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Abstract

We propose a family of recursive cutting-plane algorithms to solve feasibility1

problems with constrained memory, which can also be used for first-order convex2

optimization. Precisely, in order to find a point within a ball of radius ϵ with a3

separation oracle in dimension d—or to minimize 1-Lipschitz convex functions to4

accuracy ϵ over the unit ball—our algorithms use O(d
2

p ln 1
ϵ ) bits of memory, and5

make O((C d
p ln

1
ϵ )
p) oracle calls, for some universal constant C ≥ 1. The family6

is parametrized by p ∈ [d] and provides an oracle-complexity/memory trade-off in7

the sub-polynomial regime ln 1
ϵ ≫ ln d. While several works gave lower-bound8

trade-offs (impossibility results) [29, 5]—we explicit here their dependence with9

ln 1
ϵ , showing that these also hold in any sub-polynomial regime—to the best of10

our knowledge this is the first class of algorithms that provides a positive trade-off11

between gradient descent and cutting-plane methods in any regime with ϵ ≤ 1/
√
d.12

The algorithms divide the d variables into p blocks and optimize over blocks13

sequentially, with approximate separation vectors constructed using a variant of14

Vaidya’s method. In the regime ϵ ≤ d−Ω(d), our algorithm with p = d achieves the15

information-theoretic optimal memory usage and improves the oracle-complexity16

of gradient descent.17

1 Introduction18

Optimization algorithms are ubiquitous in machine learning, from solving simple regressions to19

training neural networks. Their essential roles have motivated numerous studies on their efficiencies,20

which are usually analyzed through the lens of oracle-complexity: given an oracle (such as function21

value, or subgradient oracle), how many calls to the oracle are needed for an algorithm to output an22

approximate optimal solution? [32]. However, ever-growing problem sizes have shown an inadequacy23

in considering only the oracle-complexity, and have motivated the study of the trade-off between24

oracle-complexity and other resources such as memory [49, 29, 5] and communication[23, 38, 40, 43,25

31, 50, 48, 47].26

In this work, we study the oracle-complexity/memory trade-off for first-order non-smooth convex27

optimization, and the closely related feasibility problem, with a focus on developing memory efficient28

(deterministic) algorithms. Since [49] formally posed as open problem the question of characterizing29

this trade-off, there have been exciting results showing what is impossible: for convex optimization in30

Rd, [29] shows that any randomized algorithm with d1.25−δ bits of memory needs at least Ω̃(d1+4δ/3)31

queries, and this has later been improved for deterministic algorithms to d1−δ bits of memory or32

Ω̃(d1+δ/3) queries by [5]; in addition [5] shows that for the feasibility problem with a separation33

oracle, any algorithm which uses d2−δ bits of memory needs at least Ω̃(d1+δ) queries.34
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Despite these recent results on the lower bounds, all known first-order convex optimization algorithms35

that output an ϵ-suboptimal point fall into two categories: those that are quadratic in memory but36

can potentially achieve the optimal O(d ln 1
ϵ ) query complexity, as represented by the center-of-mass37

method, and those that have O( 1
ϵ2 ) query complexity but only need the optimal O(d ln 1

ϵ ) bits of38

memory, as represented by the classical gradient descent [49]. In addition, the above-mentioned39

memory bounds apply only between queries, and in particular the center-of-mass method [49] is40

allowed to use infinite memory during computations.41

We propose a family of memory-constrained algorithms for the stronger feasibility problem in which42

one aims to find a point within a set Q containing a ball of radius ϵ, with access to a separation oracle.43

In particular, this can be used for convex optimization since the subgradient information provides a44

separation vector. Our algorithms useO(d
2

p ln 1
ϵ ) bits of memory (including during computations) and45

O((C d
p ln

1
ϵ )
p) queries for some universal constantC ≥ 1, and a parameter p ∈ [d] that can be chosen46

by the user. Intuitively, in the context of convex optimization, the algorithms are based on the idea that47

for any function f(x,y) convex in the pair (x,y), the partial minimum miny f(x,y) as a function48

of x is still convex and, using a variant of Vaidya’s method proposed in [25], our algorithm can49

approximate subgradients for that function miny f(x,y), thereby turning an optimization problem50

with variables (x,y) to one with just x. This idea, applied recursively with the variables divided into51

p blocks, gives our family of algorithms and the above-mentioned memory and query complexity.52

When p = 1, our algorithm is a memory-constrained version of Vaidya’s method [46, 25], and53

improves over the center-of-mass [49] method by a factor of ln 1
ϵ in terms of memory while having54

optimal oracle-complexity. The improvements provided by our algorithms are more significant in55

regimes when ϵ is very small in the dimension d: increasing the parameter p can further reduce the56

memory usage of Vaidya’s method (p = 1) by a factor ln 1
ϵ / ln d, while still improving over the57

oracle-complexity of gradient descent. In particular, in a regime ln 1
ϵ = poly(ln d), these memory58

improvements are only in terms of ln d factors. However, in sub-polynomial regimes with potentially59

ln 1
ϵ = dc for some constant c > 0, these provide polynomial improvements to the memory of60

standard cutting-plane methods.61

As a summary, this paper makes the following contributions.62

• Our class of algorithms provides a trade-off between memory-usage and oracle-complexity63

whenever ln 1
ϵ ≫ ln d. Further, taking p = 1 improves the memory-usage from center-of-64

mass [49] by a factor ln 1
ϵ , while preserving the optimal oracle-complexity.65

• For ln 1
ϵ ≥ Ω(d ln d), our algorithm with p = d is the first known algorithm that outperforms66

gradient descent in terms of the oracle-complexity, but still maintains the optimal O(d ln 1
ϵ )67

memory usage.68

• We show how to obtain a ln 1
ϵ dependence in the known lower-bound trade-offs [29, 5],69

confirming that the oracle-complexity/memory trade-off is necessary for any regime ϵ ≲ 1√
d

.70

2 Setup and Preliminaries71

In this section, we precise the formal setup for our results. We follow the framework introduced in72

[49], to define the memory constraint on algorithms with access to an oracle O : S → R which73

takes as input a query q ∈ S and outputs a response O(q) ∈ R. Here, the algorithm is constrained to74

update an internal M -bit memory between queries to the oracle.75

Definition 2.1 (M -bit memory-constrained algorithm [49, 29, 5]). Let O : S → R be an oracle. An76

M -bit memory-constrained algorithm is specified by a query function ψquery : {0, 1}M → S and77

an update function ψupdate : {0, 1}M × S ×R → {0, 1}M . The algorithm starts with the memory78

state Memory0 = 0M and iteratively makes queries to the oracle. At iteration t, it makes the query79

qt = ψquery(Memoryt−1) to the oracle, receives the response rt = O(qt) then updates its memory80

Memoryt = ψupdate(Memoryt−1, qt, rt).81

The algorithm can stop at any iteration and the last query is its final output. Importantly, this model82

does not enforce constraints on the memory usage during the computation of ψupdate and ψquery.83

This is ensured in the stronger notion of a memory-constrained algorithm with computations. These84
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are precisely algorithms that have constrained memory including for computations, with the only85

specificity that they need a decoder function ϕ to make queries to the oracle from their bit memory,86

and a discretization function ψ to write a discretized response into the algorithm’s memory.87

Definition 2.2 (M -bit memory-constrained algorithm with computations). Let O : S → R be an88

oracle. We suppose that we are given a decoding function ϕ : {0, 1}⋆ → S and a discretization89

function ψ : R × N → {0, 1}⋆ such that ψ(r, n) ∈ {0, 1}n for all r ∈ R. An M -bit memory-90

constrained algorithm with computations is only allowed to use an M -bit memory in {0, 1}M even91

during computations. The algorithm has three special memory placements Q,N,R. Say the contents92

of Q and N are q and n respectively. To make a query, R must contain at least n bits. The algorithm93

submits q to the encoder which then submits the query ϕ(q) to the oracle. If r = O(ϕ(q)) is the94

oracle response, the discretization function then writes ψ(r, n) in the placement R.95

Feasibility problem. In this problem, the goal is to find a point x ∈ Q, where Q ⊂ Cd := [−1, 1]d96

is a convex set. We choose the cube [−1, 1]d as prior bound for convenience in our later algorithms,97

but the choice of norm for this prior ball can be arbitrary and does not affect our results. The algorithm98

has access to a separation oracle OS : Cd → {Success} ∪ Rd, that for a query x ∈ Rd either returns99

Success if x ∈ Q, or a separating hyperplane g ∈ Rd, i.e., such that g⊤x < g⊤x′ for any x′ ∈ Q.100

We suppose that the separating hyperplanes are normalized, ∥g∥2 = 1. An algorithm solves the101

feasibility problem with accuracy ϵ if the algorithm is successful for any feasibility problem such that102

Q contains an ϵ-ball Bd(x⋆, ϵ) for x⋆ ∈ Cd.103

As an important remark, this formulation asks that the separation oracle is consistent over time:104

when queried at the exact same point x, the oracle always returns the same separation vector. In105

this context, we can use the natural decoding function ϕ which takes as input d sequences of bits106

and outputs the vector with coordinates given by the sequences interpreted in base 2. Similarly, the107

natural discretization function ψ takes as input the separation hyperplane g and outputs a discretized108

version up to the desired accuracy. From now, we can omit these implementation details and consider109

that the algorithm can query the oracle for discretized queries x, up to specified rounding errors.110

Remark 2.1. An algorithm for the feasibility problem with accuracy ϵ/(2
√
d) can be used for first-111

order convex optimization. Suppose one aims to minimize a 1-Lipschitz convex function f over the unit112

ball, and output an ϵ-suboptimal solution, i.e., find a point x such that f(x) ≤ miny∈Bd(0,1) f(y)+ϵ.113

