
A Related Work

We remind important related works to understand how our AdvInfoNCE stands and its role in rich
literature. Our work is related to the literature on contrastive learning-based collaborative filtering
(CL-based CF) methods, and theoretical understanding of contrastive loss in collaborative filtering.

A.1 Contrastive Learning-based Collaborative Filtering

The latest CL-based CF methods can roughly fall into two research lines. The first one, which we
term the “augmentation-based” approach, leverages user-item bipartite graph augmentations along
with augmented views as positive signals. The second category, referred to as “loss-based” approaches,
mainly focuses on the modification of contrastive loss. In loss-based CF models, interacted items
serve as positive instances.

• Augmentation-based [13–15, 52, 26, 27, 63–66]. The prevailing augmentation-based paradigm in
CL-based CF methods is to employ user-item bipartite graph augmentations to generate contrasting
views. These contrasting views are then treated as positive instances in the application of contrastive
loss, such as InfoNCE loss, to further enhance collaborative filtering signals. Recent studies have
extensively explored methods for generating contrastive views. Several studies like SGL [13]
and DCL [64] elaborate on data-heuristic augmentation operators such as a random node or
edge dropout and random walk. NCL [52] takes a different approach and incorporates potential
neighbors from both the graph structure and semantic space into contrastive views. XSimGCL [27]
takes it a step further and discards ineffective graph augmentations, choosing instead to employ a
simple noise-based embedding augmentation. In pursuit of high-quality augmented supervision
signals instead of handcrafted strategies, AutoCF [15] designs a learnable masking function to
automatically identify important centric nodes for data augmentation.

• Loss-based [53–55, 22, 67]. Recent research, such as the experiments presented in SimGCL [26]
and XSimGCL [27], has empirically shown that contrastive loss can be instrumental in enhancing
the performance of CF methods, often playing a more significant role than heuristic-based graph
augmentation. Despite these findings, there remains a gap in the exploration of loss-based CF
methods, an area ripe for further investigation. BC loss [54] incorporates bias-aware margins into
the contrastive loss, enabling the learning of high-quality head and tail representations with robust
discrimination and generalization abilities. Adap-τ [55] proposes an adaptive fine-grained strategy
for selecting the personalized temperature τ for each user within the contrastive loss. HDCCF [22]
devises a new contrastive loss function extending the advantage of negative mining from user-item
to neighbored users and items.

A.2 Theoretical Understanding of Contrastive Loss in CF

Despite the remarkable success of CL-based CF methods, there remains a lack of theoretical un-
derstanding, particularly regarding the superior generalization ability of contrastive loss. In a study
conducted by [68], three model-agnostic advantages of contrastive loss are theoretically revealed,
including mitigating popularity bias, mining hard negative samples, and maximizing the ranking
metric. CLRec [14] sheds light on contrastive loss from a bias-reduction perspective by revealing its
connection with inverse propensity weighting techniques. XSimGCL [27] suggests that contrastive
learning enables the recommender to learn more evenly distributed user and item representations,
thereby mitigating the prevalent popularity bias in CF.

B In-depth Analysis of AdvInfoNCE

B.1 Complete Derivation of AdvInfoNCE

Full Derivation. We first introduce the widely-used LogSumExp operator in machine learning
algorithms.

max(x1, x2, ..., xn) ≈ log(exp(x1) + exp(x2) + ...+ exp(xn)) (10)

The fine-grained ranking criterion for a single positive interaction (u, i) is defined as:

∀j ∈ Nu, s(u, j)− s(u, i) + δj < 0. (11)

14

Then we probe into the Eq (11) and transform it into an optimization problem as follows:

min
θ

max{0, {s(u, j)− s(u, i) + δj}j∈Nu} (12)

We can seamlessly transform this optimization objective into the core component of our AdvInfoNCE:

max{0, {s(u, j)− s(u, i) + δj}j∈Nu}︸ ︷︷ ︸
Hardness-aware ranking criterion

≈ log(exp(0) +

|Nu|∑
j=1

exp(s(u, j)− s(u, i) + δj))

= log{1 +
|Nu|∑
j=1

exp(δj) exp(s(u, j)− s(u, i))}

= log{1 + |Nu|
|Nu|∑
j=1

exp(δj)

|Nu|
exp(s(u, j)− s(u, i))}

=− log{ exp(s(u, i))

exp(s(u, i)) + |Nu|
∑|Nu|

j=1
exp(δj)
|Nu| exp(s(u, j))

}︸ ︷︷ ︸
AdvInfoNCE

(13)

Drawing inspiration from adversarial training [48], we utilize a min-max game that allows for
alternating training of the model between predicting hardness and refining the CF model. Formally,
we formulate the AdvInfoNCE learning framework as the following optimization problem:

min
θ
LAdvInfoNCE = min

θ
max

∆∈C(η)
−

∑
(u,i)∈O+

log
exp (s(u, i))

exp (s(u, i)) + |Nu|
∑|Nu|

j=1

exp(δ
(u,i)
j)

|Nu| exp(s(u, j))

(14)

where
exp(δ

(u,i)
j)

|Nu| ∈ C(η, (u, i)) = (1
|Nu| − ϵ,

1
|Nu| + ϵ), and ϵ is a hyperparameter that regulates the

upper-bound deviation of hardness. In practice, ϵ is regulated by the number of adversarial training
epochs under a fixed learning rate (refer to Algorithm 1).

