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Abstract

Quantifying variable importance is essential for answering high-stakes questions
in fields like genetics, public policy, and medicine. Current methods generally
calculate variable importance for a given model trained on a given dataset. However,
for a given dataset, there may be many models that explain the target outcome
equally well; without accounting for all possible explanations, different researchers
may arrive at many conflicting yet equally valid conclusions given the same data.
Additionally, even when accounting for all possible explanations for a given dataset,
these insights may not generalize because not all good explanations are stable
across reasonable data perturbations. We propose a new variable importance
framework that quantifies the importance of a variable across the set of all good
models and is stable across the data distribution. Our framework is extremely
flexible and can be integrated with most existing model classes and global variable
importance metrics. We demonstrate through experiments that our framework
recovers variable importance rankings for complex simulation setups where other
methods fail. Further, we show that our framework accurately estimates the true
importance of a variable for the underlying data distribution. We provide theoretical
guarantees on the consistency and finite sample error rates for our estimator. Finally,
we demonstrate its utility with a real-world case study exploring which genes are
important for predicting HIV load in persons with HIV, highlighting an important
gene that has not previously been studied in connection with HIV.

1 Introduction

Variable importance analysis enables researchers to gain insight into a domain or a model. Scientists
are often interested in understanding causal relationships between variables, but running randomized
experiments is time-consuming and expensive. Given an observational dataset, we can use global
variable importance measures to check if there is a predictive relationship between two variables. It is
particularly important in high stakes real world domains such as genetics [44, 34], finance [37], and
criminal justice [15, 24] where randomized controlled trials are impractical or unethical. Variable
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(a) The number of models in each Rashomon set (b) Model reliance range across each Rashomon set

Figure 1: Statistics of Rashomon sets computed across 500 bootstrap replicates of a given dataset
sampled from the Monk 3 data generation process [42]. The original dataset consisted of 124
observations, and the Rashomon set was calculated using its definition in Equation 1, with parameters
specified in Section D of the supplement. The Rashomon set size is the number of models with loss
below a threshold. Model reliance is a measure of variable importance for a single variable — in
this case, X2 — and Model Class Reliance (MCR) is its range over the Rashomon set. Both the
Rashomon set size and model class reliance are unstable across bootstrap iterations.

importance would ideally be measured as the importance of each variable to the data generating
process. However, the data generating process is never known in practice, so prior work generally
draws insight by analyzing variable importance for a surrogate model, treating that model and its
variable importance as truth.

This approach can be misleading because there may be many good models for a given dataset – a
phenomenon referred to as the Rashomon effect [7, 40] — and variables that are important for one
good model on a given dataset are not necessarily important for others. As such, any insights drawn
from a single model need not reflect the underlying data distribution or even the consensus among
good models. Recently, researchers have sought to overcome the Rashomon effect by computing
Rashomon sets, the set of all good (i.e., low loss) models for a given dataset [15, 12]. However, the
set of all good models is not stable across reasonable perturbations (e.g., bootstrap or jackknife) of a
single dataset, with stability defined as in [50]. This concept of stability is one of the three pillars of
veridical data science [51, 13]. Note that there is wide agreement on the intuition behind stability, but
not its quantification [22, 33]. As such, in line with other stability research, we do not subscribe to a
formal definition and treat stability as a general notion [22, 33, 50, 51]. In order to ensure trustworthy
analyses, variable importance measures must account for both the Rashomon effect and stability.

Figure 1 provides a demonstration of this problem: across 500 bootstrap replicates from the same data
set, the Rashomon set varies wildly – ranging from ten models to over ten thousand — suggesting that
we should account for its instability in any computed statistics. This instability is further highlighted
when considering the Model Class Reliance (MCR) variable importance, which is the range of model
reliance (i.e., variable importance) values across the Rashomon set for the given dataset [15] (we
define MCR and the Rashomon set more rigorously in Sections 2 and 3 respectively). In particular,
for variable X2, one interval — ranging from -0.1 to 0.33 — suggests that there exist good models
that do not depend on this variable at all (0 indicates the variable is not important); on the other hand,
another MCR from a bootstrapped dataset ranges from 0.33 to 0.36, suggesting that this variable is
essential to all good models. Because of this instability, different researchers may draw very different
conclusions about the same data distribution even when using the same method.

