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Abstract

Contrastive Learning (CL) has achieved impressive performance in self-supervised
learning tasks, showing superior generalization ability. Inspired by the success,
adopting CL into collaborative filtering (CF) is prevailing in semi-supervised top-
K recommendations. The basic idea is to routinely conduct heuristic-based data
augmentation and apply contrastive losses (e.g., InfoNCE) on the augmented views.
Yet, some CF-tailored challenges make this adoption suboptimal, such as the issue
of out-of-distribution, the risk of false negatives, and the nature of top-K evaluation.
They necessitate the CL-based CF scheme to focus more on mining hard negatives
and distinguishing false negatives from the vast unlabeled user-item interactions,
for informative contrast signals. Worse still, there is limited understanding of
contrastive loss in CF methods, especially w.r.t. its generalization ability. To bridge
the gap, we delve into the reasons underpinning the success of contrastive loss in
CF, and propose a principled Adversarial InfoNCE loss (AdvInfoNCE), which is
a variant of InfoNCE, specially tailored for CF methods. AdvInfoNCE adaptively
explores and assigns hardness to each negative instance in an adversarial fashion
and further utilizes a fine-grained hardness-aware ranking criterion to empower
the recommender’s generalization ability. Training CF models with AdvInfoNCE,
we validate the effectiveness of AdvInfoNCE on both synthetic and real-world
benchmark datasets, thus showing its generalization ability to mitigate out-of-
distribution problems. Given the theoretical guarantees and empirical superiority
of AdvInfoNCE over most contrastive loss functions, we advocate its adoption as
a standard loss in recommender systems, particularly for the out-of-distribution
tasks. Codes are available at https://github.com/LehengTHU/AdvInfoNCE.

1 Introduction

Contrastive Learning (CL) has emerged as a potent tool in self-supervised learning tasks [1–4], given
its superior generalization ability. By simultaneously pulling positive pairs close together while
pushing apart negative pairs in the feature space [5], CL has demonstrated the ability to extract general
features from limited signals. This promising result has propelled research interest in leveraging CL
for Collaborative Filtering (CF) in top-K recommendation tasks, leading to a marked enhancement
in performance and generalization ability [6–12]. Specifically, the prevalent paradigm in CL-based
CF methods is to routinely adopt heuristic-based data augmentation for user-item bipartite graphs
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Figure 1: Comparative geometric interpretation of ranking criteria based on similarity measure s(·, ·)
for InfoNCE (1a) and our proposed AdvInfoNCE (1b-1c). The figures depict the user u as a red dot,
with items i (positive), j1 (true negative), and j2 (false negative) depicted as points with varying
shades of blue. The color gradient reflects the underlying similarity between user u and the items,
while the shaded region delineates the feasible zone for its corresponding negative item.

[13–15], coupled with the indiscriminate application of contrastive losses such as InfoNCE [16].
Wherein, a common assumption underlying these methods is considering all unobserved interactions
as negative signals [17, 18].

Despite the empirical success of CL-based CF methods, two critical limitations have been observed
that potentially impede further advancements in this research direction:

• Lack of considering the tailored inductive bias for CF. As a standard approach for semi-
supervised top-K recommendation with implicit feedback, CF methods face unique challenges. In
most cases, the majority of user-item interactions remain unobserved and unlabelled, from which
CF methods directly draw negative instances. However, indiscriminately treating these unobserved
interactions as negative signals overlooks the risk of false negatives, thus failing to provide reliable
contrastive signals [19]. This issue is known as the exposure bias [20, 21] in recommender systems.
Unfortunately, this inherent inductive bias is rarely considered in current CL-based CF methods,
resulting in suboptimal recommendation quality and generalization ability [22].

• Limited theoretical understanding for the generalization ability of CL-based CF methods.
While data augmentation, as a key factor for generalization ability, is pivotal in computer vision
[23, 24], CL-based CF models exhibit insensitivity to perturbations in the user-item bipartite graph
[25]. Recent studies [26–28] empirically reveal that contrastive loss plays a more crucial role
in boosting performance in CF than heuristic-based graph augmentation. However, an in-depth
theoretical understanding of contrastive loss in top-K recommendation that could shed light on the
generalization ability of CL-based CF methods remains largely under-explored.

To better understand and reshape the contrastive loss specially tailored for top-K recommendation,
we aim to automatically and adversarially assign hardness to each negative user-item pair, which
de facto concurrently enlarges the similarity discrepancy for hard negatives and loosens the ranking
constraint for false negatives. To be specific, the fundamental idea revolves around discerning a
fine-grained degree of hardness for negative interactions, thereby yielding more profound insight
into the underlying ranking criterion for top-K recommendation, as depicted in Figure 1. Notably,
for a given user u, δj refers to the hardness of item j. When δj1 > 0 (as seen in Figure 1b), item j1
is identified as a hard negative, resulting in a significant contraction of the feasible representation
space. Conversely, when δj2 < 0 (as seen in Figure 1c), the ranking criterion is relaxed compared to
the constraint of InfoNCE, allowing the recommender to mitigate the impact of false negative noise.
Nevertheless, the tasks of effectively distinguishing between the hard and false negatives, and of
learning a proper fine-grained ranking of interactions continue to present significant challenges [22].

To this end, we incorporate a fine-grained hardness-aware ranking criterion and devise a slightly
altered version of InfoNCE loss through adversarial training. This modified contrastive loss coined
AdvInfoNCE, is explicitly designed for robust top-K recommendation. Specifically, we frame
hardness learning as an adversarial optimization problem by designing a hardness mapping from
interactions to hardness and iterating between hardness evaluation and CF recommender refinement.
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Benefiting from this adversarial framework, our AdvInfoNCE endows two appealing properties.
On the one hand, it serves as a specialized contrastive loss for top-K collaborative filtering that
acknowledges the risk of false negatives while utilizing hard negative mining. Additionally, we
theoretically demonstrate through adaptive gradients that AdvInfoNCE subtly employs informative
negative sampling (cf. Appendix B.3). On the other hand, we bridge the adversarial hardness
learned by AdvInfoNCE with the ambiguity set in distributionally robust optimization (DRO), thereby
naturally demonstrating its generalization ability and assuring its robust performance against the
noise of false negatives (cf. Theorem 3.1). This furnishes a potential theoretical rationalization
for the exceptional robustness observed in contrastive learning. Extensive experiments on the out-
of-distribution benchmark datasets in top-K recommendation tasks further highlight the capability
of AdvInfoNCE in addressing the issue of biased observations. We advocate for AdvInfoNCE
to be considered as a significant reference loss for future contrastive learning research in CF and
recommend its adoption as a standard loss in recommender systems.

2 Preliminary of Contrastive Collaborative Filtering (CF)

Task Formulation. Personalized recommendations aim to retrieve a small subset of items from a
large catalog to align with the user preference. Here we focus on a typical setting, collaborative
filtering (CF) with implicit feedback (e.g., click, purchase, view times, etc.), which can be framed
as a semi-supervised top-K recommendation problem [29]. Wherein, the majority of all possible
user-item interactions are unobserved, thus previous studies typically assign them with negative
labels [29, 30]. Let O+ = {(u, i)|yui = 1} (O− = {(u, i)|yui = 0}) be the observed (unobserved)
interactions between users U and items I, where yui = 1 (yui = 0) indicates that user u ∈ U has
(has not) interacted with item i ∈ I. For convenience, let I+u = {i|yui = 1} (I−u = {j|yuj = 0})
denote the set of items that user u has (has not) adopted before. To overcome the distribution shifts in
real-world scenarios [31, 10], the long-acting goal is to optimize a robust CF model ŷ : U× I→ R
capable of distilling the true preferences of users towards items.

Modeling Strategy. Leading CF models [32–35] involve three main modules: a user behavior
encoder ψθ(·) : U → Rd, an item encoder ϕθ(·) : I → Rd, and a predefined similarity function
s(·, ·) : Rd × Rd → R, where θ is the set of all trainable parameters. The encoders transfer the
user and item into d-dimensional representations. The similarity function measures the similarity
between the user and item in the representation space, whose widely-used implementations include
dot product [30], cosine similarity [36], and neural networks [37]. For the sake of simplicity and
better interpretation, we set the similarity function in our paper as:

s(u, i) =
1

τ
· ψθ(u)

⊤
ϕθ(i)

∥ψθ(u)∥ · ∥ϕθ(i)∥
, (1)

in which τ is the hyper-parameter known as temperature [38].

Loss Function. Point- and pair-wise loss functions are widely used to optimize the parameters θ:

• Point-wise losses (e.g., binary cross-entropy [39, 40], mean square error [32]) typically treat
observed interactions O+ as positive instances and all unobserved interactions O− as negatives.
CF methods equipped with point-wise loss naturally cast the problem of item recommendations
into a binary classification or regression task. However, due to the large scale of indiscriminative
unobserved interactions, this type of loss function fails to effectively consider the ranking criterion
nor efficiently handle false negative instances [41].

• Pairwise loss functions (e.g., BPR [30], WARP [42], pairwise hinge loss [43]) aim to differentiate
items in a specific relative order. For instance, BPR assumes that the user prefers the positive item
over unobserved items. Although effective, these loss functions share a common limitation that
lacks sensitivity to label noise and false negatives [22].

