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A Proofs

First, recall the following assumption from the main paper:

Assumption 1. If

ρ (RLD(·; ε,F , ℓ,Pn, λ),LD∗(·; ℓ, n,Pn, λ)) ≤ γ then
ρ (RIDj(·; ε,F , ℓ,Pn, λ),RIDj(·; ε, {g∗}, ℓ,Pn, λ)) ≤ d(γ)

for a function d : [0, ℓmax−ℓmin] → [0, ϕmax−ϕmin] such that limγ→0 d(γ) = 0. Here, ρ represents
any distributional distance metric (e.g., 1-Wasserstein).

Theorem 1. Let Assumption 1 hold for distributional distance ρ(A1, A2) between distributions A1

and A2. For any t > 0, j ∈ {0, . . . , p} as ρ (LD∗(·; ℓ, n, λ),RLD(·; ε,F , ℓ,Pn, λ)) → 0 and
B → ∞,

P
(∣∣∣R̂IDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε, {g∗}, ℓ,Pn, λ)

∣∣∣ ≥ t
)
→ 0.

Proof. Let D(n) be a dataset of n (xi, yi) tuples independently and identically distributed according
to the empirical distribution Pn. Let k ∈ [ϕmin, ϕmax].
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Then, we know that

P
(∣∣∣R̂IDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε, {g∗}, ℓ,Pn, λ)

∣∣∣ ≥ t
)

=P
(∣∣∣R̂IDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε,F , ℓ,Pn, λ)

+ RIDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε, {g∗}, ℓ,Pn, λ)
∣∣∣ ≥ t

)
(by adding 0)

≤P
( ∣∣∣R̂IDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε,F , ℓ,Pn, λ)

∣∣∣
+ |RIDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε, {g∗}, ℓ,Pn, λ)| ≥ t

)
(by the triangle inequality)

≤P

(∣∣∣R̂IDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε,F , ℓ,Pn, λ)
∣∣∣ ≥ t

2

)
+ P

(
|RIDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε, {g∗}, ℓ,Pn, λ)| ≥

t

2

)
(by union bound).

Recall that, in the theorem statement, we have assumed ρ (LD∗(·; ℓ, n, λ),RLD(·; ε,F , ℓ,Pn, λ)) →
0. Therefore, by Assumption 1,

P

(
|RIDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε, {g∗}, ℓ,Pn, λ)| ≥

t

2

)
→ 0.

Additionally, we will show in Corollary 1 that as B → ∞,

P

(∣∣∣R̂IDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε,F , ℓ,Pn, λ)
∣∣∣ ≥ t

2

)
→ 0.

Therefore, as B → ∞ and ρ (LD∗(·; ℓ, n, λ),RLD(·; ε,F , ℓ,Pn, λ)) → 0, the estimated Rashomon
importance distribution for model class F converges to the true Rashomon importance distribution
for the DGP g∗.

Theorem 2. Let D(n) be a dataset of n (xi, yi) tuples independently and identically distributed
according to the empirical distribution Pn. Let k ∈ [ϕmin, ϕmax]. Then, with probability 1− δ, with
B ≥ 1

2t2 ln
(
2
δ

)
bootstrap replications,∣∣∣R̂IDj(k)− RIDj(k)

∣∣∣ < t.

Proof. First, let us restate the definition of RIDj and R̂IDj . Let n ∈ N. Let ε be the Rashomon
threshold, and let the Rashomon set for some dataset D(n) and some fixed model class F be denoted
as Rε

D(n) . Without loss of generality, assume F is a finite model class. Then, for a given k ∈
[ϕmin, ϕmax],

RIDj(k; ε,F , ℓ,Pn, λ) = ED(n)∼Pn

∑f∈Rε

D(n)
1[ϕj(f,D(n)) ≤ k]

|Rε
D(n) |

 .

Note that the expectation is over all datasets of size n sampled with replacement from the originally
observed dataset, represented by Pn; we are taking the expectation over bootstrap samples.

We then sample datasets of size n with replacement from the empirical CDF Pn, find the Rashomon
set for the replicate dataset, and compute the variable importance metric for each model in the
discovered Rashomon set. For the same k ∈ [ϕmin, ϕmax],

R̂IDj(k; ε,F , ℓ,Pn, λ) =
1

B

∑
D(n)

b ∼Pn


∑

f∈Rε

D(n)
b

1[ϕj(f,D(n)
b ) ≤ k]

|Rε

D(n)
b

|

 ,
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where B represents the number of size n datasets sampled from Pn.

Notice that

0 ≤

∑
f∈Rε

D(n)
1[ϕj(f,D(n)) ≤ k]

|Rε
D(n) |

≤ 1. (1)

Because R̂IDj(k; ε,F , ℓ,Pn, λ) is an Euclidean average of the quantity in Equation (1) and
RIDj(k; ε,F , ℓ,Pn, λ) is the expectation of the quantity in Equation (1), we can use Hoeffding’s
inequality to show that

P
(∣∣∣R̂IDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε,F , ℓ,Pn, λ)

∣∣∣ > t
)

≤2 exp
(
−2Bt2

)
for some t > 0.

Now, we can manipulate Hoeffding’s inequality to discover a finite sample bound. Instead of setting
B and t, we will now find the B necessary to guarantee that

P
(∣∣∣R̂IDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε,F , ℓ,Pn, λ)

∣∣∣ ≥ t
)
≤ δ (2)

for some δ, t > 0.

Let δ > 0. From Hoeffding’s inequality, we see that if we choose B such that 2 exp
(
−2Bt2

)
≤ δ,

then

P
(∣∣∣R̂IDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε,F , ℓ,Pn, λ)

∣∣∣ ≥ t
)
≤ 2 exp

(
−2Bt2

)
≤ δ.

Notice that 2 exp
(
−2Bt2

)
≤ δ if and only if B ≥ 1

2t2 ln
(
2
δ

)
.

Therefore, with probability 1− δ, ∣∣∣R̂IDj(k)− RIDj(k)
∣∣∣ ≤ t

with B ≥ 1
2t2 ln

(
2
δ

)
bootstrap iterations.

Corollary 1. Let t > 0, k ∈ [ϕmin, ϕmax], and assume that D(n) ∼ Pn. As B → ∞,

P
(∣∣∣R̂IDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε,F , ℓ,Pn, λ)

∣∣∣ ≥ t
)
→ 0.