In this work, we present a framework unifying concepts from classical nonparametric estimation with
recent developments on Rashomon sets to overcome the limitations of traditional variable importance
measurements. We propose a stable, model- and variable-importance-metric-agnostic estimand
that quantifies variable importance across all good models for the empirical data distribution and a
corresponding bootstrap-style estimation strategy. Our method creates a cumulative density function
(CDF) for variable importance over all variables via the framework shown in Figure 2. Using the
CDF, we can compute a variety of statistics (e.g., expected variable importance, interquartile range,
and credible regions) that can summarize the variable importance distribution.

The rest of this work is structured as follows. After more formally introducing our variable importance
framework, we theoretically guarantee the convergence of our estimation strategy and derive error
bounds. We also demonstrate experimentally that our estimand captures the true variable importance
for the data generating process more accurately than previous work. Additionally, we illustrate the
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Figure 2: An overview of our framework. Step 1: We bootstrap multiple datasets from the original.
Step 2: We show the loss values over the model class for each bootstrapped dataset, differentiated by
color. The dotted line marks the Rashomon threshold; all models whose loss is under the threshold are
in the Rashomon set for that bootstrapped dataset. On top, we highlight the number of bootstrapped
datasets for which the corresponding model is in the Rashomon set. Step 3: We then compute the
distribution of model reliance (variable importance – VI) values for variable j across the Rashomon
set for each bootstrapped dataset. Step 4: We then average the corresponding CDF across bootstrap
replicates into a single CDF (in purple). Step 5: Using the CDF, we compute the marginal distribution
(PDF) of variable importance for variable j across the Rashomon sets of bootstrapped datasets.

generalizability of our variable importance metric by analyzing the reproducibility of our results
given new datasets from the same data generation process. Lastly, we use our method to analyze
which transcripts and chromatin patterns in human T cells are associated with high expression of HIV
RNA. Our results suggest an unexplored link between the LINC00486 gene and HIV load.

Code is available at https://github.com/jdonnelly36/Rashomon_Importance_Distribution.

2 Related Work

The key difference between our work and most others is the way it incorporates model uncertainty,
also called the Rashomon effect [7]. The Rashomon effect is the phenomenon in which many different
models explain a dataset equally well. It has been documented in high stakes domains including
healthcare, finance, and recidivism prediction [14, 30, 15]. The Rashomon effect has been leveraged
to create uncertainty sets for robust optimization [43], to perform responsible statistical inference
[11], and to gauge whether simple yet accurate models exist for a given dataset [40]. One barrier to
studying the Rashomon effect is the fact that Rashomon sets are computationally hard to calculate for
non-trivial model classes. Only within the past year has code been made available to solve for (and
store) the full Rashomon set for any nonlinear function class – that of decision trees [49]. This work
enables us to revisit the study of variable importance with a new lens.

A classical way to determine the importance of a variable is to leave it out and see if the loss changes.
This is called algorithmic reliance [15] or leave one covariate out (LOCO) inference [25, 36]. The
problem with these approaches is that the performance of the model produced by an algorithm will
not change if there exist other variables correlated with the variable of interest.

Model reliance (MR) methods capture the global variable importance (VI) of a given feature for a
specific model [15]. (Note that MR is limited to refer to permutation importance in [15], while we
use the term MR to refer to any metric capturing global variable importance of a given feature and
model. We use VI and MR interchangably when the relevant model is clear from context.) Several
methods for measuring the MR of a model from a specific model class exist, including the variable
importance measure from random forest which uses out-of-bag samples [7] and Lasso regression
coefficients [20]. Lundberg et al. [28] introduce a way of measuring MR in tree ensembles using
SHAP [27]. Williamson et al. [48] develop MR based on the change in performance between the
optimal model and the optimal model using a subset of features.