A separation oracle for Q = {x : f(x) ≤ miny∈Bd(0,1) f(y) + ϵ} is given at a query x by the114

subgradient information from the first-order oracle: − ∂f(x)
∥∂f(x)∥ . Its computation can also be carried115

memory-efficiently up to rounding errors since if ∥∂f(x)∥ ≤ ϵ/(2
√
d), the algorithm can return x116

and already has the guarantee that x is an ϵ-suboptimal solution (Cd has diameter 2
√
d). Notice that117

because f is 1-Lipschitz, Q contains a ball of radius ϵ/(2
√
d) (the factor 1/(2

√
d) is due to potential118

boundary issues). Hence, it suffices to run the algorithm for the feasibility problem while keeping in119

memory the queried point with best function value.120

2.1 Known trade-offs between oracle-complexity and memory121

Known lower-bound trade-offs. All known lower bound apply to the more general class of122

memory-constrained algorithms without computational constraints given in Definition 2.1. [32] first123

showed that O(d ln 1
ϵ ) queries are needed for solving convex optimization to ensure that one finds an124

ϵ-suboptimal solution. Further, O(d ln 1
ϵ ) bits of memory are needed even just to output a solution in125

the unit ball with ϵ accuracy [49]. These historical lower bounds apply in particular to the feasibility126

problem and are represented in the pictures of Fig. 1 as the dashed pink region.127

More recently, [29] showed that achieving both optimal oracle-complexity and optimal memory is128

impossible for convex optimization. They show that a possibly randomized algorithm with d1.25−δ129

bits of memory makes at least Ω̃(d1+4δ/3) queries. This result was extended for deterministic130

algorithms in [5] which shows that a deterministic algorithm with d1−δ bits of memory makes131

Ω̃(d1+δ/3) queries. For the feasibility problem, they give an improved trade-off: any deterministic132

algorithm with d2−δ bits of memory makes Ω̃(d1+δ) queries. These trade-offs are represented in the133

left picture of Fig. 1 as the pink, red, and purple solid region, respectively.134
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Known upper-bound trade-offs. Prior to this work, to the best of our knowledge only two135

algorithms were known in the oracle-complexity/memory landscape. First, cutting-plane algorithms136

achieve the optimal oracle-complexityO(d ln 1
ϵ ) but use quadratic memory. The memory-constrained137

(MC) center-of-mass method analyzed in [49] uses in particular O(d2 ln2 1
ϵ ) memory. Instead, if one138

uses Vaidya’s method which only needs to store O(d) cuts instead O(d ln 1
ϵ ), we show that one can139

achieve O(d2 ln 1
ϵ ) memory. These algorithms only use the separation oracle and hence apply to140

both convex optimization and the feasibility problem. On the other hand, the memory-constrained141

gradient descent for convex optimization [49] uses the optimal O(d ln 1
ϵ ) memory but makes O( 1

ϵ2 )142

iterations. While the analysis in [49] is only carried for convex optimization, we can give a modified143

proof showing that gradient descent can also be used for the feasibility problem.144

2.2 Other related works145

Vaidya’s method [46, 36, 1, 2] and the variant [25] that we use in our algorithms, belong to the146

family of cutting-plane methods. Perhaps the simplest example of an algorithm in this family is the147

center-of-mass method, which achieves the optimal O(d ln 1
ϵ ) oracle-complexity but is computa-148

tionally intractable, and the only known random walk-based implementation [4] has computational149

complexity O(d7 ln 1
ϵ ). Another example is the ellipsoid method, which has suboptimal O(d2 ln 1

ϵ )150

query complexity, but has an improved computational complexity O(d4 ln 1
ϵ ). [8] pointed out that151

Vaidya’s method achieves the best of both worlds by sharing the O(d ln 1
ϵ ) optimal query complexity152

of the center-of-mass, and achieving a computational complexity of O(d1+ω ln 1
ϵ )

1. In a major153

breakthrough, this computational complexity was improved toO(d3 ln3 1
ϵ ) in [25], then toO(d3 ln 1

ϵ )154

in [20]. We refer to [8, 25, 20] for more detailed comparisons of these algorithms.155

Another popular convex optimization algorithm that requires quadratic memory is the Broyden–156

Fletcher– Goldfarb– Shanno (BFGS) algorithm [41, 7, 18, 19], which stores an approximated inverse157

Hessian matrix as gradient preconditioner. Several works aimed to reduce the memory usage of158

BFGS; in particular, the limited memory BFGS (L-BFGS) stores a few vectors instead of the entire159

approximated inverse Hessian matrix [35, 28]. However, it is still an open question whether even the160

original BFGS converges for non-smooth convex objectives [27].161

Lying at the other extreme of the oracle-complexity/memory trade-off is gradient descent, which162

achieves the optimal memory usage but requires significantly more queries than center-of-mass or163

Vaidya’s method in the regime ϵ ≲ 1√
d

. There is a rich literature of works aiming to speed up164

gradient descent, such as the optimized gradient method [15, 14], Nesterov’s Acceleration [33], the165

triple momentum method [39], geometric descent [9], quadratic averaging [16], the information-166

theoretic exact method [44], or Big-Step-Little-Step method [21]. Interested readers can find a167

comprehensive survey on acceleration methods in [10]. However, these acceleration methods usually168

require additional smoothness or strong convexity assumptions (or both) on the objective function,169

due to the known Ω( 1
ϵ2 ) query lower bound in the large-scale regime ϵ ≳ 1√

d
for any first order170

method where the query points lie in the span of the subgradients of previous query points [34].171

Besides accelerating gradient descent, researchers have investigated more efficient ways to leverage172

subgradients obtained in previous iterations. Of interest are bundle methods [3, 22, 26], that have173

found a wide range of applications [45, 24]. In their simplest form, they minimize the sum of the174

maximum of linear lower bounds constructed using past oracle queries, and a regularization term175

penalizing the distance from the current iteration variable. Although the theoretical convergence rate176

of the bundle method is the same as that of gradient descent, in practice, bundle methods can benefit177

from previous information and substantially outperform gradient descent [3].178

The increasing size of optimization problems has also motivated the development of communication-179

efficient optimization algorithms in distributed settings such as [23, 38, 40, 43, 31, 50, 48,180

47]. Moreover, recent works have explored the trade-off between sample complexity and mem-181

ory/communication complexity for learning problems under the streaming model, with notable182

contributions including [6, 11, 12, 37, 42, 30].183

1ω < 2.373 is the exponent of matrix multiplication
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3 Main results184

We first check that the memory-constrained gradient descent method solves feasibility problems. This185

was known for convex optimization [49] and the same algorithm with a modified proof gives the186

following result. For completeness, the proof is given in Appendix D.187

Proposition 3.1. The memory-constrained gradient descent algorithm solves the feasibility problem188

with accuracy ϵ ≤ 1√
d

using O(d ln 1
ϵ ) bits of memory and O( 1

ϵ2 ) separation oracle calls.189

Our main contribution is a class of algorithms based on Vaidya’s cutting-plane method that provide a190

query-complexity / memory tradeoff. More precisely, we show the following.191

Theorem 3.2. For any 1 ≤ p ≤ d, there is a deterministic first-order algorithm that solves192

the feasibility problem for accuracy ϵ ≤ 1√
d

, using O(d
2

p ln 1
ϵ ) bits of memory (including during193

computations), with O((C d
p ln

1
ϵ )
p) calls to the separation oracle, and computational complexity194

O((C(dp )
1+ω ln 1

ϵ )
p), where C ≥ 1 is a universal constant.195

For simplicity, in Section 4, we describe algorithms that achieve this trade-off without computation196

concerns (Definition 2.1), which already provide the main elements of our method. The proof197

of oracle-complexity and memory usage is given in Appendix A. In Appendix B, we consider198

computational constraints and give corresponding algorithms using the cutting-plane method of [25].199

To better understand the implications of Theorem 3.2, it is useful to compare the provided class of200

algorithms to the two algorithms known in the oracle-complexity/memory tradeoff landscape: the201

memory-constrained center-of-mass method and the memory-constrained gradient descent [49].202

For p = 1, our resulting procedure, which is essentially a memory-constrained Vaidya’s algorithm,203

has optimal oracle-complexity O(d ln 1
ϵ ) and uses O(d2 ln 1

ϵ ) bits of memory. This improves by a204

ln 1
ϵ factor the memory usage of the center-of-mass-based algorithm provided in [49], which used205

O(d2 ln2 1
ϵ ) memory and had the same optimal oracle-complexity.206

Next, we recall that the memory-constrained gradient descent method used the optimal number207

O(d ln 1
ϵ ) bits of memory (including for computations), and a sub-optimal O( 1

ϵ2 ) oracle-complexity.208

While the memory of our algorithms decreases with p, their oracle-complexity is exponential in p.209

This significantly restricts the values of p for which the oracle-complexity is improved over that of210

gradient descent. The range of application of Theorem 3.2 is given in the next result.211

Corollary 3.1. The algorithms given in Theorem 3.2 effectively provide a tradeoff for p ≤ O( ln
1
ϵ

ln d ∨d).212

Precisely, this provides a tradeoff between213

• using O(d2 ln 1
ϵ ) memory with optimal O(d ln 1

ϵ ) oracle-complexity, and214

• using O(d2 ln d ∧ d ln 1
ϵ ) memory with O( 1

ϵ2 ∨ (C ln 1
ϵ )
d) oracle-complexity.215

Importantly, for ϵ ≤ 1
dΩ(d) , taking p = d yields an algorithm that uses the optimal memory O(d ln 1

ϵ )216

and has an improved query complexity over gradient descent. In this regime of small (virtually217

constant) dimension, for the same memory usage, gradient descent has a query complexity that is218

polynomial in ϵ,O( 1
ϵ2 ), while our algorithm has poly-logarithmic dependence in ϵ,Od(lnd 1

ϵ ), where219

Od hides an exponential constant in d. It remains open whether this lnd 1
ϵ dependence in the oracle-220

complexity is necessary. To the best of our knowledge, this is the first example of an algorithm that221

improves over gradient descent while keeping its optimal memory usage in any regime where ϵ ≤ 1√
d

