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Abstract

Timely outcome prediction is essential in healthcare to enable early detection and
intervention of adverse events. However, in longitudinal follow-ups to patients’
health status, cost-efficient acquisition of patient covariates is usually necessary due
to the significant expense involved in screening and lab tests. To balance the timely
and accurate outcome predictions with acquisition costs, an effective active sensing
strategy is crucial. In this paper, we propose a novel risk-averse active sensing
approach RAS that addresses the composite decision problem of when to conduct
the acquisition and which measurements to make. Our approach decomposes the
policy into two sub-policies: acquisition scheduler and feature selector, respectively.
Moreover, we introduce a novel risk-aversion training strategy to focus on the
underrepresented subgroup of high-risk patients for whom timely and accurate
prediction of disease progression is of greater value. Our method outperforms
baseline active sensing approaches in experiments with both synthetic and real-
world datasets, and we illustrate the significance of our policy decomposition and
the necessity of a risk-averse sensing policy through case studies.

1 Introduction

Timely decision-making through accumulated observation history has attracted significant attention
in the machine learning community, with broad impact and applications in healthcare [8]. Consider
a typical decision-making scenario in which an agent employs a sensing policy to actively collect
diagnosis-related information from an underlying feature trajectory. In the presence of cost pressure,
the goal of the agent is to achieve timely and accurate predictions of a time-varying outcome of interest
based on the sensing history, i.e., feature observations accumulated over time, while maintaining a
reasonable expense of feature acquisition. At each decision step, we refer to the problem of deciding
when to make new acquisitions and which features to measure as active sensing [2, 24]. The optimal
sensing policy can be achieved by negotiating the subjective trade-off between outcome prediction
(accuracy and timeliness) and acquisition cost over time.

A special class of the active sensing problem has been extensively explored in the optimal stopping
literature [2, 6, 15]. In optimal stopping, the agent focuses on the timely diagnosis of a terminal
status, where observation ceases immediately after a confident diagnosis can be made [1, 5]. Thereby,
the acquisition cost in optimal stopping is typically considered as the time span of the information
collection process. Recently, Jarrett and van der Schaar [9] introduced a novel sensing framework to
allow for the consideration of measurement cost of individual feature variables in optimal stopping,
enabling better scheduling of the acquisition sequences. However, their approach still focuses on
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a static terminal status and is unsuitable for general purpose active sensing where the outcome of
interest varies over time.

(a) Active sensing process
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Figure 1: Overview of active sensing strategies. Active sensing in the dynamical setting (a) involves two
distinct decisions on: what features to measure; and when to perform next acquisition. The trade-off between
diagnosis accuracy and acquisition cost usually yields a (b) long-tailed sensing deficiency distribution. The
sensing deficiency Qπ(X) accumulates the weighted sum of the diagnosis error and measurement cost over
time. Higher sensing deficiency values indicate failures in the sensing process.

In this paper, we focus on more general healthcare scenarios where timely diagnosis and intervention
need to be achieved through active sensing under certain budget. The budget serves as the source
of cost pressure and prioritize safe and low-cost measurements in the sensing process. For instance,
the management of Alzheimer’s disease (AD) requires continuous monitoring and staging of disease
progression, which is crucial for early detection and intervention of high-risk patients [8]. However,
certain measurements involved in diagnosing AD are notably expensive. A typical example is positron
emission tomography (PET) scans. PET scans provide precise information about AD-associated
proteins in the brain and are widely used for monitoring AD progression [3]. Nevertheless, the high
accuracy of PET scans compared to cognitive tests is accompanied by greater financial costs as well
as potentially harmful exposure to radiation [7]. A desirable active sensing policy should adaptively
balance measurement costs and diagnostic accuracy at different disease stages to provide timely
diagnosis and intervention under cost pressure. Such property is not only useful in healthcare but also
other applications such as delay-sensitive wireless communication [14].

Another crucial but relatively unexplored aspect of active sensing is the consideration of tail risk.
To illustrate this concept, let’s examine the prediction of AD progression. In active sensing, the
trade-off between diagnosis error and acquisition cost is usually achieved through the minimization
of their weighted sum [9, 23, 24]. As depicted in Figure 1(b), the weighted objective (Qπ(X))
typically exhibits a long-tailed distribution with a notable concentration of high-value patients at the
tail side. We consider these patients to be of higher value in the sensing task for two main reasons.
Firstly, accurate diagnosis of many high-risk patients heavily relies on biomarkers obtained through
expensive PET scans such as fluorodeoxyglucose (FDG) PET and florbetapir (AV45) PET [7, 10]. A
vanilla sensing policy optimized for the entire population would easily fail to arrange enough PET
scans for these high-risk patients due to the high costs, leading to degraded sensing performance (the
long tail as shown in Figure 1(b)). In the meantime, the majority of patients tend to remain in stable
conditions. Their disease stages can usually be diagnosed even with very sparse acquisitions over
time. A biased sensing policy may overemphasize the importance of high-risk patients and order
frequent PET scans for all patients to avoid false negatives in its diagnosis, which contributes to the
long-tailed distribution from another perspective. To avoid such situations, an active sensing strategy
must be risk-averse such that it can effectively cater to the needs of both the majority of stable patients
and the high-risk subgroups requiring frequent follow-ups, ensuring timely and accurate detection of
disease progression under cost pressure.