In addition to the metrics tied to a specific model class, many MR methods can be applied to models
from any model class. Traditional correlation measures [20] can measure the linear relationship
(Pearson correlation) or general monotonic relationship (Spearman correlation) between a feature
and predicted outcomes for a model from any model class. Permutation model reliance, as discussed
by [1, 15, 21], describes how much worse a model performs when the values of a given feature are
permuted such that the feature becomes uninformative. Shapley-based measures of MR, such as those
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of [47, 27], calculate the average marginal contribution of each feature to a model’s predictions. A
complete overview of the variable importance literature is beyond the scope of this work; for a more
thorough review, see, for example, [2, 31]. Rather than calculating the importance of a variable for a
single model, our framework finds the importance of a variable for all models within a Rashomon set,
although our framework is applicable to all of these model reliance metrics.

In contrast, model class reliance (MCR) methods describe how much a class of models (e.g., decision
trees) relies on a variable. Fisher et al. [15] uses the Rashomon set to provide bounds on the possible
range of model reliance for good models of a given class. Smith et al. [41] analytically find the range
of model reliance for the model class of random forests. Zhang and Janson [52] introduce a way to
compute confidence bounds for a specific variable importance metric over arbitrary models, which
Aufiero and Janson [3] extend so that it is applicable to a broad class of surrogate models in pursuit of
computational efficiency. These methods report MCR as a range, which gives no estimate of variable
importance – only a range of what values are possible. In contrast, Dong and Rudin [12] compute
and visualize the variable importance for every member of a given Rashomon set in projected spaces,
calculating a set of points; however, these methods have no guarantees of stability to reasonable data
perturbations. In contrast, our framework overcomes these finite sample biases, supporting stronger
conclusions about the underlying data distribution.

Related to our work from the stability perspective, Duncan et al. [13] developed a software package
to evaluate the stability of permutation variable importance in random forest methods; we perform a
similar exercise to demonstrate that current variable importance metrics computed for the Rashomon
set are not stable. Additionally, Basu et al. [5] introduced iterative random forests by iteratively
reweighting trees and bootstrapping to find stable higher-order interactions from random forests.
Further, theoretical results have demonstrated that bootstrapping stabilizes many machine learning
algorithms and reduces the variance of statistics [18, 8]. We also take advantage of bootstrapping’s
flexibility and properties to ensure stability for our variable importance.

3 Methods

3.1 Definitions and Estimands

Let D(n) = {(Xi, Yi)}ni=1 denote a dataset of n independent and identically distributed tuples, where
Yi ∈ R denotes some outcome of interest and Xi ∈ Rp denotes a vector of p covariates. Let g∗
represent the data generating process (DGP) producing D(n). Let f ∈ F be a model in a model class
(e.g., a tree in the set of all possible sparse decision trees), and let ϕj

(
f,D(n)

)
denote a function

that measures the importance of variable j for a model f over a dataset D(n). This can be any of the
functions described earlier (e.g., permutation importance, SHAP). Our framework is flexible with
respect to the user’s choice of ϕj and enables practitioners to use the variable importance metric best
suited for their purpose; for instance, conditional model reliance [15] is best-suited to measure only
the unique information carried by the variable (that cannot be constructed using other variables),
whereas other metrics like subtractive model reliance consider the unconditional importance of the
variable. Our framework is easily integrable with either of these. We only assume that the variable
importance function ϕ has a bounded range, which holds for a wide class of metrics like SHAP [27],
permutation model reliance, and conditional model reliance. Finally, let ℓ(f,D(n);λ) represent a loss
function given f,D(n), and loss hyperparameters λ (e.g., regularization). We assume that our loss
function is bounded above and below, which is true for common loss functions like 0-1 classification
loss, as well as for differentiable loss functions with covariates from a bounded domain.