.222

While this improvement holds only in the exponential regime ϵ ≤ 1
dO(d) , Theorem 3.2 still provides223

a non-trivial trade-off whenever ln 1
ϵ ≫ ln d, and improves over the known memory-constrained224

center-of-mass in the standard regime ϵ ≤ 1√
d

[49]. Fig. 1 depicts the trade-offs in the two regimes225

mentioned earlier.226

Last, we note that the lower-bound trade-offs presented in [29, 5] do not show a dependence in the227

accuracy ϵ. Especially in the regime when ln 1
ϵ ≫ ln d, this yields sub-optimal lower bounds (in228

fact even in the regime ϵ = 1/poly(d), our more careful analysis improves the lower bound on the229

memory by a ln d factor). We show with simple arguments that one can extend their results to include230

a ln 1
ϵ factor for both memory and query complexity. Fig. 1 presented these improved lower bounds.231
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ϵ

d2 ln 1
ϵ

(C ln 1
ϵ
)d

Regime
ln 1

ϵ
= Ω(d ln d)

Figure 1: Trade-offs between available memory and first-order oracle-complexity for the feasibility
problem over the unit ball. MC=Memory-constrained. GD=Gradient Descent. The left picture
corresponds to the regime ϵ≫ d−Ω(d) and ϵ ≤ 1/poly(d) and the right picture represents the regime
ϵ ≤ d−O(d). For both figures, the dashed pink "L" (resp. green inverted "L") region corresponds
to historical lower (resp. upper) bounds for randomized algorithms. The solid pink (resp. red)
lower bound tradeoff is due to [29] (resp. [5]) for randomized algorithms (resp. deterministic
algorithms). The purple region is a lower bound tradeoff for the feasibility problem for accuracy ϵ
and deterministic algorithms [5]. All these lower-bound trade-offs are represented with their ln 1

ϵ

dependence (Theorem 3.3). We use memory-constrained Vaidya’s method to gain a factor ln 1
ϵ in

memory compared to memory-constrained center-of-mass [49], which gives the light green region,
and a class of algorithms represented in dark green, that allows trading query-complexity for an
extra ln 1

ϵ / ln d factor saved in memory (Theorem 3.2). The dark green dashed region in the left
figure emphasizes that the area covered by our class of algorithms depends highly on the regime
for the accuracy ϵ: the resulting improvement in memory is more significant as ϵ is smaller. In the
regime when ϵ ≤ d−O(d) (right figure), our class of algorithms improves over the oracle-complexity
of gradient descent while keeping the optimal memory O(d ln 1

ϵ ).

Theorem 3.3. For ϵ ≤ 1/poly(d) and any δ ∈ [0, 1] (the notation Ω̃ hides lnO(1) d factors),232

1. any (randomized) algorithm guaranteed to minimize 1-Lipschitz convex functions over the233

unit ball with accuracy ϵ uses d5/4−δ ln 1
ϵ bits of memory or makes Ω̃(d1+4δ/3 ln 1

ϵ ) queries,234

2. any deterministic algorithm guaranteed to minimize 1-Lipschitz convex functions over the235

unit ball with accuracy ϵ uses d2−δ ln 1
ϵ bits of memory or makes Ω̃(d1+δ/3 ln 1

ϵ ) queries,236

3. any deterministic algorithm guaranteed to solve the feasibility problem over the unit ball237

with accuracy ϵ uses d2−δ ln 1
ϵ bits of memory or makes Ω̃(d1+δ ln 1

ϵ ) queries.238

The proof is given in Appendix C and the arguments therein could readily be used to exhibit the ln 1
ϵ239

dependence of potential future works improving over these lower bounds trade-offs.240

Sketch of proof. At a high level, [29, 5] use a barrier term ∥Ax∥∞ whereA has Θ(d) rows: if an241

algorithm does not have enough memory,A cannot be fully stored which in turn incurs a sub-optimal242

oracle-complexity. To achieve a ln 1
ϵ improvement in memory (Appendix C.1), we modify the243

sampling of rows ofA, from uniform on vertices of the hypercube to uniform in an ϵ-net. The proof244

can then be adapted accordingly. Last, one can improve the oracle-complexity by a ln 1
ϵ / ln d factor245

(Appendix C.2) using a standard rescaling argument [32].246
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4 Memory-constrained feasibility problem without computation247

In this section, we present a class of algorithms that are memory-constrained according to Defini-248

tion 2.1 and achieve the desired memory and oracle-complexity bounds. We emphasize that the249

memory constraint is only applied between calls to the oracle and as a result, the algorithm is allowed250

infinite computation memory and computation power between calls to the oracle.251

We start by defining discretization functions that will be used in our algorithms. For ξ > 0 and252

x ∈ [−1, 1], we pose Discretize1(x, ξ) = sign(x) · ξ⌊|x|/ξ⌋. Next, we define the discretization253

Discretized for general dimensions d ≥ 1. For any x ∈ C and ξ > 0,254

Discretized(x, ξ) =
(
Discretize1

(
x1, ξ/

√
d
)
, . . . ,Discretize1

(
xd, ξ/

√
d
))

.

4.1 Memory-constrained Vaidya’s method255

Our algorithm recursively uses Vaidya’s cutting-plane method [46] and subsequent works expanding256

on this method. We briefly describe the method. Given a polyhedron P = {x : Ax ≥ b}, we define257

si(x) = a⊤
i x − bi and Sx = diag(si(x), i ∈ [d]). We will also use the shorthand Ax = S−1

x A.258

The volumetric barrier is defined as259

VA,b(x) =
1

2
ln det(A⊤

xAx).

At each step, Vaidya’s method queries the volumetric center of the polyhedron, which is the point260

minimizing the volumetric barrier. For convenience, we denote by VolumetricCenter this function,261

i.e., for anyA ∈ Rm×d and b ∈ Rd defining a non-empty polyhedron P = {x : Ax ≥ b},262

VolumetricCenter(A, b) = arg min
x:Ax>b

VA,b(x).

When the polyhedron is unbounded, we can for instance take VolumetricCenter(A, b) = 0. Vaidya’s263

method makes use of leverage scores for each constraint i of the polyhedron, defined as σi =264

(AxH
−1A⊤

x )i,i, where H = A⊤
xAx. We are now ready to define the update procedure for the265

polyhedron considered by Vaidya’s volumetric method. We denote by Pt the polyhedron stored in266

memory after making t queries. The method keeps in memory the constraints defining the current267

polyhedron and the iteration index k when these constraints were added, which will be necessary for268

our next procedures. Hence, the polyhedron will be stored in the form Pt = {(ki,ai, bi), i ∈ [m]},269

and the associated constraints are given via {x : Ax ≥ b} where A⊤ = [a1, . . . ,am] and b⊤ =270

[b1, . . . , bm]. By abuse of notation, we will write VolumetricCenter(P) for the volumetric center of271

the polyhedron VolumetricCenter(A, b) whereA and b define the constraints stored in P .272

Initially, the polyhedron is simply Cd, these constraints are given −1 index for convenience, and273

they will not play a role in the next steps. At each iteration, if the constraint i ∈ [m] with minimum274

leverage score σi falls below a given threshold σmin, it is removed from the polyhedron. Otherwise,275

we query the volumetric center of the current polyhedron and add the separation hyperplane as a276

constraint to the polyhedron. We bound the number of iterations of the procedure by277

T (δ, d) =

⌈
c · d

(
1.4 ln

1

δ
+ 2 ln d+ 2 ln(1 + 1/σmin)

)⌉
,

where σmin and c are parameters that will be fixed shortly. Instead of making a call directly to the278

oracleOS , we instead suppose that one has access to an oracleO : Id → Rd where Id = (Z×Rd+1)⋆279

has exactly the shape of the memory storing the information from the polyhedron. This form of280

oracle is used in our recursive calls to Vaidya’s method. For example, such an oracle can simply be281

O : P ∈ Id 7→ OS(VolumetricCenter(P)). Last, in our recursive method, we will not assume that282

oracle responses are normalized. As a result, we specify that if the norm of the response is too small,283

we can stop the algorithm. We assume however that the oracle already returns discretized vectors,284

which will be ensured in the following procedures. The cutting-plane algorithm is formally described285

in Algorithm 1. With an appropriate choice of parameters, this procedure finds an approximate286

solution of feasibility problems. We base the constants from [2].287

Lemma 4.1. Fix σmin = 0.04 and c = 1
0.0014 ≈ 715. Let δ, ξ ∈ (0, 1) and O : Id → Rd. Write288

P = {(ki,ai, bi), i ∈ [m]} as the output of Algorithm 1 run with O, δ and ξ. Then,289

min
λi≥0, i∈[m],∑

i∈[m] λi=1

max
y∈Cd

m∑
i=1

λi(a
⊤
i y − bi) = max

x∈Cd

min
i∈[m]

(a⊤
i x− bi) ≤ δ.
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Input: O : Id → Rd, δ, ξ ∈ (0, 1)
1 Let Tmax = T (δ, d) and initialize P0 := {(−1, ei,−1), (−1,−ei,−1), i ∈ [d]}
2 for t = 0, . . . , Tmax do
3 if {x : Ax ≥ b} = ∅ then return Pt;
4 if mini∈[m] σi < σmin then
5 Pt+1 = Pt \ {(kj ,aj , bj)} where j ∈ argmini∈[m] σi
6 else if ω := VolumetricCenter(Pt) /∈ Cd then
7 Pt+1 = Pt ∪ {(−1,−sign(ωj)ej ,−1)} where j ∈ [d] has |ωj | > 1
8 else
9 g = O(Pt) and b = ξ

⌈
g⊤ω
ξ

⌉
, where ω = VolumetricCenter(Pt)

10 Pt+1 = Pt ∪ {(t, g, b)}
11 if ∥g∥ ≤ δ then return Pt+1 ;
12 end
13 return PTmax+1.

Algorithm 1: Memory-constrained Vaidya’s volumetric method

From now, we use the parameters σmin = 0.04 and c = 1/0.0014 as in Lemma 4.1. Since the290

memory of both Vaidya’s method and center-of-mass consists primarily of the constraints, we recall291

an important feature of Vaidya’s method that the number of constraints at any time is O(d).292

