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Abstract

Reinforcement learning (RL) under changing environment models many real-world
applications via nonstationary Markov Decision Processes (MDPs), and hence
gains considerable interest. However, theoretical studies on nonstationary MDPs in
the literature have mainly focused on tabular and linear (mixture) MDPs, which
do not capture the nature of unknown representation in deep RL. In this paper,
we make the first effort to investigate nonstationary RL under episodic low-rank
MDPs, where both transition kernels and rewards may vary over time, and the
low-rank model contains unknown representation in addition to the linear state
embedding function. We first propose a parameter-dependent policy optimization
algorithm called PORTAL, and further improve PORTAL to its parameter-free
version of Ada-PORTAL, which is able to tune its hyper-parameters adaptively
without any prior knowledge of nonstationarity. For both algorithms, we provide
upper bounds on the average dynamic suboptimality gap, which show that as long
as the nonstationarity is not significantly large, PORTAL and Ada-PORTAL are
sample-efficient and can achieve arbitrarily small average dynamic suboptimality
gap with polynomial sample complexity.

1 Introduction

Reinforcement learning (RL) has gained significant success in real-world applications such as board
games of Go and chess (Silver et al., 2016, 2017, 2018), robotics (Levine et al., 2016; Gu et al., 2017),
recommendation systems (Zhao et al., 2021) and autonomous driving (Bojarski et al., 2016; Ma et al.,
2021). Most theoretical studies on RL have been focused on a stationary environment and evaluated
the performance of an algorithm by comparing against only one best fixed policy (i.e., static regret).
However, in practice, the environment is typically time-varying and nonstationary. As a result, the
transition dynamics, rewards and consequently the optimal policy change over time.

There has been a line of research studies that investigated nonstationary RL. Specifically, Gajane
et al. (2018); Cheung et al. (2020); Mao et al. (2021) studied nonstationary tabular MDPs. To further
overcome the curse of dimensionality, Fei et al. (2020); Zhou et al. (2020) proposed algorithms for
nonstationary linear (mixture) MDPs and established upper bounds on the dynamic regret.

In this paper, we significantly advance this line of research by investigating nonstationary RL
under low-rank MDPs (Agarwal et al., 2020b), where the transition kernel of each MDP admits
a decomposition into a representation function and a state-embedding function that map to low
dimensional spaces. Compared with linear MDPs where the representation is known, the low-
rank MDP model contains unknown representation, and is hence much more powerful to capture
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representation learning that occurs often in deep RL. Although there have been several recent studies
on static low-rank MDPs (Agarwal et al., 2020b; Uehara et al., 2022; Modi et al., 2021), nonstationary
low-rank MDPs remain unexlored, and are the focus of this paper.

To investigate nonstationary low-rank MDPs, several challenges arise. (a) All previous studies of
nonstationary MDPs took on-policy exploration, such a strategy will have difficulty in providing
sufficiently accurate model (as well as representation) learning for nonstationary low-rank MDPs. (b)
Under low-rank MDPs, since both representation and state-embedding function change over time, it
is more challenging to use history data collected under previous transition kernels for current use.

The main contribution of this paper lies in addressing above challenges and designing a provably
efficient algorithm for nonstationary low-rank MDPs. We summarize our contributions as follows.

• We propose a novel policy optimization algorithm with representation learning called PORTAL
for nonstationary low-rank MDPs. PORTAL features new components, including off-policy
exploration, data-transfer model learning, and target policy update with periodic restart.

• We theoretically characterize the average dynamic suboptimality gap (GapAve) of PORTAL,
where GapAve serves as a new metric that captures the performance of target policies with respect
to the best policies at each instance in the nonstationary MDPs under off-policy exploration.
We further show that with prior knowledge on the degree of nonstationarity, PORTAL can
select hyper-parameters that minimize GapAve. If the nonstationarity is not significantly large,
PORTAL enjoys a diminishing GapAve with respect to the number of iterations K, indicating
that PORTAL can achieve arbitrarily small GapAve with polynomial sample complexity.
Our analysis features a few new developments. (a) We provide a new MLE guarantee under
nonstationary transition kernels that captures errors of using history data collected under different
transition kernels for benefiting current model estimation. (b) We establish trajectory-wise
uncertainty bound for estimation errors via a square-root ℓ∞-norm of variation budgets. (c) We
develop an error tracking technique via auxiliary anchor representation for convergence analysis.

• Finally, we improve PORTAL to a parameter-free algorithm called Ada-PORTAL, which does
not require prior knowledge on nonstationarity and is able to tune the hyper-parameters adaptively.
We further characterize GapAve of Ada-PORTAL as Õ(K− 1

6 (∆ + 1)
1
6 ), where ∆ captures the

variation of the environment. Notably, based on PORTAL, we can also use the black-box method
called MASTER in Wei & Luo (2021) to turn PORTAL into a parameter-free algorithm (called
MASTER+PORTAL) with GapAve of Õ(K− 1

6∆
1
3 ). Clearly, Ada-PORTAL performs better

than MASTER+PORTAL when nonstationarity is not significantly small, i.e. ∆ ≥ Õ(1).

To our best knowledge, this is the first study of nonstationary RL under low-rank MDPs.

2 Related Works

Various works have studied nonstationary RL under tabular and linear MDPs, most of which can be
divided into two lines: policy optimization methods and value-based methods.

Nonstationary RL: Policy Optimization Methods. As a vast body of existing literature (Cai et al.,
2020; Shani et al., 2020; Agarwal et al., 2020a; Xu et al., 2021) has proposed policy optimization
methods attaining computational efficiency and sample efficiency simultaneously in stationary RL
under various scenarios, only several papers investigated policy optimization algorithm in nonsta-
tionary environment. Assuming time-varying rewards and time-invariant transition kernels, Fei et al.
(2020) studied nonstationary RL under tabular MDPs. Zhong et al. (2021) assumed both transition
kernels and rewards change over episodes and studied nonstationary linear mixture MDPs. These
policy optimization methods all assumed prior knowledge on nonstationarity.

Nonstationary RL: Value-based Methods. Assuming that both transition kernels and rewards are
time-varying, several works have studied nonstationary RL under tabular and linear MDPs, most of
which adopted Upper Confidence Bound (UCB) based algrithms. Cheung et al. (2020) investigated
tabular MDPs with infinite-horizon and proposed algorithms with both known variation budgets
and unknown variation budgets. In addition, this work also proposed a Bandit-over-Reinforcement
Learning (BORL) technique to deal with unknown variation budgets. Mao et al. (2021) proposed
a model-free algorithm with sublinear dynamic regret bound. They then proved a lower bound for
nonstationary tabular MDPs and showed that their regret bound is near min-max optimal. Touati
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& Vincent (2020); Zhou et al. (2020) considered nonstationary RL in linear MDPs and proposed
algorithms achieving sublinear regret bounds with unknown variation budgets.

Besides these two lines of researches, Wei & Luo (2021) proposed a black-box method that turns
a RL algorithm with optimal regret in a (near-)stationary environment into another algorithm that
can work in a nonstationary environment with sublinear dynamic regret without prior knowledge on
nonstationarity. In this paper, we show that our algorithm Ada-PORTAL outperforms such a type of
black-box method (taking PORTAL as subroutine) if nonstationarity is not significantly small.

Stationary RL under Low-rank MDPs. Low-rank MDPs were first studied by Agarwal et al.
(2020b) in a reward-free regime, and then Uehara et al. (2022) studied low-rank MDPs for both online
and offline RL with known rewards. Cheng et al. (2023) studied reward-free RL under low-rank
MDPs and improved the sample complexity of previous works. Modi et al. (2021) proposed a
model-free algorithm MOFFLE under low-nonnegative-rank MDPs. Cheng et al. (2022); Agarwal
et al. (2022) studied multitask representation learning under low-rank MDPs, and further showed the
benefit of representation learning to downstream RL tasks.

3 Formulation

Notations: We use [K] to denote set {1, . . . ,K} for any K ∈ N, use ∥x∥2 to denote the ℓ2 norm
of vector x, use △(A) to denote the probability simplex over set A, use U(A) to denote uniform
sampling over A, given |A| < ∞, and use △(S) to denote the set of all possible density distributions
over set S . Furthermore, for any symmetric positive definite matrix Σ, we let ∥x∥Σ :=

√
x⊤Σx. For

distributions p1 and p2, we use DKL(p1(·)∥p2(·)) to denote the KL divergence between p1 and p2.

3.1 Episodic MDPs and Low-rank Approximation

An episodic MDP is denoted by a tuple M :=
(
S,A, H, P := {Ph}Hh=1, r := {rh}Hh=1

)
, where

S is a possibly infinite state space, A is a finite action space with cardinality A, H is the time
horizon of each episode, Ph(·|·, ·) : S × A → ∆(S) denotes the transition kernel at each step
h, and rh(·, ·) : S × A → [0, 1] denotes the deterministic reward function at each step h. We
further normalize the reward as

∑H
h=1 rh ≤ 1. A policy π = {πh}h∈[H] is a set of mappings where

πh : S → ∆(A). For any (s, a) ∈ S × A, πh(a|s) denotes the probability of selecting action a at
state s at step h. For any (s, a) ∈ S ×A, let (sh, ah) ∼ (P, π) denote that the state sh is sampled by
executing policy π to step h under transition kernel P and then action ah is sampled by πh(·|sh).
Given any state s ∈ S, the value function for a policy π at step h under an MDP
M is defined as the expected value of the accumulative rewards as: V π

h,P,r(s) =∑H
h′=h E(sh′ ,ah′ )∼(P,π) [rh′(sh′ , ah′)|sh = s]. Similarly, given any state-action pair (s, a) ∈ S ×A,

the action-value function (Q-function) for a policy π at step h under an MDP M is defined
as Qπ

h,P,r(s, a) = rh(s, a) +
∑H

h′=h+1 E(sh′ ,ah′ )∼(P,π) [rh′(sh′ , ah′)|sh = s, ah = a]. Denote
(Phf)(s, a) := Es′∼Ph(·|s,a)[f(s

′)] for any function f : S → R. Then we can write the action-
value function as Qπ

h,P,r(s, a) = rh(s, a) + (PhV
π
h+1,P,r)(s, a). For any k ∈ [K], without loss

of generality, we assume the initial state s1 to be fixed and identical, and we use V π
P,r to denote

V π
1,P,r(s1) for simplicity.

This paper focuses on low-rank MDPs (Jiang et al., 2017; Agarwal et al., 2020b) defined as follows.

Definition 3.1 (Low-rank MDPs). A transition kernel P ∗
h : S × A → △(S) admits a low-rank

decomposition with dimension d ∈ N if there exist a representation function ϕ⋆
h : S ×A → Rd and

a state-embedding function µ⋆
h : S → Rd such that

P ⋆
h (s

′|s, a) = ⟨ϕ⋆
h(s, a), µ

⋆
h(s

′)⟩ , ∀s, s′ ∈ S, a ∈ A.

Without loss of generality, we assume ∥ϕ∗
h(s, a)∥2 ≤ 1 for all (s, a) ∈ S ×A and for any function

g : S 7→ [0, 1],
∥∥∫ µ⋆

h(s)g(s)ds
∥∥
2
≤

√
d. An MDP is a low-rank MDP with dimension d if for

any h ∈ [H], its transition kernel P ∗
h admits a low-rank decomposition with dimension d. Let

ϕ⋆ = {ϕ⋆
h}h∈[H] and µ⋆ = {µ⋆

h}h∈[H] be the true representation and state-embedding functions.
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3.2 Nonstationary Transition Kernels with Adversarial Rewards

In this paper, we consider an episodic RL setting under changing environment, where both transition
kernels and rewards vary over time and possibly in an adversarial fashion.

Specifically, suppose the RL system goes by rounds, where each round have a fixed number
of episodes, and the transition kernel and the reward remain the same in each round, and can
change adversarially across rounds. For each round, say round k, we denote the MDP as
Mk = (S,A, H, P k := {P ⋆,k

h }Hh=1, r
k := {rkh}Hh=1), where P ⋆,k and rk denote the true tran-

sition kernel and the reward of round k. Further, P ⋆,k takes the low-rank decomposition as
P ⋆,k = ⟨ϕ⋆,k, µ⋆,k⟩. Both the representation function ϕ⋆,k and the state embedding function µ⋆,k

can change across rounds. Given the reward function rk, there always exists an optimal policy π⋆,k

that yields the optimal value function V π⋆,k

P⋆,k,rk = supπ V
π
P⋆,k,rk , abbreviated as V ⋆

P⋆,k,rk . Clearly,
the optimal policy also changes across rounds.

We assume the agent interacts with the nonstationary environment (i.e., the time-varying MDPs) over
K rounds in total without the knowledge of transition kernels {P k,⋆}Kk=1. At the beginning of each
round k, the environment changes to a possibly adversarial transition kernel unknown to the agent,
picks a reward function rk, which is revealed to the agent only at the end of round k, and outputs a
fixed initial state s1 for the agent to start the exploration of the environment for each episode. The
agent is allowed to interact with MDPs via a few episodes with one or multiple exploration policies
at her choice to take samples from the environment and then should output an target policy to be
executed during the next round. Note that in our setting, the agent needs to decide exploration and
target policies only based on the information in previous rounds, and hence exploration samples and
the reward information of the current round help only towards future rounds.

3.3 Learning Goal and Evaluation Metric

In our setting, the agent seeks to find the optimal policy at each round k (with only the information
of previous rounds), where both transition kernels and rewards can change over rounds. Hence we
define the following notion of average dynamic suboptimality gap to measure the convergence of the
target policy series to the optimal policy series.
Definition 3.2 (Average Dynamic Suboptimality Gap). For K rounds, and any policy set {πk}k∈[K],
the average dynamic suboptimality gap (GapAve) of the value functions over K rounds is given
as GapAve(K) = 1

K

∑K
k=1[V

⋆
P⋆,k,rk − V πk

P⋆,k,rk ]. For any ϵ, we say an algorithm is ϵ-average
suboptimal, if it outputs a policy set {πk}k∈[K] satisfying GapAve(K) ≤ ϵ.

GapAve compares the agent’s target policy to the optimal policy of each individual round in hindsight,
which captures the dynamic nature of the environment. This is in stark contrast to the stationary
setting where the comparison policy is a single fixed best policy over all rounds. This notion is similar
to dynamic regret used for nonstationary RL (Fei et al., 2020; Gajane et al., 2018), where the only
difference is that GapAve evaluates the performance of target policies rather than the exploration
policies. Hence, given any target accuracy ϵ ≥ 0, the agent is further interested in the statistical
efficiency of the algorithm, i.e., using as few trajectories as possible to achieve ϵ-average suboptimal.

4 Policy Optimization Algorithm and Theoretical Guarantee

4.1 Base Algorithm: PORTAL

We propose a novel algorithm called PORTAL (Algorithm 1), which features three main steps. Below
we first summarize our main design ideas and then explain reasons behind these ideas as we further
elaborate main steps of PORTAL.

Summary of New Design Ideas: PORTAL features the following main design ideas beyond previous
studies on nonstationary RL under tabular and linear MDPs. (a) PORTAL features a specially
designed off-policy exploration which turns out to be beneficial for nonstationary low-rank /MDP
models rather than the typical on-policy exploration taken by previous studies of nonstationary
tabular and linear MDP models. (b) PORTAL transfers history data collected under various different
transition kernels for benefiting the estimation of the current model. (c) PORTAL updates target
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policies with periodic restart. As a comparison, previous work using periodic restart (Fei et al., 2020)
chooses the restart period τ based on a certain smooth visitation assumption. Here, we remove such
an assumption and hence our choice of τ is applicable to more general model classes.

Step 1. Off-Policy Exploration for Data Collection: We take off-policy exploration, which
is beneficial for nonstationary low-rank MDPs than simply using the target policy for on-policy
exploration taken by the previous studies on nonstationary tabular or linear (mixture) MDPs (Zhong
et al., 2021; Fei et al., 2020; Zhou et al., 2020). To further explain, we first note that under tabular or
linear (mixture) MDPs studied in the previous work, a bonus term is introduced to the actual reward
to serve as a point-wise uncertainty level of the estimation error for each state-action pair at any
step h, so that for any step h, Q̂k

h is a good optimistic estimation for Qπ
h,P⋆,k,rk . Hence it suffices to

collect samples using the target policy. However, in low-rank MDPs, the bonus term b̂kh cannot serve
as a point-wise uncertainty measure. For step h ≥ 2, Q̂k

h is not a good optimistic estimation for the
true value function if the agent only uses target policy to collect data (i.e., for on-policy exploration).
Hence, more samples and a novel off-policy exploration are required for a good estimation under
low-rank MDPs. Specifically, as line 5 in Algorithm 1, at the beginning of each round k, for each step
h ∈ [H], the agent explores the environment by executing the exploration policy π̃k−1 to state s̃k,hh−1

and then taking two uniformly chosen actions1, where π̃k−1 is determined in Step 2 of the previous
round.

Algorithm 1 PORTAL (Policy Optimization with RepresenTAtion Learning under nonstationary
MDPs)

1: Input: Rounds K, hyper-parameters τ,W , regularizer λk,W , coefficient α̃k,W , stepsize η and
models {Ψ,Φ}.

2: Initialization: π0(·|s) to be uniform; D̃(0,0)
h = ∅.

3: for episode k = 1, . . . ,K do
4: for step h = 1, . . . ,H do
5: Roll into s̃

(k,h)
h−1 using π̃k−1, uniformly choose ã

(k,h)
h−1 , ã

(k,h)
h , and enter into s̃

(k,h)
h , s̃

(k,h)
h+1 .

6: Update datasets

D̃(k,h,W )
h−1 =

{
s̃
(i,h)
h−1 , ã

(i,h)
h−1 , s̃

(i,h)
h

}k

i=1∨k−W+1
,

D̃(k,h,W )
h =

{
s̃
(i,h)
h , ã

(i,h)
h , s̃

(i,h)
h+1

}k

i=1∨k−W+1
.

7: end for
8: Receive full information rewards rk = {rkh}h∈[H].
9: Estimate transition kernel and update the exploration policy π̃k for the next round via:

E2U
(
k, {D̃(k,h,W )

h−1 }, {D̃(k,h,W )
h }

)
.

10: for step h = 1, . . . ,H do
11: Update Q̂k

h = Qπk

h,P̂k,rk
.

12: end for
13: if k mod τ = 1 then
14: Set {Q̂k

h}h∈[H] as zero functions and {πk
h}h∈[H] as uniform distributions on A.

15: end if
16: for step h = 1, . . . ,H do
17: Update the target policy as in Equation (2).
18: end for
19: end for
20: Output: {πk}Kk=1.

Step 2. Data-Transfer Model Learning and E2U: In this step, we transfer history data collected
under previous different transition kernels for benefiting the estimation of the current model. This is
theoretically grounded by our result that the model estimation error can be decomposed into variation

1The subscript h − 1 in s̃k,hh−1 indicates that the data is collected at time step h of each trajectory, and the
superscript (k, h) indicates in which loop the data is collected (as in line 3 and 4 of Algorithm 1)
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budgets plus a diminishing term as the estimation sample size increases, which justifies that the
usage of data generated by mismatched distributions within a certain window is beneficial for model
learning as long as variation budgets is mild. Then, the estimated model will further facilitate the
selection of future exploration policies accurately.