In an ideal setting, we would measure variable importance using g∗ and the whole population, but this
is impossible because g∗ is unknown and data is finite. In practice, scientists instead use the empirical
loss minimizer for a specific dataset f̂∗ ∈ argminf∈F ℓ(f,D(n)); however, several models could
explain the same dataset equally well (i.e., the Rashomon effect). Rather than using a single model
to compute variable importance, we propose using the entire Rashomon set. Given a single dataset
D(n), we define the Rashomon set for a model class F and parameter ε as the set of all models in F
whose empirical losses are within some bound ε > 0 of the empirical loss minimizer:

R(ϵ,F , ℓ,D(n), λ) =

{
f ∈ F : ℓ(f,D(n);λ) ≤ min

f ′∈F
ℓ(f ′,D(n);λ) + ε

}
. (1)
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We denote this Rashomon set by Rε
D(n) or “Rset” (this assumes a fixed F , ℓ and λ). As discussed

earlier, the Rashomon set can be fully computed and stored for non-linear models (e.g., sparse
decision trees [49]). For notational simplicity, we often omit λ from the loss function.

While the Rashomon set describes the set of good models for a single dataset, Rashomon sets vary
across permutations (e.g., subsampling and resampling schemes) of the given data. We introduce a
stable quantity for variable importance that accounts for all good models and all permutations from
the data using the random variable RIV. RIV is defined by its cumulative distribution function (CDF),
the Rashomon Importance Distribution (RID):

RIDj(k; ε,F , ℓ,Pn, λ) = PD(n)
b ∼Pn

(RIVj(ε,F , ℓ,D(n)
b ;λ) ≤ k) (2)

:= ED(n)
b ∼Pn

 |{f ∈ Rε

D(n)
b

: ϕj(f,D(n)
b ) ≤ k}|

|Rε

D(n)
b

|


= ED(n)

b ∼Pn

[
vol of Rset s.t. variable j’s importance is at most k

vol of Rset

]
,

where ϕj denotes the variable importance metric being computed on variable j, k ∈ [ϕmin, ϕmax].
For a continuous model class (e.g., linear regression models), the cardinality in the above definition
becomes the volume under a measure on the function class, usually ℓ2 on parameter space. RID
constructs the cumulative distribution function (CDF) for the distribution of variable importance
across Rashomon sets; as k increases, the value of P(RIVj(ε,F , ℓ,D(n)

b ;λ) ≤ k) becomes closer
to 1. The probability and expectation are taken with respect to datasets of size n sampled from
the empirical distribution Pn, which is the same as considering all possible resamples of size n

from the originally observed dataset D(n). Equation (2) weights the contribution of ϕj(f,D(n)
b ) for

each model f by the proportion of datasets for which this model is a good explanation (i.e., in the
Rashomon set). Intuitively, this provides greater weight to the importance of variables for stable
models.

We now define an analogous metric for the loss function ℓ; we define the Rashomon Loss Distribu-
tion (RLD) evaluated at k as the expected fraction of functions in the Rashomon set with loss below
k. Here, RLV is a random variable following this CDF.

RLD(k; ε,F , ℓ,Pn, λ) = PD(n)
b ∼Pn

(
RLV(ε,F , ℓ,D(n)

b ;λ) ≤ k
)

:= ED(n)
b ∼Pn

 |{f ∈ Rε

D(n)
b

: ℓ(f,D(n)
b ) ≤ k}|

|Rε

D(n)
b

|


= ED(n)

b ∼Pn

 |R
(
k −minf∈F ℓ(f,D(n)

b ),F , ℓ;λ
)
|

|R(ε,F , ℓ;λ)|

 .

This quantity shows how quickly the Rashomon set “fills up” on average as loss changes. If there are
many near-optimal functions, this will grow quickly with k.

In order to connect RID for model class F to the unknown DGP g∗, we make a Lipschitz-continuity-
style assumption on the relationship between RLD and RID relative to a general model class F and
{g∗}. To draw this connection, we define the loss CDF for g∗, called LD∗, over datasets of size n as:

LD∗(k; ℓ, n,Pn, λ) := ED(n)
b ∼Pn

[
1[ℓ(g∗,D(n)

b ) ≤ k]
]
.

One could think of LD∗ as measuring how quickly the DGP’s Rashomon set fills up as loss changes.
Here, LD∗ is the analog of RLD for the data generation process.
Assumption 1. If

ρ (RLD(·; ε,F , ℓ,Pn, λ),LD∗(·; ℓ, n,Pn, λ)) ≤ γ then
ρ (RIDj(·; ε,F , ℓ,Pn, λ),RIDj(·; ε, {g∗}, ℓ,Pn, λ)) ≤ d(γ)

for a function d : [0, ℓmax−ℓmin] → [0, ϕmax−ϕmin] such that limγ→0 d(γ) = 0. Here, ρ represents
any distributional distance metric (e.g., 1-Wasserstein).