Contributions. In this paper, we propose a novel continuous-time active sensing approach to address
the aforementioned desiderata. Our sensing approach adaptively balances measurement costs and
diagnostic accuracy by factorizing sensing policy into two sub-policies: acquisition scheduler which
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determines when to conduct feature acquisitions (i.e., the time interval between adjacent follow-ups),
and feature selector that decides which observations to make. Furthermore, our sensing approach
adopts the risk-averse strategy and focuses on the trade-offs happen at the long tail, where accurate
diagnosis becomes particularly crucial. By dynamically identifying patient trajectories located at the
tail side, we optimize our sensing strategy using the conditional value-at-risk (CVaR) loss to provide
guarantees on timely and accurate prediction for high-risk patients while avoiding biased decisions
for patients with stable conditions.

We validate our approach through experiments on synthetic and real-world datasets, where the sensing
performance on high-risk patients is significantly impacted by their relatively small cohort size. With
the consideration of acquisition costs, our method is able to adaptively identify the patient subgroups
at the long tail of sensing deficiency distribution and achieves improved diagnostic performance
compared to the state-of-the-art active sensing benchmarks.

2 Active Sensing in Practice

In this section, with a focus on healthcare applications, we introduce a new active sensing approach,
which we refer to as Risk-averse Active Sensing (RAS), to solve the decision-making problem of
when to conduct feature acquisitions and which features to observe considering prediction accuracy,
timeliness, and cost pressure. We will start by providing a general framework for active sensing
problems.

2.1 Preliminaries: Active Sensing

Notation. Let x(t) ∈ Rd be the characteristic of a patient at time t ∈ [0, T ] which is a collection of
d (costly) observable time-varying covariates about an underlying disease progression of our interest.1
Xt = {x(τ)|τ ∈ [0, t]} represents a temporal trajectory of observable features until time t ≤ T . For
ease of description, we will occasionally abuse the notation and use X to denote the entire patient
trajectory XT . Let yt ∈ Y be the outcome of our interest which represents the underlying health
status of a patient (e.g., diagnosis, adverse outcome, etc.) at time t. We assume the joint distribution
p(Xt, yt) from which the trajectory Xt and the outcome yt are drawn. Hereafter, we focus our
description on K-class classification tasks, i.e., Y = {1, 2, . . . ,K}.

We denote an active sensing policy as π. In the sequential outcome prediction task, for each patient
X , policy π arranges a set of follow-up times {t1, t2, . . . , tI} ⊂ [0, T ] and determines the subsets
of features mi to be measured at each time step ti, where mi is a binary vector. The collected
observations of patient trajectory X until time t form a sensing history Xπ

t . It is worth noting that
Xπ

t is piece-wise constant over time as it is only updated at discrete follow-ups. At each step, the
sensing policy π shall generate a diagnosis of the patient by approximating the conditional p(yt|Xπ

t ).

Dataset. For the active sensing task, we assume access to an observational dataset D containing
electrical health records (EHRs) of N patients, i.e., D = {Xn = (ti,x(ti), yti)

L
i=1}Nn=1. The record

of each patient consists observations collected from L follow-ups. It is worth noting that the record
Xn ∈ D is equivalent to a sensing history.

Following the convention in active sensing literature [9, 24], we consider the cost of measurement on
each time-varying observable feature to be time-invariant and thus can be represented as a cost vector
c, where the j-th element, denoted as (c)j , is the cost for measuring the j-th time-varying feature in
vector x ∈ X . The central goal of active sensing is then to balance between the outcome estimation
accuracy based on sensing history Xπ

t and the accumulated acquisition costs over time.

Challenges. In practice, there are two major challenges that confound the active sensing problem:

1. Adaptive follow-up intervals. Most existing active sensing policies assume a constant
follow-up interval. However, in real-world healthcare settings, the desirable acquisition
intervals usually change along with disease progression. Sensing policy with constant
decision intervals creates redundant follow-ups and may induce extra costs for feature
acquisition.

1In general, observation of a patient’s underlying disease progression ends at some time T > 0 due to death
or lost to follow-up.
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2. Failures at the long tail. Vanilla active sensing policies are optimized for the entire
population. For diseases like AD, the imbalanced proportion of high-risk and stable patients
may lead to over-conservative sensing policies that make no observations. Similarly, sensing
policies targeted on high-risk patients may generate biased decision with higher acquisition
costs for patients in stable conditions. Both situations lead to failures for samples at the long
tail of sensing deficiency distribution.

In the following, we first introduce a generalized sensing policy π with the decomposition of decisions
on follow-up interval and feature selection. Then, we formulate the active sensing task into a risk-
averse optimization problem, the solution to which addresses the second challenge.

2.2 Decomposing the Active Sensing Policy

Vast research in active sensing has assumed a constant follow-up interval between two consecutive
patient visits and has primarily focused on the sequential feature selection problem, determining
which feature variables to measure [6, 24]. However, considering the dynamic and complex nature
of disease progression, sensing policies with dynamic follow-up intervals are broadly desired in
real-world applications. In this paper, we propose a generalized formulation of the sensing policy,
i.e., π = (πm, π∆), where the acquisition scheduler π∆ determines the time for next follow-up, the
feature selector πm determines which features to measure during the subsequent visit.