Proof. Recall the results of Theorem 2:

P
(∣∣∣R̂IDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε,F , ℓ,Pn, λ)

∣∣∣ ≥ t
)

≤ 2 exp
(
−2Bt2

)
→ 0 as B → ∞.
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B Statistics Derived From RID

Corollary 2. Let ε,B > 0. Then,

P
(∣∣∣E[RIDj ]− E[R̂IDj ]

∣∣∣ ≥ εE

)
≤ 2 exp

(
−2Bε2E

(ϕmax − ϕmin)2

)
. (3)

Therefore, the expectation of R̂IVj converges exponentially quickly to the expectation of RIVj . The
notation E[RIDj ] denotes the expectation of the random variable distributed according to RIDj .

Proof. Let ϕmin, ϕmax represent the bounds of the variable importance metric ϕ. Assume that 0 ≤
ϕmin ≤ ϕmax < ∞. If ϕmin < 0, then we can modify the variable importance metric to be strictly
positive; for example, if ϕ is Pearson correlation – which has a range between -1 and 1 – we can
define a new variable importance metric that is the absolute value of the Pearson correlation or define
another metric that is the Pearson correlation plus 1 so that the range is now bounded below by 0.

Now, recall that for any random variable X whose support is strictly greater than 0, we can calculate
its expectation as EX [X] =

∫∞
0

(1− P(X ≤ x))dx. Because ϕmin ≥ 0, we know that

E[RIDj ]

=

∫ ϕmax

ϕmin

(1− P(RIVj ≤ k)) dk

=

∫ ϕmax

ϕmin

1− ED(n)

∑
f∈F

1[f ∈ Rε
D(n) ]1[ϕj(f,D

(n)) ≤ k]∑
f∈F 1[f ∈ Rε

D(n) ]

 dk

=

∫ ϕmax

ϕmin

dk −
∫ ϕmax

ϕmin

ED(n)

∑
f∈F

1[f ∈ Rε
D(n) ]1[ϕj(f,D

(n)) ≤ k]∑
f∈F 1[f ∈ Rε

D(n) ]

 dk

=(ϕmax − ϕmin)− ED(n)

∫ ϕmax

ϕmin

∑
f∈F

1[f ∈ Rε
D(n) ]1[ϕj(f,D

(n)) ≤ k]∑
f∈F 1[f ∈ Rε

D(n) ]
dk

 by Fubini’s theorem.

Using similar logic we can show that

E[R̂IDj ] =

∫ ϕmax

ϕmin

1− 1

B

B∑
b=1

∑
f∈F

1[f ∈ Rε
D(n) ]1[ϕj(f,D

(n)
b ) ≤ k]∑

f∈F 1[f ∈ Rε
D(n) ]

 dk

=

∫ ϕmax

ϕmin

dk −
∫ ϕmax

ϕmin

1

B

B∑
b=1

∑
f∈F

1[f ∈ Rε
D(n) ]1[ϕj(f,D

(n)
b ) ≤ k]∑

f∈F 1[f ∈ Rε
D(n) ]

dk

= (ϕmax − ϕmin)−
1

B

B∑
b=1

∫ ϕmax

ϕmin

∑
f∈F

1[f ∈ Rε
D(n) ]1[ϕj(f,D

(n)
b ,m) ≤ k]∑

f∈F 1[f ∈ Rε
D(n) ]

dk

 .
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We can then rewrite
∣∣∣E[RIDj ]− E[R̂IDj ]

∣∣∣ using the calculations above:∣∣∣E[RIDj ]− E[R̂IDj ]
∣∣∣

=

∣∣∣∣∣ (ϕmax − ϕmin)− ED(n)∼Pn

∫ ϕmax

ϕmin

∑
f∈F

1[f ∈ Rε
D(n) ]1[ϕ)j(f,D

(n)
b ) ≤ k]∑

f∈F 1[f ∈ Rε
D(n) ]

dk


−

(ϕmax − ϕmin)−
1

B

B∑
b=1

∫ ϕmax

ϕmin

∑
f∈F

1[f ∈ Rε
D(n) ]1[ϕj(f,D

(n)
b ) ≤ k]∑

f∈F 1[f ∈ Rε
D(n) ]

dk

∣∣∣∣∣
=

∣∣∣∣∣− ED(n)∼Pn

∫ ϕmax

ϕmin

∑
f∈F

1[f ∈ Rε
D(n) ]1[ϕj(f,D

(n)
b ) ≤ k]∑

f∈F 1[f ∈ Rε
D(n) ]

dk


+

1

B

B∑
b=1

∫ ϕmax

ϕmin

∑
f∈F

1[f ∈ Rε
D(n) ]1[ϕj(f,D

(n)
b ) ≤ k]∑

f∈F 1[f ∈ Rε
D(n) ]

dk

∣∣∣∣∣.
Because 0 ≤ P(RIVj ≤ k),P(R̂IVj ≤ k) ≤ 1 for all k ∈ R,∫ ϕmax

ϕmin

0dk ≤
∫ ϕmax

ϕmin

P(RIVj ≤ k)dk,

∫ ϕmax

ϕmin

P(R̂IVj ≤ k)dk ≤
∫ ϕmax

ϕmin

1dk

0 ≤
∫ ϕmax

ϕmin

P(RIVj ≤ k)dk,

∫ ϕmax

ϕmin

P(R̂IVj ≤ k)dk ≤ (ϕmax − ϕmin),

suggesting that
(∫ ϕmax

ϕmin

∑
f∈F 1[f∈Rε

D(n) ]1[ϕj(f,D
(n)
b )≤k]∑

f∈F 1[f∈Rε

D(n)
] dk

)
is bounded.

Then, by Hoeffding’s inequality, we know that

P
(∣∣∣E[RIVj ]− E[R̂IVj ]

∣∣∣ > εE

)
=P

(∣∣∣∣∣ED(n)∼Pn

∫ ϕmax

ϕmin

∑
f∈F

1[f ∈ Rε
D(n) ]1[ϕj(f,D

(n)
b ) ≤ k]∑

f∈F 1[f ∈ Rε
D(n) ]

dk


− 1

B

B∑
b=1

∫ ϕmax

ϕmin

∑
f∈F

1[f ∈ Rε
D(n) ]1[ϕj(f,D

(n)
b ) ≤ k]∑

f∈F 1[f ∈ Rε
D(n) ]

dk

∣∣∣∣∣ > εE

)

≤2 exp

(
−2Bε2E

(ϕmax − ϕmin)2

)
.

Corollary 3. Assume R̂IDj(k) and RIDj(k) are strictly increasing in k ∈ [ϕmin, ϕmax]. Then, the
interquantile range (IQR) of R̂IDj will converge in probability to the IQR of RIDj .

Proof. Let k0.25 be the k such that RIDj(k0.25) = 0.25. And let k0.75 be the k such that
RIDj(k0.75) = 0.75. Similarly, let k̂0.25 be the k such that R̂IDj(k̂0.25) = 0.25. And let k̂0.75 be the
k such that R̂IDj(k̂0.75) = 0.75. The IQR of R̂IDj converges to the IQR of RIDj if k̂0.25 → k0.25
and k̂0.75 → k0.75.