5



Assumption 1 says that a Rashomon set consisting of good approximations for g∗ in terms of loss will
also consist of good approximations for g∗ in terms of variable importance. More formally, from this
assumption, we know that as ρ(LD∗,RLD) → 0, the variable importance distributions will converge:
ρ (RIDj(·, ε,F , ℓ,Pn, λ),RIDj(·, ε, {g∗}, ℓ,Pn, λ)) → 0. We demonstrate that this assumption is
realistic for a variety of model classes like linear models and generalized additive models in Section
C of the supplement.

3.2 Estimation

We estimate RIDj for each variable j by leveraging bootstrap sampling to draw new datasets from
the empirical data distribution: we sample observations from an observed dataset, construct its
Rashomon set, and compute the j-th variable’s importance for each model in the Rashomon set.
After repeating this process for B bootstrap iterations, we estimate RID by weighting each model
f ’s realized variable importance score (evaluated on each bootstrapped dataset) by the proportion of
the bootstrapped datasets for which f is in the Rashomon set and the size of each Rashomon set in
which f appears. Specifically, let D(n)

b represent the dataset sampled with replacement from D(n) in
iteration b = 1, . . . , B of the bootstrap procedure. For each dataset D(n)

b , we find the Rashomon set
Rε

D(n)
b

. Finally, we compute an empirical estimate R̂IDj of RIDj by computing:

R̂IDj(k; ε,F , ℓ,Pn, λ) =
1

B

B∑
b=1

 |{f ∈ Rε

D(n)
b

: ϕj(f,D(n)
b ) ≤ k}|

|Rε

D(n)
b

|

 .

Under Assumption 1, we can directly connect our estimate R̂ID(k; ε,F , ℓ,Pn, λ) to the DGP’s
variable importance distribution RID(k; ℓmax, {g∗}, ℓ,Pn, λ), which Theorem 1 formalizes.
Theorem 1. Let Assumption 1 hold for distributional distance ρ(A1, A2) between distributions
A1 and A2. For any t > 0, j ∈ {0, . . . , p} as ρ (LD∗(·; ℓ, n, λ),RLD(·; ε,F , ℓ,Pn, λ)) → 0 and
B → ∞,

P
(∣∣∣R̂IDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε, {g∗}, ℓ,Pn, λ)

∣∣∣ ≥ t
)
→ 0.

For a set of models that performs sufficiently well in terms of loss, R̂IDj thus recovers the CDF of
variable importance for the true model across all reasonable perturbations. Further, we can provide
a finite sample bound for the estimation of a marginal distribution between R̂IDj and RIDj for the
model class F , as stated in Theorem 2. Note that this result does not require Assumption 1.
Theorem 2. Let t > 0 and δ ∈ (0, 1) be some pre-specified values. Then, with probability at least
1− δ with respect to bootstrap samples of size n,∣∣∣R̂IDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε,F , ℓ,Pn, λ)

∣∣∣ ≤ t (3)

with number of bootstrap samples B ≥ 1
2t2 ln

(
2
δ

)
for any k ∈ [ϕmin, ϕmax].

Because we use a bootstrap procedure, we can control the number of bootstrap iterations to ensure
that the difference between RIDj and R̂IDj is within some pre-specified error. (As defined earlier,
RIDj is the expectation over infinite bootstraps, whereas R̂IDj is the empirical average over B

bootstraps.) For example, after 471 bootstrap iterations, we find that R̂IDj(k; ε,F , ℓ,Pn, λ) is within
0.075 of RIDj(k; ε,F , ℓ,Pn, λ) for any given k with 90% confidence. It also follows that as B tends
to infinity, the estimated RIVj will converge to the true value.