Specifically, the agent selects desirable samples only from the latest W rounds following a forgetting
rule (Garivier & Moulines, 2011). Since nonstationary low-rank MDPs (compared to tabular and
linear MDPs) also have additional variations on representations over time, the choice of W needs to
incorporate such additional information. Then the agent passes these selected samples to a subroutine
E2U (see Algorithm 2), in which the agent estimates the transition kernels via the maximum likelihood
estimation (MLE). Next, the agent updates the empirical covariance matrix Ûk,W and exploration-
driven bonus b̂k as in lines 4 and 5 in Algorithm 2. We then define a truncated value function
iteratively using the estimated transition kernel and the exploration-driven reward as follows:

Q̂π
h,P̂k,b̂k

(sh, ah) = min
{
1, b̂kh(sh, ah) + P̂ k

h V̂
π
h+1,P̂k,b̂k

(sh, ah)
}
,

V̂ π
h,P̂k,b̂k

(sh) = Eπ

[
Q̂π

h,P̂k,b̂k
(sh, ah)

]
. (1)

Although the bonus term b̂kh cannot serve as a point-wise uncertainty measure, the truncated value
function V̂ π

P̂k,b̂k
as the cumulative version of b̂kh can serve as a trajectory-wise uncertainty measure,

which can be used to determine future exploration policies. Intuitively, for any policy π, the model
estimation error satisfies E(s,a)∼(P⋆,k,π)[∥P̂ k(·|s, a)− P ⋆,k(·|s, a)∥TV ] ≤ V̂ π

P̂k,b̂k
+∆, where the

error term ∆ captures the variation of both transition kernels and representations over time. As a
result, by selecting the policy that maximizes V̂ π

P̂k,b̂k
as the exploration policy as in line 7, the agent

will explore the trajectories whose states and actions have not been estimated sufficiently well so far.

Algorithm 2 E2U (Model Estimation and Exploration Policy Update)

1: Input: round index k, regularizer λk,W and coefficient α̃k,W , datasets {D̃(k,h)
h−1 },{D̃(k,h)

h } and
models {Ψ,Φ}.

2: for step h = 1, . . . ,H do
3: Learn the representation via MLE for step h:

P̂ k
h = (ϕ̂k

h, µ̂
k
h) = arg max

ϕ∈Φ,µ∈Ψ
ED̃(k,h)

h

[log⟨ϕ(sh, ah), µ(sh+1)⟩] .

4: Compute the empirical covariance matrix as

Ûk,W
h =

∑
D̃(k,h+1)

h

ϕ̂k
h(sh, ah)ϕ̂

k
h(sh, ah)

⊤ + λk,W I

5: Define exploration-driven bonus b̂kh(·, ·) = min{αk,W ∥ϕ̂k
h(·, ·)∥(Ûk,W

h )−1 , 1}.
6: end for
7: Find exploration policy π̃k = argmaxπ V̂

π
P̂k,b̂k

, where V̂ π
P̂k,b̂k

is defined as in Equation (1).

8: Output: Model P̂ k and exploration policy {π̃k}.

Step 3: Target Policy Update with Periodic Restart: The agent evaluates the target policy by
computing the value function under the target policy and the estimated transition kernel. Then, due
to the nonstationarity, the target policy is reset every τ rounds. Compared with the previous work
using periodic restart (Fei et al., 2020), whose choice of τ is based on a certain smooth visitation
assumption, we remove such an assumption and hence our choice of τ is applicable to more general
model classes. Finally, the agent uses the estimated value function for target policy update for the
next round k + 1 via online mirror descend. The update step is inspired by the previous works (Cai
et al., 2020; Schulman et al., 2017). Specifically, for any given policy π0 and MDP M, define the
following function w.r.t. policy π :

LM,π0(π) = V π0

P,r +

H∑
h=1

Esh∼(P,π0)

[〈
Qπ0

h,P,r, πh(·|sh)− π0
h(·|sh)

〉]
.
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LM,π0(π) can be regarded as a local linear approximation of V π
P,r at “point” π0 (Schulman et al.,

2017). Consider the following optimization problem:

πk+1 = argmax
π

LMk,πk

(π)− 1

η

∑
h∈[H]

Esh∼(P⋆,k,πk)

[
DKL(πh(·|sh)∥πk

h(·|sh))
]
.

This can be regarded as a mirror descent step with KL divergence, where the KL divergence regu-
larizes π to be close to πk. It further admits a closed-form solution: πk+1

h (·|·) ∝ πk
h(·|·) · exp{η ·

Qπk

h,P⋆,k,rk(·, ·)}. We use the estimated version Q̂k
h to approximate Qπk

h,P⋆,k,rk and get

πk+1
h (·|·) ∝ πk

h(·|·) · exp{η · Q̂k
h(·, ·)}. (2)

4.2 Technical Assumptions

Our analysis adopts the following standard assumptions on low-rank MDPs.
Assumption 4.1. (Realizability). A learning agent can access to a model class {(Φ,Ψ)} that contains
the true model, namely, for any h ∈ [H], k ∈ [K], ϕ⋆,k

h ∈ Φ, µ⋆,k
h ∈ Ψ.

While we assume cardinality of the model class to be finite for simplicity, extensions to infinite
classes with bounded statistical complexity are not difficult (Sun et al., 2019).
Assumption 4.2 (Bounded Density). Any model induced by Φ and Ψ has bounded density, i.e. ∀P =
⟨ϕ, µ⟩, ϕ ∈ Φ, µ ∈ Ψ, there exists a constant B ≥ 0 such that max(s,a,s′)∈S×A×S P (s′|s, a) ≤ B.

Assumption 4.3 (Reachability). For each round k and step h, the true transition kernel P ⋆,k
h satisfies

that for any (s, a, s′) ∈ S ×A× S , P ⋆,k
h (s′|s, a) ≥ pmin.

Variation Budgets: We next introduce several measures of nonstationar-
ity of the environment: ∆P =

∑K
k=1

∑H
h=1 max(s,a)∈S×A ∥P ⋆,k+1

h (·|s, a) −
P ⋆,k
h (·|s, a)∥TV ,∆

√
P =

∑K
k=1

∑H
h=1 max(s,a)∈S×A ∥P ⋆,k+1

h (·|s, a) − P ⋆,k
h (·|s, a)∥1/2TV ,∆ϕ =∑K

k=1

∑H
h=1 max(s,a)∈S×A ∥ϕ⋆,k+1

h (s, a)−ϕ⋆,k
h (s, a)∥2,∆π =

∑K
k=1

∑H
h=1 maxs∈S ∥π⋆,k

h (·|s)−
π⋆,k−1
h (·|s)∥TV . These notions are known as variation budgets or path lengths in the literature

of online convex optimization (Besbes et al., 2015; Hazan, 2016; Hall & Willett, 2015) and
nonstationary RL (Fei et al., 2020; Zhong et al., 2021; Zhou et al., 2020). The regret of nonstationary
RL naturally depends on these notions that capture the variations of MDP models over time.

4.3 Theoretical Guarantee

To present our theoretical result for PORTAL, we first discuss technical challenges in our analysis and
the novel tools that we develop. Generally, large nonstationarity of environment can cause significant
errors to MLE, empirical covariance and exploration-driven bonus design for low-rank models. Thus,
different from static low-rank MDPs (Agarwal et al., 2020b; Uehara et al., 2022), we devise several
new techniques in our analysis to capture the errors caused by nonstationarity which we summarize
below.

1. Characterizing nonstationary MLE guarantee. We provide a theoretical ground to support our
design of leveraging history data collected under various different transition kernels in previous
rounds for benefiting the estimation of the current model, which is somewhat surprising. Specifi-
cally, we establish an MLE guarantee of the model estimation error, which features a separation
of variation budgets from a diminishing term as the estimation sample size W increases. Such a
result justifies the usage of data generated by mismatched distributions within a certain window
as long as the variation budgets is mild. Such a separation cannot be shown directly. Instead,
we bridge the bound of model estimation error and the expected value of the ratio of transition
kernels via Hellinger distance, and the latter can be decomposed into the variation budgets and a
diminishing term as the estimation sample size increases.

2. Establishing trajectory-wise uncertainty for estimation error V̂ π
P̂k,b̂k

. To this end, straightforward
combination of our nonstationary MLE guarantee with previous techniques on low-rank MDPs
would yield a coefficient α̃k,W that depends on local variation budgets. Instead, we convert the
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ℓ∞-norm variation budgets ∆P to square-root ℓ∞-norm variation budget ∆
√
P . In this way, the

coefficient no longer depends on the local variation budgets, and the estimation error can be
upper bounded by V̂ π

P̂k,b̂k
plus an error term only depending on the square-root ℓ∞-norm variation

budgets.

3. Error tracking via auxiliary anchor representation. In proving the convergence of average of
V̂ π
P̂k,b̂k

, standard elliptical potential based analysis cannot work, because the representation

ϕ⋆,k in the elliptical potential
∥∥ϕ⋆,k(s, a)

∥∥
(Uk,W

h,ϕ )−1 changes across rounds, where Uk,W
h,ϕ is the

population version of Ûk,W
h . To deal with this challenge, in our analysis, we divide the total K

rounds into blocks with equal length of W rounds. Then for each block, we set an auxiliary anchor
representation. We keep track of the elliptical potential functions using the anchor representation
within each block, and control the errors by using anchor representation via variation budgets.

The following theorem characterizes theoretical performance for PORTAL.
Theorem 4.4. {Mk}Kk=1 is set of low-rank MDPs with dimension d. Under Assumptions 4.1 to 4.3,
set α̃k,W = Õ

(√
A+ d2

)
and λk,W = Õ(d). Let {πk}Kk=1 be the output of PORTAL in Algorithm 1.

For any δ ∈ (0, 1), with probability at least 1− δ, GapAve(K) of PORTAL is at most

Õ
(√

H4d2A
W (A+ d2) +

√
H3dA
K (A+ d2)W 2∆ϕ +

√
H2W 3A

K2 ∆
√
P︸ ︷︷ ︸

(I)

+ H√
τ
+ Hτ

K (∆P +∆π)︸ ︷︷ ︸
(II)

)
.

(3)

We explain the upper bound in Theorem 4.4 as follows. The basic bound as Equation (3) in
Theorem 4.4 contains two parts: the first part (I) captures the estimation error for evaluating
the target policy under the true environment via the estimated value function Q̂k as in line 16 of
Algorithm 1. Hence, part (I) decreases with K and increases with the nonstationarity of transition
kernels and representation functions. Also, part (I) is greatly affected by the window size W , which
is determined by the dataset used to estimate the transition kernels. Typically, W is tuned carefully
based on the variation of environment. If the environment changes significantly, then the samples
far in the past are obsolete and become not very informative for estimating transition kernels. The
second part (II) captures the approximation error arising in finding the optimal policy via the policy
optimization method as in line 8 of Algorithm 1. Due to the nonstationarity of the environment, the
optimal policy keeps changing across rounds, and hence the nonstationarity of optimal policy ∆π

affects the approximation error. Similarly to the window size W in part (I), the policy restart period
τ can also be tuned carefully based on the variation of environment and the optimal policies.
Corollary 4.5. Under the same conditions of Theorem 4.4, if the variation budgets are known,
then we can select the hyper-parameters correspondingly to achieve optimality. Specially, if the
nonstationarity of the environment is moderate, we have

GapAve(K) ≤ Õ(H
11
6 d

5
6A

1
2

(
A+ d2

) 1
2 K− 1

6 (∆
√
P +∆ϕ)

1
6 + 2HK− 1

3 (∆P +∆π)
1
3 ).

If the environment is near stationary, then the best W and τ are K. The GapAve reduces to
Õ(
√
H4d2A(A+ d2)/K), which matches results of stationary environment (Uehara et al., 2022).

Detailed discussions and proofs of Theorem 4.4 and Corollary 4.5 are provided in Appendices A
and B, respectively.

5 Parameter-free Algorithm: Ada-PORTAL

As shown in Theorem 4.4, hyper-parameters W and τ greatly affect the performance of Algorithm 1.
With prior knowledge of variation budgets, the agent is able to optimize the performance as in
Corollary 4.5. However, in practice, variation budgets are unknown to the agent. To deal with this
issue, in this section, we present a parameter-free algorithm called Ada-PORTAL in Algorithm 3,
which is able to tune hyper-parameters without knowing the variation budgets beforehand.

Algorithm 3 is inspired by the BORL method (Cheung et al., 2020). The idea is to use Algorithm 1
as a subroutine and treat the selection of the hyper-parameters such as W and τ as a bandit problem.
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Algorithm 3 Ada-PORTAL (Adaptive Policy Optimization RepresenTAtion Learning)
1: Input: Confidence level δ, number of episodes K, block length M , feasible set of window size

JW and policy restart period Jτ .
2: Initialization: Initialize α, β, γ and {ql,1}l∈[J] as in Equation (4).
3: for block i = 1, . . . , ⌈K/M⌉ do
4: Update the windows size selection distribution {u(k,l),i}(k,l)∈J as in Equation (5).
5: Sample (ki, li) ∈ J from the updated distribution {u(k,l),i}(k,l)∈J , then set Wi = ⌊Mki/JM ⌋

and τi = ⌊M li/Jτ
τ ⌋.

6: for episode k = (i− 1)M + 1, . . . ,min{iM,K} do
7: Run PORTAL with Wi and τi.
8: end for
9: Compute the total reward for block i as Ri(Wi, τi) =

∑min{iM,K}
k=(i−1)M+1 V

k
1 , where V k

1 is
empirical value functions of target policy πk, and update the estimated total reward of running
different epoch sizes {q(k,l),i+1}(k,l)∈J according to Equation (6).

10: end for
11: Output: {πk}Kk=1.

Specifically, Ada-PORTAL divides the entire K rounds into ⌈K/M⌉ blocks with equal length of
M rounds. Then two sets JW and Jτ are specified (see later part of this section), from which the
window size W and the restart period τ for each block are drawn.

For each block i ∈
[
⌈K
M ⌉
]
, Ada-PORTAL treats each element of JW × Jτ as an arm and take it as

a bandit problem to select the best arm for each block. In lines 4 and 5 of Algorithm 3, a master
algorithm is run to update parameters and select the desired arm, i.e., the window size Wi and the
restart period τi. Here we choose EXP3-P (Bubeck & Cesa-Bianchi, 2012) as the master algorithm
and discuss the details later. Then Algorithm 1 is called with input Wi and τi as a subroutine for
the current block i. At the end of each block, the total reward of the current block is computed by
summing up all the empirical value functions of the target policy of each episode within the block,
which is then used to update the parameters for the next block.

We next set the feasible sets and block length of Algorithm 1. Since optimal W and τ in PORTAL
are chosen differently from previous works (Zhou et al., 2020; Cheung et al., 2019; Touati & Vincent,
2020) on nonstationary MDPs due to the low-rank structure, the feasible set here that covers the
optimal choices of W and τ should also be set differently from those previous works using BORL.

MW = d
1
3H

1
3K

1
3 , Mτ = K

2
3 , M = d

1
3H

1
3K

2
3 . JW = ⌊log(MW )⌋, JW =

{M0
W , ⌊M

1
JW

W ⌋, . . . ,MW }, Jτ = ⌊log(Mτ )⌋, Jτ = {M0
τ , ⌊M

1
Jτ
τ ⌋, . . . ,Mτ}, J = JW · Jτ .

Then the parameters of EXP3-P are intialized as follows:

α = 0.95

√
ln J

J⌈K/M⌉
, β =

√
ln J

J⌈K/M⌉
, γ = 1.05

√
J ln J

⌈K/M⌉
, q(k,l),1 = 0, (k, l) ∈ J , (4)

where J = {(k, l) : k ∈ {0, 1, . . . , JW } , l ∈ {0, 1, . . . , Jτ}}. The parameter updating rule is as
follows. For any (k, l) ∈ J , i ∈ ⌈K/M⌉,

u(k,l),i = (1− γ)
exp(αq(k,l),i)∑

(k,l)∈J exp(αq(k,l),i)
+

γ

J
, (5)

where u(k,l),i is a probability over J . From u(k,l),i, the agent samples a desired pair (ki, li) for each
block i, which corresponds to the index of feasible set JW × Jτ and is used to set Wi and τi.

As a last step, Ri(Wi, τi) is rescaled to update q(k,l),i+1.

q(k,l),i+1 = q(k,l),i +
β + 1(k,l)=(ki,li)Ri(Wi, τi)/M

u(k,l),i
. (6)

We next establish a bound on GapAve for Ada-PORTAL.
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Theorem 5.1. Under the same conditions of Theorem 4.4, with probability at least 1− δ, the average
dynamic suboptimality gap of Ada-PORTAL in Algorithm 3 is upper-bounded as GapAve(K) ≤
Õ(H

11
6 d

5
6A

1
2 (A+ d2)

1
2K− 1

6 (∆
√
P +∆ϕ + 1)

1
6 + 2HK− 1

3 (∆P +∆π + 1)
1
3 ).

Comparison with Wei & Luo (2021): It is interesting to compare Ada-PORTAL with an alternative
black-box type of approach to see its advantage. A black-box technique called MASTER was
proposed in Wei & Luo (2021), which can also work with any base algorithm such as PORTAL
to handle unknown variation budgets. Such a combined approach of MASTER+PORTAL turns
out to have a worse GapAve than our Ada-PORTAL in Algorithm 3. To see this, denote ∆ =

∆ϕ +∆
√
P +∆π. The GapAve of MASTER+PORTAL is Õ(K− 1

6∆
1
3 ). Then if variation budgets

are not too small, i.e. ∆ ≥ Õ(1), this GapAve is worse than Ada-PORTAL. See detailed discussion
in Appendix C.2.

6 Conclusion

In the paper, we investigate nonstationary RL under low-rank MDPs. We first propose a notion of
average dynamic suboptimality gap GapAve to evaluate the performance of a series of policies in
a nonstationary environment. Then we propose a sample-efficient policy optimization algorithm
PORTAL and its parameter-free version Ada-PORTAL. We further provide upper bounds on GapAve

for both algorithms. As future work, it is interesting to investigate the impact of various constraints
such as safety requirements in nonstationary RL under function approximations.
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Supplementary Materials

A Proof of Theorem 4.4

We summarize frequently used notations in the following list.

ζk,W
2 log(2|Φ||Ψ|kH/δ)

W
λk,W O(d log(|Φ|min{k,W}TH/δ))
αk,W

√
2WAζk,W + λk,W d = O(

√
4A log (2|Φ||Ψ|kH/δ) + λk,W d)

α̃k,W 5
√
2WAζk,W + λk,W d

βk,W

√
9dA(2WAζk,W + λk,W d) + λk,W d

η
√

L logA
K

∆P
H,I

∑
h∈H

∑
i∈I max(s,a)∈S×A

∥∥∥P ⋆,i+1
h (·|s, a)− P ⋆,i

h (·|s, a)
∥∥∥
TV

∆
√
P

H,I
∑

h∈H
∑

i∈I max(s,a)∈S×A

√∥∥∥P ⋆,i+1
h (·|s, a)− P ⋆,i

h (·|s, a)
∥∥∥
TV

∆ϕ
H,I

∑
h∈H

∑
i∈I max(s,a)∈S×A

∥∥∥ϕ⋆,i+1
h (s, a)− ϕ⋆,i

h (s, a)
∥∥∥
2

∆r
H,I

∑
h∈H

∑
i∈I max(s,a)∈S×A

∥∥∥r⋆,i+1
h (s, a)− r⋆,ih (s, a)

∥∥∥
2

∆π
H,I

∑
h∈H

∑
i∈I maxs∈S

∥∥∥π⋆,i
h (·|s)− π⋆,i−1

h (·|s)
∥∥∥
TV

fk
h (s, a) ∥P̂ k

h (·|s, a)− P ⋆,k
h (·|s, a)∥TV

Uk,W
h,ϕ

∑k−1
i=1∨k−W Esh∼(P⋆,i,π̃i),ah∼U(A)

[
ϕ(sh, ah)(ϕ(sh, ah))

⊤]+ λk,W Id

Ûk,W
h

∑
D̃(k,h+1)

h

ϕ̂h(sh, ah)ϕ̂h(sh, ah)
⊤ + λk,W Id

W k,W
h,ϕ

∑k−1
i=1∨k−W E(sh,ah)∼(P⋆,i,π̃i)

[
ϕ(sh, ah)(ϕ(sh, ah))

⊤]+ λk,W Id

bkh min

{
αk,W

∥∥∥ϕ̂k
h(sh, ah)

∥∥∥
(Uk,W

h,ϕ̂k )
−1

, 1

}
b̂kh min

{
α̃k,W

∥∥∥ϕ̂k
h(sh, ah)

∥∥∥
(Ûk,W

h )−1
, 1

}
Proof Sketch of Theorem 4.4. The proof contains the following three main steps.