Recent CF methods, inspired by the success of contrastive learning (CL) in self-supervised learning
tasks, show a surge of interest in contrastive loss:

• Contrastive losses (e.g., InfoNCE [16], InfoL1O [44], DCL [45], SupCon [46]) enforce the agree-
ment between positive instances and the discrepancy between negative instances in the representa-
tion space. Separately treating the observed and unobserved interactions as positive and negative
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instances allows us to get rid of data augmentation and directly apply these losses in CF. Here we
focus mainly on InfoNCE (also well-known as softmax loss in CF [29]), and our findings could be
easily extended to other contrastive losses. Specifically, given a user u with a positive item i and
the set of items I−u that u has not interacted with, InfoNCE essentially encourages the CF model to
satisfy the following ranking criterion:

∀j ∈ I−u , i >u j, (2)

where >u represents the personalized ranking order of user u. We equivalently reformulate this
ranking criterion in the semantic similarity space, as depicted in Figure 1a:

∀j ∈ I−u , s(u, j)− s(u, i) ≤ 0. (3)

Overall, the objective function of personalized recommendation with InfoNCE loss can be formu-
lated as follows:

LInfoNCE = −
∑

(u,i)∈O+

log
exp (s(u, i))

exp (s(u, i)) +
∑

j∈Nu
exp (s(u, j))

, (4)

where (u, i) ∈ O+ is an observed interaction between user u and item i. In most cases, the
number of unobserved items, i.e., |I−u |, can be extremely large, thus negative sampling becomes a
prevalent solution. The standard process of negative sampling involves uniformly drawing a subset
of negative instances, denoted by Nu, from the unobserved item set I−u .

Discussion. Scrutinizing the ranking criterion in Equation (3), we can easily find that InfoNCE
cares about the positive item’s relative orders with the negative items holistically, while ignoring the
ranking relationships among these negatives. Moreover, it simply treats all unobserved interactions
as negative items, thus easily overlooking the risk of false negatives [29, 30]. Such oversights impede
the performance and generalization ability of InfoNCE-empowered CF models. To bridge the gap,
we aim to devise a variant of InfoNCE by considering these factors.

3 Methodology of AdvInfoNCE

On the foundation of InfoNCE loss, we first devise AdvInfoNCE, a robust contrastive loss tailor-made
for Top-K recommendation scenarios. Then we present its desirable properties that underscore
the efficacy of negative sampling and generalization ability across distribution shifts. Additionally,
we delve into the hard negative mining mechanism of AdvInfoNCE and its alignment with Top-K
ranking evaluation metrics in Appendix B.3 and B.4, respectively.

3.1 Fine-grained Ranking Criterion

Instead of relying on the coarse relative ranking criterion presented in Equation (3), we learn a
fine-grained ranking criterion in Top-K recommendation by incorporating varying degrees of user
preferences for different items into the loss function. In other words, we need to treat the positive
item as an anchor, quantify the relative hardness of each item as compared with the anchor, and
differentiate between false negatives and hard negatives. Here the hardness of a negative item is
defined as its minimal similarity distance towards the positive anchor.

For simplicity, we consider a single observed user-item pair (u, i) ∈ O+ from now on. Let us assume
that for (u, i), we have access to the oracle hardness δj of each negative item j ∈ Nu. By assigning
distinct hardness scores to different negatives, we reframe a hardness-aware fine-grained ranking
criterion in the semantic similarity space as follows:

∀j ∈ Nu, s(u, j)− s(u, i) + δj < 0. (5)

Incorporating the hardness scores enables us to exhibit the ranking among negative items (i.e., the
larger hardness score δj the item j holds, the less likely the user u would adopt it) and endow with
better flexibility, compared with InfoNCE in Figure 1a. Specifically, as Figure 1b shows, if δj1 > 0,
j1 is identified as a hard negative item with a contracted feasible zone, which indicates a stringent
constraint prompting the model to focus more on j1. Meanwhile, as Figure 1c depicts, if δj2 < 0, j2
tends to be a false negative item and its feasible zone expands, which characterizes a more relaxed
constraint. Clearly, the hardness degree δj encapsulates a fine-grained ranking criterion for user u,
thereby facilitating more accurate recommendation.
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3.2 Derivation of AdvInfoNCE

The fine-grained ranking criterion for a single positive interaction (u, i), as defined in Equation (5),
can be seamlessly transformed into the main part of our AdvInfoNCE:

max{0, {s(u, j)− s(u, i) + δj}j∈Nu
}︸ ︷︷ ︸

Fine-grained ranking criterion

≈ − log{ exp(s(u, i))

exp(s(u, i)) +
∑|Nu|

j=1 exp(δj) exp(s(u, j))
}︸ ︷︷ ︸

AdvInfoNCE
(6)

InfoNCE is a special case of AdvInfoNCE, when ∀j, δj = 0. We briefly outline the main steps of
derivation (see Appendix B.1 for the complete derivation):

Derivation Outline. Based on the LogSumExp operator, i.e., max(x1, ..., xn) ≈ log(
∑

i exp(xi)),
the fine-grained ranking criterion could be approximated in a different form as log(exp(0) +∑|Nu|

j=1 exp(s(u, j) − s(u, i) + δj)). Consequently, the right-hand side of Equation (6) can be
derived by factoring out the negative sign of the logarithm and reorganizing the term.

We would like to highlight the straightforward nature of this derivation, which is achieved without
the need for assumptions, but the widely-used LogSumExp operator [47].

However, the oracle hardness δj is not accessible or measurable in real-world scenarios. The
challenge, hence, comes to how to automatically learn the appropriate hardness for each negative
instance. Inspired by the adversarial training [48], we exploit a min-max game, which allows to train
the model alternatively between the prediction of hardness and the refinement of CF model. Formally,
taking into account all observed interactions, we cast the AdvInfoNCE learning framework as the
following optimization problem:

min
θ
LAdvInfoNCE = min

θ
max

∆∈C(η)
−

∑
(u,i)∈O+

log
exp (s(u, i))

exp (s(u, i)) +
∑|Nu|

j=1 exp(δ
(u,i)
j ) exp(s(u, j))

(7)

Here, with a slight abuse of notation, let δ(u,i)j denote the relative hardness of negative item j in

contrast with interaction (u, i), and ∆ represent the collective set of all δ(u,i)j . The definition and
enlightening explanation of C(η) will be presented in Section 3.3.

3.3 In-depth Analysis of AdvInfoNCE

In spite of the adversarial training framework of AdvInfoNCE, the theoretical understanding in terms
of its inherent generalization ability remains untouched. In this section, we study it through the lens
of distributionally robust optimization (DRO) [49] over negative sampling. From this perspective,
AdvInfoNCE focuses on the worst-case distribution over high-quality hard negative sampling.

Theorem 3.1. We define δ(u,i)j
.
= log(|Nu| · p(j|(u, i))), where p(j|(u, i)) is the probability of sam-

pling negative item j for observed interaction (u, i). Then, optimizing AdvInfoNCE loss is equivalent
to solving Kullback-Leibler (KL) divergence-constrained distributionally robust optimization (DRO)
problems over negative sampling:

min
θ
LAdvInfoNCE ⇐⇒ min

θ
max

p(j|(u,i))∈P
EP [exp(s(u, j)− s(u, i)) : DKL(P0||P ) ≤ η] (8)

where P0 stands for the distribution of uniformly drawn negative samples, i.e., p0(j|(u, i)) = 1
|Nu| ;

P denotes the distribution of negative sampling p(j|(u, i)).

For brevity, we present a proof sketch summarizing the key idea here and delegate the full proof to
Appendix B.2.

Proof. By defining δ(u,i)j
.
= log(|Nu| · p(j|(u, i))), we have 1

|Nu|
∑|Nu|

j=1 δ
(u,i)
l = −DKL(P0||P ).

Therefore, by rearranging the terms, optimizing AdvInfoNCE can be restated as a standard DRO
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problem:

min
θ
LAdvInfoNCE = min

θ
max

∆∈C(η)

∑
(u,i)∈O+

log(1 + |Nu|
|Nu|∑
j=1

p(j|(u, i)) exp(s(u, j)− s(u, i)))

⇐⇒ min
θ

∑
(u,i)∈O+

sup
p(j|(u,i))∈P

EP [exp(s(u, j)− s(u, i))], s.t. DKL(P0||P ) ≤ η

We now turn our attention to the role of C(η) and its relationship with the ambiguity set P in DRO.
The ambiguity set P is formulated by requiring the distribution of negative sampling to fall within a
certain η distance from the uniform distribution, as defined below:

P = {p(j|(u, i)) ∈ (
1

|Nu|
− ϵ, 1

|Nu|
+ ϵ) : DKL(P0||P ) ≤ η = −log(1− ϵ2

|Nu|
)} (9)

where ϵ serves as the hyperparameter to regulate the deviation of the negative sampling distribution
from the uniform distribution. In terms of implementation, ϵ is controlled by the number of adversarial
training epochs (see Algorithm 1). Clearly, C(η) is an equal counterpart to the ambiguity set P.

Discussion. Grounded by theoretical proof, we understand the generalization ability of our Ad-
vInfoNCE through the lens of DRO over informative negative sampling. In essence, by learning
the hardness in an adversarial manner, AdvInfoNCE effectively enhances the robustness of the CF
recommender. Moreover, apart from the robustness of AdvInfoNCE (see Section 3.3), we also
identify its hard negative mining mechanism through gradients analysis (see Appendix B.3) and its
alignment with top-K ranking evaluation metrics (see Appendix B.4). Specifically, the gradients con-
cerning negative samples are proportional to the hardness term exp(δj), indicating that AdvInfoNCE
is a hardness-aware loss. To some extent, our AdvInfoNCE is equivalent to the widely-adopted
Discounted Cumulative Grain (DCG) ranking metric.