Since we stably estimate the entire distribution of variable importance values, we can create (1)
stable point estimates of variable importance (e.g., expected variable importance) that account for the
Rashomon effect, (2) interquantile ranges of variable importance, and (3) confidence regions that
characterize uncertainty around a point estimate of variable importance. We prove exponential rates
of convergence for these statistics estimated using our framework in Section B of the supplement.

Because our estimand and our estimation strategy (1) enable us to manage instability, (2) account for
the Rashomon effect, and (3) are completely model-agnostic and flexibly work with most existing
variable importance metrics, RID is a valuable quantification of variable importance.
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4 Experiments With Known Data Generation Processes

Figure 3: (Top) The proportion of features ranked correctly by each method on each data set
represented as a stacked barplot. The figures are ordered by method performance across the four
simulation setups. (Bottom) The proportion of independent DGP ϕ(sub) calculations on 500 new
datasets from the DGP that were contained within the box-and-whiskers range computed using a
single training set (with bootstrapping in all methods except VIC) for each method and variable
in each simulation. Underneath each method’s label, the first row shows the percentage of times
across all 500 independently generated datasets and variables that the DGP’s variable importance was
inside of that method’s box-and-whiskers interval. The second row shows the percentage of pairwise
rankings correct for each method (from the top plot). Higher is better.

4.1 RID Distinguishes Important Variables from Extraneous Variables

There is no generally accepted ground truth measure for variable importance, so we first eval-
uate whether a variety of variable importance methods can correctly distinguish between vari-
ables used to generate the outcome (in a known data generation process) versus those that are
not. We consider the following four data generation processes (DGPs). Chen’s DGP [9]:
Y = 1[−2 sin(X1)+max(X2, 0)+X3+exp(−X4)+ε ≥ 2.048], where X1, . . . , X10, ε ∼ N (0, 1).
Here, only X1, . . . , X4 are relevant. Friedman’s DGP [17]: Y = 1[10 sin(πX1X2) + 20(X3 −
0.5)2+10X4+5X5+ ε ≥ 15], where X1, . . . , X6 ∼ U(0, 1), ε ∼ N (0, 1). Here, only X1, . . . , X5

are relevant. The Monk 1 DGP [42]: Y = max (1[X1 = X2],1[X5 = 1]) , where the variables
X1, . . . , X6 have domains of 2, 3, or 4 unique integer values. Only X1, X2, X5 are important.
The Monk 3 DGP [42]: Y = max (1[X5 = 3 and X4 = 1],1[X5 ̸= 4 and X2 ̸= 3]) for the same
covariates in Monk 1. Also, 5% label noise is added. Here, X2, X4, and X5 are relevant.

We compare the ability of RID to identify extraneous variables with that of the following baseline
methods, whose details are provided in Section D of the supplement: subtractive model reliance ϕsub

of a random forest (RF) [6], LASSO [20], boosted decision trees [16], and generalized optimal sparse
decision trees (GOSDT) [26]; conditional model reliance (CMR) [15]; the impurity based model
reliance metric for RF from [7]; the LOCO algorithm reliance [25] for RF and Lasso; the Pearson and
Spearman correlation between each feature and the outcome; the mean of the partial dependency plot
(PDP) [19] for each feature; the SHAP value [28] for RF; and mean of variable importance clouds
(VIC) [12] for the Rashomon set of GOSDTs [49]. If we do not account for instability and simply
learn a model and calculate variable importance, baseline models generally perform poorly, as shown
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in Section E of the supplement. Thus, we chose to account for instability in a way that benefits the
baselines. We evaluate each baseline method for each variable across 500 bootstrap samples and
compute the median VI across bootstraps, with the exception of VIC — for VIC, we take the median
VI value across the Rashomon set for the original dataset, as VIC accounts for Rashomon uncertainty.
Here, we aim to see whether we can identify extraneous (i.e., unimportant variables). For a DGP with
C extraneous variables, we classify the C variables with the C smallest median variable importance
values as extraneous. We repeat this experiment with different values for the Rashomon threshold ε
in Section E of the supplement.