Step 1 (Appendix A.1): We first decompose the average dynamic suboptimal gap into three terms as
in Lemma A.1, which can be divided into two parts: one part corresponds to the model estimation
error and the other part corresponds to the performance difference between the target policy chosen
by the agent and optimal policy. We then bound the two parts separately.

Step 2 (Appendix A.2): For the first part corresponding to model estimation error, first by Lem-
mas A.13 and A.15, we show that the model estimation error can be bounded by the average of
the truncated value functions of the bonus terms i.e. 1

K

∑K
k=1 V̂

π
P̂k,b̂k

plus a term w.r.t. variation

budgets. We then upper bound the average of V̂ π
P̂k,b̂k

as in Lemma A.18. To this end, we divide the
total K rounds into blocks with equal length of W and adopt an auxiliary anchor representation for
each block to deal with the challenge arising from time-varying representations when using standard
elliptical potential based methods.

Step 3 (Appendix A.3): For the second part corresponding to the performance difference bound,
similarly to dealing with changing representations, since the optimal policy changes over time, we
adopt an auxiliary anchor policy and decompose the performance difference bound into two terms as
in Equation (10) and bound the two terms separately.

We further note that the above analysis techniques can also be applied to RL problems where model
mis-specification exists, i.e. ϕ⋆,k /∈ Φ, µ⋆,k /∈ Ψ.

Organization of the Proof for Theorem 4.4. Our proof of Theorem 4.4 is organized as follows. In
Appendix A.1, we provide the decomposition of the average dynamic suboptimality gap GapAve

in Equation (7); in Appendix A.2, we bound the first and third terms of GapAve; in Appendix A.3,
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we bound the second term of GapAve, and in Appendix A.4 we combine our results to complete the
proof of Theorem 4.4. We provide all the supporting lemmas in Appendix A.5.

A.1 Average Suboptimaility Gap Decomposition

Lemma A.1. We denote π⋆,k
h (·|s) = argmaxπ V

π
P⋆,k,rk . Then the average dynamic suboptimality

gap has the following decomposition:

GapAve(K) =
1

K

K∑
k=1

V ⋆
P⋆,k,rk − V πk

P⋆,k,rk

=
1

K

K∑
k=1

∑
h∈[H]

E(sh,ah)∼(P⋆,k,π⋆,k)

[{
P ⋆,k
h − P̂ k

h

}
V πk

h+1,P̂k,rk

]

+
1

K

K∑
k=1

∑
h∈H

Esh∼(P⋆,k,π⋆,k)

[
⟨Qπk

h,P̂k,rk
(sh, ·), π⋆,k

h (·|sh)− πk
h(·|sh)⟩

]

+
1

K

K∑
k=1

V πk

P̂k,rk
− V πk

P⋆,k,rk (7)

Proof. For any function f : S × A → R and any (k, h, s) ∈ [K] × [H] × S, define the following
operators:

(J⋆k,hf)(s) = ⟨f(s, ·), π⋆,k
h (·|s)⟩, (Jk,hf)(s) = ⟨f(s, ·), πk

h(·|s)⟩.
We next consider the following decomposition:

V ⋆
P⋆,k,rk − V πk

P⋆,k,rk = V ⋆
P⋆,k,rk − V πk

P̂k,rk︸ ︷︷ ︸
G1

+V πk

P̂k,rk
− V πk

P⋆,k,rk , (8)

The term G1 can be bounded as follows:

G1 = V ⋆
P⋆,k,rk − V πk

P̂k,rk

=
(
J⋆k,1Qπ⋆,k

1,P⋆,k,rk

)
−
(
Jk,1Qπk

1,P̂k,rk

)
= (J⋆k,1(Qπ⋆,k

1,P⋆,k,rk −Qπk

1,P̂k,rk
)) + ((J⋆k,1 − Jk,1)Qπk

1,P̂k,rk
)

= (J⋆k,1(rk1 (s, ·) + P ⋆,k
1 V π⋆,k

2,P⋆,k,rk − (rk1 (s, ·) + P̂ k
1 V

πk

2,P̂k,rk
))) + ((J⋆k,1 − Jk,1)Qπk

1,P̂k,rk
)

= (J⋆k,1(P
⋆,k
1 V π⋆,k

2,P⋆,k,rk − P̂ k
1 V

πk

2,P̂k,rk
)) + ((J⋆k,1 − Jk,1)Qπk

1,P̂k,rk
)

=
(
J⋆k,1

(
P ⋆,k
1

{
V π⋆,k

2,P⋆,k,rk − V πk

2,P̂k,rk

}
+
{
P ⋆,k
1 − P̂ k

1

}
V πk

2,P̂k,rk

))
+ ((J⋆k,1 − Jk,1)Qπk

1,P̂k,rk
)

=
(
J⋆k,1{P⋆,k

1 −P̂k
1 }V πk

2,P̂k,rk

)
+E

s2∼(P⋆,k,π⋆,k)

[
V π⋆,k

2,P⋆,k,rk
(s2)−V πk

2,P̂k,rk
(s2)

]
+((J⋆k,1−Jk,1)Q

πk

1,P̂k,rk
)

=
∑

h∈[H]

E(sh,ah)∼(P⋆,k,π⋆,k)

[{
P ⋆,k
h − P̂ k

h

}
V πk

h+1,P̂k,rk

]
+
∑

h∈[H]

Esh∼(P⋆,k,π⋆,k)

[
⟨Qπk

h,P̂k,rk
(sh, ·), π⋆,k

h (·|sh)− πk
h(·|sh)⟩

]
(9)

Substituting the above result to Equation (8) completes the proof.

A.2 First and Third Terms of GapAve in Equation (7): Model Estimation Error Bound

A.2.1 First Term in Equation (7)

Lemma A.2. With probability at least 1− δ, we have

1

K

K∑
k=1

∑
h∈[H]

E(sh,ah)∼(P⋆,k,π⋆,k)

[{
P ⋆,k
h − P̂ k

h

}
V πk,k

h+1,P̂ ,r

]
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≤O
(

H
K

[√
KdA(A log(|Φ||Ψ|KH/δ)+d2)

[
H
√

Kd
W log(W )+

√
HW 2∆ϕ

[H],[K]

]
+
√
W 3ACB∆

√
P

[H],[K]

])
.

Proof. We proceed the proof by deriving the bound:

1

K

K∑
k=1

∑
h∈[H]

E(sh,ah)∼(P⋆,k,π⋆,k)

[{
P ⋆,k
h − P̂ k

h

}
V πk,k

h+1,P̂ ,r

]

≤ 1

K

K∑
k=1

∑
h∈[H]

E(sh,ah)∼(P⋆,k,π⋆,k)

[
fk
h (sh, ah)

]
=

1

K

K∑
k=1

Ea1∼π⋆,k

[
fk
1 (s1, a1)

]
+

1

K

K∑
k=1

H∑
h=2

E(sh,ah)∼(P⋆,k,π⋆,k)

[
fk
h (sh, ah)

]
=

1

K

K∑
k=1

Ea1∼π⋆,k

[
fk
1 (s1, a1)

]
+

1

K

K∑
k=1

H∑
h=2

E(sh,ah)∼(P̂k,π⋆,k)

[
fk
h (sh, ah)

]
+

1

K

K∑
k=1

H∑
h=2

{
E(sh,ah)∼(P⋆,k,π⋆,k)

[
fk
h (sh, ah)

]
− E(sh,ah)∼(P̂k,π⋆,k)

[
fk
h (sh, ah)

]}
(i)

≤ 2

K

H∑
h=2

K∑
k=1

V̂ π⋆,k

P̂k,b̂k
+ 2

H∑
h=2

[
1

K

K∑
k=1

√
WA

(
ζk,W +

1

2
CB∆P

1,[k−W,k−1]

)

+
1

K

K∑
k=1

h∑
h′=2

√
1

2d
WACB∆P

[h′−1,h′],[k−W,k−1]

]

≤ 2H

K

K∑
k=1

V̂ π̃k

P̂k,b̂k
+

2H

K

[
K∑

k=1

√
WA

(
ζk,W +

1

2
CB∆P

1,[k−W,k−1]

)

+

K∑
k=1

H∑
h=2

√
1

2d
WACB∆P

[h−1,h],[k−W,k−1]

]
(ii)

≤ 2H

K

K∑
k=1

V̂ π̃k

P̂k,b̂k
+

2H

K

K∑
k=1

√
WAζk,W +

2H

K

√
W 3ACB∆

√
P

[H],[K]

(iii)

≤ O
(

H
K

[√
KdA(A log(|Φ||Ψ|KH/δ)+d2)

[
H
√

Kd
W log(W )+

√
HW 2∆ϕ

[H],[K]

]
+
√
W 3ACB∆

√
P

[H],[K]

])
,

where (i) follows from Lemmas A.13 and A.15, (ii) follows because
√
a+ b ≤

√
a+

√
b,∀a, b ≥ 0

and
∑K

k=1 ∆
√
P

{h},[k−W,k−1] ≤ W∆
√
P

{h},[K], and (iii) follows from Lemma A.18.

A.2.2 Third Term in Equation (7)

Lemma A.3. With probability at least 1− δ, we have

1

K

K∑
k=1

[
V πk

P̂k,rk
− V πk

P⋆,k,rk

]
≤O

(
1
K

√
KdA(A log(|Φ||Ψ|KH/δ)+d2)

[
H
√

Kd
W log(W )+

√
HW 2∆ϕ

[H],[K]

]
+
√
W 3ACB∆

√
P

[H],[K]

)
.

Proof. We define the model error as fk
h (sh, ah) =

∥∥∥P ⋆
h (·|sh, ah)− P̂h(·|sh, ah)

∥∥∥
TV

. We next
derive the following bound:

1

K

K∑
k=1

[
V πk

P̂k,rk
− V πk

P⋆,k,rk

]
(i)

≤ 1

K

K∑
k=1

V̂ πk

P̂k,b̂k
+

1

K

K∑
k=1

H∑
h=2

√
3

λW
WACB∆P

{h−1,h},[k−W,k−1]
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+
1

K

K∑
k=1

√
A
(
ζk,W + 2CB∆P

1,[k−W,k−1]

)
(ii)

≤ 1

K

K∑
k=1

V̂ π̃k

P̂k,b̂k
+

1

K

K∑
k=1

H∑
h=2

√
3

λW
WACB∆P

{h−1,h},[k−W,k−1]

+
1

K

K∑
k=1

√
A
(
ζk,W + 2CB∆P

1,[k−W,k−1]

)
(iii)

≤ O

(
1

K

√
KdA(A log(|Φ||Ψ|KH/δ) + d2)

[
H

√
Kd

W
log(W ) +

√
HW 2∆ϕ

[H],[K]

]
+
√
W 3ACB∆

√
P

[H],[K]

)
,

where (i) follows from Lemma A.15, (ii) follows from the definition of π̃k, and (iii) follows from
Lemma A.18.

A.3 Second Term of GapAve in Equation (7): Performance Difference Bound

The second term in Lemma A.1 1
K

∑K
k=1

∑
h∈H Esh∼(P⋆,k,π⋆,k)[⟨Qπk

h,P̂k,rk
(sh, ·), π⋆,k

h (·|sh) −
πk
h(·|sh)⟩] can be further decomposed as

1

K

K∑
k=1

∑
h∈H

Esh∼(P⋆,k,π⋆,k)

[
⟨Qπk

h,P̂k,rk
(sh, ·), π⋆,k

h (·|sh)− πk
h(·|sh)⟩

]

=
1

K

∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

EP⋆,k,π⋆,k

[
⟨Q̂k

h(sh, ·), π
⋆,k
h (·|sh)− πk

h(·|sh)⟩
]

=
1

K

∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

EP⋆,(l−1)τ+1,π⋆,(l−1)τ+1

[
⟨Q̂k

h(sh, ·), π
⋆,k
h (·|sh)− πk

h(·|sh)⟩
]

︸ ︷︷ ︸
(a)

+
1

K

∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

(
EP⋆,k,π⋆,k − EP⋆,(l−1)τ+1,π⋆,(l−1)τ+1

) [
⟨Q̂k

h(sh, ·), π
⋆,k
h (·|sh)− πk

h(·|sh)⟩
]

︸ ︷︷ ︸
(b)

.

(10)

A.3.1 Bound (a) in Equation (10)

We first present the following lemma of the descent result introduced in Cai et al. (2020).

Lemma A.4. For any distribution p⋆ and p supported on A and state s ∈ S, and function Q :
S ×A → [0, H], it holds for a distribution p′ supported on A with p′(·) ∝ p(·) · expη·Q(s,·) that

⟨Q(s, ·), p⋆(·)− p(·)⟩ ≤ 1

2
η +

1

η
[DKL(p

⋆(·)∥p(·))−DKL(p
⋆(·)∥p′(·))] .

Lemma A.5. Term (a) in Equation (10) satisfies the following bound:

∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

EP⋆,(l−1)τ+1,π⋆,(l−1)τ+1

[
⟨Q̂k

h(sh, ·), π
⋆,k
h (·|sh)− πk

h(·|sh)⟩
]

≤ 1

2
ηKH +

1

η
LH logA+ τ∆π

[H],[K].

16



Proof. We first decompose (a) into two parts:

∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

EP⋆,(l−1)τ+1,π⋆,(l−1)τ+1

[
⟨Q̂k

h(sh, ·), π
⋆,k
h (·|sh)− πk

h(·|sh)⟩
]

=
∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

EP⋆,(l−1)τ+1,π⋆,(l−1)τ+1

[
⟨Q̂k

h(sh, ·), π
⋆,(l−1)τ+1
h (·|sh)− πk

h(·|sh)⟩
]

︸ ︷︷ ︸
(I)

+
∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

EP⋆,(l−1)τ+1,π⋆,(l−1)τ+1

[
⟨Q̂k

h(sh, ·), π
⋆,k
h (·|sh)− π

⋆,(l−1)τ+1
h (·|sh)⟩

]
︸ ︷︷ ︸

(II)

I) Bound the term (I)
By Lemma A.4, we have

(I) ≤ 1

2
ηKH +

∑
h∈[H]

1

η

∑
l∈[L]

EP⋆,(l−1)τ+1,π⋆,(l−1)τ+1

×

 lτ∑
k=(l−1)τ+1

[
DKL

(
π⋆,(l−1)τ+1(·|sh)∥πk(·|sh)

)
−DKL

(
π⋆,(l−1)τ+1(·|sh)∥πk+1(·|sh)

)]
≤ 1

2
ηKH +

∑
h∈[H]

1

η

∑
l∈[L]

EP⋆,(l−1)τ+1,π⋆,(l−1)τ+1

×
[
DKL

(
π⋆,(l−1)τ+1(·|sh)∥π(l−1)τ+1(·|sh)

)
−DKL

(
π⋆,(l−1)τ+1(·|sh)∥πlτ+1(·|sh)

)]
≤ 1

2
ηKH +

∑
h∈[H]

1

η

∑
l∈[L]

EP⋆,(l−1)τ+1,π⋆,(l−1)τ+1

[
DKL

(
π⋆,(l−1)τ+1(·|sh)∥π(l−1)τ+1(·|sh)

)]
≤ 1

2
ηKH +

1

η
LH logA,

where the last equation follows because

DKL

(
π⋆,(l−1)τ+1(·|sh)∥π(l−1)τ+1(·|sh)

)
=
∑
a∈A

π⋆,(l−1)τ+1(a|sh) log(A · π(l−1)τ+1(·|sh))

= logA+
∑
a

π⋆,(l−1)τ+1(ah|sh) · log π⋆,(l−1)τ+1(ah|sh)

≤ logA.

II) Bound the term (II)

(II) ≤
∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

EP⋆,(l−1)τ+1,π⋆,(l−1)τ+1

[∥∥∥π⋆,k
h (·|sh)− π

⋆,(l−1)τ+1
h (·|sh)

∥∥∥
TV

]

≤
∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

k∑
t=(l−1)τ+2

EP⋆,(l−1)τ+1,π⋆,(l−1)τ+1

[∥∥∥π⋆,t
h (·|sh)− π⋆,t−1

h (·|sh)
∥∥∥
TV

]

≤
∑
l∈[L]

lτ∑
k=(l−1)τ+1

k∑
t=(l−1)τ+2

∑
h∈[H]

max
s∈S

[∥∥∥π⋆,t
h (·|s)− π⋆,t−1

h (·|s)
∥∥∥
TV

]

≤
∑
l∈[L]

lτ∑
k=(l−1)τ+1

lτ∑
t=(l−1)τ+1

∑
h∈[H]

max
s∈S

[∥∥∥π⋆,t
h (·|s)− π⋆,t−1

h (·|s)
∥∥∥
TV

]
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≤ τ
∑

k∈[K]

∑
h∈[H]

max
s∈S

[∥∥∥π⋆,k
h (·|s)− π⋆,k−1

h (·|s)
∥∥∥
TV

]
≤ τ∆π

[H],[K].

A.3.2 Bound (b) in Equation (10)

Lemma A.6. The term (b) in Equation (10) can be bounded as follows:

∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

(
EP⋆,k,π⋆,k − EP⋆,(l−1)τ+1,π⋆,(l−1)τ+1

) [
⟨Q̂k

h(sh, ·), π
⋆,k
h (·|sh)− πk

h(·|sh)⟩
]

≤ 2Hτ(∆P
[H],[K] +∆π

[H],[K]).

Proof. Denote the indicator function of state sh as I(sh), and then we have

∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

(
EP⋆,k,π⋆,k − EP⋆,(l−1)τ+1,π⋆,(l−1)τ+1

) [
⟨Q̂k

h(sh, ·), π
⋆,k
h (·|sh)− πk

h(·|sh)⟩
]

≤
∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

∫
sh

∣∣∣Pπ⋆,k

P⋆,k(sh)− Pπ⋆,(l−1)τ+1

P⋆,(l−1)τ+1(sh)
∣∣∣ dsh

≤
∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

k∑
t=(l−1)τ+2

∫
sh

∣∣∣Pπ⋆,t

P⋆,t(sh)− Pπ⋆,t−1

P⋆,t−1(sh)
∣∣∣ dsh, (11)

where Pπ
P (s) denotes the visitation probability at state s under model P and policy π.

Consider
∫
sh

∣∣∣Pπ⋆,t

P⋆,t(sh)− Pπ⋆,t−1

P⋆,t−1(sh)
∣∣∣ dsh can be further decomposed as∫

sh

∣∣∣Pπ⋆,t

P⋆,t(sh)− Pπ⋆,t−1

P⋆,t−1(sh)
∣∣∣ dsh

≤
∫
sh

∣∣∣Pπ⋆,t−1

P⋆,t (sh)− Pπ⋆,t−1

P⋆,t−1(sh)
∣∣∣ dsh +

∫
sh

∣∣∣Pπ⋆,t

P⋆,t(sh)− Pπ⋆,t−1

P⋆,t (sh)
∣∣∣ dsh.