Because R̂IDj(k) and RIDj(k) are increasing in k, we know that if P
(

R̂IVj ≤ k0.25

)
= 0.25, then

k̂0.25 = k0.25. An analogous statement holds for k̂0.75.

So, we will bound how far R̂IDj(k0.25) is from 0.25 = RIDj(k0.25) and how far R̂IDj(k0.75) is from
0.75 = RIDj(k0.75).
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Let t > 0. Then,

P
(∣∣∣R̂IDj(k0.25)− RIDj(k0.25)

∣∣∣+ ∣∣∣R̂IDj(k0.75)− RIDj(k0.75)
∣∣∣ > t

)
≤P

({∣∣∣R̂IDj(k0.25)− RIDj(k0.25)
∣∣∣ > t

2

}
∪
{∣∣∣R̂IDj(k0.75)− RIDj(k0.75)

∣∣∣ > t

2

})
≤P

({∣∣∣R̂IDj(k0.25)− RIDj(k0.25)
∣∣∣ > t

2

})
+ P

({∣∣∣R̂IDj(k0.75)− RIDj(k0.75)
∣∣∣ > t

2

})
by Union bound.

Then, by Theorem 2,

P

(∣∣∣R̂IDj(k0.25)− RIDj(k0.25)
∣∣∣ > t

2

)
≤ 2 exp

(
−2B

t2

4

)
.

So,

P
(∣∣∣R̂IDj(k0.25)− RIDj(k0.25)

∣∣∣+ ∣∣∣R̂IDj(k0.75)− RIDj(k0.75)
∣∣∣ > t

)
≤P

({∣∣∣R̂IDj(k0.25)− RIDj(k0.25)
∣∣∣} >

t

2

)
+ P

({∣∣∣R̂IDj(k0.75)− RIDj(k0.75)
∣∣∣} >

t

2

)
≤2 exp

(
−2B

t2

4

)
+ 2 exp

(
−2B

t2

4

)
=4 exp

(
−2B

t2

4

)
.

So, as B → ∞,P
(∣∣∣R̂IDj(k0.25)− RIDj(k0.25)

∣∣∣+ ∣∣∣R̂IDj(k0.75)− RIDj(k0.75)
∣∣∣ > t

)
ultimately

converging to 0.

Therefore, the IQR of R̂IDj converges to the IQR of RID.
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C Example Model Classes for Which RID Converges

First, recall the following assumption from the main paper:
Assumption 1. If

ρ (RLD(·; ε,F , ℓ,Pn, λ),LD∗(·; ℓ, n,Pn, λ)) ≤ γ then
ρ (RIDj(·; ε,F , ℓ,Pn, λ),RIDj(·; ε, {g∗}, ℓ,Pn, λ)) ≤ d(γ)

for a function d : [0, ℓmax−ℓmin] → [0, ϕmax−ϕmin] such that limγ→0 d(γ) = 0. Here, ρ represents
any distributional distance metric (e.g., 1-Wasserstein).

In this section, we highlight two simple examples of model classes and model reliance metrics for
which Assumption 1 holds. First we show that Assumption 1 holds for the class of linear regression
models with the model reliance metric being the coefficient assigned to each variable in Proposition
1; Proposition 2 presents a similar result for generalized additive models. We begin by presenting
two lemmas which will help prove Proposition 1:
Lemma 1. Let ℓ be unregularized mean square error, used as the objective for estimating optimal
models in some class of continuous models F . Assume that the DGP’s noise ϵ is centered at 0:
E[ϵ] = 0. Define the function m : [0, ℓmax] → [0, 1] as:

m(ε) := lim
n→∞

∫ ℓmax

ℓmin

|LD∗(k; ℓ, n,Pn, λ)− RLD(k; ε,F , ℓ,Pn, λ)| dk.

The function m is a strictly increasing function of ε; m simply measures the integrated absolute
error between the CDF of g∗’s loss distribution and the CDF of the Rashomon set’s loss distribution.
Then, if g∗ ∈ F , then m(0) = 0.

Proof. Let ℓ be unregularized mean square error, used as the objective for estimating optimal models
in some class of continuous models F . Let g∗ denote the unknown DGP. Throughout this proof, we
consider the setting with n → ∞, although we often omit this notation for simplicity.

First, we restate the definition of RLD and LD∗ for reference:

RLD(k; ε,F , ℓ,Pn, λ) := ED(n)∼Pn

[
ν({f ∈ Rε

D(n) : ℓ(f,D(n)) ≤ k})
ν(Rε

D(n))

]
and

LD∗(k; ℓ, n,Pn, λ) := ED(n)∼Pn

[
1[ℓ(g∗,D(n)) ≤ k]

]
.

Because g∗ is the DGP, we know that its expected loss should be lower than the expected loss for
any other model in the model class: ED(n)∼Pn

[ℓ(g∗,D(n))] ≤ ED(n)∼Pn
[ℓ(f,D(n))] for any f ∈ F

such that f ̸= g∗, as we have assumed that any noise has expectation 0. For simplicity, we denote
ED(n)∼Pn

[ℓ(g∗,D(n))] by ℓ∗. We first show that m is monotonically increasing in ε by showing
that, for any ε > ε′ ≥ 0:

lim
n→∞

∫ ℓmax

ℓmin

|LD∗(k; ℓ, n,Pn, λ)− RLD(k; ε,F , ℓ,Pn, λ)| dk

> lim
n→∞

∫ ℓmax

ℓmin

|LD∗(k; ℓ, n,Pn, λ)− RLD(k; ε′,F , ℓ,Pn, λ)| dk

by demonstrating that the inequality holds for each individual value of k. First, note that:

LD∗(k; ℓ, n,Pn, λ) = ED(n)∼Pn

[
1[ℓ(g∗,D(n)) ≤ k]

]
.

As n → ∞, this quantity approaches

ED(n)∼Pn

[
1[ℓ(g∗,D(n)) ≤ k]

]
= 1[ℓ(g∗,D(n)) ≤ k].
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Figure 1: A visual overview of the proof of Lemma 1. In Case 1, we consider loss values that are
achieved by no models in the model class, so each loss distribution has 0 mass below k in this case.
Case 2 covers each value of k such that k is larger than ℓ∗, so LD∗(k) = 1. The RLD for the ε′

Rashomon set is closer to 1 than the ε Rashomon set because a larger proportion of this set falls
below k. Under Case 3, all models in the ε′ Rashomon set fall below k.