Figure 3 (top) reports the proportion of variables that are correctly classified for each simulation setup
as a stacked barplot. RID identifies all important and unimportant variables for these complex
simulations. Note that four other baseline methods – MR RF, RF Impurity, RF Permute, and VIC
– also differentiated all important from unimportant variables. Motivated by this finding, we next
explore how well methods recover the true value for subtractive model reliance on the DGP, allowing
us to distinguish between the best performing methods on the classification task.

4.2 RID Captures Model Reliance for the True Data Generation Process

RID allows us to quantify uncertainty in variable importance due to both the Rashomon effect
and instability. We perform an ablation study investigating how accounting for both stability and
the Rashomon effect compares to having one without the other. We evaluate what proportion of
subtractive model reliances calculated for the DGP on 500 test sets are contained within uncertainty
intervals generated using only one training dataset. This experiment tells us whether the intervals
created on a single dataset will generalize.

To create the uncertainty interval on the training dataset and for each method, we first find the
subtractive model reliance ϕ(sub) across 500 bootstrap iterations of a given dataset for the four
algorithms shown in Figure 3 (bottom) (baseline results without bootstrapping are in Section E of the
supplementary material). Additionally, we find the VIC for the Rashomon set of GOSDTs on the
original dataset. We summarize these model reliances (500 bootstraps × 28 variables across datasets
× 4 algorithms + 8,247 models in VIC’s + 10,840,535 total models across Rsets × 28 variables
from RID) by computing their box-and-whisker ranges (1.5 × Interquartile range [46]). To compare
with “ground truth,” we sample 500 test datasets from the DGP and calculate ϕ(sub) for the DGP
for that dataset. For example, assume the DGP is Y = X2 + ε. We would then use f(X) = X2 as
our predictive model and evaluate ϕ(sub)(f,D(n)) on f for each of the 500 test sets. We then check
if the box-and-whisker range of each method’s interval constructed on the training set contains the
computed ϕ(sub) for the DGP for each test dataset. Doing this allows us to understand whether our
interval contains the true ϕ(sub) for each test set.

Figure 3 (bottom) illustrates the proportion of times that the test variable importance values fell within
the uncertainty intervals from training. These baselines fail to capture the test ϕ(sub) entirely for at
least one variable (< 0.05% recovery proportion). Only RID both recovers important/unimportant
classifications perfectly and achieves a strong recovery proportion at 95%.

4.3 RID is Stable

Our final experiment investigates the stability of VIC and MCR (which capture only Rashomon
uncertainty but not stability) to RID, which naturally considers data perturbations. We generate
50 independent datasets from each DGP and compute the box-and-whisker ranges (BWR) of each
uncertainty metric for each dataset; for every pair of BWRs for a given method, we then calculate the
Jaccard similarity between BWR’s. For each generated dataset, we then average the Jaccard similarity
across variables. Figure 4 shows these intervals for each non-extraneous variable from Chen’s DGP.
Supplement E.4 presents a similar figure for each DGP, showing that only RID’s intervals overlap
across all generations for all datasets.

Figure 5 displays the similarity scores between the box and whisker ranges of MCR, VIC, and RID
across the 50 datasets for each DGP. Note that Monk 1 has no noise added, so instability should
not be a concern for any method. For datasets including noise, MCR and VIC achieve median
similarity below 0.55; RID’s median similarity is 0.69; it is much more stable.
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Figure 4: We generate 50 independent datasets from Chen’s DGP and calculate MCR, BWRs for VIC,
and BWRs for RID. The above plot shows the interval for each dataset for each non-null variable in
Chen’s DGP. All red-colored intervals do not overlap with at least one of the remaining 49 intervals.

Figure 5: Median Jaccard similarity scores across 50 independently generated MCR, VIC, and RID
box and whisker ranges for each DGP; 1 is perfect similarity. Error bars show 95% confidence
interval around the median.

5 Case Study

Having validated RID on synthetic datasets, we demonstrate its utility in a real world application:
studying which host cell transcripts and chromatin patterns are associated with high expression
of Human Immunodeficiency Virus (HIV) RNA. We analyzed a dataset that combined single cell
RNAseq/ATACseq profiles for 74,031 individual HIV infected cells from two different donors in the
aims of finding new cellular cofactors for HIV expression that could be targeted to reactivate the
latent HIV reservoir in people with HIV (PWH). A longer description of the data is in [29]. Finding
results on this type of data allows us to create new hypotheses for which genes are important for HIV
load prediction and might generalize to large portions of the population.