For the first term
∫
sh

∣∣∣Pπ⋆,t−1

P⋆,t (sh)− Pπ⋆,t−1

P⋆,t−1(sh)
∣∣∣ dsh,∫

sh

∣∣∣Pπ⋆,t−1

P⋆,t (sh)− Pπ⋆,t−1

P⋆,t−1(sh)
∣∣∣ dsh

≤
∫
sh

h∑
i=1

∣∣∣∣(P ⋆,t
1 )

π⋆,t−1
1 . . . (P ⋆,t

i )
π⋆,t−1
i . . . (P ⋆,t−1

h−1 )
π⋆,t−1
h−1 (sh)

−(P ⋆,t
1 )

π⋆,t−1
1 . . . (P ⋆,t−1

i )
π⋆,t−1
i . . . (P ⋆,t−1

h−1 )
π⋆,t−1
h−1 (sh)

∣∣∣∣ dsh
≤
∫
sh

h∑
i=1

∣∣∣∣∣
∫
s2,...,sh−1

∣∣∣∣(P ⋆,t
i )

π⋆,t−1
i (si+1|si)− (P ⋆,t−1

i )
π⋆,t−1
i (si+1|si)

∣∣∣∣
i−1∏
j=1

(P ⋆,t
j )

π⋆,t−1
j (sj+1|sj)

h−1∏
j=i+1

(P ⋆,t−1
j )

π⋆,t−1
j (sj+1|sj)ds2 . . . dsh−1

∣∣∣∣∣∣ dsh
(i)

≤
∫
sh

h∑
i=1

∣∣∣∣∣
∫
s2,...,si,si+2,...sh−1

∫
si+1

∣∣∣∣(P ⋆,t
i )

π⋆,t−1
i (si+1|si)− (P ⋆,t−1

i )
π⋆,t−1
i (si+1|si)

∣∣∣∣
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max
si+1∈S

i−1∏
j=1

(P ⋆,t
j )

π⋆,t−1
j (sj+1|sj)

h−1∏
j=i+1

(P ⋆,t−1
j )

π⋆,t−1
j (sj+1|sj)ds2 . . . dsh−1

∣∣∣∣∣∣ dsh
(ii)

≤
∫
sh

h∑
i=1

∣∣∣∣∣
∫
s2,...,si−1,si+2,...sh−1

max
si∈S

∫
si+1

∣∣∣∣(P ⋆,t
i )

π⋆,t−1
i (si+1|si)− (P ⋆,t−1

i )
π⋆,t−1
i (si+1|si)

∣∣∣∣
∫
si

max
si+1∈S

i−1∏
j=1

(P ⋆,t
j )

π⋆,t−1
j (sj+1|sj)

h−1∏
j=i+1

(P ⋆,t−1
j )

π⋆,t−1
j (sj+1|sj)ds2 . . . dsh−1

∣∣∣∣∣∣ dsh
(iii)

≤
∫
sh

h∑
i=1

∣∣∣∣∣∣∣∣∣∣
max

(s,a)∈S×A

∥∥∥P ⋆,t
i (·|s, a)− P ⋆,t−1

i (·|s, a)
∥∥∥
TV

∫
s1,...,si

i−1∏
j=1

(P ⋆,t
j )

π⋆,t−1
j (sj+1|sj)ds1 . . . dsi︸ ︷︷ ︸
=1

∫
si+2,...,sh−1

max
si+1∈S

h−1∏
j=i+1

(P ⋆,t−1
j )

π⋆,t−1
j (sj+1|sj)dsi+2 . . . dsh−1︸ ︷︷ ︸

≤1

∣∣∣∣∣∣∣∣∣∣∣
dsh

≤
∑

h∈[H]

max
(s,a)∈S×A

∥∥∥P ⋆,t
i (·|s, a)− P ⋆,t−1

i (·|s, a)
∥∥∥
TV

, (12)

where (i) and (ii) follow from Holder’s inequality, and (iii) follows from the definition of total
variation distance.

Similarly for the second term and from Lemma A.19

∫
sh

∣∣∣Pπ⋆,t

P⋆,t(sh)− Pπ⋆,t−1

P⋆,t (sh)
∣∣∣ dsh ≤

∑
h∈[H]

max
s∈S

∥∥∥π⋆,t
h (·|s)− π⋆,t−1

h (·|s)
∥∥∥
TV

. (13)

Plug Equation (12) and Equation (13) into Equation (11), we have

∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

(
EP⋆,k,π⋆,k − EP⋆,(l−1)τ+1,π⋆,(l−1)τ+1

) [
⟨Q̂k

h(sh, ·), π
⋆,k
h (·|sh)− πk

h(·|sh)⟩
]

≤ 2
∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

k∑
t=(l−1)τ+2

∑
i∈[H]

max
s∈S

∥∥∥π⋆,t
i (·|s)− π⋆,t−1

i (·|s)
∥∥∥
TV

+
∑
i∈[H]

max
(s,a)∈S×A

∥∥∥P ⋆,t
i (·|s, a)− P ⋆,t−1

i (·|s, a)
∥∥∥
TV


≤ 2

∑
h∈[H]

∑
l∈[L]

lτ∑
k=(l−1)τ+1

lτ∑
t=(l−1)τ+1

∑
i∈[H]

(
max
s∈S

∥∥∥π⋆,t
i (·|s)− π⋆,t−1

i (·|s)
∥∥∥
TV

+ max
(s,a)∈S×A

∥∥∥P ⋆,t
i (·|s, a)− P ⋆,t−1

i (·|s, a)
∥∥∥
TV

))
= 2Hτ(∆P

[H],[K] +∆π
[H],[K]).
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A.3.3 Combining (a) and (b) Together

Lemma A.7. Let η =
√

L logA
K , and we have

∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

Eπ⋆,k

[
⟨Q̂πk,k

h (sh, ·), π⋆,k
h (·|sh)− πk

h(·|sh)⟩
]

≤ 2HK
√
logA/τ + 3Hτ(∆P

[H],[K] +∆π
[H],[K]).

Proof. We derive the following bound:

K∑
k=1

∑
h∈H

Esh∼(P⋆,k,π⋆,k)

[
⟨Qπk

h,P̂k,rk
(sh, ·), π⋆,k

h (·|sh)− πk
h(·|sh)⟩

]
(i)

≤ 1

2
ηKH +

1

η
LH logA+ τ∆π

[H],[K] + 2Hτ(∆P
[H],[K] +∆π

[H],[K])

(ii)

≤ 2H
√
KL logA+ 3Hτ(∆P

[H],[K] +∆π
[H],[K])

= 2HK
√
logA/τ + 3Hτ(∆P

[H],[K] +∆π
[H],[K]),

where (i) follows from Lemmas A.5 and A.6, and (ii) follows from the choice of η =
√

L logA
K .

A.4 Proof Theorem 4.4

Proof of Theorem 4.4. Combine Lemmas A.1 to A.3 and A.7, we have

GapAve(K) =
1

K

K∑
k=1

V ⋆
P⋆,k,rk − V πk

P⋆,k,rk

≤O
(

H
K

[√
KdA(A log(|Φ||Ψ|KH/δ)+d2)

[
H
√

Kd
W log(W )+

√
HW 2∆ϕ

[H],[K]

]
+
√
W 3ACB∆

√
P

[H],[K]

])
+O

(
2H√
τ
+

3Hτ

K
(∆P

[H],[K] +∆π
[H],[K])

)
= Õ

(√
H4d2A

W
(A+ d2) +

√
H3dA

K
(A+ d2)W 2∆ϕ

[H],[K] +

√
H2W 3A

K2
∆

√
P

[H],[K]

)
︸ ︷︷ ︸

(I)

+ Õ

(
2H√
τ
+

3Hτ

K
(∆P

[H],[K] +∆π
[H],[K])

)
︸ ︷︷ ︸

(II)

. (14)

A.5 Supporting Lemmas

We first provide the following concentration results, which is an extension of Lemma 39 in Zanette
et al. (2021).

Lemma A.8. There exists a constant λk,W = O(d log(|Φ|min{k,W}TH/δ)), the following in-
equality holds for any k ∈ [K], h ∈ [H], sh ∈ S, ah ∈ A and ϕ ∈ Φ with probability at least
1− δ:

1

5
∥ϕh(s, a)∥(Uk,W

h,ϕ )−1 ≤ ∥ϕh(s, a)∥(Ûk,W
h )−1 ≤ 3 ∥ϕh(s, a)∥(Uk,W

h,ϕ )−1

The following result follows directly from Lemma A.8.
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Corollary A.9. The following inequality holds for any k ∈ [K], h ∈ [H], sh ∈ S, ah ∈ A with
probability at least 1− δ:

min

{
α̃k,W

5

∥∥∥ϕ̂k
h(sh, ah)

∥∥∥
(Uk,W

h,ϕ̂k )
−1

, 1

}
≤ b̂kh(sh, ah) ≤ 3α̃k,W

∥∥∥ϕ̂k
h(sh, ah)

∥∥∥
(Uk,W

h,ϕ̂k )
−1

,

where α̃k,W = 5
√

2WAζk,W + λk,W d.

We next provide the MLE guarantee for nonstationary RL, which shows that under any exploration
policy, the estimation error can be bounded with high probability. Differently from Theorem 21 in
Agarwal et al. (2020b), we capture the nonstationarity in the analysis.

Lemma A.10 (Nonstationary MLE Guarantee). Given δ ∈ (0, 1), under Assumptions 4.1 to 4.3, let

CB =
√

CB

pmin
, and consider the transition kernels learned from line 3 in Algorithm 2. We have the

following inequality holds for any n, h ≥ 2 with probability at least 1− δ/2:

1

W

k−1∑
i=1∨(k−W )

E
sh−1∼(P⋆,i,πi)
ah−1,ah∼U(A)

sh∼P⋆,i(·|sh−1,ah−1)

[
fk
h (sh, ah)

2
]
≤ ζk,W + 2CB∆

P
h,[k−W,k−1], (15)

where, ζk,W := 2 log(2|Φ||Ψ|kH/δ)
W . In addition, for h = 1,

E
a1∼U(A)

[
fk
1 (s1, a1)

2
]
≤ ζk,W + 2CB∆

P
1,[k−W,k−1].

Proof of Lemma A.10. For simplification, we denote x = (s, a) ∈ X ,X = S × A, y = p⋆ ∈
Y,Y = S. The model estimation process in Algorithm 1 can be viewed as a sequential conditional
probability estimation setting with an instance space X and a target space Y , where the conditional
density is given by pi(y|x) = P ⋆,i(y|x) for any i. We are given a dataset D := {(xi, yi)}ki=1∨(k−W )

, where xi ∼ Di = Di(x1:i−1, y1:i−1) and yi ∼ pi(·|xi). Let D′ denote a tangent sequence
{(x′

i, y
′
i)}ki=1∨(k−W ) where x′

i ∼ Di(x1:i−1, y1:i−1) and y′i ∼ pi(·|x′
i). Further, we consider a

function class F = Φ × Ψ : (X × Y) → R and assume that the reachability condition P ⋆,i ∈ F
holds for any i.

We first introduce one useful lemma in Agarwal et al. (2020b) to decouple data.

Lemma A.11 (Lemma 24 of Agarwal et al. (2020b)). Let D ba a dataset with at most W samples
and D′ be the corresponding tangent sequence. Let L(P,D) =

∑k
i=1∨(k−W ) l(P, (xi, yi)) be any

function that decomposes additively across examples where l is any function. Let P̂ (D) be any
estimator taking as input random variable D and with range F . Then

ED

[
exp

(
L(P̂ (D), D)− logED′

[
exp(L(P̂ (D), D′))

]
− log |F|

)]
≤ 1.

Suppose f̂(D) is learned from the following maximum likelihood problem:

P̂ (D) := argmaxP∈F
∑

(xi,yi)∈D

log f(xi, yi). (16)

Combining the Chernoff bound and Lemma A.11, we obtain an exponential tail bound, i.e., with
probability at least 1− δ,

− logED′

[
exp(L(P̂ (D), D′))

]
≤ −L(P̂ (D), D) + log |F|+ log(1/δ). (17)

To proceed, we let L(P,D) =
∑k−1

i=1∨(k−W ) −
1
2 log(P

⋆,k(xi, yi)/P (xi, yi)) where D is a dataset
{(xi, yi)}ki=1∨(k−W )(and D′ = {(x′

i, y
′
i)}ki=1∨(k−W ) is tangent sequence). Then L(P ⋆,k, D) = 0 ≤

L(P̂ ,D).
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Then, the RHS of Equation (17) can be bounded as

RHS of Equation (17) =
k∑

i=1∨(k−W )

1

2
log(P ⋆,k(xi, yi)/P̂ (xi, yi)) + log |F|+ log(1/δ)

≤ log |F|+ log(1/δ) = log (|Φ||Ψ|/δ), (18)

where the inequality follows because P̂ is MLE and from the assumption of reachability, and the last
equality follows because |F| = |Φ||Ψ|.
Consider for any distribution p and q over a domain Z . Then the Hellinger distance H2(p∥q) =∫ (√

p(z)−
√
q(z)

)2
dz satisfies that

H2(p∥q)

=

∫ (√
p(z)−

√
q(z)

)2
dz =

∫
p(z) + q(z)− 2

√
p(z)

√
q(z)dz

= 2

(∫
1−

√
p(z)

√
q(z)dz

)
= 2

(∫
1−

√
p(z)

√
q(z)dz

)
= 2Ez∼q

[
1−

√
p(z)/q(z)

]
.

(19)

Next, the LHS of Equation (17) can be bounded as

LHS of Equation (17)

(i)
= − logED′

exp
 k−1∑

i=1∨(k−W )

−1

2
log

(
P ⋆,k(x′

i, y
′
i)

P̂ (x′
i, y

′
i)

)∣∣∣∣D


=

k−1∑
i=1∨(k−W )

− logED

[
exp

(
−1

2
log

(
P ⋆,k(xi, yi)

P̂ (xi, yi)

))]

=

k−1∑
i=1∨(k−W )

− logED

√ P̂ (xi, yi)

P ⋆,k(xi, yi)


(ii)

≥
k−1∑

i=1∨(k−W )

1− ED

√ P̂ (xi, yi)

P ⋆,k(xi, yi)


=

k−1∑
i=1∨(k−W )

Exi∼D

1− Eyi∼P⋆,i(·|xi)

√ P̂ (xi, yi)

P ⋆,k(xi, yi)


=

k−1∑
i=1∨(k−W )

Exi∼D

1− Eyi∼P⋆,k(·|xi)

√ P̂ (xi, yi)

P ⋆,k(xi, yi)


+

k−1∑
i=1∨(k−W )

Exi∼D

Eyi∼P⋆,k(·|xi)

√ P̂ (xi, yi)

P ⋆,k(xi, yi)

− Eyi∼P⋆,i(·|xi)

√ P̂ (xi, yi)

P ⋆,k(xi, yi)


(iii)

≥ −WCB∆
P
h,[k−W,k−1] +

k−1∑
i=1∨(k−W )

Ex′
i∼Di

[
H2
(
P ⋆,k(·|x′

i)∥P̂ (·|x′
i)
)]

(iv)

≥ −WCB∆
P
h,[k−W,k−1] +

1

2

k−1∑
i=1∨(k−W )

Exi∼Di

[∥∥∥P ⋆,k(xi, ·)− P̂ (xi, ·)
∥∥∥2
TV

]
, (20)

where (i) follows from the above definition of L(f,D), (ii) follows from the fact that 1 − x ≤
− log(x), (iii) follows from the definition of variation budgets and Equation (19), and (iv) follows
from the fact that ∥p(·)− q(·)∥2TV ≤ H2 (p∥q) as indicated in Lemma 2.3 in Tsybakov (2009).
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Combining Equations (17), (18) and (20), we have

1

W

k−1∑
i=1∨(k−W )

E
sh−1∼(P⋆,i,πi)
ah−1,ah∼U(A)

sh∼P⋆,i(·|sh−1,ah−1)

[
fk
h (sh, ah)

2
]
≤ 2CB∆

P
h,[k−W,k−1] +

2 log (|Φ||Ψ|/δ)
W

. (21)

We substitute δ with δ/2nH to ensure Equation (21) holds for any h ∈ [H] and n with probability at
least 1− δ/2, which finishes the proof.

The following lemma extends Lemmas 12 and 13 under infinite discount MDPs under stationary
case in Uehara et al. (2022) to episodic MDPs under nonstationary environment, which captures
nonstationarity in analysis.
Lemma A.12 (Nonstationary Step Back). Let I = [1 ∨ (k −W ), k − 1] be an index set and
{P i

h−1}i∈I = {⟨ϕi
h−1, µ

i
h−1⟩} be a set of generic MDP model, and Π be an arbitrary and possibly

mixture policy. Define an expected Gram matrix as follows. For any ϕ ∈ Φ,

Mh−1,ϕ = λW I +
∑
i∈I

E
sh−1∼(Pi,⋆,Π)

ah−1∼Π

[
ϕh−1(sh−1, ah−1) (ϕh−1(sh−1, ah−1))

⊤
]
.

Further, let f i
h−1(sh−1, ah−1) be the total variation between P i,⋆

h−1 and P i
h−1 at time step h − 1.

Suppose g ∈ S ×A → R is bounded by B ∈ (0,∞), i.e., ∥g∥∞ ≤ B. Then, ∀h ≥ 2,∀policy πh,

E
sh∼Pk

h−1
ah∼πh

[g(sh, ah)|sh−1, ah−1]

≤
∥∥ϕk

h−1(sh−1, ah−1)
∥∥
(M

h−1,ϕk )−1 ×√∑
i∈I AE sh∼(Pi,⋆,Π)

ah∼U
[g(sh,ah)2]+WB2∆P

h−1,I+λk,W dB2+
∑

i∈I AB2 E sh−1∼(Pi,⋆,Π)

ah−1∼Π

[fk
h−1(sh−1,ah−1)2].