Lemma 4.2 ([46, 1, 2]). At any time while running Algorithm 1, the number of constraints of the293

current polyhedron is at most d
σmin

+ 1.294

4.2 A recursive algorithm295

We write Cm+n = Cm × Cn and aim to apply Vaidya’s method to the first m coordinates. To do so,296

we need to approximate a separation oracle on these m coordinates only, which corresponds to giving297

separation hyperplanes with small values for the last n coordinates. This can be achieved using the298

following auxiliary linear program. For P ∈ In, we define299

min
λi≥0, i∈[m],∑

i∈[m] λi=1

max
y∈Cn

m∑
i=1

λi(a
⊤
i y − bi), m = |P| (Paux(P))

where as before,A and b define the constraints stored in P . The procedure to obtain an approximate300

separation oracle on the first n coordinates Cn is given in Algorithm 2 and using Lemma 4.1 we can301

show that this procedure provides approximate separation vectors for the first n coordinates.302

Input: δ, ξ, Ox : In → Rm and Oy : In → Rn
1 Run Algorithm 1 with δ, ξ and Oy to obtain polyhedron P⋆
2 Solve Paux(P⋆) to get a solution λ⋆

3 Store k⋆ = (ki, i ∈ [m]) where m = |P⋆|, and λ⋆ ← Discretize(λ⋆, ξ)
4 Initialize P0 := {(−1, ei,−1), (−1− ei,−1), i ∈ [d]} and u = 0 ∈ Rm
5 for t = 0, 1, . . . ,maxi ki do
6 if t = k⋆i for some i ∈ [m] then
7 gx = Ox(Pt)
8 u← Discretizem(u+ λ⋆i gx, ξ)
9 Update Pt to get Pt+1 as in Algorithm 1

10 end
11 return u

Algorithm 2: ApproxSeparationVectorδ,ξ(Ox, Oy)

The next step involves using this approximation recursively. We write d =
∑p
i=1 ki, and interpret Cd303

as Ck1 × · · · × Ckp . In particular, for x ∈ Cd, we write x = (x1, . . . ,xp) where xi ∈ Cki for i ∈ [p].304

Applying Algorithm 2 recursively, we can obtain an approximate separation oracle for the first i305

coordinates Ck1×· · ·×Cki . However, storing such separation vectors would be too memory-expensive,306

e.g., for i = p, that would correspond to storing the separation hyperplanes from the oracle OS307
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directly. Instead, given j ∈ [i], Algorithm 3 recursively computes thexj component of an approximate308

separation oracle for the first i variables (x1, . . . ,xi), via the procedure ApproxOracle(i, j).309

Input: δ, ξ, 1 ≤ j ≤ i ≤ p, P(r) ∈ Ikr for r ∈ [i], OS : Cd → Rd
1 if i = p then
2 xr = VolumetricCenter(Ar, br) where (Ar, br) defines the constraints stored in P(r) for

r ∈ [p]
3 (g1, . . . , gp) = OS(x1, . . . ,xp)
4 return Discretizekj (gj , ξ)
5 end
6 Define Ox : Iki+1 → Rkj as ApproxOracleδ,ξ,Of

(i+ 1, j,P(1), , . . . ,P(i), ·)
7 Define Oy : Iki+1 → Rki+1 as ApproxOracleδ,ξ,Of

(i+ 1, i+ 1,P(1), . . . ,P(i), ·)
8 return ApproxSeparationVectorδ,ξ(Ox, Oy)

Algorithm 3: ApproxOracleδ,ξ,OS
(i, j,P(1), . . . ,P(i))

We can then use ApproxOracleδ,ξ,OS
(1, 1, ·) to solve the original problem with the memory-310

constrained Vaidya’s method. In Appendix A, we show that taking δ = ϵ
4d and ξ = σminϵ

32d5/2
achieves311

the desired oracle-complexity and memory usage. The final algorithm is given in Algorithm 4.312

Input: δ, ξ, and OS : Cd → Rd a separation oracle
Check :Throughout the algorithm, if OS returned Success to a query x, return x

1 Run Algorithm 1 with parameters δ and ξ and oracle ApproxOracleδ,ξ,OS
(1, 1, ·)

Algorithm 4: Memory-constrained algorithm for convex optimization

Sketch of proof. At the high level, the algorithm recursively runs Vaidya’s method Algorithm 1313

for each level of computation i ∈ [p]. Since each run of Algorithm 4 requires O(dp ln
1
ϵ ) queries, the314

total number of calls to the oracle, which is exponential in the number of levels, is O(O(dp ln
1
ϵ )
p).315

As for the memory usage, the algorithm mainly needs to keep in memory the constraints defining the316

polyhedrons at each level i ∈ [p]. From Lemma 4.2, each polyhedron only requires O(dp ) constraints317

that each requireO(dp ln
1
ϵ ) bits of memory. Hence, the total memory needed isO(d

2

p ln 1
ϵ ). The main318

difficulty lies in showing that the algorithm is successful. To do so, we need to show that the precision319

in the successive approximated separation oracles Algorithm 2 is sufficient. To avoid an exponential320

dependence of the approximation error in p—which would be prohibitive for the memory usage of321

our method—each run of Vaidya’s method Algorithm 1 is run for more iterations than the precision of322

the separation vectors would classically allow. To give intuition, if the separation oracle came from a323

convex optimization subgradient oracle for a function f , the iterates at a level i do not converge to the324

true “minimizer” of minxi
f (i)(x1, . . . ,xi), where f (i)(·) = minxi+1,...,xp

f(·,xi+1, . . . ,xp), but325

instead converge to a close enough point while still providing meaningful approximate subgradients326

at the higher level i− 1 (in Algorithm 2).327

5 Discussion and Conclusion328

To the best of our knowledge, this work is the first to provide some positive trade-off between329

oracle-complexity and memory-usage for convex optimization or the feasibility problem, as opposed330

to lower-bound impossibility results [29, 5]. Our trade-offs are more significant in a high accuracy331

regime: when ln 1
ϵ ≈ dc, for c > 0 our trade-offs are polynomial, while the improvements when332

ln 1
ϵ = poly(ln d) are only in ln d factors. A natural open direction [49] is whether there exist333

algorithms with polynomial trade-offs in that case. We also show that in the exponential regime334

ln 1
ϵ ≥ Ω(d ln d), gradient descent is not Pareto-optimal. Instead, one can keep the optimal memory335

and decrease the dependence in ϵ of the oracle-complexity from 1
ϵ2 to (ln 1

ϵ )
d. The question of336

whether the exponential dependence in d is necessary is left open. Last, our algorithms rely on337

the consistency of the oracle, which allows re-computations. While this is a classical assumption,338

gradient descent and classical cutting-plane methods do not need it; removing this assumption could339

be an interesting research direction (potentially, this could also yield stronger lower bounds).340
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A Proof of the query complexity and memory usage of Algorithm 4472

First, we give simple properties on the discretization functions. One can easily check that for any473

x ∈ C,474

∥x− Discretized(x, ξ)∥ ≤ ξ and ∥Discretized(x, ξ)∥ ≤ ∥x∥. (1)
Further, one can easily check that to represent any output of Discretized(·, ξ), one needs at most475

d ln 2
√
d
ξ = O(d ln d

ξ ) bits.476

We next prove Lemma 4.1.477

Proof of Lemma 4.1. We first consider the case when the algorithm terminates because of a query478

g = O(Pt) such that ∥g∥ ≤ δ/(2
√
d). Then, for any x ∈ Cd, one directly has479

g⊤x− b ≤ g⊤(x− ω) ≤ 2
√
d∥g∥ ≤ δ.

where ω is the volumetric center of the resulting polyhedron. In the second inequality we used the480

fact that ω ∈ Cd, otherwise the algorithm would not have terminated at that step.481

We next turn to the other cases and start by showing that the output polyhedron does not contain a482

ball of radius δ. This is immediate if the algorithm terminated because the polyhedron was empty.483

We then suppose this was not the case, and follow the same proof as given in [2]. Algorithm 1484

and the one provided in [2] coincide when removing a constraint of the polyhedron. Hence, it485

suffices to consider the case when we add a constraint. We use the notation Ã
⊤

= [A⊤,a⊤
m+1],486

b̃
⊤

= [b⊤, bm+1] for the updated matrix A and vector b after adding the constraint. We also487

denote ω = VolumetricCenter(A, b) (resp. ω̃ = VolumetricCenter(Ã, b̃)) the volumetric center488

of the polyhedron before (resp. after) adding the constraint. Next, we consider the vector (b′)⊤ =489

[b⊤,a⊤
m+1ω], which would have been obtained if the cut was performed at ω exactly. We then denote490

ω′ = VolumetricCenter(Ã, b′). Then proof of [2] shows that491

VÃ,b′(ω′) ≥ VA,b(ω) + 0.0340.

We now observe that by construction, we have b̃m+1 ≥ a⊤
m+1ω, so that the polyhedron associated492

to (Ã, b̃) is more constrained than the one associated to (Ã, b′). As a result, we have VÃ,b̃(x) ≥493

VÃ,b′(x), for any x ∈ Rd such that Ãx ≥ b̃. Therefore,494

VÃ,b̃(ω̃) ≥ VÃ,b′(ω̃) ≥ VÃ,b′(ω′) ≥ VA,b(ω) + 0.0340.

This ends the modifications in the proof of [2]. With the notations of this paper, we still have495

∆V + = 0.340 and ∆V − = 0.326, so that ∆V = 0.0014. Then, because c = 1
∆V , the same496

proof shows that the procedure is successful for precision δ: the final polyhedron (A, b) returned by497

Algorithm 1 does not contains a ball of radius > δ. As a result, whether the algorithm performed498

all Tmax iterations or not, {x : Ax ≥ b} does not contain a ball of radius > δ′, where A and499

b define the constraints stored in the output P . Now letting m be the objective value of the right500

optimization problem, there exists x ∈ Cd such that for all t ≤ T , g⊤t (x− ct) ≥ m. Therefore, for501

any x′ ∈ Bd(x,m) one has502

∀i ∈ [m],a⊤
i x

′ − bi ≥ m+ a⊤
t (x

′ − x) ≥ m− ∥x′ − x∥ ≥ 0.