If we further define
exp(δ

(u,i)
j)

|Nu| as p(j|(u, i)), which signifies the likelihood of selecting item j as a
negative sample for the user-item pair (u, i), we can rewrite the AdvInfoNCE loss as:

min
θ
LAdvInfoNCE = min

θ
max
p(·|·)
−

∑
(u,i)∈O+

log
exp (s(u, i))

exp (s(u, i)) + |Nu|
∑|Nu|

j=1 p(j|(u, i)) exp(s(u, j))
(15)

B.2 Proof of Theorem

Theorem 3.1. We define δ(u,i)j
.
= log(|Nu| · p(j|(u, i))), where p(j|(u, i)) is the probability of sam-

pling negative item j for observed interaction (u, i). Then, optimizing AdvInfoNCE loss is equivalent
to solving Kullback-Leibler (KL) divergence-constrained distributionally robust optimization (DRO)
problems over negative sampling:

min
θ
LAdvInfoNCE ⇐⇒ min

θ
max

p(j|(u,i))∈P
EP [exp(s(u, j)− s(u, i)) : DKL(P0||P) ≤ η] (8)

where P0 stands for the distribution of uniformly drawn negative samples, i.e., p0(j|(u, i)) = 1
|Nu| ;

P denotes the distribution of negative sampling p(j|(u, i)).

Proof. We denote the relative hardness of negative item j with respect to observed interaction (u, i)

as δ(u,i)j and redefine it as log(|Nu| · p(j|(u, i))). In this definition, |Nu| is the number of negative

15

samples for each user u, and p(j|(u, i)) is the probability of selecting item j as a negative sample for
a given user-item pair (u, i).

With the constraint that
∑|Nu|

j=1 p(j|(u, i)) = 1, we can recalculate the average hardness as follows:

1

|Nu|

|Nu|∑
j=1

δ
(u,i)
j =

1

|Nu|

|Nu|∑
j=1

log(|Nu| · p(j|(u, i)))

= −
|Nu|∑
j=1

1

|Nu|
log(

1

|Nu|
· 1

p(j|(u, i))
)

= −DKL(P0||P) (16)

In this formulation, P0 represents the distribution of uniformly drawn negative samples, where
p0(j|(u, i)) = 1

|Nu| . Meanwhile, P denotes the distribution of negative sampling, represented as
p(j|(u, i)).

Since p(j|(u, i)) ∈ C(η, (u, i)) = (1
|Nu| − ϵ,

1
|Nu| + ϵ), we further define η = −log(1− ϵ2

|Nu|). Thus,
the feasible zone presented above is equivalent to a relaxed constraint DKL(P0||P) ≤ η.

The AdvInfoNCE loss for all observations can be rewritten in a different form by reorganizing and
simplifying the Eq (15):

min
θ
LAdvInfoNCE = min

θ

∑
(u,i)∈O+

max
p(j|(u,i))∈P

log{1 + |Nu|
|Nu|∑
j=1

p(j|(u, i)) exp(s(u, j)− s(u, i))}

⇐⇒ min
θ

∑
(u,i)∈O+

max
p(j|(u,i))∈P

|Nu|∑
j=1

p(j|(u, i)) exp(s(u, j)− s(u, i))

⇐⇒ min
θ

∑
(u,i)∈O+

sup
p(j|(u,i))∈P

EP [exp(s(u, j)− s(u, i))] (17)

The equation presented above exemplifies a widely encountered formulation of the Distributionally
Robust Optimization (DRO) problem [49] where the ambiguity set of the probability distribution is
defined by the Kullback-Leibler (KL) divergence DKL(P0||P) ≤ η.

B.3 Gradients Analysis

In this section, we delve into the crucial role of hardness δj in controlling the penalty strength on
hard negative samples. The analysis begins with the main part of AdvInfoNCE for a single positive
interaction (u, i), as defined in Eq (13), primarily due to its simplicity. For the sake of notation
simplicity, let us denote it as:

LAdv(u, i) = − log{ exp(s(u, i))

exp(s(u, i)) +
∑|Nu|

j=1 exp(δj) exp(s(u, j))
} (18)

Then the gradient with respect to the positive representations ϕθ(i) of item i is formulated as:

−∇iLAdv(u, i) =
∂LAdv(u, i)

∂s(u, i)
· ∂s(u, i)
∂ϕθ(i)

= (1− exp(s(u, i))

exp(s(u, i)) +
∑|Nu|

j=1 exp(δj) exp(s(u, j))
) · ϕθ(i)

τ
(19)

16

The gradients with respect to the negative representations ϕθ(j) of item j is given by:

−∇jLAdv(u, i) =
∂LAdv(u, i)

∂s(u, j)
· ∂s(u, j)
∂ϕθ(j)

=
exp(δj) exp(s(u, j))

exp(s(u, i)) +
∑|Nu|

j=1 exp(δj) exp(s(u, j))
· ϕθ(j)

τ

= exp(δj){1−
exp(s(u, i))

exp(s(u, i)) +
∑|Nu|

j=1 exp(δj) exp(s(u, j))
} exp(s(u, j))∑|Nu|

j=1 exp(δj) exp(s(u, j))

ϕθ(j)

τ

(20)

Clearly, for a given user u, the gradient with respect to the positive item i equals the sum of gradients
of all negative items, in accordance with the findings in [38]. The hardness exp(δj) dictates the
importance of negative gradients. Specifically, the gradients relating to the negative item j in Eq
(20) correlate proportionally to the hardness term exp(δj), which shows that the AdvInfoNCE loss
function is hardness-aware.