We will consider three cases: first, we consider ℓ∗ > k1 ≥ 0, followed by ε′ + ℓ∗ > k2 ≥ ℓ∗, and
finally k3 ≥ ε′ + ℓ∗. Figure 1 provides a visual overview of these three cases and the broad idea
within each case.

Case 1: ℓ∗ > k1 ≥ 0

For any k1 such that ℓ∗ > k1 ≥ 0, it holds that

1[ℓ(g∗,D(n)) ≤ k1] = 0,

since ℓ∗ > k1 by definition. Further, because ℓ(g∗,D(n)) ≤ ℓ(f,D(n)) for mean squared error in
the infinite data setting,

RLD(k1; ε
′,F , ℓ,Pn, λ) = RLD(k1; ε,F , ℓ,Pn, λ) = 0

Case 2: ε′ + ℓ∗ ≥ k2 ≥ ℓ∗

For any k2 such that ε′ + ℓ∗ ≥ k2 ≥ ℓ∗,

1[ℓ(g∗,D(n)) ≤ k2] = 1,

since ℓ(g∗,D(n)) ≤ k2 by the definition of k2. Let ν denote a volume function over the target model
class. Recalling that ε > ε′, we know that:

ν(Rε) > ν(Rε′) ⇐⇒ 1

ν(Rε)
<

1

ν(Rε′)

⇐⇒ ν({f ∈ Rε : ℓ(f,D(n)) ≤ k2})
ν(Rε)

<
ν({f ∈ Rε : ℓ(f,D(n)) ≤ k2})

ν(Rε′)

⇐⇒ ν({f ∈ Rε : ℓ(f,D(n)) ≤ k2})
ν(Rε)

<
ν({f ∈ Rε′ : ℓ(f,D(n)) ≤ k2})

ν(Rε′)
,

since the set of models in the ε Rashomon set with loss less than k2 is the same set as set of models
in the ε′ Rashomon set with loss less than k2 for k2 ≤ ε′ + ℓ∗. We can further manipulate this

8



quantity to show:

ν({f ∈ Rε : ℓ(f,D(n)) ≤ k2})
ν(Rε)

<
ν({f ∈ Rε′ : ℓ(f,D(n)) ≤ k2})

ν(Rε′)

⇐⇒ 1− ν({f ∈ Rε : ℓ(f,D(n)) ≤ k2})
ν(Rε)

> 1− ν({f ∈ Rε′ : ℓ(f,D(n)) ≤ k2})
ν(Rε′)

⇐⇒
∣∣∣∣1− ν({f ∈ Rε : ℓ(f,D(n)) ≤ k2})

ν(Rε)

∣∣∣∣ >
∣∣∣∣∣1− ν({f ∈ Rε′ : ℓ(f,D(n)) ≤ k2})

ν(Rε′)

∣∣∣∣∣
⇐⇒ |1− RLD(k2; ε,F , ℓ)| > |1− RLD(k2; ε

′,F , ℓ)|
⇐⇒ |LD∗(k2)− RLD(k2; ε,F , ℓ)|

> |LD∗(k2)− RLD(k2; ε
′,F , ℓ)| ,

because LD∗(k2) = 1.

Case 3: k3 > ε′ + ℓ∗

For any k3 > ε′ + ℓ∗, we have

RLD(k3; ε
′,F , ℓ) =

ν({f ∈ Rε′ : ℓ(f,D(n)) ≤ k3})
ν(Rε′)

=
ν(Rε′)

ν(Rε′)
because k3 > ε′ + ℓ∗

= 1.

This immediately gives that

|LD∗(k3)− RLD(k3; ε
′,F , ℓ)| = |1− 1|

= 0,

the minimum possible value for this quantity. We can then use the fact that the absolute value is
greater than or equal to zero to show that

|LD∗(k3)− RLD(k3; ε,F , ℓ)|
≥ 0 = |LD∗(k3)− RLD(k3; ε

′,F , ℓ)|

In summary, under cases 1 and 3,

|LD∗(k; ℓ, n,Pn, λ)− RLD(k; ε,F , ℓ,Pn, λ)|
≥ |LD∗(k; ℓ, n,Pn, λ)− RLD(k; ε′,F , ℓ,Pn, λ)| ;

under case 2,

|LD∗(k2; ℓ, n,Pn, λ)− RLD(k2; ε,F , ℓ,Pn, λ)|
> |LD∗(k2; ℓ, n,Pn, λ)− RLD(k2; ε

′,F , ℓ,Pn, λ)| .

Since there is some range of values k ∈ [ℓ∗, ε′ + ℓ∗) for which the inequality above is strict, it
follows that ∫ ℓmax

ℓmin

|LD∗(k; ℓ, n,Pn, λ)− RLD(k; ε,F , ℓ,Pn, λ)| dk

>

∫ ℓmax

ℓmin

|LD∗(k; ℓ, n,Pn, λ)− RLD(k; ε′,F , ℓ,Pn, λ)| dk,

showing that ε > ε′ is a sufficient condition for m(ε) > m(ε′). Observe that, for a loss function
with no regularization and a fixed model class, RLD is a function of only ε. As such, varying ε is
the only way to vary RLD, making ε > ε′ a necessary condition for the above. Therefore, we have
shown that ε > ε′ ⇐⇒ m(ε) > m(ε′), i.e. m is strictly increasing.
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Further, if g∗ ∈ F , the Rashomon set with ε = 0 will contain only g∗ as n approaches infinity,
immediately yielding that

m(0) =

∫ ℓmax

ℓmin

|LD∗(k; ℓ, n,Pn, λ)− RLD(k; 0,F , ℓ)| dk = 0.

Lemma 1 provides a mechanism through which RLV will approach LD∗ in the infinite data setting.
The following lemma states that each level set of the quadratic loss surface is a hyper-ellipsoid,
providing another useful tool for the propositions given in this section.
Lemma 2. The level set of the quadratic loss at ε is a hyper-ellipsoid defined by:

(θ − θ∗)TXTX(θ − θ∗) = ε− c,

which is centered at θ∗ and of constant shape in terms of ε.