To identify which genes are stably importance across good models, we evaluated this dataset using
RID over the model class of sparse decision trees using subtractive model reliance. We selected
14,614 samples (all 7,307 high HIV load samples and 7,307 random low HIV load samples) from
the overall dataset in order to balance labels, and filtered the complete profiles down to the top 100
variables by individual AUC. We consider the binary classification problem of predicting high versus
low HIV load. For full experimental details, see Section D of the supplement. Section E.5 of the
supplement contains timing experiments for RID using this dataset.

Figure 6 illustrates the probability that RID is greater than 0 for the 10 highest probability variables (0
is when the variable is not important at all). We find that LINC00486 – a less explored gene – is the
most important variable, with 1− RIDLINC00486 (0) = 78.4%. LINC00486 is a long non-coding
RNA (i.e., it functions as an RNA molecule but does not encode a protein like most genes), and there
is no literature on this gene and HIV, making this association a novel one. However, recent work [45]
has shown that LINC00486 can enhance EBV (Epstein–Barr virus) infection by activating NF-κB.
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Figure 6: Probability of each gene’s model reliance being greater than 0 across Rashomon sets across
bootstrapped datasets for the ten genes with the highest P(RIVj > 0). We ran 738 bootstrap iterations
to ensure that P(R̂IVj > 0) is within 0.05 of P(RIVj > 0) with 95% confidence (from Theorem 2).

It is well established that NF-κB can regulate HIV expression [32, 23, 4], suggesting a possible
mechanism and supporting future study. Notably, RID also highlighted PDE4D, which interacts with
the Tat protein and thereby HIV transcription [39]; HNRNPA2B1, which promotes HIV expression
by altering the structure of the viral promoter [38]; and MALAT1, which has recently been shown to
be an important regulator of HIV expression [35]. These three findings validate prior work and show
that RID can uncover variables that are known to interact with HIV.

Note that previous methods – even those that account for the Rashomon effect – could not
produce this result. MCR and VIC do not account for instability. For example, after computing
MCR for 738 bootstrap iterations, we find that the MCR for the LINC00486 gene has overlap with
0 in 96.2% of bootstrapped datasets, meaning MCR would not allow us to distinguish whether
LINC00486 is important or not 96.2% of the time. Without RID, we would not have strong evidence
that LINC00486 is necessary for good models. By explicitly accounting for instability, we increase
trust in our analyses.

Critically, RID also found very low importance for the majority of variables, allowing researchers to
dramatically reduce the number of possible directions for future experiments designed to test a gene’s
functional role. Such experiments are time consuming and cost tens of thousands of dollars per donor,
so narrowing possible future directions to a small set of genes is of the utmost importance. Our
analysis provides a manageable set of clear directions for future work studying the functional
roles of these genes in HIV.

6 Conclusion and Limitations

We introduced RID, a method for recovering the importance of variables in a way that accounts for
both instability and the Rashomon effect. We showed that RID distinguishes between important and
extraneous variables, and that RID better captures the true variable importance for the DGP than prior
methods. We showed through a case study in HIV load prediction that RID can provide insight into
complicated real world problems. Our framework overcomes instability and the Rashomon effect,
moving beyond variable importance for a single model and increasing reproducibility.

RID can be directly computed for any model class for which the Rashomon set can be found – at
the time of publishing, decision trees, linear models, and GLMs. A limitation is that currently, there
are relatively few model classes for which the Rashomon set can be computed. Therefore, future
work should aim to compute and store the Rashomon set of a wider variety of model classes. Future
work may investigate incorporating Rashomon sets that may be well-approximated (e.g., GAMs,
[10]), but not computed exactly, into the RID approach. Nonetheless, sparse trees are highly flexible,
and using them with RID improves the trustworthiness and transparency of variable importance
measures, enabling researchers to uncover important, reproducible relationships about complex
processes without being misled by the Rashomon effect.
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