B.4 Align Top-K evaluation metric

Discounted Cumulative Gain (DCG) is a commonly used ranking metric in top-K recommendation
tasks. In DCG, the relevance of an item’s contribution to the utility decreases logarithmically in
relation to its position in the ranked list. This mimics the behavior of a user who is less likely to
scrutinize items that are positioned lower in the ranking. Formally, DCG over rank πs(u, i) is defined
as follows:

DCG(πs(u, I),y) =
|I|∑
i=1

2yi − 1

log2(1 + πs(u, i))
(21)

Where πs(u, I) is a ranked list over I , as determined by the similarity function s for user u, and y is
a label vector that indicates whether an interaction has occurred previously or not. Then πs(u, i) is
the rank of item i. Building on the research presented in [68], we explore how well AdvInfoNCE
aligns with DCG for our purposes.

Under our proposed fine-grained hardness ranking criteria defined in Eq (11), the πs(u, i) can be
obtained as follows:

πs(u, i) = 1 +
∑

j∈I\{i}

1(s(u, j)− s(u, i) + δj > 0)

≤ 1 +
∑

j∈I\{i}

exp(s(u, j)− s(u, i) + δj). (22)

The last inequality is satisfied by 1(x > 0) ≤ exp(x).

− log[DCG(πs(u, I),y)] = − log

[|I|∑
i=1

2yi − 1

log2(1 + πs(u, i))

]
≤ − log

[
1

log2(1 + πs(u, i))

]
≤ − log

[
1

πs(u, i)

]
≤ − log(

1

1 +
∑

j∈I\{i} exp(s(u, j)− s(u, i) + δj)
)

= − log(
exp(s(u, i))

exp(s(u, i)) +
∑

j∈I\{i} exp(s(u, j) + δj)
)

= LAdv(u, i) ≤ LAdvInfoNCE (23)

Suppose that there are K items in I that are interacted with u, let them to be {1, 2, · · · ,K} ithout
loss of generality. Then

DCG(πs(u, I),y) ≤
K∑
i=1

1

log2(1 + i)
, (24)

17

the equality holds if and only if the interactions {(u, i) : i = 1, 2, · · · ,K} are ranked top-K. For a
given u,

K∑
i=1

LAdv(u, i) =

K∑
i=1

− log(
exp(s(u, i))

exp(s(u, i)) +
∑

j∈I\{i} exp(s(u, j) + δj)
)

=

K∑
i=1

log(1 +
∑

j∈I\{i}

exp(s(u, j)− exp(s(u, i)) + δj))

≥
K∑
i=1

log(1 +
∑

j∈I\{i}

e−1) =

K∑
i=1

log(1 + (|I| − 1)e−1) (25)

≥
K∑
i=1

1

log2(1 + i)
≥ DCG(πs(u, I),y). (26)

The inequality in Eq (25) holds under the common usage of s(u, i) ∈ [0, 1], the first inequality in Eq
(26) holds when |I| ≥ 6, while the second inequality in Eq (26) holds by Eq (24).

Therefore, by Eq (23) and Eq (26),

LAdvInfoNCE ≥ DCG(πs(u, I),y) ≥ exp(−LAdvInfoNCE). (27)

Consequently, minimizing LAdvInfoNCE is equivalent to minimizing DCG(πs(u, I),y).

C Experiments

C.1 Experimental Settings

Datasets

• KuaiRec [56] is a real-world dataset sourced from the recommendation logs of KuaiShou, a
platform for sharing short videos. The unbiased testing data consist of dense ratings from 1411
users for 3327 items, with the training data being relatively sparse. We categorize items that have a
viewing duration exceeding twice the length of the short video as positive interactions.

• Yahoo!R3 [57] is a dataset that encompasses ratings for songs. The training set is comprised
of 311,704 user-selected ratings ranging from 1 to 5. The test set includes ratings for ten songs
randomly exposed to each user. Interactions with items receiving a rating of 4 or higher are
considered positive in our experiments.

• Coat [58] records online shopping interactions of customers purchasing coats. The training set,
characterized as a biased dataset, comprises ratings provided by users for 24 items they have chosen.
The test set, on the other hand, contains ratings for 16 coats that were randomly exposed to each
user. Ratings in Coat follow a 5-point scale, and interactions involving items with a rating of 4 or
above are classified as positive instances in our experiments.

• Tencent [10] is collected from the Tencent’s short-video platform. We sort the items according to
their popularity in descending order and divide them into 50 groups. Each group, defined by its
popularity rank, is assigned a certain number of interactions, denoted by Ni, for inclusion in the
test set. The quantity Ni is calculated based on N0 · γ−

i−1
49 , where N0 is the maximum number of

interactions across all test groups and γ denotes the extent of the long-tail distribution. A lower
value of gamma indicates a stronger deviation from the original distribution, thus yielding a more
evenly distributed test set. To ensure that the validation set mirrored the long-tail distribution of

Table 3: Dataset statistics.
KuaiRec Yahoo!R3 Coat Tencent

#Users 7,176 14,382 290 95,709
#Items 10,728 1,000 295 41,602
#Interactions 1,304,453 129,748 2,776 2,937,228
Density 0.0169 0.0090 0.0324 0.0007

18

Table 4: The performance comparison on unbiased datasets over the MF backbone. The improvement
achieved by AdvInfoNCE is significant (p-value << 0.05).