Proof. Recall that the quadratic loss for some parameter vector θ is given by:

ℓ(θ) = ∥y −Xθ∥2

and that the optimal vector θ∗ is given by:

θ∗ = (XTX)−1XT y

⇐⇒ XTXθ∗ = XT y

With these facts, we show that the level set for the quadratic loss at some fixed value ε takes on the
standard form for a hyper-ellipsoid. This is shown as:

ℓ(θ) = ∥y −Xθ∥2

= ∥y −Xθ∥2 −yT (y −Xθ∗) + yT (y −Xθ∗)︸ ︷︷ ︸
add 0

= yT y − 2yTXθ + θTXTXθ︸ ︷︷ ︸
expand quadratic

−yT y − yTXθ∗︸ ︷︷ ︸
distribute yT

+yT (y −Xθ∗)

= yT y − 2yTXθ + θTXTXθ − yT y − (XT y)T θ∗︸ ︷︷ ︸
pull out transpose

+yT (y −Xθ∗)

= yT y − 2yTXθ + θTXTXθ − yT y − θ∗TXTXθ∗︸ ︷︷ ︸
because XT y=XTXθ∗

+yT (y −Xθ∗)

= yT y − 2(XT y)T θ︸ ︷︷ ︸
pull out transpose

+θTXTXθ − yT y − θ∗TXTXθ∗ + yT (y −Xθ∗)

= yT y − 2θ∗XTXθ︸ ︷︷ ︸
because XT y=XTXθ∗

+θTXTXθ − yT y − θ∗TXTXθ∗ + yT (y −Xθ∗)

= θTXTXθ − 2θ∗XTXθ − θ∗TXTXθ∗ + yT (y −Xθ∗) because yT y terms cancel out

= (θ − θ∗)TXTX(θ − θ∗) + yT (y −Xθ∗) by factorization.

Noting that the term yT (y − Xθ∗) is constant in terms of θ, so we can simplify this expression to
ℓ(θ) = (θ− θ∗)TXTX(θ− θ∗) + c where c = yT (y−Xθ∗). If we are interested in the level set at
ℓ(θ) = c+ ε — that is, with loss ε greater than the optimal loss — this is exactly:

(θ − θ∗)TXTX(θ − θ∗) + c = c+ ε

⇐⇒ (θ − θ∗)TXTX(θ − θ∗) = ε.

That is, the set of parameters θ yielding loss value c+ε is a hyper-ellipsoid centered at θ∗ according
to the positive semi-definite matrix XTX .

Proposition 1. If the DGP is a linear regression model, Assumption 1 is guaranteed to hold for the
function class of linear models (i.e., g∗ ∈ F) as n → ∞.
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Proof. We now turn our attention to RID. Let our variable importance metric ϕj := θj , the coeffi-
cient of a linear model, and let p denote the number of variables in the dataset such that θ ∈ Rp.
As in Lemma 1, we restrict ourselves to the setting in which n → ∞, although we often omit this
notation. Define the function rj : [0, ℓmax] → [0, 1] to be:

rj(ε) :=

∫ ϕmax

ϕmin

|RIDj(k; {g∗}, 0)− RIDj(k;F , ε)| dk

We show that rj is a monotonic function of ε, for any j ∈ {1, 2, . . . , p}. In other words, as ε gets
smaller, the value of rj(ε) gets smaller. We do so by showing that the following holds for this VI
metric: ∫ ϕmax

ϕmin

|RIDj(k; {g∗}, 0)− RIDj(k;F , ε)| dk

≥
∫ ϕmax

ϕmin

|RIDj(k; {g∗}, 0)− RIDj(k;F , ε′)| dk

if and only if ε > ε′ by showing that, for any k,

|RIDj(k; {g∗}, 0)− RIDj(k;F , ε)|
≥ |RIDj(k; {g∗}, 0)− RIDj(k;F , ε′)| .

For simplicity of notation, we denote the linear regression model parameterized by some coefficient
vector θ ∈ Rp simply as θ. Let θ∗ ∈ Rp denote the coefficient vector for the optimal model.
Additionally, we define the following quantities to represent the most extreme values for θj (i.e., the
coefficient along the j-th axis) for each Rashomon set. Let aj and bj be the two values defined as:

aj := min
v∈Rp

(θ∗ + v)j s.t. ℓ(θ∗ + v,D(n)) = ℓ∗ + ε

bj := max
v∈Rp

(θ∗ + v)j s.t. ℓ(θ∗ + v,D(n)) = ℓ∗ + ε.

Similarly, let a′j and b′j be the two values defined as:

a′j := min
v∈Rp

(θ∗ + v)j s.t. ℓ(θ∗ + v,D(n)) = ℓ∗ + ε′

b′j := max
v∈Rp

(θ∗ + v)j s.t. ℓ(θ∗ + v,D(n)) = ℓ∗ + ε′.

Intuitively, these values represent the most extreme values of θ along dimension j that are still
included in their respective Rashomon sets. Figure 2 provides a visual explanation of each of these
quantities. Finally, recall that:

RIDj(k; {g∗}, 0) =
{
1 if θ∗j ≤ k

0 otherwise,

since θ∗ is a deterministic quantity given infinite data.

Without loss of generality, we will consider two cases:

1. The case where θ∗j ≤ k,

2. The case where k < θ∗j .

Figures 3 and 4 give an intuitive overview of the mechanics of this proof. As depicted in Figure 3,
we will show that the proportion of the volume of the ε′-Rashomon set with ϕj below k is closer to
1 than that of the ε-Rashomon set under case 1. We will than show that the opposite holds under
case 2, as depicted in Fugre 4.
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Figure 2: A visualization of the ε and ε′ Rashomon sets for linear regression with two input features.
We highlight the extrema of each Rashomon set along axis 1 (a1 and b1 for the ε Rashomon set, a′1
and b′1 for the ε′ Rashomon set).

Figure 3: A simple illustration of the key idea in case 1 of the proof of Proposition 1. For two
concentric ellipsoids of the same shape, the proportion of each ellipsoid’s volume falling below
some point greater than the center along axis j is greater for the smaller ellipsoid than for the larger
ellipsoid.

Case 1: θ∗j ≤ k

Define two functions h : [aj , bj ] → [0, 1] and h′ : [a′j , b
′
j ] → [0, 1] as:

h(c) =
c− aj
bj − aj

h′(c) =
c− a′j
b′j − a′j

.

These functions map each value c in the original space of θj to its relative position along each
axis of the ε-Rashomon set and the ε′-Rashomon set respectively, with h(bj) = h′(b′j) = 1 and
h(aj) = h′(a′j) = 0.
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Define δ ∈ [0, bj − θ∗j ] to be the value such that k = θ∗j + δ. Since in this case θ∗j ≤ k, it follows
that δ ≥ 0. As such, we can then quantify the proportion of the ε-Rashomon set along the j-th axis
such that θ∗j ≤ θj ≤ k as:

h(θ∗j + δ)− h(θ∗j ) =
(θ∗j + δ)− aj

bj − aj
−

(θ∗j − aj)

(bj − aj)

=
θ∗j + δ − aj − θ∗j + aj

bj − aj

=
δ

bj − aj

Similarly, we can quantify the proportion of the ε′-Rashomon set along the j-th axis with θj between
k and θ∗j as:

h′(δ + θ∗j )− h′(θ∗j ) =
θ∗j + δ − a′j − θ∗j + a′j

b′j − a′j

=
δ

b′j − a′j
.