Limitation. AdvInfoNCE employs end-to-end negative sampling in an adversarial manner, com-
pelling the recommender to ensure robustness from the worst-case scenario. Despite its empirical
success and desirable properties, AdvInfoNCE is not immune to the limitations of adversarial training,
which is well-known for its potential training instability.

4 Experiments

We aim to answer the following research questions:

• RQ1: How does AdvInfoNCE perform compared with other CL-based CF methods?
• RQ2: Can AdvInfoNCE effectively learn the fine-grained ranking criterion? What are the impacts

of the component ϵ (i.e., the number of adversarial training epochs) on AdvInfoNCE?

Baselines. Two high-performing encoders - ID-based (MF [50]) and graph-based (LightGCN [51]),
are selected as CF backbone models. We thoroughly compare AdvInfoNCE with two categories of
the latest CL-based CF methods: augmentation-based baselines (SGL [13], NCL [52], XSimGCL
[27]) and loss-based baselines (CCL [53], BC Loss [54], Adap-τ [55]). See detailed introduction and
comparison of baselines in Appendix A.

Datasets. To verify the generalization ability of AdvInfoNCE, we conduct extensive experiments
on three standard unbiased datasets (KuaiRec [56], Yahoo!R3 [57], Coat [58]) and one synthetic
dataset (Tencent [10]). We employ three commonly used metrics (Hit Ratio (HR@K), Recall@K,
Normalized Discounted Cumulative Gain (NDCG@K)) for evaluation, with K set by default at 20.
Please refer to Appendix C and D for more experimental results over additional backbones, additional
baselines, and an intuitive understanding of AdvInfoNCE.

4.1 Overall Performance Comparison (RQ1)

4.1.1 Evaluations on Unbiased Datasets

Motivation. Evaluating the efficacy and generalization ability of CF models based on partially
observed interactions collected from existing recommender system is rather challenging [59]. This is
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Table 1: The performance comparison on unbiased datasets over the LightGCN backbone. The
improvement achieved by AdvInfoNCE is significant (p-value << 0.05).

KuaiRec Yahoo!R3 Coat
Recall NDCG Recall NDCG Recall NDCG

BPR (Rendle et al., 2012) 0.1652 0.3905 0.1487 0.0697 0.2737 0.1707
InfoNCE (van den Oord et al., 2018) 0.1800 0.4529 0.1475 0.0698 0.2689 0.1882

SGL (Wu et al., 2021) 0.1829+1.61% 0.4583+1.19% 0.1474−0.07% 0.0692−0.86% 0.2737+1.79% 0.1716−8.82%

NCL (Lin et al., 2022) 0.1764−2.00% 0.4478−1.13% 0.1407−4.61% 0.0669−4.15% 0.2778+3.31% 0.1739−7.60%

XSimGCL (Yu et al., 2022) 0.1907+5.94% 0.4531+0.04% 0.1503+1.90% 0.0708+1.43% 0.2729+1.49% 0.1655−12.06%

CCL (Mao et al., 2021) 0.1776−1.33% 0.4497−0.71% 0.1453−1.49% 0.0676−3.15% 0.2732+1.60% 0.1941+3.13%

BC Loss (Zhang et al., 2022) 0.1799−0.06% 0.4417−2.47% 0.1498+1.56% 0.0703+0.72% 0.2719+1.12% 0.1921+2.07%

Adap-τ (Chen et al., 2023) 0.1717−4.61% 0.4323−4.55% 0.1516+2.78% 0.0704+0.86% 0.2700+0.41% 0.1957+3.99%

AdvInfoNCE 0.1979*+9.94% 0.4697*+3.71% 0.1527*+3.53% 0.0718*+2.87% 0.2846*+5.84% 0.2026*+7.65%

primarily due to the exposure bias of the recommender system confounding the observed data. To
address this issue, some researchers propose using unbiased evaluations [57, 58]. In these datasets,
items in the test set are randomly exposed to users, while partially observed interactions are still
used for training. The distribution shift between training and testing enables a fair evaluation of the
generalization ability of CF methods in out-of-distribution tasks.

Results. Tables 1 and 4 present a comparative analysis of the performance on standard unbiased
datasets over the LightGCN and MF backbones. The best-performing methods per test are bold and
starred, while the second-best methods are underlined. The red and blue percentages respectively
refer to the increase and decrease of CF methods relative to InfoNCE in each metric. We observe that:

• CL-based CF methods have driven impressive performance breakthroughs compared with
BPR in most evaluation metrics. This aligns with findings from prior research [27, 54] that con-
trastive loss significantly boosts the generalization ability of CF methods by providing informative
contrastive signals. In contrast, BPR loss, which focuses on pairwise relative ranking, often suffers
from ineffective negative sampling [30] and positive-unlabeled issues [21].

• Contrastive loss, rather than graph augmentation, plays a more significant role in enhancing
the generalization ability of CF models. We categorize CL-based CF baselines into two research
lines: one adopts user-item bipartite graph augmentation along with augmented views as positive
signals (referred to as augmentation-based), and another focuses solely on modifying contrastive
loss using interacted items as positive instances (referred to as loss-based). Surprisingly, our results
reveal no substantial difference between the performance of augmentation- and loss-based methods.
This finding provides further evidence in support of the claim made in prior studies [27, 26] that,
specifically in CF tasks, the contrastive loss itself is the predominant factor contributing to the
enhancement of a CF model’s generalization ability.

• AdvInfoNCE consistently outperforms the state-of-the-art CL-based CF baselines in terms
of all metrics on all unbiased datasets. AdvInfoNCE shows an improvement ranging from
3.53% to 9.94% on Recall@20 compared to InfoNCE. Notably, AdvInfoNCE gains the most
on the fully-exposed dataset, KuaiRec, which is considered as an ideal offline A/B testing. In
contrast, most of the CL-based CF methods underperform relative to InfoNCE and behave in an
unstable manner when the testing distribution shifts. This clearly indicates that AdvInfoNCE greatly
enhances the robustness of the CF model in real-world scenarios. We attribute this improvement
to the fine-grained ranking criterion of AdvInfoNCE that automatically differentiates hard and
false negative samples. Additionally, as shown in Table 9, AdvInfoNCE only adds negligible time
complexity compared to InfoNCE.

4.1.2 Evaluations on Various Out-of-distribution Settings

Motivation. In real-world scenarios, recommender systems may confront diverse, unpredictable,
and unknown distribution shifts. We believe that a good recommender with powerful generalization
ability should be able to handle various degrees of distribution shift. Following previous work [10],
we partition the Tencent dataset into three test sets with different out-of-distribution degrees. Here, a
higher γ value signifies a greater divergence in distribution shift (for more details on the experimental
settings, see Appendix C.1). We evaluate all CF methods with identical model parameters across all
test sets, without knowing any prior knowledge of the test distribution beforehand.

7



Table 2: The performance comparison on the Tencent dataset over the LightGCN backbone. The
improvement achieved by AdvInfoNCE is significant (p-value << 0.05).

γ = 200 γ = 10 γ = 2 Validation
HR Recall NDCG HR Recall NDCG HR Recall NDCG NDCG

BPR (Rendle et al., 2012) 0.1141 0.0416 0.0233 0.0720 0.0262 0.0146 0.0501 0.0186 0.0109 0.0673
InfoNCE (van den Oord et al., 2018) 0.1486 0.0540 0.0320 0.0924 0.0332 0.0195 0.0646 0.0242 0.0145 0.0854

SGL (Wu et al., 2021) 0.1227 0.0455 0.0249 0.0756 0.0281 0.0157 0.0517 0.0198 0.0113 0.0729
NCL (Lin et al., 2022) 0.1132 0.0413 0.0226 0.0734 0.0274 0.0145 0.0511 0.0189 0.0123 0.0669
XSimGCL (Yu et al., 2022) 0.1392 0.0501 0.0273 0.0830 0.0297 0.0160 0.0539 0.0203 0.0110 0.0873

CCL (Mao et al., 2021) 0.1372 0.0516 0.0318 0.0925 0.0350 0.0221 0.0683 0.0266 0.0170 0.0782
BC Loss (Zhang et al., 2022) 0.1513 0.0562 0.0341 0.0984 0.0366 0.0216 0.0682 0.0260 0.0164 0.0817
Adap-τ (Chen et al., 2023) 0.1488 0.0537 0.0317 0.0940 0.0338 0.0200 0.0642 0.0239 0.0143 0.0852
AdvInfoNCE 0.1600* 0.0594* 0.0356* 0.1087* 0.0403* 0.0243* 0.0774* 0.0295* 0.0180* 0.0879

Imp.% over the strongest baselines 5.74% 5.75% 4.53% 10.50% 10.11% 9.95% 13.32% 10.90% 5.88% −
Imp.% over InfoNCE 7.67% 10.00% 11.25% 17.64% 21.39% 24.62% 19.81% 21.90% 24.14% −

(a) Distribution of hardness (b) Varying hardness strategies (c) Alignment & uniformity analysis

Figure 2: Study of hardness. (2a) Illustration of hardness i.e., the probability of negative sampling
(p (j| (u, i))) learned by AdvInfoNCE w.r.t. item popularity on Tencent. The dashed line represents
the uniform distribution. (2b) Performance comparisons with varying hardness learning strategies
on Tencent (γ = 10). (2c) The trajectories of align loss and uniform loss during training progress.
Lower values indicate better performance. Arrows denote the losses’ changing directions.