Yahoo!R3 Coat
Recall NDCG Recall NDCG

BPR (Rendle et al., 2012) 0.1189 0.0546 0.2782 0.1748
InfoNCE (van den Oord et al., 2018) 0.1478 0.0694 0.2683 0.1961

CCL (Mao et al., 2021) 0.1458−1.35% 0.0689−0.72% 0.2682−0.04% 0.1712−12.70%

BC Loss (Zhang et al., 2022) 0.1492+0.95% 0.0698+0.58% 0.2698+0.56% 0.1959−0.10%

Adap-τ (Chen et al., 2023) 0.1512+2.30% 0.0694+0.43% 0.2712+1.08% 0.1986+1.27%

AdvInfoNCE 0.1523*+3.04% 0.0710*+2.31% 0.2905*+8.27% 0.1999*+1.94%

the training set and no side information of the test set is leaked, the remaining interactions are
randomly divided into training and validation sets at a ratio of 60:10.

Baselines. In this study, we conduct a comprehensive evaluation of AdvInfoNCE using two widely
adopted collaborative filtering backbones, MF [50] and LightGCN [51]. We thoroughly compare
AdvInfoNCE with two categories of the latest CL-based CF methods: augmentation-based baselines
(SGL [13], NCL [52], XSimGCL [27]) and loss-based baselines (CCL [53], BC Loss [54], Adap-τ
[55]).

• SGL [13] leverages data-heuristic graph augmentation techniques to generate augmented views. It
then employs contrastive learning on the augmented views and the original embeddings.

• NCL [52] implements contrastive learning on two types of neighbors: structural neighbors and
semantic neighbors. Structural neighbors are represented by the embeddings derived from even-
numbered layers in a Graph Neural Network (GNN). Semantic neighbors comprise nodes with
similar features or preferences, clustered through the Expectation-Maximization (EM) algorithm.

• XSimGCL [27] directly infuses noise into graph embeddings from the mid-layer of LightGCN
to generate augmented views. This method arises from experimental observations indicating that
CF models are relatively insensitive to graph augmentation. Instead, the key determinant of their
performance lies in the application of contrastive loss.

• CCL [53] proposes a variant of contrastive loss based on cosine similarity. Specifically, it imple-
ments a strategy for filtering out negative samples lacking substantial information by employing a
margin, denoted as m.

• BC Loss [54] integrates a bias-aware margin into the contrastive loss to alleviate popularity bias.
Specifically, the bias-aware margin is learned via a specialized popularity branch, which only
utilizes the statistical popularity of users and items to train an additional CF model.

• Adap-τ [55] proposes to automatically search the temperature of InfoNCE. Moreover, a fine-
grained temperature is assigned for each user according to their previous loss.

Evaluation Metrics. We apply the all-ranking strategy, in which all items, with the exception of the
positive ones present in the training set, are ranked by the collaborative filtering model for each user.
An exception is KuaiRec, where the unbiased test set clusters in a small matrix [56]. This unique
structure leads to a failure of the all-ranking strategy as the test set is not randomly selected from
the whole user-item matrix. Consequently, for KuaiRec, we rank only the 3327 fully exposed items
during the testing phase.

C.2 Performance over the MF Backbone

Given that the implementation of augmentation-based methods is tied to the LightGCN architecture,
we compare AdvInfoNCE using the Matrix Factorization (MF) backbone against only loss-based
methods. As shown in Table 4 and 5, AdvInfoNCE consistently surpasses all collaborative filter-
ing baselines with modified contrastive losses. Moreover, similar to the trend observed with the
LightGCN backbone, AdvInfoNCE excels on test sets exhibiting higher distribution shifts, while
still preserving remarkable performance on the in-distribution validation set. The superior perfor-
mance of AdvInfoNCE across both the LightGCN and MF backbones emphasizes its model-agnostic
characteristic. We advocate for considering AdvInfoNCE as a standard loss in recommender systems.

19

Table 5: The performance comparison on the Tencent dataset over the MF backbone. The improve-
ment achieved by AdvInfoNCE is significant (p-value << 0.05).

γ = 200 γ = 10 γ = 2 Validation
HR Recall NDCG HR Recall NDCG HR Recall NDCG NDCG

BPR (Rendle et al., 2012) 0.0835 0.0299 0.0164 0.0516 0.0190 0.0102 0.0357 0.0141 0.008 0.0533
InfoNCE (van den Oord et al., 2018) 0.1476 0.0538 0.0318 0.0920 0.0334 0.0194 0.0627 0.0233 0.0141 0.0856

CCL (Mao et al., 2021) 0.1395 0.0523 0.0317 0.0930 0.0353 0.0221 0.0683 0.0266 0.0170 0.0782
BC Loss (Zhang et al., 2022) 0.1546 0.0575 0.0349 0.1011 0.0378 0.0228 0.0737 0.0280 0.0178 0.0864
Adap-τ (Chen et al., 2023) 0.1398 0.0512 0.0302 0.0876 0.0316 0.0182 0.0591 0.0221 0.0134 0.0844
AdvInfoNCE 0.1606* 0.0595* 0.0355* 0.1111* 0.0412* 0.0249* 0.0813* 0.0308* 0.0189* 0.0860

Imp.% over the strongest baseline 3.87% 3.52% 1.86% 9.86% 8.86% 9.38% 10.33% 9.87% 6.28% −
Imp.% over InfoNCE 8.84% 10.51% 11.77% 20.81% 23.52% 28.41% 29.64% 31.97% 33.69% −

Table 6: The performance comparison on the Tencent dataset over extensive backbones. The
improvement achieved by AdvInfoNCE is significant (p-value << 0.05).

