explicitly bounds the expected queue length through the expected
satisficing regret; this is useful during the learning stage but does not give a strong bound for the
regenerate stage. Lemma 4.2 gives a bound that depends on SaRsingle(π,T )2

T , and is particularly useful
during the latter regenerate stage. We then show that the satisficing regret of UCB is O(K lnT

ε )
(Lemma 4.3). Combining these results, we establish a tight bound for the cost of learning of UCB.

Formally, Lemma 4.1 shows that the expected queue length under π in period t is at most that under
a nearly optimal policy plus the expected satisficing regret up to that time.

Lemma 4.1. For any policy π and horizon T , we have
∑T

t=1 E[Q(t)]

T ≤ 3
ε + E

[
SaRsingle(π, T )

]
.

Lemma 4.1 is established by coupling the queue with an auxiliary queue that always selects a nearly
optimal server. However, it cannot provide a useful bound on the cost of learning. For large T , it is
known that E

[
SaRsingle(π, T )

]
must grow with a rate of at least O( log T

ε ) [25]. Hence, Lemma 4.1
only meaningfully bounds the queue length for small T (learning stage). For large T (regenerate
stage), we instead have the following bound (Lemma 4.2).
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Lemma 4.2. For any policy π and horizon T , we have
∑T

t=1 E[Q(t)]

T ≤ 4
ε + 8

ε2 ·
E[SaRsingle(π,T )2]

T .

This lemma shows that the impact of learning, reflected by E
[
SaRsingle(π, T )2

]
, decays at a rate

of 1
T . Therefore, as long as SaRsingle(π, T )2 is of a smaller order than T , the impact of learning

eventually disappears. This also explains why the instance-independent O(
√
KT ) regret bound for

multi-armed bandits is insufficient for our analysis: the second moment of the regret scales linearly
with the horizon and does not allow us to show a decreasing impact of learning on queue lengths.

Lemma 4.2 suffices to show stability (limT→∞

∑T
t=1 E[Q(t)]

T <∞), but gives a suboptimal bound for
small T . Specifically, when SaRsingle(π, T )2 ⪆ T , this bound is of the order of Ω( 1

ε2 ).
5 We thus

need both Lemma 4.1 and Lemma 4.2 to establish a tight bound on the cost of learning in queues.

The following result bounds the first and second moments of the satisficing regret of UCB.
Lemma 4.3. For any horizon T , we have

(i)E
[
SaRsingle(UCB, T )

]
≤ 16K(lnT + 2)

ε
, (ii)E

[
SaRsingle(UCB, T )2

]
≤ 29K2(lnT + 2)2

ε2
.

We next offer a proof sketch of Theorem 2. The theorem and lemmas are proven in [12, Section 4].

Proof sketch of Theorem 2. Fix any pair of λ,µ with maxk∈K µk = λ+ ε. Let T1 =
⌊(

212K2
/ε4

)2⌋
.

We bound CLQsingle(λ,µ, UCB) by considering T ≤ T1 (learning stage) and T ≥ T1 (regenerate
stage) separately. For T ≤ T1, we have

1

T

∑
t≤T

E [Q(t)] ≤ 3

ε
+ E

[
SaRsingle(UCB, T )

]
≤ 323K + 64K(lnK + 2 ln 1/ε)

ε
,

where we use Lemmas 4.1 and 4.3 (i). For T > T1, we have

1

T

∑
t≤T

E [Q(t)] ≤ 4

ε
+

8

ε2

E
[
SaRsingle(UCB, T )2

]
T

≤ 323K + 64K(lnK + 2 ln 1/ε)

ε
, (7)

where we use Lemmas 4.2 and 4.3 (ii).

Remark 2. Although the CLQ metric is focused on the entire horizon, our analysis extends to
bounding the maximum expected time-averaged queue lengths in the later horizon, which is formalized

as maxT≥T1

∑
t≤T E[Q(t)]

T for any T1. In particular, for T1 ≥
(

212K2

ε4

)2

, Lemma 4.2 shows that

maxT≥T1

∑
t≤T E[Q(t)]

T ≤ 5
ε ; UCB thus enjoys the optimal asymptotic queue length scaling of O( 1ε ).

5 Conclusions

Motivated by the observation that queueing regret does not capture the complexity of learning
which tends to occur in the initial stages, we propose an alternative metric (CLQ) to encapsulate
the statistical complexity of learning in queueing systems. For a single-queue multi-server system
with K servers and a traffic slackness ε, we derive a lower bound Ω(Kε ) on CLQ, thus establishing
that learning incurs a non-negligible increase in queue lengths. We then show that the classical
UCB algorithm has a matching upper bound of Õ(Kε ). Finally, we extend our result to multi-queue
multi-sever systems and general queueing networks by providing algorithms, MAXWEIGHT-UCB
and BACKPRESSURE-UCB, whose CLQ has a near optimal Õ(1/ε) dependence on traffic slackness.

Having introduced a metric that captures the complexity of learning in queueing systems, our work
can serve as a starting point for interesting extensions that can help shed further light on the area.
In particular, future research may focus on beyond worst case guarantees for CLQ, non-stationary
settings, improved bounds using contextual information, etc.

5This is suboptimal as long as in the second term of Lemma 4.2 we have an exponent greater than 1 for 1/ε.
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