Consider the i-th follow-up of patient X at time ti. The next follow-up time ti+1 is firstly determined
by acquisition scheduler π∆ as ti+1 = ti + ∆i,∆i ∼ π∆(X

π
ti). Then, at time ti+1, the feature

selector πm determines which subset of patient covariates to measure using a binary vector mi+1 ∼
πm(Xπ

ti),mi+1 ∈ {0, 1}d. The new observation is calculated as mi+1 ⊙ x(ti+1), where the j-th
element

(mi+1 ⊙ x(ti+1))j =

{
(x(ti+1))j if (mi+1)j = 1,

∗ otherwise.

2.3 Towards Risk-Averse Sensing Policy

Trade-off between accuracy and costs. Consider the i-th follow-up at time ti. The feature selection
is determined by mi ∼ πm(X̃π

ti−1
). The acquisition cost is evaluated as rm(mi) = c⊤mi, where c

is the cost vector. The updated sensing historyXπ
ti = Xπ

ti−1
∪{mi⊙x(ti)} is then used to determine

the acquisition interval ti+1 − ti = ∆i ∼ π∆(X
π
ti). Assume a diagnosis error function ry(Xπ

ti ,∆i)
that evaluates the mismatch between p(yt|Xt) and p(yt|Xπ

t ) during the interval ∆i. The trade-off
between diagnosis accuracy and measurement costs of the i-th interval is defined as the following
reward signal

r(Xπ
ti ,mi,∆i) = rm(mi) + λry(X

π
ti ,∆i) (1)

where λ > 0 is a coefficient chosen to balance the two terms.

Sensing deficiency. We define the sensing deficiency of policy π along a patient trajectory X as the
expected cumulative reward as shown in (2).

Qπ(X) = Et1,t2,...,tI ,m1,m2,...,mI∼π

[
I∑

i=1

γi−1r(Xπ
ti ,mi,∆i)

]
, (2)

where discount factor γ ∈ (0, 1] is used to tackle long trajectories. In this paper, we take γ = 0.99.

Trajectories at the long tail. As mentioned earlier, one major challenge for active sensing in
practice is the potential sensing failures for patients at the tail of sensing deficiency distribution.
Since the distribution tail of Qπ(X) changes along with the updates of policy π, in this paper,
we propose to optimize the sensing policy over a dynamic subset of patient trajectories located
at the long tail. These tail trajectories can be identified through the upper α quantile ρα, where
EX [I(Qπ(X) ≥ ρα)] = α. Assume the marginal trajectory distribution p(X), we denote with
Sπ
α = {X|X ∼ p(X), Qπ(X) ≥ ρα} the set of tail trajectories under policy π.

Conditioned on the quantile factor α ∈ [0, 1], the sensing deficiency of trajectories in Sπ
α is considered

as the value at risk that needs to be improved. Based on the evaluation of CVaR in sensing deficiency
distribution, we formulate our active sensing task as a risk-averse optimization problem.

minimize
π

CVaRα ≜ EX∈Sπ
α
[Qπ(X)]. (3)
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Solutions to problem (3) are considered risk-averse since they reduce the risk of sensing failures in the
worst scenarios (Sπ

α). Our proposed risk-averse sensing problem has two major distinctions from the
class of robust adversarial reinforcement learning (RL) problems (e.g., [18]): i) we directly optimize
the value at risk CVaRα; and ii) the adversarial agent is replaced by the dynamic tail trajectory subset
Sπ
α . As such, our proposed problem requires no online interactions with the data generation process

and thus can avoid the sensing policy π from being biased toward unrealistic or out-of-distribution
trajectories generated by simulators.

3 Method: Risk-Averse Active Sensing

Solution to the risk-averse active sensing problem in (3) given observational data is faced with
three unique challenges. First, we only have access to observational data that consist of discrete
measurements of (continuous) patient trajectories. Second, we need access to a baseline conditional
outcome estimator, fP (yt|Xt), to estimate the diagnosis error ry in (1). Third, the solution of (3)
heavily relies on the appropriate construction of the subset, Sπ

α , which, by definition, depends on the
sensing policy itself.

Handling discrete and sparse observations. Dataset D only contains discrete observations of
patient trajectories. However, the adaptive acquisition intervals generated by sensing policy π may
require measurements of the underlying patient trajectories at time points not included in D. To solve
this problem, we adopt a linear interpolator I as a proxy to obtain estimations of these values. In the
meantime, policy π by nature generates sparse sensing history with partial observations of patient
trajectories. To properly encode the missingness and adaptive observation intervals in sensing history
Xπ

t , we include the neural CDE as the base encoders in our approach. As enlightened in [11], CDE is
a continuous-time generalization to recurrent neural network (RNN) and offers a natural and elegant
approach to encode the information in sparse and irregular measurements of a patient trajectory.

Specifically, given a discrete sensing history Xπ
t , we first convert it into a continuous trajectory

u(τ) = I(τ,Xπ
t ) via the interpolator I. Then, CDE encodes the temporal changes in Xπ

t as the
dynamics of a latent variable z(t) ∈ Rl via

z(t) = z(t0) +

∫ t

t0

fϕ(z(τ))du(τ), for τ ∈ [t0, t], (4)

where t0 ≥ 0, fϕ : Rl 7→ Rl×d is a map with learnable parameters ϕ, initial state z0 = z(t = 0)
could be manually specified or learned from data.