In the last inequality we used ∥at∥ ≤ 1. This implies that the polyhedron contains Bd(x,m). Hence,503

m ≤ δ.504

This ends the proof of the right inequality. The left equality is a direct application of strong duality505

for linear programming.506

We now prove that Algorithm 4 has the desired oracle-complexity and memory usage.507

We first describe the recursive calls of Algorithm 3 in more detail. To do so, consider running the pro-508

cedure ApproxOracle(i, j,P(1), . . . ,P(i)) where i < p, which corresponds to running Algorithm 2509

for specific oracles. We say that this is a level-i run. Then, the algorithm performs at most 2T (δ, ki+1)510

calls to ApproxOracle(i + 1, i + 1,P(1), . . . ,P(i), ·), where the factor 2 comes from the fact that511
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Vaidya’s method Algorithm 1 is effectively run twice in Algorithm 2. The solution to (Paux(P)) has512

as many components as constraints in the last polyhedron, which is at most ki+1

σmin
+ 1 by Lemma 4.2.513

Hence, the number of calls to ApproxOracle(i+ 1, j,P(1), . . . ,P(i), ·) is at most ki+1

σmin
+ 1. In total,514

that is O(ki+1 ln
1
δ ) calls to the level i+ 1 of the recursion.515

We next aim to understand the output of running ApproxOracle(1, 1,P(1)). We denote by λ(P(1))516

the solution Paux(P⋆) computed at l.2 of the first call to Algorithm 2, where P⋆ is the output517

polyhedron of the first call to Algorithm 1. Denote by S(P(1)) the set of indices of coordinates from518

λ(P(1)) for which the procedure performed a call to ApproxOracle(2, 1,P(1), ·). In other words,519

S(P(1)) contains the indices of all coordinates of λ(P(1)), except those for which the corresponding520

query lay outside of the unit cube, or the initial constraints of the cube. For any index l ∈ S(P(1)),521

let P(2)
l denote the state of the current polyhedron (Pt in l.7 of Algorithm 2) when that call was522

performed. Up to discretization issues, the output of the complete procedure is523 ∑
l∈S(P(1))

λl(P(1))ApproxOracle(2, 1,P(1),P(2)
l ).

We continue in the recursion, defining λ(P(1),P(2)
l ) and S(P(1),P(2)

l ) for all l ∈ S(P(1)), until we524

define all vectors of the form λ(P(1),P(2)
l2
, . . . ,P(r)

lr
) and sets of the form S(P(1),P(2)

l2
, . . . ,P(r)

lr
)525

for i+1 ≤ r ≤ p− 1. To simplify the notation and emphasize that all these polyhedra depend on the526

recursive computation path, we adopt the notation527

λl2,...,lr+1 := λlr+1
(P(1),P(2)

l2
, . . . ,P(r)

lr
)

Sl2,...,lr := S(P(1),P(2)
l2
, . . . ,P(r)

lr
)

We recall that these polyhedron are kept in memory to query their volumetric center. For ease of528

notation, we write x1 = VolumetricCenter(P(1)), and we write cl2,...,lr = VolumetricCenter(P(r)
lr

)529

for 2 ≤ r ≤ p, where l2, . . . , lr−1 were the indices from the computation path leading up to P(r)
lr

.530

Last, we write OS = (OS,1, . . . , OS,p), where OS,i : Cd → Rki is the “xi” component of OS , for all531

i ∈ [p].532

With all these notations, we will show that the output of ApproxOracle(i, j,P(1),P(2)
l2
, . . . ,P(i)

li
) is533

approximately equal to the vector534

G(i, j,x1, c
l2 , . . . , cl2,...,li)

:=
∑

li+1∈S, li+2∈Sli+1 ,

... , lp∈Sli+1,...,lp−1

λli+1λli+1,li+2 · · ·λli+1,...,lp ·OS,j(x1, c
l2 , . . . , cl2,...,lp),

with the convention that for i = p,535

G(p, j,x1, c
l2 , . . . , cl2,...,lp) := OS,j(x1, c

l2 , . . . , cl2,...,lp).

The corresponding computation tree is represented in Fig. 2. For convenience, we omitted the term536

j = 1.537

We start the analysis with a simple result showing that if the oracle OS returns separation vectors of538

norm bounded by one, then the responses from ApproxOracle also lie in the unit ball.539

Lemma A.1. Fix δ, ξ ∈ (0, 1), 1 ≤ j ≤ i ≤ p and an oracle OS = (OS,1, . . . , OS,p) : Cd → Rd.540

Suppose that OS takes values in the unit ball. For any s ∈ [i] let P(s)
ls
∈ Iks represent a bounded541

polyhedrons with VolumetricCenter(P(s)
ls

) ∈ Cks . Then, one has542

∥ApproxOracleδ,ξ,OS
(i, j,P(1)

l1
, . . . ,P(i)

li
)∥ ≤ 1.

Proof. We prove this by simple induction on i. For convenience, we define the point xk =543

VolumetricCenter(P(k)
lk

). If i = p, we have544

∥ApproxOracleδ,ξ,OS
(i, j,P(1)

l1
, . . . ,P(i)

li
)∥ = ∥Discretizekj (OS,j(x1, . . . ,xp), ξ)∥
≤ ∥OS,j(x1, . . . ,xp)∥ ≤ 1,
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G(1)

G(2,c1)

λ1

. . . G(2,cl2)

G(3,cl2 ,cl2,1)

λl2,1

. . . G(3,cl2 ,cl2,l3)

G(p− 1,cl2 , . . . ,cl2...,lp−1)

OS,j(c
l2 , . . . ,cl2,...,lp−1,1)

λl2,...,lp−1,1

. . . OS,j(c
l2 , . . . ,cl2,...,lp)

λl2,...,lp

. . . OS,j(c
l2 , . . . ,cl2,...,lp−1,mp)

λl2,...,lp−1,mp

...

λl2,l3

. . . G(3,cl2 ,cl2,m3)

λl2,m3

λl2

. . . G(2,cm2)

λm2

Figure 2: Computation tree representing the recursive calls to ApproxOracle starting from the calls to
ApproxOracle(1, 1, ·) from Algorithm 4

where in the first inequality we used Eq (1) and in the second inequality we used the fact that545

OS(x1, . . . ,xp) has norm at most one. Now suppose that the result holds for i+1 ≤ p. Then by con-546

struction, the output ApproxOracleδ,ξ,OS
(i, j,P(1)

l1
, . . . ,P(i)

li
) is the result of iterative discretizations.547

Using Eq (1) and the previously defined notations, we obtain548

∥ApproxOracleδ,ξ,OS
(i, j,P(1)

l1
, . . . ,P(i)

li
)∥

≤

∥∥∥∥∥∥
∑

li+1∈Sl1,...,li

λl2,...,liApproxOracleδ,ξ,OS
(i+ 1, j,P(1)

l1
, . . . ,P(i)

li
,P(i+1)

li+1
)

∥∥∥∥∥∥ ≤ 1.

In the last inequality, we used the induction hypothesis together with the fact that
∑
li+1

λl2,...,li+1 ≤ 1549

using Eq (1). This ends the induction and the proof.550

We are now ready to compare the output of Algorithm 3 to G(i, j,x1, c
l2 , . . . , cl2,...,li).551

Lemma A.2. Fix δ, ξ ∈ (0, 1), 1 ≤ j ≤ i ≤ p and an oracle OS = (OS,1, . . . , OS,p) : Cd → Rd.552

Suppose that OS takes values in the unit ball. For any s ∈ [i] let P(s)
ls
∈ Iks represent a bounded553

polyhedron with VolumetricCenter(P(s)
ls

) ∈ Cks . Denote xr = c(P(r)
lr

) for r ∈ [i]. Then,554

∥ApproxOracleδ,ξ,OS
(i, j,P(1)

l1
, . . . ,P(i)

li
)−G(i, j,x1, . . . ,xi)∥ ≤

4

σmin
dξ.

Proof. We prove by simple induction on i that555

∥ApproxOracleδ,ξ,OS
(i, j,P(1)

l1
, . . . ,P(i)

li
)−G(i, j,x1, . . . ,xi)∥

≤
(
1 +

2

σmin
(ki+1 + . . .+ kp) + 2(p− i)

)
ξ.

First, for i = p, the result is immediate since the discretization is with precision ξ (l.4 of Algorithm 3).556

Now suppose that this is the case for i ≤ p and any valid values of other parameters. For conciseness,557

we writeG = (P(1)
l1
, . . . ,P(i−1)

li−1
). Next, recall that by Lemma 4.2, |Sl2,...,li−1 | ≤ ki

σmin
+ 1. Hence,558
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the discretizations due to l.8 of Algorithm 2 can affect the estimate for at most that number of rounds.559

Then, we have560 ∥∥∥∥∥∥ApproxOracleδ,ξ,OS
(i− 1, j,G)−

∑
li∈Sl2,...,li−1

λ̃l2,...,liApproxOracleδ,ξ,OS
(i, j,G,P(i)

li
)

∥∥∥∥∥∥
≤
(

ki
σmin

+ 1

)
ξ,

where λ̃l2,...,li are the discretized coefficients that are used during the computation l.8 of Algorithm 2.561

Now using Lemma A.1, we have562 ∥∥∥∥∥∥
∑

li∈Sl2,...,li−1

(λ̃l2,...,li − λl2,...,li)ApproxOracleδ,ξ,OS
(i, j,G,P(i)

li
)

∥∥∥∥∥∥
≤ ∥λ̃

li+1,...,li−1 − λli+1,...,li−1∥1 ≤
(

ki
σmin

+ 1

)
ξ.