Proof. We first derive the following bound:

E
sh∼Pk

h−1
ah∼πh

[g(sh, ah)|sh−1, ah−1]

=

∫
sh

∑
ah

g(sh, ah)π(ah|sh)⟨ϕk
h−1(sh−1, ah−1), µ

k
h−1(sh)⟩dsh

≤
∥∥ϕk

h−1(sh−1, ah−1)
∥∥
(M

h−1,ϕk )−1

∥∥∥∥∥
∫ ∑

ah

g(sh, ah)π(ah|sh)µk
h−1(sh)dsh

∥∥∥∥∥
M

h−1,ϕk

,

where the inequality follows from Cauchy-Schwarz inequality. We further expand the second term in
the RHS of the above inequality as follows.∥∥∥∥∥
∫ ∑

ah

g(sh, ah)π(ah|sh)µk
h−1(sh)dsh

∥∥∥∥∥
2

M
h−1,ϕk

(i)

≤
∑
i∈I

E
sh−1∼(Pi,⋆,Π)

ah−1∼Π

(∫
sh

∑
ah

g(sh, ah)πh(ah|sh)µk(sh)
⊤ϕk(sh−1, ah−1)dsh

)2
+ λk,W dB2

=
∑
i∈I

E
sh−1∼(Pi,⋆,Π)

ah−1∼Π


 E

sh∼Pk
h−1

ah∼πh

[
g(sh, ah)

∣∣∣∣sh−1, ah−1

]2
+ λk,W dB2

(ii)

≤
∑
i∈I

E
sh−1∼(Pi,⋆,Π)

ah−1∼Π

 E
sh∼Pk

h−1
ah∼πh

[
g(sh, ah)

2

∣∣∣∣sh−1, ah−1

]+ λk,W dB2
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(iii)

≤
∑
i∈I

E
sh−1∼(Pi,⋆,Π)

ah−1∼Π

 E
sh∼P

i,⋆
h−1

ah∼πh

[
g(sh, ah)

2

∣∣∣∣sh−1, ah−1

]+ λk,W dB2

+
∑
i∈I

B2 E
sh−1∼(Pi,⋆,Π)

ah−1∼Π

[∥∥∥P i,⋆
h−1(sh−1, ah−1)− P k,⋆

h−1(sh−1, ah−1)
∥∥∥
TV

]
+
∑
i∈I

B2 E
sh−1∼(Pi,⋆,Π)

ah−1∼Π

[
fk
h−1(sh−1, ah−1)

2
]

(iv)

≤
∑

i∈I AE sh∼(Pi,⋆,Π)
ah∼U

[g(sh,ah)
2]+λk,W dB2+WB2∆P

h−1,I+
∑

i∈I B2 E sh−1∼(Pi,⋆,Π)

ah−1∼Π

[fk
h−1(sh−1,ah−1)

2],

where (i) follows from the assumption that ∥g∥∞ ≤ B, (ii) follows from Jensen’s inequality, (iii)
follows because fk

h−1(sh−1, ah−1) is the total variation between P k,⋆
h−1 and P k

h−1 at time step h− 1,
and (iv) follows from importance sampling and the definition of ∆P

h−1,I . This finishes the proof.

Recall that fk
h (s, a) = ∥P̂ k

h (·|s, a)− P ⋆,k
h (·|s, a)∥TV . Using Lemma A.12, we have the following

lemma to bound the expectation of fk
h (s, a) under estimated transition kernels.

Lemma A.13. Denote αk,W =
√
2WAζk,W + λk,W d. For any k ∈ [K], policy π and reward r,

for all h ≥ 2, we have

E(sh,ah)∼(P̂k,π)

[
fk
h (sh, ah)

∣∣∣∣sh−1, ah−1

]
≤min

{
αk,W

∥∥∥ϕ̂k
h−1(sh−1, ah−1)

∥∥∥
(Uk

h−1,ϕ̂k )
−1

, 1

}
+
√

1
2dWACB∆P

[h−1,h],[k−W,k−1],

(22)

and for h = 1, we have

E
a1∼π

[
fk
1 (s1, a1)

]
≤

√
A

(
ζk,W +

1

2
CB∆P

1,[k−W,k−1]

)
. (23)

Proof. For h = 1, we have

E
a1∼π

[
fk
1 (s1, a1)

] (i)

≤
√

E
a1∼π

[
fk
1 (s1, a1)

2
] (ii)

≤
√
A
(
ζk,W + 2CB∆P

1,[k−W,k−1]

)
,

where (i) follows from Jensen’s inequality, and (ii) follows from the importance sampling.

Then for h ≥ 2, we derive the following bound:

E
(sh,ah)∼(P̂k,π)

[
fk
h (sh, ah)

∣∣∣∣sh−1, ah−1

]

(i)

≤ E
ah−1∼π

∥∥∥ϕ̂k
h−1(sh−1, ah−1)

∥∥∥
(Uk

h−1,ϕ̂k )
−1

×

A

k−1∑
i=1∨(k−W )

E
sh−1∼(P⋆,i,πi)
ah−1,ah∼U(A)

sh∼P⋆,i(·|sh−1,ah−1)

[
fk
h (sh, ah)

2
]

+W∆P
h−1,[k−W,k−1] + λk,W d+A

k−1∑
i=1∨(k−W )

E
sh−2∼(P⋆,i,πi)

ah−2,ah−1∼U(A)

sh−1∼P⋆,i(·|sh−2,ah−2)

[
fk
h−1(sh−1, ah−1)

2
]


− 1
2


(ii)

≤ Eah−1∼π

[√
WA(ζk,W+2CB∆P

h,[k−W,k−1]
)+WA(ζk,W+2CB∆P

h−1,[k−W,k−1]
)+W∆P

h−1,[k−W,k−1]
+λk,W d
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×
∥∥∥ϕ̂k

h−1(sh−1, ah−1)
∥∥∥
(Uk

h−1,ϕ̂k )
−1

]
(iii)
= E

ah−1∼π

[
αk,W

∥∥∥ϕ̂k
h−1(sh−1, ah−1)

∥∥∥
(Uk

h−1,ϕ̂k )
−1

]
+

√
3

λW
WACB∆P

{h−1,h},[k−W,k−1],

where (i) follows from Lemma A.12 and because |fk
h (sh, ah)| ≤ 1; specially the first term inside

the square root follows from the definition of Uk
h−1,ϕ̂k

, the third term inside the square root follows

from the importance sampling; (ii) follows from Lemma A.10, and (iii) follows because
√
a+ b ≤

√
a+

√
b,∀a, b ≥ 0 and

∥∥∥ϕ̂k
h−1(sh−1, ah−1)

∥∥∥
(Uk

h−1,ϕ̂k )
−1

≤
√

1
λW

.

The next lemma follows a similar argument to that of Lemma A.13 with the only difference being the
expectation over which fk

h (sh, ah) takes.

Lemma A.14. Denote αk,W =
√
2WAζk,W + λk,W d. For any k ∈ [K], policy π and reward r,

for all h ≥ 2, we have

E
(sh,ah)∼(P⋆,k,π)

[
fk
h (sh, ah)

∣∣∣∣sh−1, ah−1

]
≤min

{
αk,W

∥∥∥ϕ⋆,k
h−1(sh−1, ah−1)

∥∥∥
(Uk

h−1,ϕ⋆,k )
−1

, 1

}
+
√

1
2dWACB∆P

{h−1,h},[k−W,k−1],

(24)

and for h = 1, we have

E
a1∼π

[
fk
1 (s1, a1)

]
≤

√
A

(
ζk,W +

1

2
CB∆P

1,[k−W,k−1]

)
. (25)

Proof. For h = 1,

E
a1∼π

[
fk
1 (s1, a1)

] (i)

≤
√

E
a1∼π

[
fk
1 (s1, a1)

2
] (ii)

≤

√
A

(
ζk,W +

1

2
CB∆P

1,[k−W,k−1]

)
,

where (i) follows from Jensen’s inequality, and (ii) follows from the importance sampling.

Then for h ≥ 2, we derive the following bound:

E
(sh,ah)∼(P⋆,k,π)

[
fk
h (sh, ah)

∣∣∣∣sh−1, ah−1

]
(i)

≤Eah−1∼π

∥ϕ⋆,k
h−1(sh−1,ah−1)∥

(Uk
h−1,ϕ⋆,k

)−1×
√√√√√A

∑k−1
i=1∨(k−W ) E sh−1∼(P⋆,i,πi)

ah−1,ah∼U(A)

sh∼P⋆,k(·|sh−1,ah−1)

[fk
h (sh,ah)2]+λk,W d


(ii)

≤ Eah−1∼π

[√
wA(ζk,W+ 1

2CB∆P
h,[k−W,k−1]

)+wA(ζk,W+ 1
2CB∆P

h−1,[k−W,k−1]
)+ACB∆P

h,[k−W,k−1]
+λk,W d

×
∥∥∥ϕ⋆,k

h−1(sh−1, ah−1)
∥∥∥
(Uk

h−1,ϕ⋆,k )
−1

]
(iii)
= E

ah−1∼π

[
αk,W

∥∥∥ϕ⋆,k
h−1(sh−1, ah−1)

∥∥∥
(Uk

h−1,ϕ⋆,k )
−1

]
+

√
1

2d
WACB∆P

[h−1,h],[k−W,k−1],

where (i) follows from Lemma A.12 and because |fk
h (sh, ah)| ≤ 1, the first term inside the square

root follows from the definition of Uk
h−1,ϕ̂k

, the third term inside the square root follows from the
importance sampling, and (ii) follows from Lemma A.10.

The proof is completed by noting that |fk
h (sh, ah)| ≤ 1.
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The following lemma is a direct application of Lemma A.13. By this lemma, we can show that the
difference of value functions can be bounded by truncated value function plus a variation term.
Lemma A.15 (Bounded difference of value functions). For k ∈ [K], δ ≥ 0 any policy π and reward
r, with probability at least 1− δ, we have∣∣∣V π

P⋆,k,r − V π
P̂k,r

∣∣∣
≤ V̂ π

P̂k,b̂k
+

H∑
h=2

√
3

λW
WACB∆P

{h−1,h},[k−W,k−1] +

√
A
(
ζk,W + 2CB∆P

1,[k−W,k−1]

)
.

(26)

Proof. (1): We first show that
∣∣∣V π

P⋆,k,r − V π
P̂k,r

∣∣∣ ≤ V̂ π
P̂k,fk

.

Recall the definition of the estimated value functions V̂ π
h,P̂k,r

(sh) and Q̂π
h,P̂k,r

(sh, ah) for policy π:

Q̂π
h,P̂k,r

(sh, ah) = min
{
1, rh(sh, ah) + P̂ k

h V̂
π
h+1,P̂k,r

(sh, ah)
}
,

V̂ π
h,P̂k,r

(sh) = E
π

[
Q̂π

h,P̂k,r
(sh, ah)

]
.

We develop the proof by backward induction.

When h = H + 1, we have
∣∣∣V π

H+1,P⋆,k,r(sH+1)− V π
H+1,P̂k,r

(sH+1)
∣∣∣ = 0 = V̂ π

H+1,P̂k,fk
(sH+1).

Suppose that for h+ 1,
∣∣∣V π

h+1,P⋆,k,r(sh+1)− V π
h+1,P̂k,r

(sh+1)
∣∣∣ ≤ V̂ π

h+1,P̂k,fk
(sh+1) holds for any

sh+1.

Then, for h, by Bellman equation, we have,∣∣∣∣Qπ
P⋆,k,r(sh, ah)−Qπ

h,P̂k,r
(sh, ah)

∣∣∣∣
=

∣∣∣∣P ⋆,k
h V π

h+1,P⋆,k,r(sh, ah)− P̂ k
hV

π
h,P̂k,r

(sh, ah)

∣∣∣∣
=

∣∣∣∣P̂ k
h

(
V π
h+1,P⋆,k,r − V π

h+1,P̂k,r

)
(sh, ah) +

(
P ⋆,k
h − P̂ k

h

)
V π
h,P⋆,k,r(sh, ah)

∣∣∣∣
(i)

≤ min

{
1, fk

h (sh, ah) + P̂ k
h

∣∣∣∣V π
h+1,P⋆,k,r − V π

h+1,P̂k,r

∣∣∣∣(sh, ah)}
(ii)

≤ min

{
1, fk

h (sh, ah) + P̂ k
h V̂

π
h+1,P̂k,fk(sh, ah)

}
= Q̂π

h,P̂k,fk(sh, ah), (27)

where (i) follows because
∥∥∥P̂ k

h (·|sh, ah)− P ⋆,k
h (·|sh, ah)

∥∥∥
TV

= fk
h (sh, ah) and the value function

is at most 1, and (ii) follows from the induction hypothesis.

Then, by the definition of V̂ π
h,P̂k,r

(sh), we have∣∣∣∣V π
h,P̂k,r

(sh)− V π
h,P⋆,k,r(sh)

∣∣∣∣
=

∣∣∣∣Eπ [Qπ
h,P̂k,r

(sh, ah)
]
− E

π

[
Qπ

h,P⋆,k,r(sh, ah)
] ∣∣∣∣

≤ E
π

[∣∣∣∣Qπ
h,P̂k,r

(sh, ah)−Qπ
h,P⋆,k,r(sh, ah)

∣∣∣∣]
(i)

≤ E
π

[
Q̂π

h,P̂k,fk(sh, ah)
]
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= V̂ π
h,P̂k,fk(sh),

where (i) follows from Equation (27).

Therefore, by induction, we have ∣∣∣V π
P⋆,k,r − V π

P̂k,r

∣∣∣ ≤ V̂ π
P̂k,fk .

(2): Then we prove that

V̂ π
P̂k,fk ≤ V̂ π

P̂k,b̂k
+

H∑
h=2

√
3

λW
WACB∆P

{h−1,h},[k−W,k−1] +

√
A
(
ζk,W + 2CB∆P

1,[k−W,k−1]

)
.

By Lemma A.13 and the fact that the total variation distance is upper bounded by 1, ∀h ≥ 2, with
probability at least 1− δ/2, we have

E
P̂k,π

[
fk
h (sh, ah)

∣∣∣∣sh−1

]
≤ E

π

[
min

(
αk,W

∥∥∥ϕ̂k
h−1(sh−1, ah−1)

∥∥∥
(Uk

h−1,ϕ̂k )
−1

, 1

)]

+

√
3

λW
WACB∆P

{h−1,h},[k−W,k−1]. (28)

Similarly, when h = 1,

E
a1∼π

[
fk
1 (s1, a1)

]
≤
√

A
(
ζk,W + 2CB∆P

1,[k−W,k−1]

)
. (29)

Based on Corollary A.9, Equation (28) and α̃k,W = 5αk,W , we have

E
π

[
b̂kh(sh, ah)

∣∣∣∣sh]+√ 3

λW
WACB∆P

{h,h+1},[k−W,k−1]

≥ E
π

[
min

(
αk,W

∥∥∥ϕ̂k
h(sh, ah)

∥∥∥
(Uk

h,ϕ̂k )
−1

, 1

)]
+

√
3

λW
WACB∆P

{h−1,h},[k−W,k−1]

≥ E
P̂k,π

[
fk
h+1(sh+1, ah+1)

∣∣∣∣sh] . (30)

For the base case h = H , we have

E
P̂k,π

[
V̂ π
H,P̂k,fk(sH)

∣∣∣∣sh−1, ah−1

]
= E

P̂k,π

[
fk
H(sH , aH)

∣∣∣∣sH−1

]
≤ E

π

[
bkH−1(sH−1, aH−1)|sH−1

]
+

√
3

λW
WACB∆P

{H−1,H},[k−W,k−1]

≤ min

{
1,E

π

[
Q̂π

H−1,P̂k,b̂k
(sH−1, aH−1)

∣∣∣∣sh−1, ah−1

]}
+

√
3

λW
WACB∆P

{H−1,H},[k−W,k−1]

= V̂ π
H−1,P̂k,b̂k

(sH−1) +

√
3

λW
WACB∆P

{H−1,H},[k−W,k−1].

For any step h + 1, h ≥ 2, assume that EP̂k,π

[
V̂ π
h+1,P̂k,fk

(sh+1)

∣∣∣∣sh] ≤ V̂ π
h,P̂k,b̂k

(sh) +∑H
h′=h+1

√
3

λW
WACB∆P

{h′−1,h′},[k−W,k−1] holds . Then, by Jensen’s inequality, we obtain

E
P̂k,π

[
V̂ π
h,P̂k,fk(sh)

∣∣∣∣sh−1, ah−1

]
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≤ min

{
1, E

P̂k,π

[
fk
h (sh, ah) + P̂ k

h V̂
π
h+1,P̂k,fk(sh, ah)

∣∣∣∣sh−1, ah−1

]}
(i)

≤ min

{
1,E

π

[
b̂kh−1(sh−1, ah−1)

]
+

√
3

λW
WACB∆P

{h−1,h},[k−W,k−1]

+ E
P̂k,π

[
E

P̂k,π

[
V̂ π
h+1,P̂k,fk(sh+1)

∣∣∣∣sh] ∣∣∣∣sh−1, ah−1

]}
(ii)

≤ min

{
1,E

π

[
bkh−1(sh−1, ah−1)

]
+

√
3

λW
WACB∆P

{h−1,h},[k−W,k−1]

+ E
P̂k,π

[
V̂ π
h,P̂k,b̂k

(sh)

∣∣∣∣sh−1, ah−1

]
+

H∑
h′=h+1

√
3

λW
WACB∆P

{h′−1,h′},[k−W,k−1]

}

= min

{
1,E

π

[
Q̂π

h−1,P̂k,b̂k
(sh−1, ah−1)

]}
+

H∑
h′=h

√
3

λW
WACB∆P

{h′−1,h′},[k−W,k−1]

= V̂ π
h−1,P̂k,b̂k

(sh−1) +

H∑
h′=h

√
3

λW
WACB∆P

{h′−1,h′},[k−W,k−1],

where (i) follows from Equation (30), and (ii) is due to the induction hypothesis.

By induction, we conclude that

V̂ π
P̂k,fk = E

π

[
f
(s)
1 (s1, a1)

]
+ E

P̂k,π

[
V̂ π
2,P̂k,fk(s2)

∣∣∣∣s1]

≤
√
A
(
ζk,W + 2CB∆P

1,[k−W,k−1]

)
+ V̂ π

P̂k,b̂k
+

H∑
h′=2

√
3

λW
WACB∆P

{h′−1,h′},[k−W,k−1].

Combining Step 1 and Step 2, we conclude that∣∣∣V π
P∗,r − V π

P̂k,r

∣∣∣
≤ V̂ π

P̂k,b̂k
+

√
A
(
ζk,W + 2CB∆P

1,[k−W,k−1]

)
+

H∑
h′=2

√
3

λW
WACB∆P

{h′−1,h′},[k−W,k−1].

Similarly to Lemma A.15, we can prove that the total variance distance is bounded by V̂ π̃k

P̂k,b̂k
plus a

variation budget term as follows. Lemmas A.15 and A.16 together justify the choice of exploration
policy for the off-policy exploration.
Lemma A.16. Fix δ ∈ (0, 1), for any h ∈ [H], k ∈ [K], any policy π, with probability at least
1− δ/2,

E
sh∼(P⋆,k,π)

sh∼π

[
fk
h (sh, ah)

]
≤ 2

(
V̂ π
P̂k,b̂k

+

H∑
h=2

√
3

λW
WACB∆P

{h−1,h},[k−W,k−1] +

√
A
(
ζk,W + 2CB∆P

1,[k−W,k−1]

))
.

Proof. Fix any policy π, for any h ≥ 2, we have

E
sh∼(P̂k,π)

ah∼π

[
Q̂π

h,P̂k,b̂k
(sh, ah)

]
= E

sh−1∼(P̂k,π)
ah−1∼π

[
P̂ k
h V̂

π
h,P̂k,b̂k

(sh−1, ah−1)
]
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≤ E
sh−1∼(P̂k,π)

ah−1∼π

[
min

{
1, b̂kh−1(sh−1, ah−1) + P̂ k

h−1V̂
π
h,P̂k,b̂k

(sh−1, ah−1)
}]

= E
sh−1∼(P̂k,π)

ah−1∼π

[
Q̂π

h−1,P̂k,b̂k
(sh−1, ah−1)

]
≤ . . .

≤ E
a1∼π

[
Q̂π

1,P̂k,b̂k
(s1, a1)

]
= V̂ π

P̂k,b̂k
. (31)

Hence, for h ≥ 2, we have

E
sh∼(P̂k,π)

ah∼π

[
fk
h (sh, ah)

] (i)

≤ E
sh−1∼(P̂k,π)

ah−1∼π

[
b̂kh−1(sh−1, ah−1)

]
+

√
3

λW
WACB∆P

{h−1,h},[k−W,k−1]

(ii)

≤ E
sh−1∼(P̂k,π)

ah−1∼π

[
Q̂π

h−1,P̂k,b̂k
(sh−1, ah−1)

]
+

√
3

λW
WACB∆P

{h−1,h},[k−W,k−1]

(iii)

≤ V̂ π
P̂k,b̂k

+

√
3

λW
WACB∆P

{h−1,h},[k−W,k−1], (32)

where (i) follows from Equation (30), (ii) follows from the definition of Q̂π
h−1,P̂k,b̂k

(sh−1, ah−1),
and (iii) follows from Equation (31).