Timely and accurate predictions. In this paper, we build CDE-based outcome estimator fP (t,X)
to approximate the density p(yt|Xt), where X is a sensing history of trajectory X . Details about
fP can be found in the Appendix. Given a patient with record X ∈ D, to provide timely and
accurate predictions about the underlying disease progression, our sensing policy aims to minimize
the mismatch between baseline estimate fP (τ,X) and sensing history-based prediction fP (τ,Xπ

τ ).
For this purpose, in time horizon τ ∈ [ti, ti+1), the diagnosis error function for the i-th follow-ups is
computed as the cumulative mismatch:

ry(X
π
ti ,∆i) ≜

∫ t−i+1

ti

DJS(fP (τ,X
π
ti)∥fP (τ,X))dτ, (5)

where DJS is the JS divergence, ti+1 = ti +∆i.

The distinction from previous works that utilize a single-step mismatch – such as at a pre-specified
time interval [24] – is that (5) provides a precise proxy to evaluate how timely and accurate the
predictions are by gauging the impact with respect to the acquisition interval ∆i, which is a desired
property. Adverse clinical outcomes of the underlying disease progression are likely to occur when
the outcome probability, p(yt|Xt), hits a certain threshold, often accompanied by a sudden rise or fall.
Making too early or too late detection of such a rise/fall based on the sensing history, i.e., p(yt|Xπ

t ),
will drastically increase the cumulative mismatch in (5).

Penalty on invalid visits. We define the follow-up at time ti+1 as an invalid visit if no patient
covariates are measured, i.e., mi = 0. Allowing invalid visits potentially yields degenerated active
sensing policy and makes the policy decomposition meaningless. To prevent such situations, we
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Figure 2: The model structure of RAS.

extend the acquisition cost function rm as rm(m) = c⊤m · I(m ̸= 0) + ν · I(m = 0), where
ν ≥ c⊤1 penalizes the invalid visits scheduled by the sensing policy π.

Network structure. Similar to the predictor fP , the neural CDE and interpolator I are also
employed in our proposed policy network π to construct an embedding of the discrete sensing history
Xπ

t . As illustrated in Figure 2, our sensing policy π (parameterized by θ) is constructed with the
following three networks:

• The history encoder, fH , is a neural CDE encoder that maps sensing history Xπ
t into a summary

vector h(τ) = fH(τ, I(Xπ
t )).

• The feature selector, fM , is a sub-policy network that governs the decision about which subset
of patient features to be measured. In a follow-up, fM takes a summary vector h(τ) as input
and outputs a vector p(τ) = fM (h(τ)) that governs the element-wise Bernoulli distribution to
generate a binary feature selection vector m, i.e., mτ ′ ∼ Bern(p(τ)) for next follow-up at τ ′.

• The acquisition scheduler, f∆, is a sub-policy network that determines the time for next follow-up.
Particularly, after each follow-up, it takes the summary vector h(τ) as input and generates two
scalar parameters α, β = f∆(h(τ)) of a Beta distribution, i.e., ξ ∼ Beta(α, β). The realizations
of the Beta distribution are then used to generate the time interval ∆ ∈ [∆min,∆max] via
∆ = ∆min+(∆max−∆min) ·ξ, where ∆min and ∆max are the minimum and maximum allowed
intervals between two follow-ups, respectively. We set α, β ≥ 1 to ensure that the time interval
follows a unimodal distribution.

Policy gradient. Since the diagnostic error function in (5) is non-differentiable, to back-propagate
gradients from the objective CVaRα = EX∈Sπ

α
[Qπ(X)] through the active sensing process, we

apply the advantage-based approach [21, 22] to estimate the policy gradient of π as the following:

∇θCVaRα = Eπ

 1

|Sπ
α|

|Sπ
α|∑

s=1

I∑
i=1

(
R(Xπ

s,ti)−RC(X
π
s,ti)

)
· ∇θ log π(ms,i,∆s,i)

 , (6)

where θ is the collection of learnable parameters of policy π. Given the s-th patient in Sπ
α , the

cumulative reward R(Xπ
s,ti) =

∑I
ι=i γ

ι−ir(Xπ
s,tι ,mι,∆ι) is an empirical evaluation of the sensing

deficiency in (2) for the corresponding sub-trajectory in horizon [ti, T ]. Following the actor-critic
framework, we utilize a baseline sensing deficiency estimation RC(X

π
ti) in (6) to reduce the variance

of policy gradient estimation [21].

The baseline estimation RC(X
π
t ) is obtained from a critic network fC (parameterized by ψ). Taking

the embedding h(t) = fH(t, I(Xπ
t )) from the history encoder fH as input. The critic fC is trained
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to minimize the following mean squared error (MSE) loss.

LC = Eπ

 1

|Sπ
α|

|Sπ
α|∑

s=1

I∑
i=0

(R(Xπ
n,ti)−RC(X

π
n,ti))

2

 . (7)

Algorithm 1 Risk-averse active sensing
Input: dataset D, predictor fP , quantile α, learning rates lrπ , lrc.
Initialize: learnable parameters θ (of π), ψ (of fC ).
for k = 1 to K do

if k − 1 mod M = 0 then
ρα ← quantile(Qπ,D, α)
Sπα ← {Xn|Qπ(Xn) ≥ ρα, Xn ∈ D}

end if
θ ← θ − lrπ∇θCVaRα(Sπα)
ψ ← ψ − lrc∇ψLC(Sπα)

end for
Output: risk-averse policy π with parameters θ

Given the baseline predictor fP , the sensing deficiency Qπ(X) of policy π is optimized over the
subset Sπ

α of tail trajectories as illustrated in Algorithm 1. Specifically, parameters θ of policy π are
updated based on the policy gradient ∇θCVaRα in (6), and the critic network fC is trained with
loss function LC to provide appropriate baselines for the sensing policy π. The collection of patient
trajectories in Sπ

α is iteratively updated every M training epochs such that it can stay informative
about the sensing deficiency distribution. Note that the learning rates of critic fC and policy π are
intentionally set to be different to facilitate convergence.