Results. As illustrated in Tables 2 and 5, AdvInfoNCE yields a consistent boost compared to all SOTA
baselines across all levels of out-of-distribution test sets. In particular, AdvInfoNCE substantially
improves Recall@20 by 10.00% to 21.90% compared to InfoNCE and by 5.75% to 10.90% compared
to the second-best baseline. It’s worth noting that AdvInfoNCE gains greater improvement on test
sets with higher distribution shifts, while all CL-based CF baselines suffer significant performance
drops due to these severe distribution shifts. We attribute this drop to the coarse relative ranking
criterion which injects erroneously recognized negative instances into contrastive signals. In contrast,
benefiting from the effective adversarial learning of the fine-grained ranking criterion, AdvInfoNCE
can achieve a 24.14% improvement over InfoNCE w.r.t. NDCG@20 when γ = 2, fully stimulating the
potential of contrastive loss. These results validate the strong generalization ability of AdvInfoNCE
as demonstrated in Theorem 3.1, proving that optimizing AdvInfoNCE is equivalent to solving DRO
problems constrained by KL divergence over high-quality negative sampling.

4.2 Study on AdvInfoNCE (RQ2)

4.2.1 Effect of Hardness

Motivation. To evaluate the effectiveness of the fine-grained hardness-aware ranking criterion
learned by AdvInfoNCE, and further investigate whether it truly enhances the generalization ability
of CF models, we conduct a comprehensive analysis on the Tencent dataset. This analysis contains
three-fold: it studies the distribution of hardness (i.e., examining the negative sampling strategy of
AdvInfoNCE); the performance trend over varying hardness learning strategies; and conducting an
analysis of the alignment and uniformity properties of representations over varying hardness learning
strategies. Additional experiments on the KuaiRec dataset, exhibiting similar trends and findings, can
be found in Appendix D.2.

Distribution of hardness, aka. negative sampling strategy. As elucidated in Theorem 3.1, learning
the hardness δ(u,i)j in an adversarial manner essentially conducts negative sampling. Inspired by
item popularity-based negative sampling strategies [60–62], we probe into the relationship between
adversarial negative sampling of AdvInfoNCE and the popularity of negative items. Figure 2a
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(a) End at early-stage (b) End at mid-stage (c) End at late-stage

Figure 3: The performance on the in-distribution validation set and out-of-distribution test sets of
Tencent. The total number of epochs of adversarial training is gradually increasing from (a) to (c),
and the green star denotes the timepoint when we terminate adversarial training.

depicts a skewed negative sampling distribution that focuses more on popular negative items and
de-emphasizes the hardness of unpopular negative items, which are likely to be false negatives. These
results highlight two findings. Firstly, in line with [61], only a minor portion of negative instances
are potentially important for model learning, while a vast number of negatives are false negatives.
Secondly, more frequent items constitute better hard negatives, which is consistent with the findings
in previous work [60]. This popularity-correlated negative sampling validates that AdvInfoNCE
automatically mitigates the influence of popularity bias during training, alleviates the overlook of
false negatives in CF, and utilizes high-quality hard negative mining.

Performance over varying hardness learning strategies. Figure 2b clearly demonstrates that
distilling the fine-grained hardness of negative items (AdvInfoNCE) is excelling over the uniformly
random hardness (InfoNCE+Rand), equal hardness (InfoNCE), and reversed fine-grained hardness
(AdvInfoNCE+Reverse) throughout the training process. This validates AdvInfoNCE’s ability to
simultaneously filter and up-weight more informative hard negatives while identifying and down-
weighting the potential false negatives. These desired properties further enable AdvInfoNCE to
extract high-quality negative signals from a large amount of unobserved data.

Alignment and uniformity analysis. It is widely accepted that both alignment and uniformity
are necessary for a good representation [5]. We, therefore, study the behavior of AdvInfoNCE
through the lens of align loss and uniform loss, as shown in Figure 2c. AdvInfoNCE improves
uniformity while maintaining a similar level of alignment as InfoNCE, whereas reversed fine-grained
hardness significantly reduces representation uniformity. These findings underscore the importance
of fine-grained hardness, suggesting that AdvInfoNCE learns more generalized representations.

4.2.2 Effect of the Adversarial Training Epochs

The critical hyperparameter, the number of adversarial training epochs, controls the degree of
deviation from uniform negative sampling. As illustrated in Figure 3a through 3b, improved out-of-
distribution performance correlates with an increased adversarial learning period. On the other hand,
Figures 3b through 3c show that overly prolonged adversarial training can also degrade performance
on in-distribution validation sets. Therefore, it is crucial to devise a proper adversarial training period
tailored to specific datasets, which aligns with the limitation of AdvInfoNCE. Consistent observations
can be found on KuaiRec in Appendix D.3.

5 Conclusion

Despite the empirical successes, the profound understanding of contrastive loss in collaborative
filtering (CF) remains limited. In this work, we devised a principled AdvInfoNCE loss specially
tailored for CF methods, utilizing a fine-grained hardness-aware ranking criterion to enhance the
recommender’s generalization ability. Grounded by theoretical proof, AdvInfoNCE empowers
top-K recommendations via informative negative sampling in an adversarial manner. We believe
that our AdvInfoNCE, as a variant of InfoNCE, provides a valuable baseline for future contrastive
learning-based CF studies and is an important stepping stone toward generalized recommenders.
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A Related Work

We remind important related works to understand how our AdvInfoNCE stands and its role in rich
literature. Our work is related to the literature on contrastive learning-based collaborative filtering
(CL-based CF) methods, and theoretical understanding of contrastive loss in collaborative filtering.

A.1 Contrastive Learning-based Collaborative Filtering

The latest CL-based CF methods can roughly fall into two research lines. The first one, which we
term the “augmentation-based” approach, leverages user-item bipartite graph augmentations along
with augmented views as positive signals. The second category, referred to as “loss-based” approaches,
mainly focuses on the modification of contrastive loss. In loss-based CF models, interacted items
serve as positive instances.

• Augmentation-based [13–15, 52, 26, 27, 63–66]. The prevailing augmentation-based paradigm in
CL-based CF methods is to employ user-item bipartite graph augmentations to generate contrasting
views. These contrasting views are then treated as positive instances in the application of contrastive
loss, such as InfoNCE loss, to further enhance collaborative filtering signals. Recent studies have
extensively explored methods for generating contrastive views. Several studies like SGL [13]
and DCL [64] elaborate on data-heuristic augmentation operators such as a random node or
edge dropout and random walk. NCL [52] takes a different approach and incorporates potential
neighbors from both the graph structure and semantic space into contrastive views. XSimGCL [27]
takes it a step further and discards ineffective graph augmentations, choosing instead to employ a
simple noise-based embedding augmentation. In pursuit of high-quality augmented supervision
signals instead of handcrafted strategies, AutoCF [15] designs a learnable masking function to
automatically identify important centric nodes for data augmentation.

• Loss-based [53–55, 22, 67]. Recent research, such as the experiments presented in SimGCL [26]
and XSimGCL [27], has empirically shown that contrastive loss can be instrumental in enhancing
the performance of CF methods, often playing a more significant role than heuristic-based graph
augmentation. Despite these findings, there remains a gap in the exploration of loss-based CF
methods, an area ripe for further investigation. BC loss [54] incorporates bias-aware margins into
the contrastive loss, enabling the learning of high-quality head and tail representations with robust
discrimination and generalization abilities. Adap-τ [55] proposes an adaptive fine-grained strategy
for selecting the personalized temperature τ for each user within the contrastive loss. HDCCF [22]
devises a new contrastive loss function extending the advantage of negative mining from user-item
to neighbored users and items.

A.2 Theoretical Understanding of Contrastive Loss in CF

Despite the remarkable success of CL-based CF methods, there remains a lack of theoretical un-
derstanding, particularly regarding the superior generalization ability of contrastive loss. In a study
conducted by [68], three model-agnostic advantages of contrastive loss are theoretically revealed,
including mitigating popularity bias, mining hard negative samples, and maximizing the ranking
metric. CLRec [14] sheds light on contrastive loss from a bias-reduction perspective by revealing its
connection with inverse propensity weighting techniques. XSimGCL [27] suggests that contrastive
learning enables the recommender to learn more evenly distributed user and item representations,
thereby mitigating the prevalent popularity bias in CF.