E
sh∼(P⋆,k,π)

sh∼π

[
fk
h (sh, ah)

]

≤ E
sh∼(P̂k,π)

ah∼π

[
fk
h (sh, ah)

]
+

∣∣∣∣∣∣ E
sh∼(P⋆,k,π)

ah∼π

[
fk
h (sh, ah)

]
− E

sh∼(P̂k,π)
ah∼π

[
fk
h (sh, ah)

]∣∣∣∣∣∣
≤2

(
V̂ π
P̂k,b̂k

+

H∑
h=2

√
3

λW
WACB∆P

{h−1,h},[k−W,k−1] +

√
A
(
ζk,W + 2CB∆P

1,[k−W,k−1]

))
,

where the last equation follows from Equation (32) and Lemma A.15.

Lemma A.17. Denote α̃k,W = 5αk,W , αk,W =
√

2WAζk,W + λk,W d, and βk,W =√
9dAα2

k,W + λk,W d. For any k ∈ [K], policy π and reward r, for all h ≥ 2, we have

E
(sh,ah)∼(P⋆,k,π)

[
b̂kh(sh, ah)

∣∣∣∣sh−1, ah−1

]
≤βk,W

∥∥∥ϕ⋆,k
h−1(sh−1, ah−1)

∥∥∥
(Wk

h−1,ϕ⋆,k )
−1

+

√
A

d
∆

√
P

h−1,[k−W,k−1], (33)

and for h = 1, we have

E
a1∼π

[
b̂k1(s1, a1)

]
≤

√
9Adα2

k,W

W
. (34)

Proof. For h = 1,

E
a1∼π

[
b̂k1(s1, a1)

] (i)

≤
√

E
a1∼π

[
b̂k1(s1, a1)

2
] (ii)

≤

√
9Adα2

k,W

W
,

where (i) follows from Jensen’s inequality, and (ii) follows from the importance sampling.
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Then for h ≥ 2, we first notice that
k−1∑

i=1∨(k−W )

E
sh∼(P⋆,i,πi)

ah∼U(A)

[
b̂kh(sh, ah)

2
]

=

k−1∑
i=1∨(k−W )

E
sh∼(P⋆,i,πi)

ah∼U(A)

[
α2
k,W

∥∥∥ϕ̂k
h(sh, ah)

∥∥∥2
(Ûk

h )−1

]

≤
k−1∑

i=1∨(k−W )

E
sh∼(P⋆,i,πi)

ah∼U(A)

[
9α2

k,W

∥∥∥ϕ̂k
h(sh, ah)

∥∥∥2
(Uk

h,ϕ̂k )
−1

]

≤ 9α2
k,W tr

 k−1∑
i=1∨(k−W )

E
sh∼(P⋆,i,πi)

ah∼U(A)

[
ϕ̂k
h(sh, ah)ϕ̂

k
h(sh, ah)

⊤
]
(Uk

h,ϕ̂k)
−1


≤ 9α2

k,W tr (Id) = 9dα2
k,W , (35)

Because
√
a+ b ≤

√
a +

√
b and for any k ∈ [K],

h ∈ [H],
√
max(s,a)∈S×A

∥∥∥P ⋆,k+1
h (·|s, a)− P ⋆,k

h (·|s, a)
∥∥∥
TV

=

max(s,a)∈S×A

√∥∥∥P ⋆,k+1
h (·|s, a)− P ⋆,k

h (·|s, a)
∥∥∥
TV

, then for any H, I, we can convert ℓ∞

variation budgets to square-root ℓ∞ variation budgets.√
∆P

H,I ≤ ∆
√
P

H,I . (36)

Recall that W k
h,ϕ =

∑k−1
i=1∨(k−W ) E(sh,ah)∼(P⋆,i,πi)

[
ϕh(sh, ah)ϕh(sh, ah)

⊤]+λk,W Id. We derive
the following bound:

E
(sh,ah)∼(P⋆,k,π)

[
b̂kh(sh, ah)

∣∣∣∣sh−1, ah−1

]
(i)

≤ E
ah−1∼π

[∥∥∥ϕ⋆,k
h−1(sh−1, ah−1)

∥∥∥
(Wk

h−1,ϕ⋆,k )
−1

×

√√√√√√√A

k−1∑
i=1∨(k−W )

E
sh−1,ah−1∼(P⋆,i,πi)

sh∼P
(⋆,i)
h−1

(·|sh−1,ah−1)

ah∼U(A)

[
b̂kh(sh, ah)

2
]
+A∆P

h−1,[k−W,k−1] + λk,W d


(ii)

≤ E
ah−1∼π

[∥∥∥ϕ⋆,k
h−1(sh−1, ah−1)

∥∥∥
(Wk

h−1,ϕ⋆,k )
−1

×
√
9dAα2

k,W + λk,W d

]
+

√
A

d
∆P

h−1,[k−W,k−1]

(iii)

≤ E
ah−1∼π

[∥∥∥ϕ⋆,k
h−1(sh−1, ah−1)

∥∥∥
(Wk

h−1,ϕ⋆,k )
−1

×
√
9dAα2

k,W + λk,W d

]
+

√
A

d
∆

√
P

h−1,[k−W,k−1]

where (i) follows from Lemma A.12, (ii) follows from Equation (35), and (iii) follows Equation (36).

Before next lemma, we first introduce a notion related to matrix norm. For any matrix A, ∥A∥2
denotes the matrix norms induced by vector ℓ2-norm. Note that ∥A∥2 is also known as the spectral
norm of matrix A and is equal to the largest singular value of matrix A.

Lemma A.18. With probability at least 1− δ, the summation of the truncated value functions V̂ πk

P̂k,b̂k

under exploration policies {π̃k}k∈[K] is bounded by:
K∑

k=1

V̂ π̃k

P̂k,b̂k
≤ O

(√
KdA(A log(|Φ||Ψ|KH/δ) + d2)

[
H

√
Kd

W
log(W ) +

√
HW 2∆ϕ

[H],[K]

]
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+
√
W 3ACB∆

√
P

[H],[K]

)
.

Proof. For any k ∈ [K], any policy π, we have

V̂ π
P̂k,b̂k

− V π
P⋆,k,b̂k

≤ E
π

[
P̂ k
1 V̂

π
2,P̂k,b̂k

(s1, a1)− P ⋆,k
1 V π

2,P⋆,k,b̂k
(s1, a1)

]
= E

π

[(
P̂ k
1 − P ⋆,k

1

)
V̂ π
2,P̂k,b̂k

(s1, a1) + P ⋆,k
1

(
V̂ π
2,P̂k,b̂k

− V π
2,P⋆,k,b̂k

)
(s1, a1)

]
≤ E

π

[
fk
1 (s1, a1) + P ⋆,k

1

(
V̂ π
2,P̂k,b̂k

− V π
2,P⋆,k,b̂k

)]
≤ E

π

[
fk
1 (s1, a1)

]
+ E

P⋆,k,π

[
V̂ π
2,P̂k,b̂k

− V π
2,P⋆,k,b̂k

]
≤ E

P⋆,k,π

[
H∑

h=1

fk(sh, ah)

]
= V π

P⋆,k,fk , (37)

As a result, we have
K∑

k=1

V̂ π
P̂k,b̂k

≤
K∑

k=1

V π
P⋆,k,fk +

K∑
k=1

V π
P⋆,k,b̂k

.

Step 1: We first bound
∑K

k=1 V
π̃k

P⋆,k,fk via an auxiliary anchor representation.

Recall that Uk,W
h,ϕ⋆,k =

∑k−1
i=1∨(k−W ) E sh∼(P⋆,i,π̃i)

ah∼U(A)

[
ϕ⋆,k
h (sh, ah)ϕ

⋆,k
h (sh, ah)

⊤
]
+ λk,W Id and we

define Ũk,W,t
h,ϕ⋆,k =

∑k−1
i=tW+1 E sh∼(P⋆,i,π̃i)

ah∼U(A)

[
ϕ⋆,k
h (sh, ah)ϕ

⋆,k
h (sh, ah)

⊤
]
+λk,W Id. We first note that

for any h, the following equation holds.∑
k∈[K]

E(sh,ah)∼(P⋆,k,π̃k)

[
αk,W

∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥
(Uk

h,ϕ⋆,k )
−1

]

=

√√√√√∑
k∈[K]

α2
k,W

∑
k∈[K]

E(sh,ah)∼(P⋆,k,π̃k)

[∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥
(Uk,W

h,ϕ⋆,k )
−1

]2

=

√√√√√∑
k∈[K]

α2
k,W

⌊K/W⌋∑
t=0

(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥
(Uk,W

h,ϕ⋆,k )
−1

]2
(38)

The ϕ⋆,k and U in Equation (38) both change with the round index k. To deal with such an
issue, we divide the entire round into ⌊K

W ⌋ + 1 blocks with an equal length of W . For each
block t ∈ {0, . . . , ⌊K

W ⌋}, we select an auxiliary anchor representation ϕ⋆,tW+1 and decompose
Equation (38) as follows. We first derive the following equation:

(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥2
(Uk,W

h,ϕ⋆,k )
−1

]

−
(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[∥∥∥ϕ⋆,tW+1
h (sh, ah)

∥∥∥2
(Uk,W

h,ϕ⋆,tW+1 )
−1

]

=

(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥2
(Uk,W

h,ϕ⋆,k )
−1

− ∥ϕ⋆
h(sh, ah)∥

2
(Uk,W

h,ϕ⋆,tW+1 )
−1

]

=

(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥2
(Uk,W

h,ϕ⋆,k )
−1

−
∥∥∥ϕ⋆,k

h (sh, ah)
∥∥∥2
(Uk,W

h,ϕ⋆,tW+1 )
−1
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+
∥∥∥ϕ⋆,k

h (sh, ah)
∥∥∥2
(Uk,W

h,ϕ⋆,tW+1 )
−1

−
∥∥∥ϕ⋆,tW+1

h (sh, ah)
∥∥∥2
(Uk,W

h,ϕ⋆,tW+1 )
−1

]
.

=

(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥2
(Uk,W

h,ϕ⋆,k )
−1

−
∥∥∥ϕ⋆,k

h (sh, ah)
∥∥∥2
(Uk,W

h,ϕ⋆,tW+1 )
−1

]
︸ ︷︷ ︸

(I)

+

(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥2
(Uk,W

h,ϕ⋆,tW+1 )
−1

−
∥∥∥ϕ⋆,tW+1

h (sh, ah)
∥∥∥2
(Uk,W

h,ϕ⋆,tW+1 )
−1

]
︸ ︷︷ ︸

(II)

.

(39)

For term (II), we have

(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥2
(Uk,W

h,ϕ⋆,tW+1 )
−1

−
∥∥∥ϕ⋆,tW+1

h (sh, ah)
∥∥∥2
(Uk,W

h,ϕ⋆,tW+1 )
−1

]
≤
∑(t+1)W

k=tW+1 E
(sh,ah)∼(P⋆,k,π̃k)

[
ϕ⋆,k
h (sh,ah)

⊤(Uk,W

h,ϕ⋆,tW+1 )
−1ϕ⋆,k

h (sh,ah)−ϕ⋆,k
h (sh,ah)

⊤(Uk,W

h,ϕ⋆,tW+1 )
−1ϕ⋆,tW+1

h (sh,ah)

+ ϕ⋆,k
h (sh, ah)

⊤(Uk,W
h,ϕ⋆,tW+1)

−1ϕ⋆,tW+1
h (sh, ah)− ϕ⋆,tW+1

h (sh, ah)
⊤(Uk,W

h,ϕ⋆,tW+1)
−1ϕ⋆,tW+1

h (sh, ah)
]

(i)

≤
(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥
2

∥∥∥(Uk,W
h,ϕ⋆,tW+1)

−1
∥∥∥
2

∥∥∥ϕ⋆,k
h (sh, ah)− ϕ⋆,tW+1

h (sh, ah)
∥∥∥
2

+
∥∥∥ϕ⋆,k

h (sh, ah)− ϕ⋆,tW+1
h (sh, ah)

∥∥∥
2

∥∥∥(Uk,W
h,ϕ⋆,tW+1)

−1
∥∥∥
2

∥∥∥ϕ⋆,tW+1
h (sh, ah)

∥∥∥
2

]
≤

(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[
2

λW

∥∥∥ϕ⋆,k
h (sh, ah)− ϕ⋆,tW+1

h (sh, ah)
∥∥∥
2

]
≤ 2W

λW
∆ϕ

{h},[tW+1,t(W+1)−1], (40)

where (i) follows from the property of the matrix norms induced by vector ℓ2-norm.
For term (I), we have

(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥2
(Uk,W

h,ϕ⋆,k )
−1

−
∥∥∥ϕ⋆,k

h (sh, ah)
∥∥∥2
(Uk,W

h,ϕ⋆,tW+1 )
−1

]

=

(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[
ϕ⋆,k
h (sh, ah)

⊤
(
(Uk,W

h,ϕ⋆,k)
−1 − (Uk,W

h,ϕ⋆,tW+1)
−1
)
ϕ⋆,k
h (sh, ah)

]

=

(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[
ϕ⋆,k
h (sh, ah)

⊤(Uk,W
h,ϕ⋆,k)

−1
(
Uk,W
h,ϕ⋆,tW+1 − Uk,W

h,ϕ⋆,k

)
(Uk,W

h,ϕ⋆,tW+1)
−1ϕ⋆,k

h (sh, ah)
]

(i)

≤
∑(t+1)W

k=tW+1 E
(sh,ah)∼(P⋆,k,π̃k)

[
∥ϕ⋆,k

h (sh,ah)∥
2

∥∥∥(Uk,W

h,ϕ⋆,k )
−1

∥∥∥
2

∥∥∥(Uk,W

h,ϕ⋆,tW+1−Uk,W

h,ϕ⋆,k

)∥∥∥
2

∥∥∥(Uk,W

h,ϕ⋆,tW+1 )
−1

∥∥∥
2
∥ϕ⋆,k

h (sh,ah)∥
2

]
(ii)

≤ 1

λ2
W

∑(t+1)W
k=tW+1 E

(sh,ah)∼(P⋆,k,π̃k)

[∥∥∥∑k−1
i=1∨k−W E(sh,ah)∼(P⋆,i,π̃i)[ϕ

⋆,tW+1
h (sh,ah)ϕ

⋆,tW+1
h (sh,ah)

⊤−ϕ⋆,k
h (sh,ah)ϕ

⋆,k
h (sh,ah)

⊤]
∥∥∥
2

]

≤ 1

λ2
W

(t+1)W∑
k=tW+1

k−1∑
i=1∨k−W

E
(sh,ah)∼(P⋆,i,π̃i)

[∥∥∥ϕ⋆,tW+1
h (sh, ah)ϕ

⋆,tW+1
h (sh, ah)

⊤ − ϕ⋆,k
h (sh, ah)ϕ

⋆,k
h (sh, ah)

⊤
∥∥∥
2

]

≤ 1

λ2
W

(t+1)W∑
k=tW+1

k−1∑
i=1∨k−W

E
(sh,ah)∼(P⋆,i,π̃i)

[∥∥∥ϕ⋆,tW+1
h (sh, ah)ϕ

⋆,tW+1
h (sh, ah)

⊤ − ϕ⋆,tW+1
h (sh, ah)ϕ

⋆,k
h (sh, ah)

⊤
∥∥∥
2

+
∥∥∥ϕ⋆,tW+1

h (sh, ah)ϕ
⋆,k
h (sh, ah)

⊤ − ϕ⋆,k
h (sh, ah)ϕ

⋆,k
h (sh, ah)

⊤
∥∥∥
2

]
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≤ 2

λ2
W

(t+1)W∑
k=tW+1

k−1∑
i=1∨k−W

E(sh,ah)∼(P⋆,i,π̃i)

[∥∥∥ϕ⋆,k
h (sh, ah)− ϕ⋆,tW+1

h (sh, ah)
∥∥∥
2

]

≤
(t+1)W∑
k=tW+1

k−1∑
i=1∨k−W

2

λ2
W

∆ϕ
h,[tW+1,k−1], (41)

where (i) follows from the property of the matrix norms induced by vector ℓ2-norm and (ii) follows
from that

∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥
2
≤ 1.

Furthermore,

(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[∥∥∥ϕ⋆,tW+1
h (sh, ah)

∥∥∥2
(Uk,W

h,ϕ⋆,tW+1 )
−1

]

=

(t+1)W∑
k=tW+1

tr
(
E(sh,ah)∼(P⋆,k,π̃k)

[
ϕ⋆,tW+1
h (sh, ah)ϕ

⋆,tW+1
h (sh, ah)

⊤
]
(Uk,W

h,ϕ⋆,tW+1)
−1
)

≤
(t+1)W∑
k=tW+1

tr
(
E(sh,ah)∼(P⋆,k,π̃k)

[
ϕ⋆,tW+1
h (sh, ah)ϕ

⋆,tW+1
h (sh, ah)

⊤
]
(Ũk,W,t

h,ϕ⋆,tW+1)
−1
)

≤
(t+1)W∑
k=tW+1

A E
sh∼(P⋆,k,π̃k)

ah∼U(A)

tr
[
ϕ⋆,tW+1
h (sh, ah)ϕ

⋆,tW+1
h (sh, ah)

⊤
]
(Ũk,W,t

h,ϕ⋆,tW+1)
−1

≤ 2Ad log(1 +
W

dλ0
), (42)

where the last equation follows from Lemma D.2.
Then combining Equations (39) to (42), we have

(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥2
(Uk,W

h,ϕ⋆,k )
−1

]

≤ 2Ad log(1 +
W

dλ0
) +

2W

λW
∆ϕ

{h},[tW+1,t(W+1)−1] +

(t+1)W∑
k=tW+1

k−1∑
i=1∨k−W

2

λ2
W

∆ϕ
h,[tW+1,k−1].