4 Related Work

We first provide in Table 1 an overview of the distinction between our proposed approach and other
related works in active sensing literature. A special class of active sensing task is formulated under
the optimal stopping framework. With a set of explicitly defined terminal states, optimal stopping
approaches focuses on achieving confident diagnosis of these states while minimizing the time span
of the sensing process [1, 6, 15]. The consideration of information acquisition cost was introduced
recently into optimal stopping in [9]. Similarly, the trade-off between diagnosis accuracy and costly
measurement has been studied in the more general sequential prediction tasks [23, 24]. In this
paper, we propose a novel sensing policy decomposition and extend the active sensing analysis into
continuous-time settings with adaptive follow-up intervals and highly sparse sensing histories.

Table 1: Comparison of active sensing approaches. Typical active sensing approaches are compared
based on the problem formulation, sensing history representation, the modelling of acquisition
intervals as well as the following key concerns highlighted in this paper: (1) supports continuous-time
patient trajectory. (2) considers cost pressure on features acquisition. (3) achieves decomposition of
feature selection and acquisition scheduling. (4) provides worst-case performance guarantees with a
risk-averse policy.

Method Problem Class History Embedding Acquisition Interval (1) (2) (3) (4)

Ahmad and Yu [1] Optimal Stopping Bayesian Update Fixed (∆ = ∆̃) ✗ ✗ ✗ ✗

Jarrett and van der Schaar [9] Optimal Stopping Bayesian Update Fixed (∆ = ∆̃) ✗ ✓ ✗ ✗

Yoon et al. [23, 24] Sequential Prediction RNN Fixed (∆ = ∆̃) ✗ ✓ ✗ ✗
RAS (Ours) Sequential Prediction Neural CDE Adaptive (∆ ∼ π∆) ✓ ✓ ✓ ✓

Temporal feature selection. As pointed out by Yoon et al. [24], active sensing can be considered
as the temporal generalization of feature selection tasks [13, 19]. In each decision step, the sensing
policy is expected to select a set of important feature variables to make the prediction. The resulting
sensing history marks critical time points and key feature variables for accurate outcome estimation.
However, existing active sensing literature primarily focuses on the feature selection perspective and
usually assumes a fixed follow-up interval for every patient trajectory [1, 24]. A fixed acquisition
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interval can lead to delayed diagnosis or extra costs due to redundant feature measurements. As
mentioned earlier, a desirable sensing policy shall achieve flexible follow-up intervals for each patient
such that the shifts in underlying disease stages can be properly addressed.

Risk aversion. Conventional active sensing strategies typically consider the diagnosis accuracy
to be equally important for all trajectories in a dataset. However, in many healthcare applications,
there are needs to prioritize smaller subgroup of high-risk patients for whom timely detection of
adverse outcomes is particularly valuable. As a central component of our proposed method, the
concept of CVaR [20] enables the selective optimization for patient trajectories in the long tail of
sensing deficiency distribution. Optimizing sensing policies over the corresponding tail set Sπ

α yields
a risk-averse active sensing strategy π∗ that achieves guaranteed diagnosis accuracy for high-risk
patients. While risk-aware decision-making has been extensively explored in the field of RL [4, 25],
to the best of our knowledge, our proposed method is the first risk-averse active sensing algorithm for
adaptive feature acquisition in continuous-time settings.

5 Experiment

In the experiments, we evaluate the effectiveness of our proposed risk-averse active sensing approach
RAS on both synthetic and real-world healthcare datasets.

Synthetic dataset. We construct a synthetic dataset DS of N = 2000 samples. Every sample
X contains L = 20 discrete observations in t ∈ [0, 2]. Each observation yields a feature vector
x = [x1, x2, x3, x4]

⊤. We set x1(t) = min(1, (ew(t−τ) −w(t− τ)− 1))I(t ≥ τ), where w follows
a Gaussian mixture distribution of 0.8 ·N (0.3, 0.12)+0.2 ·N (0.8, 0.12), τ ∼ Exp(1.0). As a proxy
of x1, we set x2(t) = w(t − τ)I(t ≥ τ). Variables x3(t) = sin(3t + ϱ) and x4(t) = cos(3t + ϱ),
where ϱ ∼ N (0, 12). The outcome y ∈ {0, 1} follows a Bernoulli distribution yt ∼ Bern(p),
and the likelihood for yt = 1 is calculated as p = e−3|1−x1|2 . The cost vector is set to be c =
[1.0, 0.1, 1.0, 1.0]⊤, which allows x2 to be measured as a cheap proxy of x1 for outcome prediction.

ADNI dataset. The Alzheimer’s Disease Neuroimaging Initiative2 (ADNI) dataset includes
records on AD progression of N = 1002 patients with regular follow-ups every six months.
We consider the active sensing task to predict patient outcomes in the initial L = 12 follow-
ups with four biomarkers from PET (FDG and AV45) and MRI (Hippocampus and Entorhi-
nal) imaging, respectively. Based on the disease staging guideline [16, 17], target outcome
yt ∈ {Normal,mild cognitive impairment (MCI),AD} at each time point is determined via the
corresponding Clinical Dementia Rating scale Sum of Boxes (CDR-SB) score with cutoff thresholds
at 0.5 and 4.5. To reflect the higher cost and harmful radiation exposure in PET scan, measurement
costs for PET and MRI biomarkers are set to be 1.0 and 0.5, respectively.