γ = 200 γ = 10 γ = 2 Validation
HR Recall NDCG HR Recall NDCG HR Recall NDCG NDCG

UltraGCN (Mao et al., 2021) 0.0930 0.0343 0.0190 0.0567 0.0215 0.0119 0.0400 0.0157 0.0095 0.0682
UltraGCN + InfoNCE 0.1436 0.0519 0.0303 0.0896 0.0324 0.0189 0.0617 0.0227 0.0135 0.0842
UltraGCN + AdvInfoNCE 0.1538 0.0569 0.0338 0.1025 0.0380 0.0227 0.0726 0.0276 0.0168 0.0883

VGAE (Kipf and Welling, 2016) + InfoNCE 0.1482 0.0536 0.0315 0.0923 0.0338 0.0202 0.0640 0.0237 0.0141 0.0823
VGAE + AdvInfoNCE 0.1588* 0.0589* 0.0353* 0.1069* 0.0395* 0.0239* 0.0778* 0.0296* 0.0182* 0.0871

C.3 Performance over Extensive Backbones

To validate the generalization ability of AdvInfoNCE, we conducted experiments on additional
backbones, including UltraGCN [69] and an adapted version of VGAE [70]. The results in Table
6 indicate that AdvInfoNCE performs excellently across various backbones, which showcases the
generalization ability of AdvInfoNCE.

C.4 Performance Comparison with Extensive Baselines

We compare AdvInfoNCE on the LightGCN backbone with extensive baselines on Tencent. The
results in Table 7 show that AdvInfoNCE also outperforms almost all the latest debiasing [10, 71]
and hard negative mining algorithms [72].

C.5 Training Cost

Let n be the number of items, d be the embedding size, N be the number of negative sampling,
M = |O+| be the number of observed interactions, B be the batch size and Nb be the number of
mini-batches within one batch. In AdvInfoNCE, the similarity calculation for one positive item with
N negative items costs O((N + 1)d), and the hardness calculation costs O(Nd). The total training
costs of one epoch without backward propagation are summarized in Table 8. The training cost of
AdvInfoNCE is a little higher than BPR loss, sharing the same complexity with InfoNCE.
In Table 9, we present both the per-epoch and total time costs for each baseline model on the Tencent
dataset. As evidenced, augmentation-based contrastive learning (CL) baselines significantly cut
down the overall training time, while loss-based CL baselines exhibit a complexity similar to that of
InfoNCE. Surprisingly, compared to InfoNCE, AdvInfoNCE introduces only a marginal increase in
computational complexity during the training phase.

D Discussion about AdvInfoNCE

D.1 Algorithm

Algorithm 1 depicts the detailed procedure of AdvInfoNCE. Here we uniformly sample N negative
items for each observed interaction and multiply a large weighting parameter K in front of each
negative item, as a surrogate of the whole negative set Nu. Specifically, we adversarially train the
hardness δ(u,i)j at a fixed interval before reaching the maximum adversarial training epochs Eadv.

The precise methods for computing the hardness δ(u,i)j are further discussed in Section D.4.

20

Table 7: The performance comparison on the Tencent dataset with extensive baselines. The improve-
ment achieved by AdvInfoNCE is significant (p-value << 0.05).

γ = 200 γ = 10 γ = 2 Validation
HR Recall NDCG HR Recall NDCG HR Recall NDCG NDCG

XIR (Chen et al., 2022) 0.1463 0.0538 0.0326 0.0936 0.0341 0.0211 0.0642 0.0245 0.0154 0.0883
sDRO (Wen et al., 2022) 0.1455 0.0516 0.0286 0.0857 0.0304 0.0166 0.0552 0.0205 0.0110 0.0872
InvCF (Zhang et al., 2023) 0.1651 0.0605 0.0331 0.1061 0.0386 0.0204 0.0722 0.0272 0.0149 0.0912

AdvInfoNCE 0.1600 0.0594 0.0356* 0.1087* 0.0403* 0.0243* 0.0774* 0.0295* 0.0180* 0.0879

Table 8: Time Complexity
+BPR +InfoNCE +CCL +BC Loss +Adap τ +AdvInfoNCE

Backbone O(NbBd) O(NbB(N + 1)d) O(NbB(N + 1)d) O(NbB(N + 1)d) O(NbB(N + 1)d+ (M + n)d) O(NbB(N + 1)d)

D.2 Effect of the Fine-grained Hardness on KuaiRec

We conduct the same experiments as Section 4.2.1 on KuaiRec, to investigate how the fine-grained
hardness affects the out-of-distribution performance.

• We plot the average value of p(j|(u, i)) across one batch, as depicted in Figure 4a. The figure
reveals that AdvInfoNCE learns a skewed negative sampling distribution, mirroring the trend
observed in the Tencent dataset. Such a distribution places more emphasis on popular negative
items and reduces the difficulty of unpopular negative items, which have a higher probability of
being false negatives.