(43)

Substituting Equation (43) into Equation (38), we have∑
k∈[K]

E(sh,ah)∼(P⋆,k,π̃k)

[
αk,W

∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥
(Uk

h,ϕ⋆,k )
−1

]

≤

√√√√√∑
k∈[K]

α2
k,W

⌊K/W⌋∑
t=0

(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥
(Uk,W

h,ϕ⋆,k )
−1

]2

≤
√∑

k∈[K] α
2
k,W

∑⌊K/W⌋
t=0

[
2Ad log(1+ W

dλ0
)+ 2W

λW
∆ϕ

{h},[tW+1,t(W+1)−1]
+
∑(t+1)W

k=tW+1

∑k−1
i=1∨k−W

2

λ2
W

∆ϕ
h,[tW+1,k−1]

]

≤

√
K (2WAζk,W + λk,W d)

[
2KAd

W
log(1 +

W

dλ0
) +

2W

λW
∆ϕ

{h},[K] +
2W 2

λ2
W

∆ϕ
{h},[K]

]
(44)

where the second equation follows from Equation (43).
Then we derive the following bound:

K∑
k=1

V π̃k

P⋆,k,fk
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=
∑

k∈[K]

∑
h∈[H]

E(sh,ah)∼(P⋆,k,π̃k)

[
fk
h (sh, ah)

]
(i)

≤
∑

k∈[K]

{∑H
h=2

[
E
(sh−1,ah−1)∼(P⋆,k,π̃k)

[
αk,W∥ϕ⋆,k

h−1(sh−1,ah−1)∥
(Uk

h−1,ϕ⋆,k
)−1

]
+
√

1
2dWACB∆P

[h−1,h],[k−W,k−1]

]

+

√
A

(
ζk,W +

1

2
CB∆P

1,[k−W,k−1]

)}

≤
H−1∑
h=1

∑
k∈[K]

E(sh,ah)∼(P⋆,k,π̃k)

[
αk,W

∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥
(Uk

h,ϕ⋆,k )
−1

]

+
∑

k∈[K]

H∑
h=1

√
WACB∆P

[h−1,h],[k−W,k−1] +
∑

k∈[K]

√
Aζk,W

(ii)

≤
H−1∑
h=1

√
K (2WAζk,W + λk,W d)

[
2AKd

W
log(1 +

W

dλ0
) +

2W

λW
∆ϕ

{h},[K] +
2W 2

λ2
W

∆ϕ
{h},[K]

]

+
∑

k∈[K]

H∑
h=1

√
WACB∆P

[h−1,h],[k−W,k−1] +
∑

k∈[K]

√
Aζk,W

≤
√

K (2WAζk,W + λk,W d)

[
H

√
2AKd

W
log(1 +

W

dλ0
) +

√
2HW

λW
∆ϕ

[H],[K] +

√
2HW 2

λ2
W

∆ϕ
[H],[K]

]
+
√
W 3ACB∆

√
P

[H],[K] +
∑

k∈[K]

√
Aζk,W

≤ O

(√
K(A log(|Φ||Ψ|KH/δ) + d2)

[
H

√
2AKd

W
log(W ) +

√
HW 2∆ϕ

[H],[K]

]
+
√
W 3ACB∆

√
P

[H],[K]

)
,

(45)

where (i) follows from Lemma A.14, and (ii) follows from Equation (44).
Step 2: We next bound

∑K
k=1 V

π̃k

P⋆,k,b̂k
via an auxiliary anchor representation.

Similarly to the proof Step 1, we further bound
∑

k∈[K] E(sh,ah)∼(P⋆,k,π̃k)

[
βk,W

∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥
(Wk

h,ϕ⋆,k )
−1

]
.

We define W k,W
h,ϕ⋆,k =

∑k−1
i=1∨(k−W ) E(sh,ah)∼(P⋆,i,π̃i)

[
ϕ⋆,k
h (sh, ah)ϕ

⋆,k
h (sh, ah)

⊤
]
+ λk,W Id and

W̃ k,W,t
h,ϕ⋆,k =

∑k−1
i=tW+1 E(sh,ah)∼(P⋆,i,π̃i)

[
ϕ⋆,k
h (sh, ah)ϕ

⋆,k
h (sh, ah)

⊤
]
+ λk,W Id. We first note that

for any h, we have∑
k∈[K]

E(sh,ah)∼(P⋆,k,π̃k)

[
βk,W

∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥
(Wk

h,ϕ⋆,k )
−1

]

=

√√√√√∑
k∈[K]

β2
k,W

∑
k∈[K]

E(sh,ah)∼(P⋆,k,π̃k)

[∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥
(Wk,W

h,ϕ⋆,k )
−1

]2

=

√√√√√∑
k∈[K]

β2
k,W

⌊K/W⌋∑
t=0

(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥
(Wk,W

h,ϕ⋆,k )
−1

]2
(46)

The ϕ⋆,k and W in Equation (46) both change with the round index k. To deal with this issue, we
decompose it as follows. We first derive the following equation:
(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥2
(Wk,W

h,ϕ⋆,k )
−1

]
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−
(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[∥∥∥ϕ⋆,tW+1
h (sh, ah)

∥∥∥2
(Wk,W

h,ϕ⋆,tW+1 )
−1

]

=

(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥2
(Wk,W

h,ϕ⋆,k )
−1

− ∥ϕ⋆
h(sh, ah)∥

2
(Wk,W

h,ϕ⋆,tW+1 )
−1

]

=

(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥2
(Wk,W

h,ϕ⋆,k )
−1

−
∥∥∥ϕ⋆,k

h (sh, ah)
∥∥∥2
(Wk,W

h,ϕ⋆,tW+1 )
−1

+
∥∥∥ϕ⋆,k

h (sh, ah)
∥∥∥2
(Wk,W

h,ϕ⋆,tW+1 )
−1

−
∥∥∥ϕ⋆,tW+1

h (sh, ah)
∥∥∥2
(Wk,W

h,ϕ⋆,tW+1 )
−1

]
.

=

(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥2
(Wk,W

h,ϕ⋆,k )
−1

−
∥∥∥ϕ⋆,k

h (sh, ah)
∥∥∥2
(Wk,W

h,ϕ⋆,tW+1 )
−1

]
︸ ︷︷ ︸

(III)

+

(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥2
(Wk,W

h,ϕ⋆,tW+1 )
−1

−
∥∥∥ϕ⋆,tW+1

h (sh, ah)
∥∥∥2
(Wk,W

h,ϕ⋆,tW+1 )
−1

]
︸ ︷︷ ︸

(IV )

.

(47)

For term (IV ), we have

(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥2
(Wk,W

h,ϕ⋆,tW+1 )
−1

−
∥∥∥ϕ⋆,tW+1

h (sh, ah)
∥∥∥2
(Wk,W

h,ϕ⋆,tW+1 )
−1

]
≤
∑(t+1)W

k=tW+1 E
(sh,ah)∼(P⋆,k,π̃k)

[
ϕ⋆,k
h (sh,ah)

⊤(Wk,W

h,ϕ⋆,tW+1 )
−1ϕ⋆,k

h (sh,ah)−ϕ⋆,k
h (sh,ah)

⊤(Wk,W

h,ϕ⋆,tW+1 )
−1ϕ⋆,tW+1

h (sh,ah)

+ ϕ⋆,k
h (sh, ah)

⊤(W k,W
h,ϕ⋆,tW+1)

−1ϕ⋆,tW+1
h (sh, ah)− ϕ⋆,tW+1

h (sh, ah)
⊤(W k,W

h,ϕ⋆,tW+1)
−1ϕ⋆,tW+1

h (sh, ah)
]

(i)

≤
(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥
2

∥∥∥(W k,W
h,ϕ⋆,tW+1)

−1
∥∥∥
2

∥∥∥ϕ⋆,k
h (sh, ah)− ϕ⋆,tW+1

h (sh, ah)
∥∥∥
2

+
∥∥∥ϕ⋆,k

h (sh, ah)− ϕ⋆,tW+1
h (sh, ah)

∥∥∥
2

∥∥∥(W k,W
h,ϕ⋆,tW+1)

−1
∥∥∥
2

∥∥∥ϕ⋆,tW+1
h (sh, ah)

∥∥∥
2

]
≤

(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[
2

λW

∥∥∥ϕ⋆,k
h (sh, ah)− ϕ⋆,tW+1

h (sh, ah)
∥∥∥
2

]
≤ 2W

λW
∆ϕ

{h},[tW+1,t(W+1)−1], (48)

where (i) follows from the property of the matrix norms induced by vector ℓ2-norm.

For term (III), we derive the following bound:

(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥2
(Wk,W

h,ϕ⋆,k )
−1

−
∥∥∥ϕ⋆,k

h (sh, ah)
∥∥∥2
(Wk,W

h,ϕ⋆,tW+1 )
−1

]

=

(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[
ϕ⋆,k
h (sh, ah)

⊤
(
(W k,W

h,ϕ⋆,k)
−1 − (W k,W

h,ϕ⋆,tW+1)
−1
)
ϕ⋆,k
h (sh, ah)

]

=

(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[
ϕ⋆,k
h (sh, ah)

⊤(W k,W
h,ϕ⋆,k)

−1

×
(
W k,W

h,ϕ⋆,tW+1 −W k,W
h,ϕ⋆,k

)
(W k,W

h,ϕ⋆,tW+1)
−1ϕ⋆,k

h (sh, ah)
]
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(i)

≤
(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥
2

∥∥∥(W k,W
h,ϕ⋆,k)

−1
∥∥∥
2

∥∥∥(W k,W
h,ϕ⋆,tW+1 −W k,W

h,ϕ⋆,k

)∥∥∥
2

×
∥∥∥(W k,W

h,ϕ⋆,tW+1)
−1
∥∥∥
2

∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥
2

]
(ii)

≤ 1

λ2
W

(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[∥∥∥∥∥
k−1∑

i=1∨k−W

E
(sh,ah)∼(P⋆,i,π̃i)

[
ϕ⋆,tW+1
h (sh, ah)ϕ

⋆,tW+1
h (sh, ah)

⊤

−ϕ⋆,k
h (sh, ah)ϕ

⋆,k
h (sh, ah)

⊤
] ∥∥

2

]
≤ 1

λ2
W

∑(t+1)W
k=tW+1

∑k−1
i=1∨k−W E(sh,ah)∼(P⋆,i,π̃i)[∥ϕ⋆,tW+1

h (sh,ah)ϕ
⋆,tW+1
h (sh,ah)

⊤−ϕ⋆,k
h (sh,ah)ϕ

⋆,k
h (sh,ah)

⊤∥
2
]

≤ 1

λ2
W

∑(t+1)W
k=tW+1

∑k−1
i=1∨k−W E(sh,ah)∼(P⋆,i,π̃i)[∥ϕ⋆,tW+1

h (sh,ah)ϕ
⋆,tW+1
h (sh,ah)

⊤−ϕ⋆,tW+1
h (sh,ah)ϕ

⋆,k
h (sh,ah)

⊤∥
2

+
∥∥∥ϕ⋆,tW+1

h (sh, ah)ϕ
⋆,k
h (sh, ah)

⊤ − ϕ⋆,k
h (sh, ah)ϕ

⋆,k
h (sh, ah)

⊤
∥∥∥
2

]
≤ 2

λ2
W

(t+1)W∑
k=tW+1

k−1∑
i=1∨k−W

E(sh,ah)∼(P⋆,i,π̃i)

[∥∥∥ϕ⋆,k
h (sh, ah)− ϕ⋆,tW+1

h (sh, ah)
∥∥∥
2

]

≤
(t+1)W∑
k=tW+1

k−1∑
i=1∨k−W

2

λ2
W

∆ϕ
h,[tW+1,k−1]. (49)

where (i) follows from the property of the matrix norms induced by vector ℓ2-norm and (ii) follows
from that

∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥
2
≤ 1.

Furthermore, we derive the following bound:

(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[∥∥∥ϕ⋆,tW+1
h (sh, ah)

∥∥∥2
(Wk,W

h,ϕ⋆,tW+1 )
−1

]

=

(t+1)W∑
k=tW+1

tr
(
E(sh,ah)∼(P⋆,k,π̃k)

[
ϕ⋆,tW+1
h (sh, ah)ϕ

⋆,tW+1
h (sh, ah)

⊤
]
(W k,W

h,ϕ⋆,tW+1)
−1
)

≤
(t+1)W∑
k=tW+1

tr
(
E(sh,ah)∼(P⋆,k,π̃k)

[
ϕ⋆,tW+1
h (sh, ah)ϕ

⋆,tW+1
h (sh, ah)

⊤
]
(W̃ k,W,t

h,ϕ⋆,tW+1)
−1
)

≤
(t+1)W∑
k=tW+1

E
(sh,ah)∼(P⋆,k,π̃k)

tr
[
ϕ⋆,tW+1
h (sh, ah)ϕ

⋆,tW+1
h (sh, ah)

⊤
]
(W̃ k,W,t

h,ϕ⋆,tW+1)
−1

≤ 2d log(1 +
W

dλ0
), (50)

where the last equation follows from Lemma D.2.
Then combining Equations (39) to (41) and (50), we have

(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥2
(Wk,W

h,ϕ⋆,k )
−1

]

≤ 2d log(1 +
W

dλ0
) +

2W

λW
∆ϕ

{h},[tW+1,t(W+1)−1] +

(t+1)W∑
k=tW+1

k−1∑
i=1∨k−W

2

λ2
W

∆ϕ
h,[tW+1,k−1].

(51)

Substituting Equation (51) into Equation (46), we have∑
k∈[K]

E(sh,ah)∼(P⋆,k,π̃k)

[
βk,W

∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥
(Uk

h,ϕ⋆,k )
−1

]
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≤

√√√√√∑
k∈[K]

β2
k,W

⌊K/W⌋∑
t=0

(t+1)W∑
k=tW+1

E(sh,ah)∼(P⋆,k,π̃k)

[∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥
(Uk,W

h,ϕ⋆,k )
−1

]2

≤

√∑
k∈[K] β

2
k,W

∑⌊K/W⌋
t=0

[
2d log(1+ W

dλ0
)+ 2W

λW
∆ϕ

{h},[tW+1,t(W+1)−1]
+
∑(t+1)W

k=tW+1

∑k−1
i=1∨k−W

2

λ2
W

∆ϕ
h,[tW+1,k−1]

]

≤

√
K(9dA(2WAζk,W+λk,W d)+λk,W d)

[
2Kd
W log(1+ W

dλ0
)+ 2W

λW
∆ϕ

{h},[K]
+ 2W2

λ2
W

∆ϕ
{h},[K]

]
. (52)

where the second equation follows from Equation (51).
Then, we derive the following bound:∑
k∈[K]

V π̃k

P⋆,k,b̂k
=
∑

k∈[K]

∑
h∈[H]

E(sh,ah)∼(P⋆,k,π̃k)

[
b̂kh(sh, ah)

]
(i)

≤
∑

k∈[K]

{
H∑

h=2

{
E(sh−1,ah−1)∼(P⋆,k,π̃k)

[
βk,W

∥∥∥ϕ⋆,k
h−1(sh−1, ah−1)

∥∥∥
(Wk

h−1,ϕ⋆,k )
−1

]

+

√
A

d
∆P

h−1,[k−W,k−1]

}
+

√
9Adα2

k,W

w


≤

H−1∑
h=1

∑
k∈[K]

E(sh,ah)∼(P⋆,k,π̃k)

[
βk,W

∥∥∥ϕ⋆,k
h (sh, ah)

∥∥∥
(Wk

h,ϕ⋆,k )
−1

]

+W

√
A

d
∆

√
P

[H],[K] +
∑

k∈[K]

√
9Adα2

k,W

W

(ii)

≤
√

K (9dA(2WAζk,W + λk,W d) + λk,W d)

[
H

√
2Kd

W
log(1 +

W

dλ0
) +

√
2HW

λW
∆ϕ

[H],[K]

+

√
2HW 2

λ2
W

∆ϕ
[H],[K]

]
+W

√
A

d
∆

√
P

[H],[K]

≤ O

(√
KdA(A log(|Φ||Ψ|KH/δ) + d2)

[
H

√
Kd

W
log(W ) +

√
HW 2∆ϕ

[H],[K]

]
+W

√
A∆

√
P

[H],[K]

)
,

(53)

where (i) follows from Lemma A.17, and (ii) follows from Equation (52).
Finally, combining Equations (37), (45) and (53), we have

K∑
k=1

V̂ π̃k

P̂k,b̂k
≤O

(√
K(A log(|Φ||Ψ|KH/δ)+d2)

[
H
√

2AKd
W log(W )+

√
HW 2∆ϕ

[H],[K]

]
+
√
W 3ACB∆

√
P

[H],[K]

)

+O
(√

KdA(A log(|Φ||Ψ|KH/δ)+d2)
[
H
√

Kd
W log(W )+

√
HW 2∆ϕ

[H],[K]

]
+W

√
A∆

√
P

[H],[K]

)
≤O

(√
KdA(A log(|Φ||Ψ|KH/δ)+d2)

[
H
√

Kd
W log(W )+

√
HW 2∆ϕ

[H],[K]

]
+
√
W 3A∆

√
P

[H],[K]

)
.

The following visitation probability difference lemma is similar to lemma 5 in Fei et al. (2020), but
we remove their Assumption 1.
Lemma A.19. For any transition kernels {Ph}Hh=1,h ∈ [H], j ∈ [h − 1], sh ∈ S and policies
{πi}Hi=1 and π′

j , we have∣∣∣Pπ1
1 . . . P

πj

j . . . P
πh−1

h−1 (sh)− Pπ1
1 . . . P

π′
j

j . . . P
πh−1

h−1 (sh)
∣∣∣ ≤ max

s∈S

∥∥πj(·|s)− π′
j(·|s)

∥∥
TV
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Proof. To prove this lemma, the only difference from lemma is that we need to show

maxsj
∑

sj+1
|Pπj

j (sj+1|sj) − P
π′
j

j (sj+1|sj)| ≤ 2maxs∈S
∥∥πj(·|s)− π′

j(·|s)
∥∥
TV

holds without
assumption. We show this as follows:

max
sj

∑
sj+1

|Pπj (sj+1|sj)− Pπ′
j (sj+1|sj)|

= max
sj

∑
sj+1

|
∑
a

P (sj+1|sj , a)πj(a|sj)−
∑
a

P (sj+1|sj , a)π′
j(a|sj)|

≤ max
sj

∑
sj+1

∑
a

P (sj+1|sj , a)|πj(a|sj)− π′
j(a|sj)|

= max
sj

∑
a

∑
sj+1

P (sj+1|sj , a)|πj(a|sj)− π′
j(a|sj)|

= max
sj

∑
a

|πj(a|sj)− π′
j(a|sj)| = 2max

s∈S
∥πj(·|s)− π′

j(·|s)∥TV .

B Further Discussion and Proof of Corollary 4.5

In this section, we first provide a detailed version and further discussion of Corollary 4.5 in Ap-
pendix B.1, then present the proof in Appendix B.2, and finally present an interesting special case in
Appendix B.3.

B.1 Further Discussion of Corollary 4.5

We present a detailed version of Corollary 4.5 as follows. Let Π[1,K](N) = min{K,max{1, N}}
for any K,N ∈ N.
Corollary B.1 (Detailed version of Corollary 4.5). Under the same conditions of Theorem 4.4,
if the variation budgets are known, then for different variation budget regimes, we can select the
hyper-parameters correspondingly to attain the optimality for both (I) w.r.t. W and (II) w.r.t. τ in
Equation (3). For (I), with W = Π[1,K](⌊H

1
3 d

1
3K

1
3 (∆

√
P +∆ϕ)−

1
3 ⌋), part (I) is upper-bounded

by 
√

H4d2A
K (A+d2),

(
∆

√
P+∆ϕ

)
≤Hd

K2 ,

H2d
5
6 A

1
2 (A+d2)

1
2 (HK)−

1
6

(
∆

√
P+∆ϕ

) 1
6 ,

(
∆

√
P+∆ϕ

)
>Hd

K2 ,

(54)

For (II) in Equation (3), with τ = Π[1,K](⌊K
2
3 (∆P +∆π)−

2
3 ⌋), part (II) is upper bounded by

2H√
K

, (∆P+∆π)≤ 1√
K

,

2H
4
3 (HK)−

1
3 (∆P+∆π)

1
3 , 1√

K
<(∆P+∆π)≤K,

H+
H(∆P +∆π)

K , K<(∆P+∆π)

(55)

For any ϵ ≥ 0, if nonstationarity is not significantly large, i.e., there exists a constant γ < 1 such
that (∆P +∆π) ≤ (2HK)γ and (∆

√
P +∆ϕ) ≤ (2HK)γ , then PORTAL can achieve ϵ-average

suboptimal with polynomial trajectories.