Recalling that, by definition, aj < a′j < b′j < bj , as well as the fact that δ ≥ 0 we can see that:

bj − aj > b′j − a′j ⇐⇒ 1

bj − aj
<

1

b′j − a′j

⇐⇒ δ

bj − aj
≤ δ

b′j − a′j

⇐⇒ h(θ∗j + δ)− h(θ∗j ) ≤ h′(θ∗j + δ)− h′(θ∗j )

⇐⇒ h(k)− h(θ∗j ) ≤ h′(k)− h′(θ∗j ).

That is, the proportion of the ε-Rashomon set along the j-th axis with θj between k and θ∗j is less
than or equal to the proportion of the ε′-Rashomon set along the j-th axis with θj between k and θ∗j .
By Lemma 2, recall that the ε-Rashomon set and the ε′-Rashomon set are concentric (centered at θ∗)
and similar (with shape defined by XTX). Let ν denote the volume function for some subsection
of a hyper-ellipsoid. We then have

h(k)−h(θ∗j ) ≤ h′(k)− h′(θ∗j )

⇐⇒
ν({θ ∈ Rε : θ∗j ≤ θj ≤ k})

ν({Rε})
≤

ν({θ′ ∈ Rε′ : θ∗j ≤ θ′j ≤ k})
ν({Rε′})

⇐⇒ 1

2
+

ν({θ ∈ Rε : θ∗j ≤ θj ≤ k})
ν({Rε})

≤ 1

2
+

ν({θ′ ∈ Rε′ : θ∗j ≤ θ′j ≤ k})
ν({Rε′})

⇐⇒
ν({θ ∈ Rε : θj ≤ θ∗j })

ν({Rε})
+

ν({θ ∈ Rε : θ∗j ≤ θj ≤ k})
ν({Rε})

≤
ν({θ′ ∈ Rε′ : θ′j ≤ θ∗j })

ν({Rε′})
+

ν({θ′ ∈ Rε′ : θ∗j ≤ θ′j ≤ k})
ν({Rε′})

⇐⇒ ν({θ ∈ Rε : θj ≤ k})
ν({Rε})

≤
ν({θ′ ∈ Rε′ : θ′j ≤ k})

ν({Rε′})
.

Recalling that, by definition, RIDj(k;F , ε′) =
ν({θ′∈Rε′ :θ′

j≤k})
ν(Rε′ )

, it follows that:

RIDj(k;F , ε) ≤ RIDj(k;F , ε′)

⇐⇒ 1− RIDj(k;F , ε) ≥ 1− RIDj(k;F , ε′)

⇐⇒ |1− RIDj(k;F , ε)| ≥ |1− RIDj(k;F , ε′)|.
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Figure 4: A simple illustration of the key idea in case 2 of the proof of Proposition 1. For two
concentric ellipsoids of the same shape, the proportion of each ellipsoid’s volume falling below
some point less than the center along axis j is smaller for the smaller ellipsoid than for the larger
ellipsoid.

Recalling that RIDj(k; {g∗}, 0) = 1, since k ≥ θ∗j , the above gives:

|1−RIDj(k;F , ε)| ≥ |1− RIDj(k;F , ε′)|
⇐⇒ |RIDj(k; {g∗}, ε)− RIDj(k;F , ε)|

≥ |RIDj(k; {g∗}, ε)− RIDj(k;F , ε′)|

for all θ∗j ≤ k.

Case 2: k < θ∗j

Let h and h′ be defined as in Case 1. Define δ ∈ [aj − θ∗j , 0] to be the quantity such that k = θ∗j + δ.
In this case, k < θ∗j , so it follows that δ < 0. Repeating the derivation from Case 1, we then have:

bj − aj > b′j − a′j ⇐⇒ 1

bj − aj
<

1

b′j − a′j

⇐⇒ δ

bj − aj
>

δ

b′j − a′j

⇐⇒ h(θ∗j + δ)− h(θ∗j ) > h′(θ∗j + δ)− h′(θ∗j )

⇐⇒ h(k)− h(θ∗j ) > h′(k)− h′(θ∗j ).

That is, the proportion of the ε-Rashomon set along the j-th axis with θj between k and θ∗j is greater
than the proportion of the ε′−Rashomon set along the j-th axis with θj between k and θ∗j . By similar
reasoning as in Case 1, it follows that:

RIDj(k;F , ε) > RIDj(k;F , ε′)

⇐⇒ |RIDj(k;F , ε)− 0| > |RIDj(k;F , ε′)− 0|

Recalling that RIDj(k; {g∗}, ε) = 0, since k < θ∗j , the above gives:

|PD(n)∼Pn
(RIVj(F , ε) ≤ k)− 0| > |RIDj(k;F , ε′)− 0|
⇐⇒ |RIDj(k;F , ε)− RIDj(k; {g∗}, 0)|

> |RIDj(k;F , ε′)− RIDj(k; {g∗}, 0)|
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for all aj ≤ k < θ∗j . As such, for any k, we have that:

|RIDj(k; {g∗}, 0)− RIDj(k;F , ε)|
≥ |RIDj(k; {g∗}, 0)− RIDj(k;F , ε′)| ,

showing that ε > ε′ is a sufficient condition for the above. Since RID is a function of only ε, varying
ε is the only way to vary RID, making ε > ε′ a necessary condition for the above, yielding that
rj(ε) > rj(ε

′) ⇐⇒ ε > ε′ and rj is monotonically increasing.

Let m be defined as in Lemma 1, and let γ be some value such that m(ε) ≤ γ. Define the function
d := rj ◦ m−1 (note that m−1, the inverse of m, is guaranteed to exist and be strictly increasing
because m is strictly increasing). The function d is monotonically increasing as the composition of
two monotonically increasing functions, and:

m(ε) ≤ γ

⇐⇒ ε ≤ m−1(γ)

⇐⇒ rj(ε) ≤ d(γ)

as required.

Further, Lemma 1 states that m(0) = 0 if g∗ ∈ F . Note also that the Rashomon set with ε = 0 con-
tains only g∗, and as such rj(0) = d(m−1(0)) = 0, meaning d(0) = 0. Therefore limγ→0 d(γ) = 0.

Proposition 2. Assume the DGP is a generalized additive model (GAM). Then, Assumption 1 is
guaranteed to hold for the function class of GAM’s where our variable importance metric is the
coefficient on each bin.