B In-depth Analysis of AdvInfoNCE

B.1 Complete Derivation of AdvInfoNCE

Full Derivation. We first introduce the widely-used LogSumExp operator in machine learning
algorithms.

max(x1, x2, ..., xn) ≈ log(exp(x1) + exp(x2) + ...+ exp(xn)) (10)

The fine-grained ranking criterion for a single positive interaction (u, i) is defined as:

∀j ∈ Nu, s(u, j)− s(u, i) + δj < 0. (11)
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Then we probe into the Eq (11) and transform it into an optimization problem as follows:

min
θ

max{0, {s(u, j)− s(u, i) + δj}j∈Nu} (12)

We can seamlessly transform this optimization objective into the core component of our AdvInfoNCE:

max{0, {s(u, j)− s(u, i) + δj}j∈Nu}︸ ︷︷ ︸
Hardness-aware ranking criterion

≈ log(exp(0) +

|Nu|∑
j=1

exp(s(u, j)− s(u, i) + δj))

= log{1 +
|Nu|∑
j=1

exp(δj) exp(s(u, j)− s(u, i))}

= log{1 + |Nu|
|Nu|∑
j=1

exp(δj)

|Nu|
exp(s(u, j)− s(u, i))}

=− log{ exp(s(u, i))

exp(s(u, i)) + |Nu|
∑|Nu|

j=1
exp(δj)
|Nu| exp(s(u, j))

}︸ ︷︷ ︸
AdvInfoNCE

(13)

Drawing inspiration from adversarial training [48], we utilize a min-max game that allows for
alternating training of the model between predicting hardness and refining the CF model. Formally,
we formulate the AdvInfoNCE learning framework as the following optimization problem:

min
θ
LAdvInfoNCE = min

θ
max

∆∈C(η)
−

∑
(u,i)∈O+

log
exp (s(u, i))

exp (s(u, i)) + |Nu|
∑|Nu|

j=1

exp(δ
(u,i)
j )

|Nu| exp(s(u, j))

(14)

where
exp(δ

(u,i)
j )

|Nu| ∈ C(η, (u, i)) = ( 1
|Nu| − ϵ,

1
|Nu| + ϵ), and ϵ is a hyperparameter that regulates the

upper-bound deviation of hardness. In practice, ϵ is regulated by the number of adversarial training
epochs under a fixed learning rate (refer to Algorithm 1).

If we further define
exp(δ

(u,i)
j )

|Nu| as p(j|(u, i)), which signifies the likelihood of selecting item j as a
negative sample for the user-item pair (u, i), we can rewrite the AdvInfoNCE loss as:

min
θ
LAdvInfoNCE = min

θ
max
p(·|·)
−

∑
(u,i)∈O+

log
exp (s(u, i))

exp (s(u, i)) + |Nu|
∑|Nu|

j=1 p(j|(u, i)) exp(s(u, j))
(15)

B.2 Proof of Theorem

Theorem 3.1. We define δ(u,i)j
.
= log(|Nu| · p(j|(u, i))), where p(j|(u, i)) is the probability of sam-

pling negative item j for observed interaction (u, i). Then, optimizing AdvInfoNCE loss is equivalent
to solving Kullback-Leibler (KL) divergence-constrained distributionally robust optimization (DRO)
problems over negative sampling:

min
θ
LAdvInfoNCE ⇐⇒ min

θ
max

p(j|(u,i))∈P
EP [exp(s(u, j)− s(u, i)) : DKL(P0||P ) ≤ η] (8)

where P0 stands for the distribution of uniformly drawn negative samples, i.e., p0(j|(u, i)) = 1
|Nu| ;

P denotes the distribution of negative sampling p(j|(u, i)).

Proof. We denote the relative hardness of negative item j with respect to observed interaction (u, i)

as δ(u,i)j and redefine it as log(|Nu| · p(j|(u, i))). In this definition, |Nu| is the number of negative
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samples for each user u, and p(j|(u, i)) is the probability of selecting item j as a negative sample for
a given user-item pair (u, i).

With the constraint that
∑|Nu|

j=1 p(j|(u, i)) = 1, we can recalculate the average hardness as follows:

1

|Nu|

|Nu|∑
j=1

δ
(u,i)
j =

1

|Nu|

|Nu|∑
j=1

log(|Nu| · p(j|(u, i)))

= −
|Nu|∑
j=1

1

|Nu|
log(

1

|Nu|
· 1

p(j|(u, i))
)

= −DKL(P0||P ) (16)

In this formulation, P0 represents the distribution of uniformly drawn negative samples, where
p0(j|(u, i)) = 1

|Nu| . Meanwhile, P denotes the distribution of negative sampling, represented as
p(j|(u, i)).

Since p(j|(u, i)) ∈ C(η, (u, i)) = ( 1
|Nu| − ϵ,

1
|Nu| + ϵ), we further define η = −log(1− ϵ2

|Nu| ). Thus,
the feasible zone presented above is equivalent to a relaxed constraint DKL(P0||P ) ≤ η.

The AdvInfoNCE loss for all observations can be rewritten in a different form by reorganizing and
simplifying the Eq (15):

min
θ
LAdvInfoNCE = min

θ

∑
(u,i)∈O+

max
p(j|(u,i))∈P

log{1 + |Nu|
|Nu|∑
j=1

p(j|(u, i)) exp(s(u, j)− s(u, i))}

⇐⇒ min
θ

∑
(u,i)∈O+

max
p(j|(u,i))∈P

|Nu|∑
j=1

p(j|(u, i)) exp(s(u, j)− s(u, i))

⇐⇒ min
θ

∑
(u,i)∈O+

sup
p(j|(u,i))∈P

EP [exp(s(u, j)− s(u, i))] (17)

The equation presented above exemplifies a widely encountered formulation of the Distributionally
Robust Optimization (DRO) problem [49] where the ambiguity set of the probability distribution is
defined by the Kullback-Leibler (KL) divergence DKL(P0||P ) ≤ η.

B.3 Gradients Analysis

In this section, we delve into the crucial role of hardness δj in controlling the penalty strength on
hard negative samples. The analysis begins with the main part of AdvInfoNCE for a single positive
interaction (u, i), as defined in Eq (13), primarily due to its simplicity. For the sake of notation
simplicity, let us denote it as:

LAdv(u, i) = − log{ exp(s(u, i))

exp(s(u, i)) +
∑|Nu|

j=1 exp(δj) exp(s(u, j))
} (18)

Then the gradient with respect to the positive representations ϕθ(i) of item i is formulated as:

−∇iLAdv(u, i) =
∂LAdv(u, i)

∂s(u, i)
· ∂s(u, i)
∂ϕθ(i)

= (1− exp(s(u, i))

exp(s(u, i)) +
∑|Nu|

j=1 exp(δj) exp(s(u, j))
) · ϕθ(i)

τ
(19)
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The gradients with respect to the negative representations ϕθ(j) of item j is given by:

−∇jLAdv(u, i) =
∂LAdv(u, i)

∂s(u, j)
· ∂s(u, j)
∂ϕθ(j)

=
exp(δj) exp(s(u, j))

exp(s(u, i)) +
∑|Nu|

j=1 exp(δj) exp(s(u, j))
· ϕθ(j)

τ

= exp(δj){1−
exp(s(u, i))

exp(s(u, i)) +
∑|Nu|

j=1 exp(δj) exp(s(u, j))
} exp(s(u, j))∑|Nu|

j=1 exp(δj) exp(s(u, j))

ϕθ(j)

τ

(20)

Clearly, for a given user u, the gradient with respect to the positive item i equals the sum of gradients
of all negative items, in accordance with the findings in [38]. The hardness exp(δj) dictates the
importance of negative gradients. Specifically, the gradients relating to the negative item j in Eq
(20) correlate proportionally to the hardness term exp(δj), which shows that the AdvInfoNCE loss
function is hardness-aware.

B.4 Align Top-K evaluation metric

Discounted Cumulative Gain (DCG) is a commonly used ranking metric in top-K recommendation
tasks. In DCG, the relevance of an item’s contribution to the utility decreases logarithmically in
relation to its position in the ranked list. This mimics the behavior of a user who is less likely to
scrutinize items that are positioned lower in the ranking. Formally, DCG over rank πs(u, i) is defined
as follows:

DCG(πs(u, I),y) =
|I|∑
i=1

2yi − 1

log2(1 + πs(u, i))
(21)

Where πs(u, I) is a ranked list over I , as determined by the similarity function s for user u, and y is
a label vector that indicates whether an interaction has occurred previously or not. Then πs(u, i) is
the rank of item i. Building on the research presented in [68], we explore how well AdvInfoNCE
aligns with DCG for our purposes.

Under our proposed fine-grained hardness ranking criteria defined in Eq (11), the πs(u, i) can be
obtained as follows:

πs(u, i) = 1 +
∑

j∈I\{i}

1(s(u, j)− s(u, i) + δj > 0)

≤ 1 +
∑

j∈I\{i}

exp(s(u, j)− s(u, i) + δj). (22)

The last inequality is satisfied by 1(x > 0) ≤ exp(x).

− log[DCG(πs(u, I),y)] = − log

[ |I|∑
i=1

2yi − 1

log2(1 + πs(u, i))

]
≤ − log

[
1

log2(1 + πs(u, i))

]
≤ − log

[
1

πs(u, i)

]
≤ − log(

1

1 +
∑

j∈I\{i} exp(s(u, j)− s(u, i) + δj)
)

= − log(
exp(s(u, i))

exp(s(u, i)) +
∑

j∈I\{i} exp(s(u, j) + δj)
)

= LAdv(u, i) ≤ LAdvInfoNCE (23)

Suppose that there are K items in I that are interacted with u, let them to be {1, 2, · · · ,K} ithout
loss of generality. Then

DCG(πs(u, I),y) ≤
K∑
i=1

1

log2(1 + i)
, (24)
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the equality holds if and only if the interactions {(u, i) : i = 1, 2, · · · ,K} are ranked top-K. For a
given u,

K∑
i=1

LAdv(u, i) =

K∑
i=1

− log(
exp(s(u, i))

exp(s(u, i)) +
∑

j∈I\{i} exp(s(u, j) + δj)
)

=

K∑
i=1

log(1 +
∑

j∈I\{i}

exp(s(u, j)− exp(s(u, i)) + δj))

≥
K∑
i=1

log(1 +
∑

j∈I\{i}

e−1) =

K∑
i=1

log(1 + (|I| − 1)e−1) (25)

≥
K∑
i=1

1

log2(1 + i)
≥ DCG(πs(u, I),y). (26)

The inequality in Eq (25) holds under the common usage of s(u, i) ∈ [0, 1], the first inequality in Eq
(26) holds when |I| ≥ 6, while the second inequality in Eq (26) holds by Eq (24).