As a direct consequence of Theorem 4.4, Corollary 4.5 indicates that if variation budgets are known,
then the agent can choose the best hyper-parameters directly based on the variation budgets. The
GapAve can be different depending on which regime the variation budgets fall into, as can be seen in
Equations (54) and (55).

At the high level, we further explain how the window size W depends on the variations of environment
as follows. If the nonstationarity is moderate and not significantly large, Corollary 4.5 indicates that
for any ϵ, Algorithm 1 achieves ϵ-average suboptimal with polynomial trajectories (see the specific
form in Equation (59) in Appendix B.2). If the environment is near stationary and the variation is
relatively small, i.e., (∆

√
P +∆ϕ) ≤ Hd/K2, (∆P +∆π) ≤ 1/

√
K, then the best window size W
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and the policy restart period τ are both K. This indicates that the agent does not need to take any
forgetting rules to handle the variation. Then the GapAve reduces to Õ

(√
H4d2A(A+ d2)/K

)
,

which matches the result under a stationary environment.2

Furthermore, it is interesting to consider a special mildly changing environment, in which the
representation ϕ⋆ stays identical and only the state-embedding function µ⋆,k changes over time. The
average dynamic suboptimality gap in Equation (3) reduces to

Õ
(√

H4d2A(A+d2)
W +

√
H2W3A

K2 ∆
√

P︸ ︷︷ ︸
(I)

+ H√
τ
+

Hτ(∆P +∆π)
K︸ ︷︷ ︸

(II)

)
.

The part (II) is the same as (II) in Equation (3) and by choosing the best window size of W =

H
1
2 d

1
2 (A+ d2)

1
4K

1
2 (∆

√
P )−

1
2 , part (I) becomes

Õ

(
H2d

3
4A

1
2

(
A+ d2

) 3
8 (HK)−

1
4

(
∆

√
P
) 1

4

)
. (56)

Compared with the second regime in Equation (54), Equation (56) is much smaller, benefited from
identical representation function ϕ⋆. In this way, samples in previous rounds can help to estimate
the representation space so that W can be larger than W in terms of the order of K, which yields
efficiency gain compared with changing ϕ⋆.

On the other hand, if the nonstationarity is significantly large, for example, scales linearly with K,
then for each round, the previous samples cannot help to estimate current best policy. Thus, the best
W and τ are both 1, and the average dynamic suboptimality gap reduces to Õ

(√
H4d2A (A+ d2)

)
.

This indicates that for a fixed small accuracy ϵ ≥ 0, no matter how large the round K is, Algorithm 1
can never achieve ϵ-average suboptimality.

B.2 Proof of Corollary B.1 (i.e., Detailed Version of Corollary 4.5)

If variation budgets are known, for different variation budgets regimes, we can tune the hyper-
parameters correspondingly to reach the optimality for both the term (I) that contains W and the
term (II) that contains τ .
For the first term (I) in Equation (14), there are two regimes:

• Small variation:
(
∆

√
P +∆ϕ

)
≤ Hd

K2 ,

– The best window size W is K, which means that the variation is pretty mild and the
environment is near stationary. In this case, by choosing window size W = K, the
agent takes no forgetting rules to handle the variation. Then the first term (I) reduces

to
√

H4d2A
K (A+ d2), which matches the result under a stationary environment.3

– Then for any ϵ ≥ 0, with HK no more than Õ
(

H5d2A(A+d2)
ϵ2

)
, term (I) ≤ ϵ.

• Large variation:
(
∆

√
P +∆ϕ

)
> Hd

K2 .

– By choosing the window size W = H
1
3 d

1
3K

1
3

(
∆

√
P +∆ϕ

)− 1
3

, the term (I) reduces

to H2d
5
6A

1
2

(
A+ d2

) 1
2 (HK)−

1
6

(
∆

√
P +∆ϕ

) 1
6

.

– Since
(
∆

√
P +∆ϕ

)
≤ 2HK, there exists γ ≤ 1 s.t.

(
∆

√
P +∆ϕ

)
≤ (2HK)γ .

Then (I) ≤ 2H2d
5
6A

1
2

(
A+ d2

) 1
2 (HK)−

1−γ
6 . Then for any ϵ ≥ 0, if γ ̸= 1, with

HK no more than Õ

(
d

5
1−γ H

12
1−γ A

3
1−γ (A+d2)

3
1−γ

ϵ
6

1−γ

)
, term (I) ≤ ϵ.

2We convert the sample complexity bound under infinite horizon MDPs in Uehara et al. (2022) to the average
dynamic suboptimality gap under episodic MDPs.

3We convert the regret bound under infinite horizon MDPs in Uehara et al. (2022) to the average dynamic
suboptimality gap under episodic MDP.
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For the second term (II) in Equation (14), there are three regimes elaborated as follows:

• Small variation: (∆P +∆π) ≤ 1√
K

,

– The best policy restart period τ is K, which means that the variation is pretty mild and
the agent does not need to handle the variation. Then term (II) ≤ 2H√

K
.

– Then for any ϵ ≥ 0, with HK no more than Õ
(

H2

ϵ2

)
, term (II) ≤ ϵ.

• Moderate variation: 1√
K

< (∆P +∆π) ≤ K,

– The best policy restart period τ = K
2
3 (∆P +∆π)−

2
3 , and the term (II) reduces to

2HK− 1
3 (∆P +∆π)

1
3 .

– Since
(
∆P +∆π

)
≤ 2HK, there exists γ ≤ 1 s.t.

(
∆P +∆π

)
≤ (2HK)γ . Then

the term (II) ≤ 4H
4
3 (HK)−

1−γ
3 . Then for any ϵ ≥ 0, if γ ̸= 1, with HK no more

than Õ

(
H

4
1−γ

ϵ
3

1−γ

)
, term (II) ≤ ϵ.

• Large variation: K < (∆P +∆π),

– The variation budgets scale linearly with K, which indicates that the nonstationarity
of the environment is significantly large and lasts for the entire rounds. Hence in each
round, the previous sample can not help to estimate the current best policy. So the best
policy restart period τ = 1, and the second term (II) reduces to H + H(∆P+∆π)

K =
O(H), which implies that Algorithm 1 can never achieve small average dynamic
suboptimality gap for any large K.

In conclusion, the first term is upper bounded by

(I) ≤


√

H4d2A

K
(A+ d2),

(
∆

√
P +∆ϕ

)
≤ Hd

K2
,

H2d
5
6A

1
2

(
A+ d2

) 1
2 (HK)−

1
6

(
∆

√
P +∆ϕ

) 1
6

,
(
∆

√
P +∆ϕ

)
>

Hd

K2
,

(57)

and the second term is upper bounded by

(II) ≤



2H√
K

, (∆P +∆π) ≤ 1√
K

,

2H
4
3 (HK)−

1
3 (∆P +∆π)

1
3 ,

1√
K

< (∆P +∆π) ≤ K,

H +
H(∆P +∆π)

K
, K < (∆P +∆π)

(58)

In addition, if the variation budgets are not significantly large, i.e. scale linearly with K, for any ϵ ≥ 0,
Algorithm 1 can achieve ϵ-average dynamic suboptimality gap with at most polynomial samples.
Specifically, if there exists a constant γ < 1 such that the variation budgets satisfying

(
∆P +∆π

)
≤

(2HK)γ and
(
∆

√
P +∆ϕ

)
≤ (2HK)γ , then to achieve ϵ-average dynamic suboptimality gap, i.e.,
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GapAve(K) ≤ ϵ, Algorithm 1 only needs to collect trajectories no more than

Õ

(
H5d2A(A+ d2)

ϵ2

)
,

if
(
∆

√
P +∆ϕ

)
≤ Hd

K2
, (∆P +∆π) ≤ 1√

K
;

Õ

(
d

5
1−γ H

12
1−γ A

3
1−γ (A+ d2)

3
1−γ

ϵ
6

1−γ

+
H2

ϵ2

)
,

if
Hd

K2
<
(
∆

√
P +∆ϕ

)
≤ (HK)γ , (∆P +∆π) ≤ 1√

K
;

Õ

(
H5d2A(A+ d2)

ϵ2
+

H
4

1−γ

ϵ
3

1−γ

)
,

if
(
∆

√
P +∆ϕ

)
≤ Hd

K2
,

1√
K

< (∆P +∆π) ≤ (HK)γ ;

Õ

(
d

5
1−γ H

12
1−γ A

3
1−γ (A+ d2)

3
1−γ

ϵ
6

1−γ

)
,

if
Hd

K2
<
(
∆

√
P +∆ϕ

)
≤ (HK)γ ,

1√
K

< (∆P +∆π) ≤ (HK)γ .

(59)

B.3 A Special Case

In this subsection, we provide a characterization of a special case, where the representation ϕ⋆ stays
identical and only the state-embedding function µ⋆,k changes over time. In such a scenario, the
variation budget ∆ϕ

[H],[K] = 0 and the average dynamic suboptimality gap bound in Equation (14)
reduces to
GapAve(K)

≤ Õ

(√
H4d2A

W
(A+ d2) +

√
H2W 3A

K2
∆

√
P

[H],[K] +
2H√
τ
+

3Hτ

K
(∆P

[H],[K] +∆π
[H],[K])

)

≤ Õ

(
H

7
4 d

3
4A

1
2

(
A+ d2

) 3
8 K− 1

4

(
∆

√
P

[H],[K]

) 1
4

+HK− 1
3 (∆P

[H],[K] +∆π
[H],[K])

1
3

)
,

where the last equation follows from the choice of the window side W =

Õ

(
H

1
2 d

1
2 (A+ d2)

1
4K

1
2

(
∆

√
P

[H],[K]

)− 1
2

)
and the policy restart period τ =

Õ
(
K

2
3 (∆P

[H],[K] +∆π
[H],[K])

− 2
3

)
with known variation budgets.

C Proof of Theorem 5.1 and Detailed Comparison with Wei & Luo (2021)

C.1 Proof of Theorem 5.1

Proof of Theorem 5.1. Before our formal proof, we first explain several notations on different choices
of W and τ here.

• (W ⋆, τ⋆): We denote W ⋆ = d
1
3H

1
3K

1
3 (∆ϕ + ∆

√
P + 1)−

1
3 , and τ⋆ =

Õ
(
K

2
3 (∆P +∆π + 1)−

2
3

)
.

• (W, τ ): Because W ⋆ = d
1
3H

1
3K

1
3 (∆ϕ + ∆

√
P + 1)−

1
3 ≤ d

1
3H

1
3K

1
3 ≤ JW and τ⋆ =

Õ
(
K

2
3 (∆P +∆π + 1)−

2
3

)
≤ K

2
3 ≤ Jτ . As a result, there exists a W ∈ JW such that

W ≤ W ⋆ ≤ 2W and a τ ∈ Jτ such that τ ≤ τ⋆ ≤ 2τ .
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• (W †, τ †): (W †, τ †) denotes the set of best choices of the window size W and the policy
restart period τ in feasible set that maximize

∑⌈K/M⌉
i=1 Ri(W, τ).

Then we can decompose the average dynamic suboptimality gap as

GapAve(K) =
1

K

∑
k∈[K]

[
V π⋆

P⋆,k − V πk

P⋆,k

]

=
1

K

K∑
k=1

V π⋆

P⋆,k −
⌈K/M⌉∑
i=1

E
[
Ri(W, τ)

]
︸ ︷︷ ︸

(I)

+
1

K

⌈K/M⌉∑
i=1

E[Ri(W, τ)]−
⌈K/M⌉∑
i=1

E[Ri(Wi, τi)]︸ ︷︷ ︸
(II)

,

where the last inequality follows because if {πk}Kk=1 is the output of Algorithm 3 with the chosen

window size {Wi}⌈T/M⌉
i=1 , E[Ri(Wi, τi)] = E

[∑min{iM,K}
k=(i−1)M+1 V

k
1

]
=
∑min{iM,K}

k=(i−1)M+1 V
πk

P⋆,k holds.

We next bound Terms (I) and (II) separately.

Term (I): We derive the following bound:

1

K


K∑

k=1

V π⋆,k,k
1 −

⌈K/M⌉∑
i=1

Ri(W, τ)


(i)

≤ Õ

√H4d2A

W
(A+ d2) +

√
H3dA

K
(A+ d2)W

2
∆ϕ

[H],[K] +

√
H2W

3
A

K2
∆

√
P

[H],[K]


+ Õ

(
2H√
τ
+

3Hτ

K
(∆P

[H],[K] +∆π
[H],[K])

)
(ii)

≤ Õ

√H4d2A

W ⋆
(A+ d2) +

√
H3dA

K
(A+ d2)W ⋆2∆ϕ

[H],[K] +

√
H2W ⋆3A

K2
∆

√
P

[H],[K]


+ Õ

(
2H√
τ⋆

+
3Hτ⋆

K
(∆P

[H],[K] +∆π
[H],[K])

)
(iii)

≤ Õ

(
H

11
6 d

5
6A

1
2

(
A+ d2

) 1
2 K− 1

6

(
∆

√
P +∆ϕ + 1

) 1
6

)
+ Õ

(
2HK− 1

3 (∆P +∆π + 1)
1
3

)
,

where (i) follows from Equation (14), (ii) follows from the definition of W and (iii) follows from
the definition of W ⋆ at the beginning of the proof.

Term (II): We derive the following bound:

1

K

⌈K/M⌉∑
i=1

E
[
Ri(W, τ)

]
−

⌈K/M⌉∑
i=1

E [Ri(Wi, τi)]

(i)

≤ 1

K

⌈K/M⌉∑
i=1

E
[
Ri(W

†, τ †)
]
−

⌈K/M⌉∑
i=1

E [Ri(Wi, τi)]

(ii)

≤ Õ(M
√
J⌈K/M⌉/K)

= Õ(
√
JKM) = Õ(H

1
6 d

1
6K− 1

6 ),

where (i) follows from the definition of W † and (ii) follows from Theorem 3.3 in Bubeck & Cesa-
Bianchi (2012) with the adaptation that reward Ri ≤ M and the number of iteration is ⌈K/M⌉. Then
combining the bounds on terms (I) and (II), we have

GapAve(K)≤Õ

(
H

11
6 d

5
6 A

1
2 (A+d2)

1
2 K− 1

6

(
∆

√
P+∆ϕ+1

) 1
6

)
+Õ

(
2HK− 1

3 (∆P+∆π+1)
1
3

)
.
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C.2 Detailed Comparison with Wei & Luo (2021)

Based on the theoretical results Theorem 4.4 and taking Algorithm 1 PORTAL as a base algorithm, we
can also use the black-box techniques called MASTER in Wei & Luo (2021) to handle the unknown
variation budgets. But such an approach of MASTER+PORTAL turns out to have a larger average
dynamic suboptimality gap than Algorithm 3. Denote ∆ = ∆ϕ +∆

√
P +∆π .

To explain, first choose τ = k and W = K in Algorithm 1. Then Algorithm 1 reduces to a
base algorithm with the suboptimality gap of Õ(

√
H4d2A(A+ d2)/K +

√
H3dAK(A+ d2)∆),

which satisfies Assumption 1 in Wei & Luo (2021) with ρ(t) =
√

H4d2A(A+ d2)/t and
∆[1,t] =

√
H3dAt (A+ d2)∆. Then by Theorem 2 in Wei & Luo (2021), the dynamic regret using

MASTER+PORTAL can be upper-bounded by Õ(H
11
6 d

5
6A

1
2

(
A+ d2

) 1
2 K

2
3∆

1
3 ) = Õ(K

5
6∆

1
3 ).

Here, we find the order dependency on d,H,A is the same as Theorem 5.1 and hence mainly focus
on the order dependency on K and ∆ in the following comparison. Such a bound on dynamic regret
can be converted to the average dynamic suboptimality gap as Õ(K− 1

6∆
1
3 ). Then it can obersed that

for not too small variation budgets, i.e., ∆ ≥ Õ(1), the order dependency on ∆ is higher than that of
Algorithm 3.

Specifically, if we consider the special case when the representation stays identical and denote
∆̃ = ∆

√
P + ∆π, then the average dynamic suboptimality gap of MASTER+PORTAL is still

Õ(K− 1
6 ∆̃

1
3 ). With small modifications on the parameters, by following the analysis similar to that

of Theorem 5.1 and Appendix B.3, we can show that the average dynamic suboptimality gap of
Algorithm 3 satisfies Õ(K− 1

4 ∆̃
1
4 ), which is smaller than MASTER+PORTAL.

D Auxiliary Lemmas

In this section, we provide two lemmas that are commonly used for the analysis of MDP problems.

The following lemma (Dann et al., 2017) is useful to measure the difference between two value
functions under two MDPs and reward functions.
Lemma D.1. (Simulation Lemma). Suppose P1 and P2 are two MDPs and r1, r2 are the correspond-
ing reward functions. Given a policy π, we have,

V π
h,P1,r1(sh)− V π

h,P2,r2(sh)

=

H∑
h′=h

E
s
h′∼(P2,π)
a
h′∼π

[
r1(sh′ , ah′)− r2(sh′ , ah′) + (P1,h′ − P2,h′)V π

h′+1,P1,r(sh′ , ah′)|sh
]

=

H∑
h′=h

E
s
h′∼(P1,π)
a
h′∼π

[
r1(sh′ , ah′)− r2(sh′ , ah′) + (P1,h′ − P2,h′)V π

h′+1,P2,r(sh′ , ah′)|sh
]
.

The following lemma is a standard inequality in the regret analysis for linear MDPs in reinforcement
learning (see Lemma G.2 in Agarwal et al. (2020b) and Lemma 10 in Uehara et al. (2022)).
Lemma D.2 (Elliptical Potential Lemma). Consider a sequence of d×d positive semidefinite matrices
X1, . . . , XN with tr(Xn) ≤ 1 for all n ∈ [N ]. Define M0 = λ0I and Mn = Mn−1 +Xn. Then the
following bound holds:

N∑
n=1

tr
(
XnM

−1
n−1

)
≤ 2 log det(MN )− 2 log det(M0) ≤ 2d log

(
1 +

N

dλ0

)
.

43


	Introduction
	Related Works
	Formulation
	Episodic MDPs and Low-rank Approximation
	Nonstationary Transition Kernels with Adversarial Rewards
	Learning Goal and Evaluation Metric

	Policy Optimization Algorithm and Theoretical Guarantee
	Base Algorithm: PORTAL
	Technical Assumptions
	Theoretical Guarantee

	Parameter-free Algorithm: Ada-PORTAL
	Conclusion
	Acknowledgement
	Proof of Thm1: average dynamic suboptimality gap with known variation
	Average Suboptimaility Gap Decomposition
	First and Third Terms of GapAve in Eq: Regret Decomposition: Model Estimation Error Bound
	First Term in Eq: Regret Decomposition
	Third Term in Eq: Regret Decomposition

	Second Term of GapAve in Eq: Regret Decomposition: Performance Difference Bound
	Bound (a) in ineq: Performance Difference Bound Decompose
	Bound (b) in ineq: Performance Difference Bound Decompose
	Combining (a) and (b) Together

	Proof Thm1: average dynamic suboptimality gap with known variation
	Supporting Lemmas

	Further Discussion and Proof of Coro: of Thm1
	Further Discussion of Coro: of Thm1
	Proof of cor:detailcor (i.e., Detailed Version of Coro: of Thm1)
	A Special Case

	Proof of Thm2: Ada-PORTAL and Detailed Comparison with DBLP:conf/colt/WeiL21
	Proof of Thm2: Ada-PORTAL
	Detailed Comparison with DBLP:conf/colt/WeiL21

	Auxiliary Lemmas