• To examine the effect of fine-grained hardness, we conduct experiments with four different hardness
learning strategies, including AdvInfoNCE, InfoNCE, InfoNCE-Rand, and AdvInfoNCE-Reverse.
AdvInfoNCE-Reverse refers to a strategy where hardness is learned by minimizing, rather than
maximizing, the loss function. This inversion results in what we term ’reversed hardness’, in
contrast to the approach of our AdvInfoNCE method. InfoNCE-Rand denotes the assignment of
uniformly random hardness for each negative item. We conduct 5-fold experiments with different
random seeds for each strategy and report the mean value with standard error in Figure 4c. As the
result shows, AdvInfoNCE yields consistent improvements over the other three different hardness
strategies during the training phase. In contrast, the performance of AdvInfoNCE-Reverse drops
rapidly as continuously training the reversed hardness. The sustained superior performance of
AdvInfoNCE indicates that it effectively promotes the generalization ability of the CF model by
automatically distinguishing false negatives and hard negatives.

• Figure 4b illustrates the uniform and align loss during the training phase following the initial
warm-up epochs. As demonstrated, after the warm-up phase, both InfoNCE and InfoNCE-Rand
exhibit a slight increase in align loss, while their uniform loss maintains a stable level. In contrast,
AdvInfoNCE significantly improves uniformity at an acceptable cost of increasing align loss. On the
other hand, employing reversed hardness (as in AdvInfoNCE-Reverse) appears to have a negative
impact on representation uniformity. These findings underscore the importance of fine-grained
hardness in AdvInfoNCE, suggesting that AdvInfoNCE learns more generalized representations.

D.3 Effect of the Adversarial Training Epochs on KuaiRec

In this section, we conduct experiments on KuaiRec, where AdvInfoNCE is trained for varying
numbers of adversarial epochs. We plot performance metrics (Recall@20 in Figure 5a and NDCG@20
in Figure 5b) on the test set, which represents out-of-distribution data, throughout the training phase.
The green stars mark the corresponding endpoint of adversarial training. As illustrated in Figure 5a and
5b, both Recall@20 and NDCG@20 show a proportional trend with the number of adversarial training
epochs, up to a certain threshold. However, it is worth noting that in the extreme condition when
the number of adversarial training epochs exceeds the threshold, performance on out-of-distribution
sharply declines. This indicates a need to strike a balance when determining the appropriate number
of adversarial training epochs for AdvInfoNCE.

21

Table 9: Training cost on Tencent (seconds per epoch/in total).
+InfoNCE +SGL +NCL +XSimGCL +CCL +BC loss +Adap-τ +AdvInfoNCE

MF 16.8 / 7,123 − − − 17.2 / 4,111 19.1 / 6,751 22.3 / 7,694 21.6 / 11,534
LightGCN 41.2 / 21,177 82.5 / 4,868 54.9 / 5,161 42.1 / 842 42.1 / 11,114 43.5 / 23,664 55.6 / 17,236 44.6 / 21,586

Algorithm 1 AdvInfoNCE

Input: observed interactionsO+, unobserved interactionsO−, learning rate of adversarial training
lradv , maximum adversarial training epochs Eadv , adversarial training intervals Tadv , parameters
of the CF model θ, parameters of the hardness evaluation models θadv , weighting parameter K
Output: θ
Initialize: Initialize θ and θadv , e← 1, eadv ← 1
repeat

Freeze parameters of the hardness evaluation model θadv
Randomly sample N negative items from I−u for each interaction within a batch
Compute s(u, i), δ(u,i)j with θ and θadv , respectively

Compute LAdv(u, i) = − log exp (s(u,i))

exp (s(u,i))+K
∑N

j=1 exp(δ
(u,i)
j) exp(s(u,j))

Update θ by minimizing LAdv(u, i)
if e mod Tadv == 0 & eadv ≤ Eadv then

Freeze parameters of the CF model θ
Update θadv by maximizing LAdv(u, i)
eadv ← eadv + 1

end if
e← e+ 1

until CF model converges

D.4 Hardness Learning Strategy

To accurately evaluate the hardness of each negative instance, we need to establish a mapping from
unobserved user-item pairs to their corresponding hardness values, and this mapping mechanism can
be diversified. Generally, the hardness learning strategy can be formulated as:

δ
(u,i)
j

.
= log(|Nu| · p(j|(u, i))) (28)

.
= log

(
|Nu| ·

exp (gθadv
(u, j))∑|Nu|

k=1 exp(gθadv
(u, k))

)
, (29)

where gθadv
(u, j) is a raw hardness score function for the unobserved user-item pair (u, j), and

p(j|(u, i)) is the probability of sampling the negative instance j, which is calculated by normalizing
gθadv

(u, j). In this paper, we proposed two specific mapping methods: embedding-based (i.e.,
AdvInfoNCE-embed) mapping and multilayer perceptron-based (i.e., AdvInfoNCE-mlp) mapping.
It should be noted that all the results reported in the main text of this paper are based on the
implementation of the AdvInfoNCE-embed version.

AdvInfoNCE-embed. The hardness computation process in AdvInfoNCE-embed follows a similar
protocol as CF models. We directly map the index of users and items into its corresponding hardness
embedding and calculate the hardness of each user-item pair through a score function. Specifically,
this process involves a user hardness encoder ψθadv

(·) : U → Rd and an item hardness encoder
ϕθadv

(·) : I→ Rd, where θadv denotes all the trainable parameters of the hardness learning model.
In our experiments, we adopt the same embedding dimension as the CF models for hardness learning.
For the score function, we define gθadv

(u, j) = ψθadv
(u)

⊤ · ϕθadv
(j).