Therefore, by Eq (23) and Eq (26),

LAdvInfoNCE ≥ DCG(πs(u, I),y) ≥ exp(−LAdvInfoNCE). (27)

Consequently, minimizing LAdvInfoNCE is equivalent to minimizing DCG(πs(u, I),y).

C Experiments

C.1 Experimental Settings

Datasets

• KuaiRec [56] is a real-world dataset sourced from the recommendation logs of KuaiShou, a
platform for sharing short videos. The unbiased testing data consist of dense ratings from 1411
users for 3327 items, with the training data being relatively sparse. We categorize items that have a
viewing duration exceeding twice the length of the short video as positive interactions.

• Yahoo!R3 [57] is a dataset that encompasses ratings for songs. The training set is comprised
of 311,704 user-selected ratings ranging from 1 to 5. The test set includes ratings for ten songs
randomly exposed to each user. Interactions with items receiving a rating of 4 or higher are
considered positive in our experiments.

• Coat [58] records online shopping interactions of customers purchasing coats. The training set,
characterized as a biased dataset, comprises ratings provided by users for 24 items they have chosen.
The test set, on the other hand, contains ratings for 16 coats that were randomly exposed to each
user. Ratings in Coat follow a 5-point scale, and interactions involving items with a rating of 4 or
above are classified as positive instances in our experiments.

• Tencent [10] is collected from the Tencent’s short-video platform. We sort the items according to
their popularity in descending order and divide them into 50 groups. Each group, defined by its
popularity rank, is assigned a certain number of interactions, denoted by Ni, for inclusion in the
test set. The quantity Ni is calculated based on N0 · γ−

i−1
49 , where N0 is the maximum number of

interactions across all test groups and γ denotes the extent of the long-tail distribution. A lower
value of gamma indicates a stronger deviation from the original distribution, thus yielding a more
evenly distributed test set. To ensure that the validation set mirrored the long-tail distribution of

Table 3: Dataset statistics.
KuaiRec Yahoo!R3 Coat Tencent

#Users 7,176 14,382 290 95,709
#Items 10,728 1,000 295 41,602
#Interactions 1,304,453 129,748 2,776 2,937,228
Density 0.0169 0.0090 0.0324 0.0007
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Table 4: The performance comparison on unbiased datasets over the MF backbone. The improvement
achieved by AdvInfoNCE is significant (p-value << 0.05).

Yahoo!R3 Coat
Recall NDCG Recall NDCG

BPR (Rendle et al., 2012) 0.1189 0.0546 0.2782 0.1748
InfoNCE (van den Oord et al., 2018) 0.1478 0.0694 0.2683 0.1961

CCL (Mao et al., 2021) 0.1458−1.35% 0.0689−0.72% 0.2682−0.04% 0.1712−12.70%

BC Loss (Zhang et al., 2022) 0.1492+0.95% 0.0698+0.58% 0.2698+0.56% 0.1959−0.10%

Adap-τ (Chen et al., 2023) 0.1512+2.30% 0.0694+0.43% 0.2712+1.08% 0.1986+1.27%

AdvInfoNCE 0.1523*+3.04% 0.0710*+2.31% 0.2905*+8.27% 0.1999*+1.94%

the training set and no side information of the test set is leaked, the remaining interactions are
randomly divided into training and validation sets at a ratio of 60:10.

Baselines. In this study, we conduct a comprehensive evaluation of AdvInfoNCE using two widely
adopted collaborative filtering backbones, MF [50] and LightGCN [51]. We thoroughly compare
AdvInfoNCE with two categories of the latest CL-based CF methods: augmentation-based baselines
(SGL [13], NCL [52], XSimGCL [27]) and loss-based baselines (CCL [53], BC Loss [54], Adap-τ
[55]).

• SGL [13] leverages data-heuristic graph augmentation techniques to generate augmented views. It
then employs contrastive learning on the augmented views and the original embeddings.

• NCL [52] implements contrastive learning on two types of neighbors: structural neighbors and
semantic neighbors. Structural neighbors are represented by the embeddings derived from even-
numbered layers in a Graph Neural Network (GNN). Semantic neighbors comprise nodes with
similar features or preferences, clustered through the Expectation-Maximization (EM) algorithm.

• XSimGCL [27] directly infuses noise into graph embeddings from the mid-layer of LightGCN
to generate augmented views. This method arises from experimental observations indicating that
CF models are relatively insensitive to graph augmentation. Instead, the key determinant of their
performance lies in the application of contrastive loss.

• CCL [53] proposes a variant of contrastive loss based on cosine similarity. Specifically, it imple-
ments a strategy for filtering out negative samples lacking substantial information by employing a
margin, denoted as m.

• BC Loss [54] integrates a bias-aware margin into the contrastive loss to alleviate popularity bias.
Specifically, the bias-aware margin is learned via a specialized popularity branch, which only
utilizes the statistical popularity of users and items to train an additional CF model.

• Adap-τ [55] proposes to automatically search the temperature of InfoNCE. Moreover, a fine-
grained temperature is assigned for each user according to their previous loss.

Evaluation Metrics. We apply the all-ranking strategy, in which all items, with the exception of the
positive ones present in the training set, are ranked by the collaborative filtering model for each user.
An exception is KuaiRec, where the unbiased test set clusters in a small matrix [56]. This unique
structure leads to a failure of the all-ranking strategy as the test set is not randomly selected from
the whole user-item matrix. Consequently, for KuaiRec, we rank only the 3327 fully exposed items
during the testing phase.

C.2 Performance over the MF Backbone

Given that the implementation of augmentation-based methods is tied to the LightGCN architecture,
we compare AdvInfoNCE using the Matrix Factorization (MF) backbone against only loss-based
methods. As shown in Table 4 and 5, AdvInfoNCE consistently surpasses all collaborative filter-
ing baselines with modified contrastive losses. Moreover, similar to the trend observed with the
LightGCN backbone, AdvInfoNCE excels on test sets exhibiting higher distribution shifts, while
still preserving remarkable performance on the in-distribution validation set. The superior perfor-
mance of AdvInfoNCE across both the LightGCN and MF backbones emphasizes its model-agnostic
characteristic. We advocate for considering AdvInfoNCE as a standard loss in recommender systems.

19



Table 5: The performance comparison on the Tencent dataset over the MF backbone. The improve-
ment achieved by AdvInfoNCE is significant (p-value << 0.05).

γ = 200 γ = 10 γ = 2 Validation
HR Recall NDCG HR Recall NDCG HR Recall NDCG NDCG

BPR (Rendle et al., 2012) 0.0835 0.0299 0.0164 0.0516 0.0190 0.0102 0.0357 0.0141 0.008 0.0533
InfoNCE (van den Oord et al., 2018) 0.1476 0.0538 0.0318 0.0920 0.0334 0.0194 0.0627 0.0233 0.0141 0.0856

CCL (Mao et al., 2021) 0.1395 0.0523 0.0317 0.0930 0.0353 0.0221 0.0683 0.0266 0.0170 0.0782
BC Loss (Zhang et al., 2022) 0.1546 0.0575 0.0349 0.1011 0.0378 0.0228 0.0737 0.0280 0.0178 0.0864
Adap-τ (Chen et al., 2023) 0.1398 0.0512 0.0302 0.0876 0.0316 0.0182 0.0591 0.0221 0.0134 0.0844
AdvInfoNCE 0.1606* 0.0595* 0.0355* 0.1111* 0.0412* 0.0249* 0.0813* 0.0308* 0.0189* 0.0860

Imp.% over the strongest baseline 3.87% 3.52% 1.86% 9.86% 8.86% 9.38% 10.33% 9.87% 6.28% −
Imp.% over InfoNCE 8.84% 10.51% 11.77% 20.81% 23.52% 28.41% 29.64% 31.97% 33.69% −

Table 6: The performance comparison on the Tencent dataset over extensive backbones. The
improvement achieved by AdvInfoNCE is significant (p-value << 0.05).

γ = 200 γ = 10 γ = 2 Validation
HR Recall NDCG HR Recall NDCG HR Recall NDCG NDCG

UltraGCN (Mao et al., 2021) 0.0930 0.0343 0.0190 0.0567 0.0215 0.0119 0.0400 0.0157 0.0095 0.0682
UltraGCN + InfoNCE 0.1436 0.0519 0.0303 0.0896 0.0324 0.0189 0.0617 0.0227 0.0135 0.0842
UltraGCN + AdvInfoNCE 0.1538 0.0569 0.0338 0.1025 0.0380 0.0227 0.0726 0.0276 0.0168 0.0883

VGAE (Kipf and Welling, 2016) + InfoNCE 0.1482 0.0536 0.0315 0.0923 0.0338 0.0202 0.0640 0.0237 0.0141 0.0823
VGAE + AdvInfoNCE 0.1588* 0.0589* 0.0353* 0.1069* 0.0395* 0.0239* 0.0778* 0.0296* 0.0182* 0.0871

C.3 Performance over Extensive Backbones

To validate the generalization ability of AdvInfoNCE, we conducted experiments on additional
backbones, including UltraGCN [69] and an adapted version of VGAE [70]. The results in Table
6 indicate that AdvInfoNCE performs excellently across various backbones, which showcases the
generalization ability of AdvInfoNCE.