Experiment setup. We first fit the outcome estimator fP on each dataset with 64/16/20
train/validation/test splits and find the optimal estimator with the best prediction accuracy given
sparse observation of test samples as inputs. Then, we freeze the parameters of the optimal fP and
evaluate the sensing performance of RAS and other baselines on the corresponding data split. We
consider four baselines in the experiments: FO) predictor fP with dense sensing history; ASAC)
[24]; NLL) adaptive sensing with negative log-likelihood (NLL) as diagnosis error function [12];
AS) RAS(α = 1.0) with constant acquisition interval. Further details of the experiment setup and
parameter selection results can be found in the Appendix.

Table 2: Benchmark of sensing performance on the synthetic dataset DS .

METHOD ROC PRC COST dδ=0.3 dδ=0.5 dδ=0.7

FO 0.680±0.000 0.655±0.000‡ 31.000±0.000 0.502±0.000 0.349±0.000 0.285±0.000
ASAC 0.605±0.096 0.559±0.080 0.460±1.078‡ 1.099±0.664 1.066±0.699 1.052±0.641
AS 0.671±0.001 0.614±0.001 4.501±0.497 0.577±0.029 0.522±0.012 0.479±0.015
NLL 0.636±0.023 0.588±0.016 2.968±0.774 0.993±0.131 0.974±0.141 0.975±0.147
RAS (OURS) 0.680±0.003 0.647±0.006 6.077±0.953 0.325±0.084‡ 0.264±0.086‡ 0.246±0.071‡

The 95% confidence interval (CI) is evaluated with five different random seeds. Best result in each column are highlighted in bold. The marker ‡ indicates p-value
p < 0.05.

2https://adni.loni.usc.edu
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Timeliness and accuracy. Timely and accurate outcome prediction given sparse observations of
patient trajectories is essential for practical applications of active sensing. In the experiments, we
report the area under the curve of receiving-operator characteristic (ROC) and area under the curve
of precision-recall (PRC) as assessments of the prognostic value of active sensing policies. In the
meantime, the timeliness of an active sensing policy π is evaluated with dδ – the mean absolute
mismatch in diagnosis time of event p(yt = 1|Xπ

t ) ≥ δ compared to ground truth on the test set. The
benchmark results of RAS against four baselines on the two datasets are provided in Table 2 and
Table 3, respectively.

With a fixed acquisition interval of ∆ = 0.2, FO achieves high predictive accuracy at the expense
of highest acquisition cost. Despite having the smallest acquisition cost, ASAC suffers significantly
from the low diagnosis accuracy and is unable to achieve timely diagnosis of alert events. In contrast,
our method (RAS) has reasonable acquisition costs and best timeliness as illustrated in Table 2. The
increase in average cost of RAS compared to the AS baseline could be linked to our focus on the tail
set Sπ

α . The increased acquisition costs are necessary to achieve a significantly lower delay in alert
event diagnosis for high-risk patients in Sπ

α . The improved timeliness of RAS over FO suggests that
the predictor fP might achieve better generalization with sparse sensing history as inputs. Similarly,
according to Table 3, our method RAS outperforms most other baselines in timeliness and cost
efficiency except for FO. This is within expectation since the outcome estimations from fP are used
as the reference for timeliness evaluation, and these estimations are generally close to the predictions
made by the FO baseline.

Table 3: Benchmark of active sensing performance on ADNI dataset.

METHOD ROC PRC COST dδ=0.1 dδ=0.3 dδ=0.5

FO 0.747±0.000‡ 0.577±0.000‡ 26.865±0.000 0.141±0.000‡ 0.510±0.000‡ 0.591±0.000‡

ASAC 0.521±0.160 0.352±0.103 0.043±0.186‡ 0.527±0.000 3.008±3.610 3.581±0.000
AS 0.704±0.023 0.519±0.034 3.566±0.854 1.326±0.096 2.314±0.348 2.357±0.375
NLL 0.697±0.018 0.512±0.020 3.986±0.493 1.040±0.149 2.176±0.060 2.739±0.135
RAS (OURS) 0.730±0.007 0.560±0.012 8.614±1.157 0.820±0.096 1.370±0.227 1.192±0.176

The 95% confidence interval (CI) is evaluated with three different random seeds. The timeliness dδ is measured based on the likelihood of developing AD. Best result
in each column are highlighted in bold. The marker ‡ indicates p-value p < 0.05.
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Figure 3: The impact of risk-aversion and adaptive acquisition scheduling on active sensing policies.
Selection of trade-off coefficients, e.g., λ, can be performed by searching for the (a) Pareto front. Pareto
optimal models belonging to the front are highlighted with circles. Their parameters are annotated in gray texts.
Effectiveness of the risk-averse objective in (3) is reflected by the tail size of (b) Qπ(X) distribution. The
risk-neutral (α = 1.0) version of RAS has degraded sensing performance for tail trajectories. The significantly
worse performance of the AS baseline further highlights the benefit of having adaptive acquisition intervals.