AdvInfoNCE-mlp. Unlike AdvInfoNCE-embed, AdvInfoNCE-mlp maps the embeddings of items
and users from the CF model into another latent space with two multilayer perceptrons (MLPs)
and calculates the hardness on this latent space. By respectively defining the MLPs for users and
items as MLPu and MLPv, the score function for hardness calculation is defined as gθadv

(u, j) =

MLPu (ψθ(u))
⊤ ·MLPv (ϕθ(j)). In our experiment, we simply employ one-layer MLPs and set

the dimension of latent space as four. It’s worth noting that this MLP-based implementation of

22

(a) Distribution of hardness (b) Varying hardness strategies (c) Alignment & uniformity analysis

Figure 4: Study of hardness. (4a) Illustration of hardness i.e., the probability of negative sampling
(p (j| (u, i))) learned by AdvInfoNCE w.r.t. item popularity on KuaiRec. The dashed line represents
the uniform distribution. (4b) Performance comparisons with varying hardness learning strategies on
KuaiRec. (4c) The trajectories of align loss and uniform loss during training progress. Lower values
indicate better performance. Arrows denote the losses’ changing directions.

(a) Recall@20 (b) NDCG@20

Figure 5: The performance on KuaiRec with different numbers of adversarial training epochs. (5a) Per-
formance comparisons w.r.t. Recall@20 on KuaiRec. (5b) Performance comparisons w.r.t. NDCG@20
on KuaiRec.

AdvInfoNCE may also be adaptable for handling out-of-distribution tasks in other fields, such as
computer vision (CV) and natural language processing (NLP).

As reported in Table 10, both AdvInfoNCE-embed and AdvInfoNCE-mlp yield significant improve-
ments over InfoNCE. Moreover, AdvInfoNCE-embed generally outperforms AdvInfoNCE-mlp.

D.5 The Intuitive Understanding of AdvInfoNCE

In this section, we aim to understand the mechanism of AdvInfoNCE intuitively, from the perspective
of false negative identification.
Figure 6 illustrates the changes of the out-of-distribution performance and FN identification rate
during the training process on Tencent. Here, the FN identification rate indicates the proportion of
false negatives with negative δj . It can be observed that the out-of-distribution performance exhibits a
rising trend along with the FN identification rate. Meanwhile, the out-of-distribution performance of
InfoNCE remains relatively low. This indicates that AdvInfoNCE enhances the generalization ability
of the CF model by identifying false negatives.

Figure 7 illustrates how AdvInfoNCE adjusts the scores and rankings of sampled negative items, by
identifying the false negatives and true negatives. We retrieve the negative items sampled during
training. If a sampled negative item appears in the test set, it is labeled as a false negative (FN);
otherwise. In Figure 7a and 7b, the leftmost item represents a false negative, while the other two
items on the right are negatives. The bar charts in blue and red depict the cosine similarity scores
of sampled negative items measured by InfoNCE and AdvInfoNCE respectively. The rankings of
sampled negative items are annotated above the bars. The line graph illustrates the hardness δj
computed by AdvInfoNCE, measured on the right axis. It can be observed that when the hardness δj

23

Table 10: The performance comparison between AdvInfoNCE-embed and AdvInfoNCE-mlp over
the LightGCN backbone.

KuaiRec Yahoo!R3 Coat Tencent (γ = 200) Tencent (γ = 10) Tencent (γ = 2)
Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG

InfoNCE 0.1800 0.4529 0.1475 0.0698 0.2689 0.1882 0.0540 0.0320 0.0332 0.0195 0.0242 0.0145

AdvInfoNCE-embed 0.1979 0.4697 0.1527 0.0718 0.2846 0.2026 0.0594 0.0356 0.0403 0.0243 0.0295 0.0180
Imp.% over InfoNCE 9.94% 3.71% 3.53% 2.87% 5.84% 7.65% 10.00% 11.25% 21.39% 24.62% 21.90% 24.14%

AdvInfoNCE-mlp 0.1851 0.4579 0.1545 0.0724 0.2843 0.2002 0.0567 0.0339 0.0364 0.0221 0.0260 0.0160
Imp.% over InfoNCE 2.83% 1.10% 4.75% 3.72% 5.73% 6.38% 5.00% 5.94% 9.64% 13.33% 7.44% 10.34%

Figure 6: FN identification rate and NDCG@20 during training on Tencent, where FN identification
rate indicates the proportion of false negatives (FN) with negative δj and NDCG@20 shows the
out-of-distribution performance. As training proceeds, AdvInfoNCE’ FN identification rate increases,
capping at nearly 70%. This reveals AdvInfoNCE’s capability to identify approximately 70% of false
negatives in the test set. We attribute the superior recommendation performance of AdvInfoNCE over
InfoNCE to this gradual identification.

is negative (i.e., indicating that the item is identified as a false negative), the cosine similarity score
improves. Conversely, if the hardness δj is positive, the score decreases.