Proof. Recall from Proposition 1 that Assumption 1 holds for the class of linear regression models
with the model reliance metric ϕj = θj . A generalized additive model (GAM) [9] over p variables
is generally represented as:

g(E[Y ]) = ω + f1(x1) + . . .+ fp(xp),

where g is some link function, ω is a bias term, and f1, . . . , fp denote the shape functions associated
with each of the variables. In practice, each shape function fj generally takes the form of a linear
function over binned variables [12]:

fj(xi) =

βj−1∑
j′=0

θj′1[bj′ ≤ xij ≤ bj′+1],

where βj denotes the number of possible bins associated with variable Xj , bj′ denotes the j′-th
cuttoff point associated with Xj , and θj′ denotes the weight associated with the j′-th bin on variable
Xj . With the above shape function, a GAM is a linear regression over a binned dataset; as such, for
the variable importance metric ϕj′ = θj′ on the complete, binned dataset, Assumption 1 holds by
the same reasoning as Proposition 1.
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D Detailed Experimental Setup

In this work, we considered the following four simulation frameworks:

• Chen’s [3]: Y = 1[−2 sin(X1) + max(X2, 0) + X3 + exp(−X4) + ε ≥ 2.048], where
X1, . . . , X10, ε ∼ N (0, 1). Here, only X1, . . . , X4 are relevant.

• Friedman’s [7]: Y = 1[10 sin(πX1X2)+20(X3− 0.5)2+10X4+5X5+ ε ≥ 15], where
X1, . . . , X6 ∼ U(0, 1), ε ∼ N (0, 1). Here, only X1, . . . , X5 are relevant.

• Monk 1 [16]: Y = max (1[X1 = X2],1[X5 = 1]) , where the variables X1, . . . , X6 have
domains of 2, 3, or 4 unique integer values. Only X1, X2, X5 are important.

• Monk 3 [16]: Y = max (1[X5 = 3 and X4 = 1],1[X5 ̸= 4 and X2 ̸= 3]) for the same
covariates in Monk 1. Here, X2, X4, and X5 are relevant, and 5% label noise is added.

DGP Num Samples Num Features Num Extraneous Features
Chen’s 1,000 10 6

Friedman’s 200 6 1
HIV 14,742 100 Unknown

Monk 1 124 6 3
Monk 3 124 6 3

Table 1: Overview of the size of each dataset considered (or generated from a DGP) in this paper.

For our experiments in Sections 4.1 and 4.2 of the main paper, we trained and evaluated all models
using the standard training set provided by [16] for Monk 1 and Monk 3. We generated 200 samples
following the above process for Friedman’s DGP, and 1000 samples following the above process for
Chen’s DGP.

In Section 5 of the main paper, we evaluated RID on a dataset studying which host cell transcripts and
chromatin patterns are associated with high expression of Human Immunodeficiency Virus (HIV)
RNA. We used the model class of sparse decision trees and subtractive model reliance. The dataset
combined single cell RNAseq/ATACseq profiles for 74,031 individual HIV infected cells from two
different donors in the aims of finding new cellular cofactors for HIV expression that could be
targeted to reactivate the latent HIV reservoir in people with HIV (PWH). A longer description of
the data is in [14].

We consider the binary classification problem of predicting high versus low HIV load, where high
HIV load means an HIV load in the top 10% of observed values. We selected 14,614 samples (all
7,307 high HIV load samples and 7,307 random low HIV load samples) from the overall dataset in
order to balance labels, and filtered the complete profiles down to the top 100 variables by individual
AUC in order to accelerate the runtime of RID .

Table 1 summarizes the size of each dataset we considered. In all cases, we used random seed 0 for
dataset generation, model training, and evaluation unless otherwise specified.

We compared the rankings produced by RID with the following baseline methods:

• Subtractive model reliance ϕsub of a random forest (RF) [1] using scikit-learn’s implemen-
tation [15] of RF

• Subtractive model reliance ϕsub of an L1 regularized logistic regression model (Lasso) us-
ing scikit-learn’s implementation [15] of Lasso

• Subtractive model reliance ϕsub of boosted decision trees [6] using scikit-learn’s implemen-
tation [15] of AdaBoost

• Subtractive model reliance ϕsub of a generalized optimal sparse decision tree (GOSDT)
[11] using the implementation from [17]

• Subtractive conditional model reliance (CMR) [5] – a metric designed to capture only the
unique information of a variable – of RF using scikit-learn’s implementation [15] of RF

• Subtractive conditional model reliance (CMR) [5] of Lasso using scikit-learn’s implemen-
tation [15] of Lasso
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Dataset Rashomon Threshold ε Regularization Weight λ Depth Bound
Chen’s 0.01 0.01 5

Friedman’s 0.025 0.02 6
HIV 0.075 0.005 3

Monk 1 0.1 0.03 5
Monk 3 0.05 0.025 7

Table 2: The parameters used for RID, VIC, and GOSDT by data generation process.

• The impurity based model reliance metric for RF from [2] using scikit-learn’s implemen-
tation [15] of RF

• The LOCO algorithm reliance [10] value for RF and for Lasso using scikit-learn’s imple-
mentation [15] of both models

• The Pearson correlation between each feature and the outcome
• The Spearman correlation between each feature and the outcome
• The mean of the partial dependency plot (PDP) [8] for each feature using scikit-learn’s

implementation [15]
• The SHAP value [13] for RF using scikit-learn’s implementation [15] of RF
• The mean of variable importance clouds (VIC) [4] for the Rashomon set of sparse decision

trees, computed using TreeFarms [17].

We used the default parameters in scikit-learn’s implementation [15] of each baseline model. The
parameters used for RID, VIC, and GOSDT for each dataset are summarized in Table 2. In all cases,
we constructed each of RID, VIC, and GOSDT using the code from [17].

D.1 Computational Resources

All experiments for this work were performed on an academic institution’s cluster computer. We
used up to 40 machines in parallel, selected from the specifications below:

• 2 Dell R610’s with 2 E5540 Xeon Processors (16 cores)
• 10 Dell R730’s with 2 Intel Xeon E5-2640 Processors (40 cores)
• 10 Dell R610’s with 2 E5640 Xeon Processors (16 cores)
• 10 Dell R620’s with 2 Xeon(R) CPU E5-2695 v2’s (48 cores)
• 8 Dell R610’s with 2 E5540 Xeon Processors (16 cores)

We did not use GPU acceleration for this work.
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E Additional Experiments

E.1 Recovering MR without Bootstrapping Baseline Methods

Figure 5: Boxplot over variables of the mean absolute error over test sets between the MR value
produced by each method without bootstrapping (except RID) and the model reliance of the DGP
for 500 test sets.

In this section, we evaluate the ability of each baseline method to recover the value of subtrac-
tive model reliance for the data generation process without bootstrapping. For this comparison,
we use one training set to find the model reliance of each variable for each of the following algo-
rithms: GOSDT, AdaBoost, Lasso, and Random Forest. Because RID and VIC produce distribu-
tions/samples, we instead estimate the median model reliance across RID and VIC’s model reliance
distributions.