In the last inequality we used the fact that λ has at most ki
σmin

+ 1 non-zero coefficients. As a result,563

using the induction for each term of the sum, and the fact that
∑
li
λl2,...,li ≤ 1, we obtain564

∥ApproxOracleδ,ξ,Of
(i− 1, j,G)−G(i− 1, j,x1, . . . ,xi−1)∥

≤
(
1 +

2

σmin
(ki+1 + . . .+ kp) + 2(p− i)

)
ξ +

(
2ki
σmin

+ 2

)
ξ,

which completes the induction. Noting that ki+1 + . . .+ kp ≤ k1 + . . .+ kp ≤ d and p− i ≤ d− 1565

ends the proof.566

Next, we show that the outputs of Algorithm 3 provide approximate separation hyperplanes for the567

first i coordinates (x1, . . . ,xi).568

Lemma A.3. Fix δ, ξ ∈ (0, 1), 1 ≤ j ≤ i ≤ p and an oracle OS = (OS,1, . . . , OS,p) : Cd → Rd for569

accuracy ϵ > 0. Suppose thatOS takes values in the unit ballBd(0, 1). For any s ∈ [i] let P(s)
ls
∈ Iks570

represent a bounded polyhedron with VolumetricCenter(P(s)
ls

) ∈ Cks . Denote xr = c(P(r)
lr

) for571

r ∈ [i]. Suppose that when running ApproxOracleδ,ξ,OS
(i, i,P(1)

l1
, . . . ,P(i)

li
), no successful vector572

was queried. Then, any vector x⋆ = (x⋆1, . . . ,x
⋆
p) ∈ Cd such that Bd(x⋆, ϵ) is contained in the573

successful set satisfies574 ∑
r∈[i]

ApproxOracleδ,ξ,OS
(i, r,P(1)

l1
, . . . ,P(i)

li
)⊤(x⋆r − xr) ≥ ϵ−

8d5/2

σmin
ξ − dδ.

Proof. For i ≤ r ≤ p and j ≤ r, we use the notation575

g
li+1,...,lr
j = ApproxOracleδ,ξ,OS

(r, j,P(1)
l1
, . . . ,P(r)

lr
).

Using Lemma A.2, we always have for j ∈ [r],576

∥gli+1,...,lr
j −G(r, j,x1, . . . ,xi, c

li+1 , . . . , cli+1,...,lr )∥ ≤ 4d

σmin
ξ. (2)

Also, observe that by Lemma A.1 the recursive outputs of ApproxOracle always have norm bounded577

by one.578

Next, let T li+1,...,lr−1 be the set of indices corresponding to coordinates of λli+1,...,lr−1 for which the579

procedure ApproxOracle did not call for a level-r computation. These correspond to 1. constraints580

from the initial cube P0, or 2. cases when the volumetric center was out of the unit cube (l.6-7 of581

Algorithm 1) and as a result, the index of the added constraint was −1 instead of the current iteration582

index t. Similarly as above, for any t ∈ T li+1,...,lr−1 , we denote by gli+1,...,lr−1,t
r the corresponding583

16



vector at. We recall that by construction, this vector is of the form±ej for some j ∈ [kr]. Then, from584

Lemma 4.1, since the responses of the oracle always have norm bounded by one, for all yr ∈ Ckr ,585 ∑
lr∈Sli+1,...,lr−1∪T li+1,...,lr−1

λli+1,...,lr (gli+1,...,lr
r )⊤(yr − cli+1,...,lr ) ≤ δ. (3)

For conciseness, we use the shorthand (S ∪ T )li+1,...,lr−1 := Sli+1,...,lr−1 ∪ T li+1,...,lr−1 , which586

contains all indices from coordinates of λli+1,...,lr−1 . In particular,587 ∑
lr∈(S∪T )li+1,...,lr−1

λli+1,...,lr = 1. (4)

We now proceed to estimate the precision of the vectorsG(i, j,x1, . . . ,xi) as approximate separation588

hyperplanes for coordinates (x1, . . . ,xi). Let x⋆ ∈ Cd such that Bd(x⋆, ϵ) is within the successful589

set. Then, for any choice of li+1 ∈ S, . . . , lp ∈ Sli+1,...,lp−1 , since we did not query a successful590

vector, we have for all z ∈ Bd(x⋆, ϵ),591

OS(x1, . . . ,xi, c
li+1 , . . . , cli+1,...,lp)⊤(z − (x1, . . . ,xi, c

li+1 , . . . , cli+1,...,lp)) ≥ 0.

As a result, because the responses from OS have unit norm,592

OS(x1, . . . ,xi, c
li+1 , . . . , cli+1,...,lp)⊤(x⋆ − (x1, . . . ,xi, c

li+1 , . . . , cli+1,...,lp)) ≥ ϵ. (5)

Now write x⋆ = (x⋆1, . . . ,x
⋆
p). In addition to the previous equation, for li+1 ∈ S, . . . , lr−1 ∈593

Sli+1,...,lr−2 and any lr ∈ T li+1,...,lr−1 , one has (gli+1,...,lr
r )⊤x⋆r + 1 ≥ ϵ, because x⋆ is within the594

cube Cd and at least at distance ϵ from the constraints of the cube. Similarly as when lr ∈ Sli+1,...,lr−1 ,595

for any lr ∈ T li+1,...,lr−1 we denote by cli+1,...,lr the volumetric center of the polyhedron P(r)
lr

along596

the corresponding computation path, if lr corresponded to an added constraints when cli+1,...,lr /∈ Ckr .597

Otherwise, if lr corresponded to the constraint a = ±ej of the initial cube, we pose cli+1,...,lr = −a.598

Now by construction, in both cases one has (gli+1,...,lr
r )⊤cli+1,...,lr ≤ −1 (l.7 of Algorithm 1). Thus,599

(gli+1,...,lr
r )⊤(x⋆r − cli+1,...,lr ) ≥ ϵ. (6)

Recalling Eq (4), we then sum all equations of the form Eq (5) and Eq (6) along the computation600

path, to obtain601

(A) :=
∑

li+1∈S,...,
lp∈Sli+1,...,lp−1

λli+1 · · ·λli+1,...,lp

·OS(x1, . . . ,xi, c
li+1 , . . . , cli+1,...,lp)⊤(x⋆ − (x1, . . . ,xi, c

li+1 , . . . , cli+1,...,lp))

+
∑

i+1≤r≤p

∑
li+1∈S,...,lr−1∈Sli+1,...,lr−2 ,

lr∈T li+1,...,lr−1

λli+1 · · ·λli+1,...,lr · (gli+1,...,lr
r )⊤(x⋆r − cli+1,...,lr ) ≥ ϵ.

Now using the convention602

G(r, r,x1, . . . ,xi, c
li+1 , . . . , cli+1,...,lr ) := gli+1,...,lr

r , lr ∈ T li+1,...,lr−1 ,

for any li+1 ∈ S, . . . , lr−1 ∈ Sli+1,...,lr−2 , we can write603

(A) =
∑
r≤i

G(i, r,x1, . . . ,xi)
⊤(x⋆r − xr) +

∑
i+1≤r≤p

∑
li+1∈S,...,

lr−1∈Sli+1,...,lr−2

λli+1 . . . λli+1,...,lr−1

×
∑

lr∈(S∪T )li+1,...,lr−1

λli+1,...,lrG(r, r,x1, . . . ,xi, c
li+1 , . . . , cli+1,...,lr )⊤(x⋆r − cli+1,...,lr ).

We next relate the terms G to the output of ApproxOracle. For simplicity, let us write G =604

(P(1)
l1
, . . . ,P(i)

li
), which by abuse of notation was assimilated to (x1, . . . ,xi). Recall that by con-605

struction and hypothesis, all points where the oracle was queried belong to Cd, so that for instance606

17



∥x⋆r − cli+1,...,lr∥ ≤ 2
√
kr ≤ 2

√
d for any lr ∈ Sli+1,...,lr−1 . Using the above equations together607

with Eq (2) and Lemma A.2 gives608

ϵ ≤
∑
r≤i

[
ApproxOracleδ,ξ,Of

(i, r,G)⊤(x⋆r − xr) +
8d3/2

σmin
ξ

]
+

∑
i+1≤r≤p

∑
li+1∈S,...,

lr−1∈Sli+1,...,lr−2

λli+1 · · ·λli+1,...,lr−1

∑
lr∈(S∪T )li+1,...,lr−1

λli+1,...,lr

[
(gli+1,...,lr
r )⊤(x⋆r − cli+1,...,lr ) +

8d3/2

σmin
ξ

]

≤ 8pd3/2

σmin
ξ + (p− i)δ +

∑
r≤i

ApproxOracleδ,ξ,Of
(i, r,G)⊤(x⋆r − xr)

where in the second inequality, we used Eq (3). Using p ≤ d, this ends the proof of the lemma.609

We are now ready to show that Algorithm 4 is a valid algorithm for convex optimization.610

Theorem A.1. Let ϵ ∈ (0, 1) and OS : Cd → Rd be a separation oracle such that the successful set611

contains a ball of radius ϵ. Pose δ = ϵ
4d and ξ = σminϵ

32d5/2
. Next, let p ≥ 1 and k1, . . . , kp ≤ ⌈dp⌉ such612

that k1 + . . .+ kp = d. With these parameters, Algorithm 4 finds a successful vector with (C d
p ln

d
ϵ )
p613

queries and using memory O(d
2

p ln d
ϵ ), for some universal constant C > 0.614

Proof. Suppose by contradiction that Algorithm 4 never queried a successful point. Then, with the615

chosen parameters, Lemma A.3 shows that, for any vector x⋆ = (x⋆1, . . . ,x
⋆
p) such that Bd(x⋆, ϵ) is616

within the successful set, with the same notations, one has617 ∑
r≤i

ApproxOracleδ,ξ,OS
(i, r,P(1)

l1
, . . . ,P(i)

li
)⊤(x⋆r − xr) ≥ ϵ−

8d5/2

σmin
ξ − dδ ≥ ϵ

2
.

Now denote by (at, bt) the constraints that were added at any time during the run of Algorithm 1618

when using the oracle ApproxOracle with i = j = 1. The previous equation shows that for all such619

constraints,620

a⊤
t x

⋆
1 − bt ≥ a⊤

t (x
⋆
1 − ωt)− ξ ≥

ϵ

2
− ξ,

where ωt is the volumetric center of the polyhedron at time t during Vaidya’s method Algorithm 1.621

Now, since the algorithm terminated, by Lemma 4.1, we have that622

min
t
(a⊤
t x

⋆
1 − bt) ≤ δ.