E Hyperparameter Settings

For a fair comparison, we conduct all the experiments in PyTorch with a single Tesla V100-SXM3-
32GB GPU and an Intel(R) Xeon(R) Gold 6248R CPU. We optimize all methods with the Adam
optimizer and set the layer numbers of LigntGCN by default at 2, with the embedding size as 64 and
the weighting parameter K as 64. We search for hyperparameters within the range provided by the
corresponding references. For AdvInfoNCE, we search lradv in [1e-1, 1e-4], Eadv in [1, 30] and
Tadv in {5, 10, 15, 20}. We adopt the early stop strategy that stops training if Recall@20 on the
validation set does not increase for 20 successive evaluations. It’s worth noting that AdvInfoNCE
inherits the hyperparameter sensitivity property of adversarial learning, therefore it’s necessary to
choose proper hyperparameters for different datasets. We suggest selecting a suitable adversarial
learning rate lradv first and then increasing the number of adversarial training epochs Eadv gradually
until AdvInfoNCE reaches a relatively stable performance. We report the effect of changing the
number of negative sampling in Table 13, where N is the number of negative sampling.

24

(a) User 46767 (b) User 54944

Figure 7: Case studies of refining the item ranking. With two randomly sampled users along with
their sampled negative items, we subsequently retrieve their associated δ values, ranking positions,
and cosine similarities. Here FN denotes false negative (i.e., interactions unobserved during training
but present in testing). The bar charts demonstrate the cosine similarity scores of these sampled
negative items as gauged by both InfoNCE and AdvInfoNCE. Their rankings are annotated atop
the bars. An accompanying line illustrates the hardness δj derived by AdvInfoNCE (measured on
the right axis). Notably, when δ < 0, AdvInfoNCE identifies and elevates an FN; conversely, for a
potentially true negative, AdvInfoNCE leans towards a positive δ and declines its rank.

Table 11: Hyperparameters search spaces for baselines.
Hyperparameter space

MF & LightGCN lr ∼ {1e-5, 3e-5, 5e-5, 1e-4, 3e-4, 5e-4, 1e-3}, batch size ∼ {64, 128, 256, 512, 1024, 2048}
No. negative samples ∼ {64, 128, 256, 512}

SSM τ ∼ [0.05, 3]

CCL w ∼ {1, 2, 5, 10, 50, 100, 200}, m ∼ {0.2, 0.4, 0.6, 0.8, 1}

BC Loss τ1 ∼ [0.05, 3], τ2 ∼ [0.05, 3]

Adap-τ warm_up_epochs ∼ {10, 20, 50, 100}

SGL τ ∼ [0.05, 3], λ1 ∼ {0.005, 0.01, 0.05, 0.1, 0.5, 1.0}, ρ ∼ {0, 0.1, 0.2, 0.3, 0.4, 0.5}

NCL τ ∼ [0.05, 3], λ1 ∼ [1e-10, 1e-6], λ2 ∼ [1e-10, 1e-6], k ∼ [5, 10000]

XSimGCL τ ∼ [0.05, 3], ϵ ∼ {0.01, 0.05, 0.1, 0.2, 0.5, 1.0}, λ ∼ {0.005, 0.01, 0.05, 0.1, 0.5, 1.0}, l∗ = 1

Table 12: Model architectures and hyperparameters for AdvInfoNCE.
Hyperparameters of AdvInfoNCE

lradv Eadv Tadv τ lr batch size No. negative samples

LightGCN
Tencent 5e-5 7 5 0.09 1e-3 2048 128

KuaiRec 5e-5 12 5 2 3e-5 2048 128

Yahoo!R3 1e-4 13 5 0.28 5e-4 1024 64

Coat 1e-2 20 15 0.75 1e-3 1024 64

MF
Tencent 5e-5 8 5 0.09 1e-3 2048 128

Yahoo!R3 1e-4 12 5 0.28 5e-4 1024 64

Coat 1e-2 18 15 0.75 1e-3 1024 64

Table 13: Varying number of negative sampling on Tencent

γ = 200 γ = 10 γ = 2 Validation
N HR Recall NDCG HR Recall NDCG HR Recall NDCG NDCG

64 0.1513 0.0563 0.0333 0.1006 0.0373 0.0225 0.0708 0.0269 0.0164 0.0854
128 0.1600 0.0594 0.0356 0.1087 0.0403 0.0243 0.0774 0.0295 0.0180 0.0879
256 0.1642 0.0609 0.0367 0.1125 0.0419 0.0253 0.0815 0.0310 0.0189 0.0889

25

	Introduction
	Preliminary of Contrastive Collaborative Filtering (CF)
	Methodology of AdvInfoNCE
	Fine-grained Ranking Criterion
	Derivation of AdvInfoNCE
	In-depth Analysis of AdvInfoNCE

	Experiments
	Overall Performance Comparison (RQ1)
	Evaluations on Unbiased Datasets
	Evaluations on Various Out-of-distribution Settings

	Study on AdvInfoNCE (RQ2)
	Effect of Hardness
	Effect of the Adversarial Training Epochs

	Conclusion
	Related Work
	Contrastive Learning-based Collaborative Filtering
	Theoretical Understanding of Contrastive Loss in CF

	In-depth Analysis of AdvInfoNCE
	Complete Derivation of AdvInfoNCE
	Proof of Theorem
	Gradients Analysis
	Align Top-K evaluation metric

	Experiments
	Experimental Settings
	Performance over the MF Backbone
	Performance over Extensive Backbones
	Performance Comparison with Extensive Baselines
	Training Cost

	Discussion about AdvInfoNCE
	Algorithm
	Effect of the Fine-grained Hardness on KuaiRec
	Effect of the Adversarial Training Epochs on KuaiRec
	Hardness Learning Strategy
	The Intuitive Understanding of AdvInfoNCE

	Hyperparameter Settings