We then sample 500 test sets independently for each DGP. We then calculate the model reliance for
each test set using the DGP as if it were a predictive model (that is, if the DGP were Y = X + ε for
some Gaussian noise ε, our predictive model would simply be f(X) = X). Finally, we calculate the
mean absolute error between the test model reliance values for the DGP and the train model reliance
values for each algorithm.

Figure 5 shows the results of this experiment. As Figure 5 illustrates, RID produces more accurate
point estimates than baseline methods even though this is not the goal of RID – the goal of RID is to
produce the entire distribution of model reliance across good models over bootstrap datasets, not a
single point estimate.

E.2 Width of Box and Whisker Ranges

When evaluating whether the box and whisker range (BWR) for each method captures the MR value
for the DGP across test sets, a natural question is whether RID outperforms other methods simply
because it produces wider BWR’s. Figure 6 demonstrates the width of the BWR produced by each
evaluated method across variables and datasets. As shown in Figure 6, RID consistently produces
BWR widths on par with baseline methods.

E.3 The Performance of RID is Stable Across Reasonable Values for ε

The parameter ε controls what the maximum possible loss a model in the Rashomon set could be.
We investigate whether this choice of ε significantly alters the performance of RID. In order to
investigate this question, we repeat the coverage experiment from Section 4.2 of the main paper for
three different values of ε for each dataset on VIC and RID (the two methods effected by ε). In
particular, we construct the BWR over 100 bootstrap iterations for RID and over models for VIC
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Figure 6: Width of the box and whisker range produced by each baseline method by dataset and
variable. Gray subplots represent DGPs for which such a variable does not exist. Friedman’s, Monk
1, and Monk 3 only have six variables.
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for three different values of ε on each training dataset. These values are chosen as 0.75ε∗, ε∗, and
1.25ε∗, where ε∗ denotes the value of ε used in the experiments presented in the main paper. We
then generate 500 test datasets for each DGP and evaluate the subtractive model reliance for the
DGP on each variable; we then measure what proportion of these test model reliance values are
contained in each BWR. We refer to this proportion as the “recovery percentage”.

Figure 7 illustrates that RID is almost entirely invariant to reasonable choices of ε: the recovery
proportion for RID ranges from 90.38% to 90.64% on Chen’s DGP, 100% to 100% on Monk 1,
99.43% to 99.93% on Monk 3 DGP, and from 87.23% to 88.8% on Friedman’s DGP. We find that
VIC is somewhat more sensitive to choices of ε: the recovery proportion for VIC ranges from
83.44% to 89.62% on Chen’s DGP, 100% to 100% on Monk 1, 75.30% to 79.17% on Monk 3 DGP,
and from 60.53% to 75.57% on Friedman’s DGP.

Figure 7: Box and whiskers plot over variables of the proportion test MR values for the DGP cap-
tured by the BWR range for RID and VIC at different loss thresholds ε. We find that the performance
of RID is invariant to reasonable changes in ε.

E.4 Full Stability Results

In this section, we demonstrate each interval produced by MCR, the BWR of VIC, and the BWR of
RID over 50 datasets generated from each DGP. We construct RID using 50 bootstraps from each of
the 50 generated datasets.
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Figures 8, 9, 10, and 11 illustrate the 50 resulting intervals produced by each method for each non-
extraneous variable on each DGP. If a method produces generalizable results, we would expect it
to produce overlapping intervals across datasets drawn from the same DGP. As shown in Figures
8, 10, and 11, both MCR and the BWR for VIC produced completely non-overlapping intervals
between datasets for at least one variable on each of Chen’s DGP, Monk 3, and Friedman’s DGP,
which means their results are not generalizable. In contrast, the BWR range for RID never has
zero overlap between the ranges produced for different datasets. This highlights that RID is
more likely to generalize than existing Rashomon-based methods.

Figure 8: We generate 50 independent datasets from Chen’s DGP and calculate MCR, BWRs for
VIC, and BWRs for RID. The above plot shows the interval for each dataset for each non-null
variable in Chen’s DGP. All red-colored intervals do not overlap with at least one of the remaining
49 intervals.

Figure 9: We generate 50 independent datasets from the Monk 1 DGP and calculate MCR, BWRs
for VIC, and BWRs for RID. The above plot shows the interval for each dataset for each non-null
variable in Monk 1 DGP. All red-colored intervals (there are none in this plot) do not overlap with
at least one of the remaining 49 intervals.
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Figure 10: We generate 50 independent datasets from the Monk 3 DGP and calculate MCR, BWRs
for VIC, and BWRs for RID. The above plot shows the interval for each dataset for each non-
null variable in the Monk 3 DGP. All red-colored intervals do not overlap with at least one of the
remaining 49 intervals.

Figure 11: We generate 50 independent datasets from Friedmanś DGP and calculate MCR, BWRs
for VIC, and BWRs for RID. The above plot shows the interval for each dataset for each non-
null variable in Friedman’s DGP. All red-colored intervals do not overlap with at least one of the
remaining 49 intervals.

E.5 Timing Experiments

Finally, we perform an experiment studying how well the runtime of RID scales with respect to the
number of samples and the number of features in the input dataset using the HIV dataset [14]. The
complete dataset used for the main paper consists of 14,742 samples measuring 100 features each.
We compute RID using 30 bootstrap iterations for each combination of the following sample and
feature subset sizes: 14,742 samples, 7,371 samples, and 3,686 samples; 100 features, 50 features,
and 25 features.
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Samples
Variables 25 50 100

3,686 19.3 (0.9) 64.2 (6.2) 164.0 (14.6)
7,371 40.5 (2.5) 177.7 (18.8) 723.1 (106.4)

14,742 92.9 (6.8) 431.4 (39.9) 3128.7 (281.9)
Table 3: Average runtime in seconds per bootstrap for RID as a function of the number of variables
and number of samples included from the HIV dataset. The standard error about each average is
reported in parentheses.

Note that, in our implementation of RID, any number of bootstrap datasets may be handled in par-
allel; as such, we report the mean runtime per bootstrap iteration in Table 3, as this quantity is
independent of how many machines are in use. As shown in Table 3, RID scales fairly well in the
number of samples included, and somewhat less well in the number of features. This is because the
number of possible decision trees grows rapidly with the number of input features, making finding
the Rashomon set a more difficult problem and leading to larger Rashomon sets. Nonetheless, even
for a large number of samples and features, RID can be computed in a tractable amount of time:
with 100 features and 14,742 samples, we found an average time per bootstrap of about 52 minutes.
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