This is absurd since δ + ξ < ϵ
2 . This ends the proof that Algorithm 4 finds a successful vector.623

We now estimate its oracle-complexity and memory usage. First, recall that a run of ApproxOracle624

of level i makes O(ki+1 ln
1
δ ) calls to level-(i + 1) runs of ApproxOracle. As a result, the oracle-625

complexity Qd(ϵ; k1, . . . , kp) satisfies626

Qd(ϵ; k1, . . . , kp) =

(
Ck1 ln

1

δ

)
× . . .×

(
Ckp ln

1

δ

)
≤
(
C ′ d

p
log

d

ϵ

)p
for some universal constants C,C ′ ≥ 2.627

We now turn to the memory of the algorithm. For each level i ∈ [p] of runs for ApproxOracle, we628

keep memory placements for629

1. the value j(i) of the corresponding call to ApproxOracle(i, j(i), ·) (for l.6-7 of Algorithm 3):630

O(ln d) bits,631

2. the iteration number t(i) during the run of Algorithm 1 or within Algorithm 2: O(ln(ki ln 1
δ ))632

bits633

3. the polyhedron constraints contained in the state of P(i): O(ki × ki ln 1
ξ ) bits,634
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Table 1: Memory structure for Algorithm 4

i 1 . . . p

j j(1) j(p)

Iteration index t(1) t(p)

Polyhedron P(1) =

 k1,a1, b1
k2,a2, b2

. . .
km,am, bm

 P(p)

Computed
dual variables (k⋆

(1)
,λ⋆

(1)
) =

(
k⋆1 , λ

⋆
1

k⋆2 , λ
⋆
2

. . .

)
(k⋆

(p)
,λ⋆

(p)
)

Working
separation vector u(1) u(p)

4. potentially, already computed dual variables λ⋆ and their corresponding vector of constraint635

indices k⋆ (l.3 of Algorithm 2): O(ki × ln 1
ξ ) bits,636

5. the working vector u(i) (updated l.8 of Algorithm 2): O(ki ln 1
ξ ) bits.637

The memory structure is summarized in Table 1.638

We can then check that this memory is sufficient to run Algorithm 4. An important point is that for639

any run of ApproxOracle(i, j, ·), in Algorithm 2, after running Vaidya’s method Algorithm 1 and640

storing the dual variables λ⋆ and corresponding indices k⋆ within their placements (k⋆
(i)
,λ⋆

(i)
)641

(l.1-3 of Algorithm 2), the iteration index t(i) and polyhedron P(i) memory placements are reset642

and can be used again for the second run of Vaidya’s method (l.4-10 of Algorithm 2). During this643

second run, the vector u is stored in its corresponding memory placement u(i) and updated along644

the algorithm. Once this run is finished, the output of ApproxOracle(i, j, ·) is readily available in645

the placement u(i). For i = p, the algorithm does not need to wait for the output of a level-(i+ 1)646

computation and can directly use the j(p)-th component of the returned separation vector from the647

oracle OS . As a result, the number of bits of memory used throughout the algorithm is at most648

M =

p∑
i=1

O
(
k2i ln

1

ξ

)
= O

(
d2

p
ln
d

ϵ

)
.

This ends the proof of the theorem.649

We can already give the useful range for p for our algorithms, which will also apply to the case with650

computational-memory constraints Appendix B.651

Proof of Corollary 3.1. Suppose ϵ ≥ 1
dd

. Then, for some pmax = Θ(
C ln 1

ϵ

2 ln d ) ≤ d, the algorithm652

from Theorem 3.2 yields a O( 1
ϵ2 ) oracle-complexity. On the other hand, if ϵ ≤ 1

dd
, we can take653

pmax = d, which gives an oracle-complexity O((C ln 1
ϵ )
d).654

B Memory-constrained feasibility problem with computations655

In the last section we gave the main ideas that allow reducing the storage memory. However,656

Algorithm 4 does not account for memory constraints in computations as per Definition 2.2. For657

instance, computing the volumetric center VolumetricCenter(P) already requires infinite memory for658

infinite precision. More importantly, even if one discretizes the queries, the necessary precision and659

computational power may be prohibitive with the classical Vaidya’s method Algorithm 1. Even finding660

a feasible point in the polyhedron (let alone the volumetric center) using only the constraints is itself661

computationally intensive. There has been significant work to make Vaidya’s method computationally662

tractable [46, 1, 2]. These works address the issue of computational tractability, but the memory issue663
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is still present. Indeed, the precision depends among other parameters on the condition number of the664

matrixH in order to compute the leverage scores σi for i ∈ [m], which may not be well-conditioned.665

Second, to avoid memory overflow, we also need to ensure that the points queried have bounded666

norm, which is again not a priori guaranteed in the original version Algorithm 1.667

To solve these issues and also give a computationally-efficient algorithm, the cutting-plane subroutine668

Algorithm 1 needs to be modified. In particular, the volumetric barrier needs to include regularization669

terms. Fortunately, these have already been studied in [25]. In a major breakthrough, this paper gave670

a cutting-plane algorithm with O(d3 lnO(1) d
ϵ ) runtime complexity, improving over the seminal work671

from Vaidya and subsequent works which hadO(d1+ω lnO(1) d
ϵ ) runtime complexity, whereO(dω) is672

the computational complexity of matrix multiplication. To achieve this result, they introduce various673

regularizing terms together with the logarithmic barrier. While the main motivation of [25] was674

computational complexity, as a side effect, these regularization terms also ensure that computations675

can be carried with efficient memory. We then use their method as a subroutine.676

For the sake of exposition and conciseness, we describe a simplified version of their method, that677

is also deterministic. This comes at the expense of a suboptimal running time O(d1+ω lnO(1) 1
ϵ ).678

We recall that our main concern is in memory usage rather than achieving the optimal runtime. The679

main technicality of this section is to show that their simplified method is numerically stable, and680

we emphasize that the original algorithm could also be shown to be numerically stable with similar681

techniques, leading to a time improvement from Õ(d1+ω) to Õ(d3). The memory usage, however,682

would not be improved.683

B.1 A memory-efficient Vaidya’s method for computations, via [25]684

Fix a polyhedronP = {x : Ax ≥ b}. Using the same notations as for Vaidya’s method in Section 4.1,685

we define the new leverage scores ψ(x)i = (Ax(A
⊤
xAx + λI)−1A⊤

x )i,i and Ψ(x) = diag(ψ(x)).686

Let µ(x) = mini ψ(x)i. Last, let Q(x) = A⊤
x (ceI +Ψ(x))Ax + λI , where ce > 0 is a constant687

parameter to be defined. In [25], they consider minimizing the volumetric-analytic hybrid barrier688

function689

p(x) = −ce
m∑
i=1

ln si(x) +
1

2
ln det(A⊤

xAx + λI) +
λ

2
∥x∥22.

We can check [25] that690

∇p(x) = −A⊤
x (ce · 1+ψ(x)) + λx,

where 1 is the vector of ones. The following procedure gives a way to minimize this function691

efficiently given a good starting point.692

Input: Initial point x(0) ∈ P = {x : Ax ≥ b}
Input: Number of iterations r > 0

Given :∥∇p(x(0))∥Q(x(0))−1 ≤ 1
100

√
ce + µ(x(0)) := η.

1 for k = 1 to r do
2 if ∥∇p(x(k−1))∥Q(x(0))−1 ≤ 2(1− 1

64 )
rη then Break;

3 x(k) = x(k−1) − 1
8Q(x(0))−1∇p(x(k−1))

4 end
Output: x(k)

Algorithm 5: x(r) = Centering(x(0), r)

We then present their simplified cutting-plane method.693

In both Algorithm 5 and Algorithm 6, notice that the updates require to compute in particular the694

leverage scores ψ(x), which can be computed in O(dω) time using their formula. To achieve the695

O(d3 lnO(1) 1
ϵ ) computational complexity, an amortized computational cost O(d2) is needed. The696

algorithm from [25] achieves this through various careful techniques aiming to update estimates697

of these leverage scores. The above cutting-plane algorithm is exactly that of [25] when these698

estimates are always exact (i.e. recomputed at each iteration), which yields the dω−2 overhead time699

complexity. In particular, the original proof of convergence and correctness of [25] directly applies to700

this simplified algorithm.701
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Input: ϵ, δ > 0 and a separation oracle O : Cd → Rd
Check :Throughout the algorithm, if si(x(t)) < 2ϵ for some i then return (Pt,x(t))

1 Initialize x(0) = 0 and P0 := {(−1, ei,−1), (−1,−ei,−1), i ∈ [d]}
2 for t ≥ 0 do
3 if mini∈[m] ψ(x

(t))i ≤ cd then
4 Pt+1 = Pt \ {(kj ,aj , bj)} where j ∈ argmini∈[m] ψ(x

(t))i
5 else
6 if x(t) /∈ Cd then a = −sign(xi)ei where i ∈ argminj∈[d] |x

(t)
j | ;

7 else a = O(x(t)) ;

8 Let b = a⊤x(t) − c−1/2
a

√
a⊤(A⊤S−2

x(t)A+ λI)−1a

9 Pt+1 = Pt ∪ {(t,a, b)}
10 x(t+1) = Centering(x(t), 200, c∆)
11 end

Algorithm 6: An efficient cutting-plane method, simplified from [25]

It remains to check whether one can implement this algorithm with efficient memory, corresponding702

to checking this method’s numerical stability.703

Lemma B.1. Suppose that each iterate of the centering Algorithm 5, ∥∇p(x(k−1))∥Q(x(0))−1 is com-704

puted up to precision (1− 1
64 )

rη (l.2), and x(k) is computed up to an error ζ(k) with ∥ζ(k)∥Q(x(0)) ≤705

1
210r (1−

1
64 )

rη (l.3). Then, Algorithm 5 outputs x(k) such that ∥∇p(x(k))∥Q−1(x(k)) ≤ 3(1− 1
64 )

rη706

and all iterates computed during the procedure satisfy ∥S−1
x(0)(s(x

(t))− s(x(0)))∥2 ≤ 1
10 .707

Proof. As mentioned above, without computation errors, the result from [25] would apply directly.708

Here, we simply adapt the proof to the case with computational errors to show that it still applies.709

Denote Q = Q(x(0)) for convenience. Let η = 1
100

√
ce + µ(x(0)). We prove by induction that710

∥x(t) − x(0)∥Q ≤ 9η, ∥∇p(x(t))∥Q−1 ≤ (1 − 1
64 )

tη for all t ≤ r. For a given iteration t, denote711

x̃(t+1) = x(k−1) − 1
8Q

−1∇p(x(k−1)) the result of the exact computation. The same arguments as712

in the original proof give ∥x̃(t+1) − x(0)∥Q ≤ 9η, and713

∥∇p(x̃(t+1))∥Q−1 ≤
(
1− 1

32

)
∥∇p(x(t))∥Q−1 .