Trade-off between timeliness and acquisition costs. The selection of model parameters could
be difficult when two or more criteria are involved in the evaluation. Here, we illustrate the sensing
performance of different policies on the synthetic dataset in Figure 3(a) and highlight the ones in the
Pareto front with gray circles. These policies are considered Pareto optimal since their timeliness
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(dδ=0.5) and average acquisition cost cannot be simultaneously improved by swapping parameters
with other policies. Benefitted from the risk-averse training strategy, most sensing policies obtained
via RAS are centered around the knee point of the Pareto front, which helps to explain the outstanding
cost efficiency of RAS as reported in Table 2.

Reshaping the sensing deficiency distribution. To illustrate the effectiveness of the risk-averse
objective in (3), we compare the empirical distribution of sensing deficiency Qπ(X) of RAS with the
ablations of risk-neutral sensing (α = 1.0) and AS baseline (α = 1.0, constant acquisition interval
∆ = 1.0) on the synthetic dataset. All three models are trained with the same trade-off coefficient
λ = 300. As illustrated in Figure 3(b), RAS is able to effectively optimize the sensing performance
for trajectories in the tail set Sπ

α and reduces the upper α quantile of Qπ(X) to ρα=0.1 = 10.40.
Factor α = 1.0 completely disables the risk-aversion training strategy in Algorithm 1. Thereby, a
clear increase of sensing deficiency (quantile ρα=0.1 grows from 10.40 to 20.01) is observed with
the risk-neutral ablation of RAS. Similarly, without adaptive scheduling of acquisition intervals
and risk-averse optimization strategies, the AS baseline illustrates the failure of conventional active
sensing paradigms at the long tail of Qπ(X) distribution.

6 Conclusion

In this paper, we introduce a novel risk-averse active sensing approach RAS to address the chal-
lenging continuous-time active sensing problem. Through effective decomposition of decisions on
feature selection and acquisition intervals, our approach offers valuable insights on both feature
importance and timeliness of patient follow-ups. The novel risk-aversion training strategy in RAS
enables the prioritization of high-value patients at the long tail of sensing deficiency distribution
and provides guarantees on diagnosis accuracy for worst-case scenarios. The effectiveness of our
method is evaluated through experiments on synthetic and real-world healthcare datasets, where
RAS outperforms all baseline active sensing approaches and achieves accurate and timely outcome
diagnosis while maintaining reasonable costs in feature acquisition.

Broader Impacts

The development of an advanced active sensing strategy is essential for precision medicine. Appro-
priate sensing policies can help clinicians to make tailored follow-up schedules for their patients
and effectively utilize the costly and potentially harmful measurements on some important patient
characteristics under certain levels of cost pressure. We note that the reduction in acquisition cost is
usually associated with degraded diagnosis accuracy and delayed detection of some adverse clinical
events, especially for high-risk patients that could benefit from more frequent follow-ups on disease
progression. In this paper, we attempt to address this challenge through the risk-averse policy learning
strategy in our proposed active sensing approach RAS and achieve improved sensing performance
(accuracy and timeliness) on the entire population. Nevertheless, practical applications of active
sensing approaches would require careful audits and assessments by human experts to avoid poten-
tial negative impacts. The sensing decisions from RAS are only suggestions optimized based on
observational data and should not be directly applied without the evaluation of clinicians.
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Appendix

A.1 Notation table

A summary of major notations used in this paper is provided below.

• x: Feature variable of the patient.
• y: Patient’s outcome.
• X: The continuous-time patient trajectory.
• Xπ

t : The sensing history at time t.
• π: Sensing policy.
• πm: Feature selector.
• π∆: Acquisition scheduler.
• m:Feature selection mask vector.
• Qπ(X): Sensing deficiency.
• CVaR: Conditional value-at-risk.
• α: Tail risk quantile.
• T : End time of observation.
• I: Number of observations in sensing history.
• I: Interpolator.

A.2 Limitation

The risk-averse policy learning strategy proposed in this paper relies on the correct identification of
tail-risk patients. Data quality of the EHR datasets has direct impact on our method. Low quality
dataset would lead to poor diagnosis accuracy of the baseline predictor fP which compromises the
validity and usefulness of RAS in practice. In the meantime, in RAS, patients located at the long
tail of sensing deficiency distribution are selected based on empirical evaluations of Qπ(X). The
selection results could be biased due to potential over-fitting of sensing policies on the training set.
To tackle this issue, an “honest” and unbiased sensing performance evaluation on the validation set is
necessary. However, the inference of acquisition costs from validation samples is beyond the main
focus of this paper. We leave this challenge for our future work on risk-averse active sensing tasks.

Code Availability. The source code of RAS can be found in the two GitHub repositories listed
below:

• The van der Schaar lab repo: https://github.com/vanderschaarlab/cvar_
sensing

• The author’s personal repo: https://github.com/yvchao/cvar_sensing

A.3 Estimation of Time-Varying Outcome

A baseline outcome predictor fP is required in (5) of the manuscript to evaluate the timeliness and
accuracy of a sensing policy. Following the model-based approach in [24], we introduce a network
fP – which we refer to as the baseline predictor – to estimate the unknown conditional distributions
of patient outcomes. Specifically, we construct the predictor fP with the neural CDE [11] model
to flexibly handle sensing history with irregular observation intervals compared to the RNN-based
counterparts such as [23, 24].