C.4 Performance Comparison with Extensive Baselines

We compare AdvInfoNCE on the LightGCN backbone with extensive baselines on Tencent. The
results in Table 7 show that AdvInfoNCE also outperforms almost all the latest debiasing [10, 71]
and hard negative mining algorithms [72].

C.5 Training Cost

Let n be the number of items, d be the embedding size, N be the number of negative sampling,
M = |O+| be the number of observed interactions, B be the batch size and Nb be the number of
mini-batches within one batch. In AdvInfoNCE, the similarity calculation for one positive item with
N negative items costs O((N + 1)d), and the hardness calculation costs O(Nd). The total training
costs of one epoch without backward propagation are summarized in Table 8. The training cost of
AdvInfoNCE is a little higher than BPR loss, sharing the same complexity with InfoNCE.
In Table 9, we present both the per-epoch and total time costs for each baseline model on the Tencent
dataset. As evidenced, augmentation-based contrastive learning (CL) baselines significantly cut
down the overall training time, while loss-based CL baselines exhibit a complexity similar to that of
InfoNCE. Surprisingly, compared to InfoNCE, AdvInfoNCE introduces only a marginal increase in
computational complexity during the training phase.

D Discussion about AdvInfoNCE

D.1 Algorithm

Algorithm 1 depicts the detailed procedure of AdvInfoNCE. Here we uniformly sample N negative
items for each observed interaction and multiply a large weighting parameter K in front of each
negative item, as a surrogate of the whole negative set Nu. Specifically, we adversarially train the
hardness δ(u,i)j at a fixed interval before reaching the maximum adversarial training epochs Eadv.

The precise methods for computing the hardness δ(u,i)j are further discussed in Section D.4.
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Table 7: The performance comparison on the Tencent dataset with extensive baselines. The improve-
ment achieved by AdvInfoNCE is significant (p-value << 0.05).

γ = 200 γ = 10 γ = 2 Validation
HR Recall NDCG HR Recall NDCG HR Recall NDCG NDCG

XIR (Chen et al., 2022) 0.1463 0.0538 0.0326 0.0936 0.0341 0.0211 0.0642 0.0245 0.0154 0.0883
sDRO (Wen et al., 2022) 0.1455 0.0516 0.0286 0.0857 0.0304 0.0166 0.0552 0.0205 0.0110 0.0872
InvCF (Zhang et al., 2023) 0.1651 0.0605 0.0331 0.1061 0.0386 0.0204 0.0722 0.0272 0.0149 0.0912

AdvInfoNCE 0.1600 0.0594 0.0356* 0.1087* 0.0403* 0.0243* 0.0774* 0.0295* 0.0180* 0.0879

Table 8: Time Complexity
+BPR +InfoNCE +CCL +BC Loss +Adap τ +AdvInfoNCE

Backbone O(NbBd) O(NbB(N + 1)d) O(NbB(N + 1)d) O(NbB(N + 1)d) O(NbB(N + 1)d+ (M + n)d) O(NbB(N + 1)d)

D.2 Effect of the Fine-grained Hardness on KuaiRec

We conduct the same experiments as Section 4.2.1 on KuaiRec, to investigate how the fine-grained
hardness affects the out-of-distribution performance.

• We plot the average value of p(j|(u, i)) across one batch, as depicted in Figure 4a. The figure
reveals that AdvInfoNCE learns a skewed negative sampling distribution, mirroring the trend
observed in the Tencent dataset. Such a distribution places more emphasis on popular negative
items and reduces the difficulty of unpopular negative items, which have a higher probability of
being false negatives.

• To examine the effect of fine-grained hardness, we conduct experiments with four different hardness
learning strategies, including AdvInfoNCE, InfoNCE, InfoNCE-Rand, and AdvInfoNCE-Reverse.
AdvInfoNCE-Reverse refers to a strategy where hardness is learned by minimizing, rather than
maximizing, the loss function. This inversion results in what we term ’reversed hardness’, in
contrast to the approach of our AdvInfoNCE method. InfoNCE-Rand denotes the assignment of
uniformly random hardness for each negative item. We conduct 5-fold experiments with different
random seeds for each strategy and report the mean value with standard error in Figure 4c. As the
result shows, AdvInfoNCE yields consistent improvements over the other three different hardness
strategies during the training phase. In contrast, the performance of AdvInfoNCE-Reverse drops
rapidly as continuously training the reversed hardness. The sustained superior performance of
AdvInfoNCE indicates that it effectively promotes the generalization ability of the CF model by
automatically distinguishing false negatives and hard negatives.

• Figure 4b illustrates the uniform and align loss during the training phase following the initial
warm-up epochs. As demonstrated, after the warm-up phase, both InfoNCE and InfoNCE-Rand
exhibit a slight increase in align loss, while their uniform loss maintains a stable level. In contrast,
AdvInfoNCE significantly improves uniformity at an acceptable cost of increasing align loss. On the
other hand, employing reversed hardness (as in AdvInfoNCE-Reverse) appears to have a negative
impact on representation uniformity. These findings underscore the importance of fine-grained
hardness in AdvInfoNCE, suggesting that AdvInfoNCE learns more generalized representations.

D.3 Effect of the Adversarial Training Epochs on KuaiRec

In this section, we conduct experiments on KuaiRec, where AdvInfoNCE is trained for varying
numbers of adversarial epochs. We plot performance metrics (Recall@20 in Figure 5a and NDCG@20
in Figure 5b) on the test set, which represents out-of-distribution data, throughout the training phase.
The green stars mark the corresponding endpoint of adversarial training. As illustrated in Figure 5a and
5b, both Recall@20 and NDCG@20 show a proportional trend with the number of adversarial training
epochs, up to a certain threshold. However, it is worth noting that in the extreme condition when
the number of adversarial training epochs exceeds the threshold, performance on out-of-distribution
sharply declines. This indicates a need to strike a balance when determining the appropriate number
of adversarial training epochs for AdvInfoNCE.
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Table 9: Training cost on Tencent (seconds per epoch/in total).
+InfoNCE +SGL +NCL +XSimGCL +CCL +BC loss +Adap-τ +AdvInfoNCE

MF 16.8 / 7,123 − − − 17.2 / 4,111 19.1 / 6,751 22.3 / 7,694 21.6 / 11,534
LightGCN 41.2 / 21,177 82.5 / 4,868 54.9 / 5,161 42.1 / 842 42.1 / 11,114 43.5 / 23,664 55.6 / 17,236 44.6 / 21,586

Algorithm 1 AdvInfoNCE

Input: observed interactionsO+, unobserved interactionsO−, learning rate of adversarial training
lradv , maximum adversarial training epochs Eadv , adversarial training intervals Tadv , parameters
of the CF model θ, parameters of the hardness evaluation models θadv , weighting parameter K
Output: θ
Initialize: Initialize θ and θadv , e← 1, eadv ← 1
repeat

Freeze parameters of the hardness evaluation model θadv
Randomly sample N negative items from I−u for each interaction within a batch
Compute s(u, i), δ(u,i)j with θ and θadv , respectively

Compute LAdv(u, i) = − log exp (s(u,i))

exp (s(u,i))+K
∑N

j=1 exp(δ
(u,i)
j ) exp(s(u,j))

Update θ by minimizing LAdv(u, i)
if e mod Tadv == 0 & eadv ≤ Eadv then

Freeze parameters of the CF model θ
Update θadv by maximizing LAdv(u, i)
eadv ← eadv + 1

end if
e← e+ 1

until CF model converges

D.4 Hardness Learning Strategy

To accurately evaluate the hardness of each negative instance, we need to establish a mapping from
unobserved user-item pairs to their corresponding hardness values, and this mapping mechanism can
be diversified. Generally, the hardness learning strategy can be formulated as:

δ
(u,i)
j

.
= log(|Nu| · p(j|(u, i))) (28)

.
= log

(
|Nu| ·

exp (gθadv
(u, j))∑|Nu|

k=1 exp(gθadv
(u, k))

)
, (29)

where gθadv
(u, j) is a raw hardness score function for the unobserved user-item pair (u, j), and

p(j|(u, i)) is the probability of sampling the negative instance j, which is calculated by normalizing
gθadv

(u, j). In this paper, we proposed two specific mapping methods: embedding-based (i.e.,
AdvInfoNCE-embed) mapping and multilayer perceptron-based (i.e., AdvInfoNCE-mlp) mapping.
It should be noted that all the results reported in the main text of this paper are based on the
implementation of the AdvInfoNCE-embed version.

AdvInfoNCE-embed. The hardness computation process in AdvInfoNCE-embed follows a similar
protocol as CF models. We directly map the index of users and items into its corresponding hardness
embedding and calculate the hardness of each user-item pair through a score function. Specifically,
this process involves a user hardness encoder ψθadv

(·) : U → Rd and an item hardness encoder
ϕθadv

(·) : I→ Rd, where θadv denotes all the trainable parameters of the hardness learning model.
In our experiments, we adopt the same embedding dimension as the CF models for hardness learning.
For the score function, we define gθadv

(u, j) = ψθadv
(u)

⊤ · ϕθadv
(j).

AdvInfoNCE-mlp. Unlike AdvInfoNCE-embed, AdvInfoNCE-mlp maps the embeddings of items
and users from the CF model into another latent space with two multilayer perceptrons (MLPs)
and calculates the hardness on this latent space. By respectively defining the MLPs for users and
items as MLPu and MLPv, the score function for hardness calculation is defined as gθadv

(u, j) =

MLPu (ψθ(u))
⊤ ·MLPv (ϕθ(j)). In our experiment, we simply employ one-layer MLPs and set

the dimension of latent space as four. It’s worth noting that this MLP-based implementation of
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(a) Distribution of hardness (b) Varying hardness strategies (c) Alignment & uniformity analysis

Figure 4: Study of hardness. (4a) Illustration of hardness i.e., the probability of negative sampling
(p (j| (u, i))) learned by AdvInfoNCE w.r.t. item popularity on KuaiRec. The dashed line represents
the uniform distribution. (4b) Performance comparisons with varying hardness learning strategies on
KuaiRec. (4c) The trajectories of align loss and uniform loss during training progress. Lower values
indicate better performance. Arrows denote the losses’ changing directions.

(a) Recall@20 (b) NDCG@20

Figure 5: The performance on KuaiRec with different numbers of adversarial training epochs. (5a) Per-
formance comparisons w.r.t. Recall@20 on KuaiRec. (5b) Performance comparisons w.r.t. NDCG@20
on KuaiRec.

AdvInfoNCE may also be adaptable for handling out-of-distribution tasks in other fields, such as
computer vision (CV) and natural language processing (NLP).

As reported in Table 10, both AdvInfoNCE-embed and AdvInfoNCE-mlp yield significant improve-
ments over InfoNCE. Moreover, AdvInfoNCE-embed generally outperforms AdvInfoNCE-mlp.

D.5 The Intuitive Understanding of AdvInfoNCE

In this section, we aim to understand the mechanism of AdvInfoNCE intuitively, from the perspective
of false negative identification.
Figure 6 illustrates the changes of the out-of-distribution performance and FN identification rate
during the training process on Tencent. Here, the FN identification rate indicates the proportion of
false negatives with negative δj . It can be observed that the out-of-distribution performance exhibits a
rising trend along with the FN identification rate. Meanwhile, the out-of-distribution performance of
InfoNCE remains relatively low. This indicates that AdvInfoNCE enhances the generalization ability
of the CF model by identifying false negatives.

Figure 7 illustrates how AdvInfoNCE adjusts the scores and rankings of sampled negative items, by
identifying the false negatives and true negatives. We retrieve the negative items sampled during
training. If a sampled negative item appears in the test set, it is labeled as a false negative (FN);
otherwise. In Figure 7a and 7b, the leftmost item represents a false negative, while the other two
items on the right are negatives. The bar charts in blue and red depict the cosine similarity scores
of sampled negative items measured by InfoNCE and AdvInfoNCE respectively. The rankings of
sampled negative items are annotated above the bars. The line graph illustrates the hardness δj
computed by AdvInfoNCE, measured on the right axis. It can be observed that when the hardness δj
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Table 10: The performance comparison between AdvInfoNCE-embed and AdvInfoNCE-mlp over
the LightGCN backbone.

KuaiRec Yahoo!R3 Coat Tencent (γ = 200) Tencent (γ = 10) Tencent (γ = 2)
Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG

InfoNCE 0.1800 0.4529 0.1475 0.0698 0.2689 0.1882 0.0540 0.0320 0.0332 0.0195 0.0242 0.0145

AdvInfoNCE-embed 0.1979 0.4697 0.1527 0.0718 0.2846 0.2026 0.0594 0.0356 0.0403 0.0243 0.0295 0.0180
Imp.% over InfoNCE 9.94% 3.71% 3.53% 2.87% 5.84% 7.65% 10.00% 11.25% 21.39% 24.62% 21.90% 24.14%

AdvInfoNCE-mlp 0.1851 0.4579 0.1545 0.0724 0.2843 0.2002 0.0567 0.0339 0.0364 0.0221 0.0260 0.0160
Imp.% over InfoNCE 2.83% 1.10% 4.75% 3.72% 5.73% 6.38% 5.00% 5.94% 9.64% 13.33% 7.44% 10.34%

Figure 6: FN identification rate and NDCG@20 during training on Tencent, where FN identification
rate indicates the proportion of false negatives (FN) with negative δj and NDCG@20 shows the
out-of-distribution performance. As training proceeds, AdvInfoNCE’ FN identification rate increases,
capping at nearly 70%. This reveals AdvInfoNCE’s capability to identify approximately 70% of false
negatives in the test set. We attribute the superior recommendation performance of AdvInfoNCE over
InfoNCE to this gradual identification.

is negative (i.e., indicating that the item is identified as a false negative), the cosine similarity score
improves. Conversely, if the hardness δj is positive, the score decreases.

E Hyperparameter Settings

For a fair comparison, we conduct all the experiments in PyTorch with a single Tesla V100-SXM3-
32GB GPU and an Intel(R) Xeon(R) Gold 6248R CPU. We optimize all methods with the Adam
optimizer and set the layer numbers of LigntGCN by default at 2, with the embedding size as 64 and
the weighting parameter K as 64. We search for hyperparameters within the range provided by the
corresponding references. For AdvInfoNCE, we search lradv in [1e-1, 1e-4], Eadv in [1, 30] and
Tadv in {5, 10, 15, 20}. We adopt the early stop strategy that stops training if Recall@20 on the
validation set does not increase for 20 successive evaluations. It’s worth noting that AdvInfoNCE
inherits the hyperparameter sensitivity property of adversarial learning, therefore it’s necessary to
choose proper hyperparameters for different datasets. We suggest selecting a suitable adversarial
learning rate lradv first and then increasing the number of adversarial training epochs Eadv gradually
until AdvInfoNCE reaches a relatively stable performance. We report the effect of changing the
number of negative sampling in Table 13, where N is the number of negative sampling.
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(a) User 46767 (b) User 54944

Figure 7: Case studies of refining the item ranking. With two randomly sampled users along with
their sampled negative items, we subsequently retrieve their associated δ values, ranking positions,
and cosine similarities. Here FN denotes false negative (i.e., interactions unobserved during training
but present in testing). The bar charts demonstrate the cosine similarity scores of these sampled
negative items as gauged by both InfoNCE and AdvInfoNCE. Their rankings are annotated atop
the bars. An accompanying line illustrates the hardness δj derived by AdvInfoNCE (measured on
the right axis). Notably, when δ < 0, AdvInfoNCE identifies and elevates an FN; conversely, for a
potentially true negative, AdvInfoNCE leans towards a positive δ and declines its rank.

Table 11: Hyperparameters search spaces for baselines.
Hyperparameter space

MF & LightGCN lr ∼ {1e-5, 3e-5, 5e-5, 1e-4, 3e-4, 5e-4, 1e-3}, batch size ∼ {64, 128, 256, 512, 1024, 2048}
No. negative samples ∼ {64, 128, 256, 512}

SSM τ ∼ [0.05, 3]

CCL w ∼ {1, 2, 5, 10, 50, 100, 200}, m ∼ {0.2, 0.4, 0.6, 0.8, 1}

BC Loss τ1 ∼ [0.05, 3], τ2 ∼ [0.05, 3]

Adap-τ warm_up_epochs ∼ {10, 20, 50, 100}

SGL τ ∼ [0.05, 3], λ1 ∼ {0.005, 0.01, 0.05, 0.1, 0.5, 1.0}, ρ ∼ {0, 0.1, 0.2, 0.3, 0.4, 0.5}

NCL τ ∼ [0.05, 3], λ1 ∼ [1e-10, 1e-6], λ2 ∼ [1e-10, 1e-6], k ∼ [5, 10000]

XSimGCL τ ∼ [0.05, 3], ϵ ∼ {0.01, 0.05, 0.1, 0.2, 0.5, 1.0}, λ ∼ {0.005, 0.01, 0.05, 0.1, 0.5, 1.0}, l∗ = 1

Table 12: Model architectures and hyperparameters for AdvInfoNCE.
Hyperparameters of AdvInfoNCE

lradv Eadv Tadv τ lr batch size No. negative samples

LightGCN
Tencent 5e-5 7 5 0.09 1e-3 2048 128

KuaiRec 5e-5 12 5 2 3e-5 2048 128

Yahoo!R3 1e-4 13 5 0.28 5e-4 1024 64

Coat 1e-2 20 15 0.75 1e-3 1024 64

MF
Tencent 5e-5 8 5 0.09 1e-3 2048 128

Yahoo!R3 1e-4 12 5 0.28 5e-4 1024 64

Coat 1e-2 18 15 0.75 1e-3 1024 64

Table 13: Varying number of negative sampling on Tencent

γ = 200 γ = 10 γ = 2 Validation
N HR Recall NDCG HR Recall NDCG HR Recall NDCG NDCG

64 0.1513 0.0563 0.0333 0.1006 0.0373 0.0225 0.0708 0.0269 0.0164 0.0854
128 0.1600 0.0594 0.0356 0.1087 0.0403 0.0243 0.0774 0.0295 0.0180 0.0879
256 0.1642 0.0609 0.0367 0.1125 0.0419 0.0253 0.0815 0.0310 0.0189 0.0889
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