The predictor consists of four components, i.e., fP = fY ◦ fE ◦ CDE ◦ I. I is a linear interpolator.
CDE is a neural CDE that takes the continuous trajectories as inputs. fE is a multi-layer perceptron
(MLP) that takes the CDE embedding as input. fY is an MLP with softmax output layer for
categorical outcomes. Utilizing the linear interpolator I3, both the discrete EHR record X ∈ D and
sparse sensing history Xπ

t can be converted into continuous trajectories.

3We use Python package torchcde for interpolation.
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The solution to the latent CDE provides embeddings of discrete time-series observations and the
sensing history as zn,t = fE(CDE ◦ I(Xn,t)) and zπ

n,t = fE(CDE ◦ I(Xπ
n,t)), respectively. The

corresponding conditional distributions are then estimated via the MLP as fP (Xn,t) = fY (zn,t) and
fP (X

π
n,t) = fY (z

π
n,t), respectively.

The predictor fP is trained to minimize the following loss:

LP =
1

NL

N∑
n=1

L∑
l=1

ℓ(yn,tl, fY (zn,tl)) + µℓ(yn,tl, fY (z
π0

n,tl
)), (8)

where zn,tl = fE(CDE◦I(Xn,tl)), z
π0

n,tl
= fE(CDE◦I(Xπ0

n,tl
)), and ℓ is theK-class cross-entropy

based on the observed outcome yn,tl and outputs of the predictor fP . Here, we introduce the second
term as a regularization for each patient trajectory with random dropouts. More specifically, we
introduce a random acquisition strategy π0 which randomly collects (sparse) discrete observations
from the interpolated trajectories, i.e., I(Xn), and constructs auxiliary sensing histories with random
dropouts, i.e., Xπ0

n,tl
. The strategy π0 randomly select feature variables to keep in the observation

history based on the drop rate. This regularization improves the generalization of the predictor by
learning to estimate conditional distributions given randomly drawn sensing histories. Here, µ ≥ 0 is
a coefficient that controls the strength of regularization.

A.4 Parameter Selection

Outcome predictor. We consider the drop rate p of the auxiliary observation strategy π0 as the
hyperparameter of the outcome predictor. For both the synthetic dataset and ADNI dataset, we
select the drop rate of auxiliary strategy π0 form the set of p ∈ {0.0, 0.3, 0.5, 0.7} The optimal
hyperparameter is selected based on the average accuracy of the outcome predictor on five test sets of
random observations generated by an auxiliary observation strategy π0 with drop rate p = 0.7. The
hyperparameter selection result is as follows:

• Synthetic dataset: drop rate p = 0.7

• ADNI dataset: drop rate p = 0.7

Sensing policy. Then, we perform hyperparameter selection for the active sensing approaches.
Among the trained outcome predictors, we select the one with highest ROC score on its test set as
the shared predictor and keep its parameters frozen. The training and test set corresponding to the
selected optimal outcome predictor are used for the training and evaluation of the active sensing
methods.

In our experiments, the hyperparameters of each active sensing method are selected based on the cost
efficiency, i.e., ROC / Cost, obtained on the test set.

For the synthetic data considered in our manuscript, we set the minimum and maximum allowed
acquisition intervals as ∆min = 0.2,∆max = 1.0, respectively. ASAC is not affected since it needs
to directly work on original EHR records). The hyperparameters of each method are reported as
follows:

• ASAC: coefficient for acquisition cost µ = 0.01 ∈ {0.1, 0.01, 0.005, 0.001}.

• AS: acquisition interval ∆̃ = 1.0 ∈ {0.2, 0.5, 1.0}, shared predictor fP with RAS.

• NLL: coefficient for diagnostic error λ = 100 ∈ {100, 300}, shared predictor fP with RAS.

• RAS: the coefficient for diagnostic error λ = 300 ∈ {200, 250, 280, 300, 310, 320, 350, 400},
discount factor γ = 0.99, tail-risk quantile α = 0.1, penalty for invalid visits ν = 10.

For the ADNI data considered in our manuscript, we set the minimum and maximum allowed
acquisition intervals as ∆min = 0.5,∆max = 1.5, respectively. ASAC is not affected since it needs
to directly work on original EHR records).

• ASAC: coefficient for acquisition cost µ = 0.1 ∈ {0.1, 0.01, 0.005, 0.001}.

• AS: acquisition interval ∆̃ = 1.5 ∈ {0.5, 1.5}, shared predictor fP with RAS.
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• NLL: coefficient for diagnostic error λ = 200 ∈ {100, 200, 300, 400}, shared predictor fP with
RAS.

• RAS: the coefficient for diagnostic error λ = 400 ∈ {200, 250, 300, 350, 400, 450}, discount
factor γ = 0.99, tail-risk quantile α = 0.1, penalty for invalid visits ν = 10.

All methods are trained with K = 200 iterations in the experiments. For RAS, we set the tail subset
update interval M = 10 for Algorithm 1 in the manuscript.

Adjustments in experiment results. We have fixed some minor issues with model convergence
when using CDE models. Specifically, the negative feedback is included in the CDE integration as
follows:

z(t) = z(t0) +

∫ t

t0

(fϕ(z(τ))− 10−3diag(z))du(τ), for τ ∈ [t0, t], (9)

where diag creates a diagonal matrix from the input vector z. Such negative feedback loop avoids the
unlimited growth of CDE integration over time and helps with model convergence. This modification
causes some minor changes in the experiment results. However, the updated experiment results are
consistent with the previous versions and our conclusion is not affected by these changes.

Additional results. We will release more evaluation on real-world datasets on our GitHub repo.
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