Now because ∥x̃(t+1)−x(t+1)∥Q ≤ η, we have ∥x̃(t+1)−x(0)∥Q, ∥x(t+1)−x(0)∥Q ≤ 10η, so that714

[25, Lemma 11] gives ∇2p(y(u)) ⪯ 8Q(y(u)) ⪯ 16Q, where y(u) = x(t+1) + u(x̃(t+1) −x(t+1)715

for u ∈ [0, 1]. Thus,716

∥∇p(x̃(t+1))−∇p(x(t+1))∥Q−1 ≤
∥∥∥∥∫ 1

0

∇2p(y(u))(x̃(t+1) − x(t+1))

∥∥∥∥
Q−1

≤ 16∥x̃(t+1) − x(t+1)∥Q.
Now by construction of the procedure, if the algorithm performed iteration t + 1, we have717

∥∇p(x(t))∥Q−1 ≥ (1 − 1
64 )

rη. Combining this with the fact that ∥x̃(t+1) − x(t+1)∥Q ≤718
1

210r (1−
1
64 )

rη, obtain719

∥∇p(x(t+1))∥Q−1 ≤ ∥∇p(x̃(t+1))−∇p(x(t+1))∥Q−1 + ∥∇p(x̃(t+1))∥Q−1

≤
(
1− 1

64

)
∥∇p(x(t))∥Q−1 .

We now write720

∥x(t+1) − x(0)∥Q ≤
t∑

k=0

∥x̃(k+1) − x(k+1)∥Q +
1

8
∥Q−1∇p(x(k))∥Q

≤ η + 1

8

∞∑
i=0

(
1− 1

64

)i
η ≤ 9η.
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The induction is now complete. When the algorithm stops, either the r steps were performed, in which721

case the induction already shows that ∥∇p(x(r))∥Q−1 ≤ (1 − 1
64 )

rη. Otherwise, if the algorithm722

terminates at iteration k, because ∥∇p(x(k))∥Q−1 was computed to precision (1− 1
64 )

rη, we have723

(see l.2 of Algorithm 5)724

∥∇p(x(k))∥Q−1 ≤ 2

(
1− 1

64

)r
η +

(
1− 1

64

)r
η = 3

(
1− 1

64

)r
η.

The same argument as in the original proof shows that at each iteration t,725

∥S−1
x(0)(s(x

(t))− s(x(0)))∥2 = ∥x(t) − x(0)∥A⊤S−2

x(0)
A ≤

∥x(t) − x(0)∥Q√
µ(x(0)) + ce

≤ 1

10
.

This ends the proof of the lemma.726

Because of rounding errors, Lemma B.1 has an extra factor 3 compared to the original guarantee in727

[25, Lemma 14]. To achieve the same guarantee, it suffices to perform 70 ≥ ln(3)/ ln(1/(1− 1
64 ))728

additional centering procedures at most. hence, instead of performing 200 centering procedures729

during the cutting plane method, we perform 270 (l.10 of Algorithm 6). We next turn to the numerical730

stability of the main Algorithm 6.731

Lemma B.2. Suppose that throughout the algorithm, when checking the stopping criterion732

mini∈[m] si(x) < 2ϵ, the quantities si(x) were computed with accuracy ϵ. Suppose that at each733

iteration of Algorithm 6, the leverage scores ψ(x(t)) are computed up to multiplicative precision734

c∆/4 (l.3), that when a constraint is added, the response of the oracle a (l.7) is stored perfectly but b735

(l.8) is computed up to precision Ω( ϵ√
n
). Further suppose that the centering Algorithm 5 is run with736

numerical approximations according to the assumptions in Lemma B.1. Then, all guarantees for the737

original algorithm in [25] hold, up to a factor 3 for ϵ.738

Proof. We start with the termination criterion. Given the requirement on the computational accuracy,739

we know that the final output x satisfies mini∈[m] si(x) ≤ 3ϵ. Further, during the algorithm, if it740

does not stop, then one has mini∈[m] si(x) ≥ ϵ, which is precisely the guarantee of the original741

algorithm in [25].742

We next turn to the computation of the leverage scores in l.4. In the original algorithm, only a743

c∆-estimate is computed. Precisely, one computes a vector w(t) such that for all i ∈ [d], ψ(x(t))i ≤744

wi ≤ (1 + c∆)ψ(x
(t))i, then deletes a constraint when mini∈[m(t)] w

(t)
i ≤ cd. In the adapted745

algorithm, let ψ̃(x(t))i denote the computed leverage scores for i ∈ [d]. By assumption, we have746

(1− c∆/4)ψ(x(t))i ≤ ψ̃(x(t))i ≤ (1 + c∆/4)ψ(x
(t))i.

Up to re-defining the constant cd as (1− c∆/4)cd, ψ̃(x(t)) is precisely within the guarantee bounds747

of the algorithm. For the accuracy on the separation oracle response and the second-term value b, [25]748

emphasizes that the algorithm always changes constraints by a δ amount where δ = Ω( ϵ√
d
) so that749

an inexact separation oracle with accuracy Ω( ϵ√
d
) suffices. Therefore, storing an Ω( ϵ√

d
) accuracy750

of the second term keeps the guarantees of the algorithm. Last, we checked in Lemma B.1 that the751

centering procedure Algorithm 5 satisfies all the requirements needed in the original proof [25].752

For our recursive method, we need an efficient cutting-plane method that also provides a proof753

(certificate) of convergence. This is also provided by [25] that provide a proof that the feasible region754

has small width in one of the directions ai of the returned polyhedron.755

Lemma B.3. [25, Lemma 28] Let (P,x, (λi)i) be the output of Algorithm 7. Then, x is feasible,756

∥x∥2 ≤ 3
√
d, λj ≥ 0 for all j and

∑
i λi = 1. Further,757 ∥∥∥∥∥∑

i

λiai

∥∥∥∥∥
2

= O
(
ϵ
√
d ln

d

ϵ

)
, and

∑
i

λi(a
⊤
i x− bj) ≤ O

(
dϵ ln

d

ϵ

)
.

We are now ready to show that Algorithm 6 can be implemented with efficient memory and also758

provides a proof of the convergence of the algorithm.759
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Input: ϵ > 0 and a separation oracle O : Cd → Rd
1 Run Algorithm 6 to obtain a polyhedron P and a feasible point x
2 x⋆ = Centering(x, 64 ln 2

ϵ , c∆)

3 λi =
ce+ψi(x

⋆)
si(x⋆)

(∑
j
ce+ψj(x

⋆)
sj(x⋆)

)−1

for all i
Output: (P,x⋆, (λi)i)

Algorithm 7: Cutting-plane algorithm with certified optimality

Proposition B.1. Provided that the output of the oracle are vectors discretized to precision poly( ϵd )760

and have norm at most 1, Algorithm 7 can be implemented with O(d2 ln d
ϵ ) bits of memory to output761

a certified optimal point according to Lemma B.3. The algorithm performs O(d ln d
ϵ ) calls to the762

separation oracle and runs in O(d1+ω lnO(1) d
ϵ ) time.763

Proof. We already checked the numerical stability of Algorithm 6 in Lemma B.2. It remains to check764

the next steps of the algorithm. The centering procedure is stable again via Lemma B.1. It also765

suffices to compute the coefficients λj up to accuracy O(ϵ/(
√
d) ln(d/ϵ)) to keep the guarantees766

desired since by construction all vectors ai have norm at most one.767

It now remains to show that the algorithm can be implemented with efficient memory. We recall768

that at any point during the algorithm, the polyhedron P has at most O(d) constraints [25, Lemma769

22]. Hence, since we assumed that each vector ai composing a constraint is discretized to precision770

poly( ϵd ), we can store the polyhedron constraints with O(d2 ln d
ϵ ) bits of memory. The second771

terms b are computed up to precision Ω(ϵ/
√
d) hence only use O(d ln d

ϵ ) bits of memory. The772

algorithm also keeps the current iterate x(t) in memory. These are all bounded throughout the773

memory ∥x(t)∥2 = O(
√
d) [25, Lemma 23], hence only require O(d ln d

ϵ ) bits of memory for the774

desired accuracy.775

Next, the distances to the constraints are bounded at any step of the algorithm: si(x(t)) ≤ O(
√
d)776

[25, Lemma 24], hence computing si(x(t)) to the required accuracy is memory-efficient. Recall777

that from the termination criterion, except for the last point, any point x during the algorithm778

satisfies si(x) ≥ ϵ for all constraints i ∈ [m]. In particular, this bounds the eigenvalues of Q779

since λI ⪯ Q(x) ⪯ (λ + m(ce + 1)/ϵ2)I . Thus, the matrix is sufficiently well-conditioned to780

achieve the accuracy guarantees from Lemma B.1 usingO(d2 ln d
ϵ ) memory during matrix inversions781

(and matrix multiplications). Similarly, for the computation of leverage scores, we use Ψ(x) =782

diag(Ax(A
⊤
xAx + λI)−1A⊤

x ), where λI ⪯ A⊤
xAx + λI ⪯ (λ + mϵ−2)I . This same matrix783

inversion appears when computing the second term of an added constraint. Overall, all linear algebra784

operations are well conditioned and implementable with required accuracy with O(d2 ln d
ϵ ) memory.785

Using fast matrix multiplication, all these operations can be performed in Õ(dω) time per iteration of786

the cutting-plane algorithm since these methods are also known to be numerically stable [13]. Thus,787

the total time complexity is O(d1+ω lnO(1) d
ϵ ). The oracle-complexity still has optimal O(d ln d

ϵ )788

oracle-complexity as in the original algorithm.789

Up to changing ϵ to c · ϵ/(d ln d
ϵ ), the described algorithm finds constraints given by ai and bi,790

i ∈ [m] returned by the normalized separation oracle, coefficients λi, i ∈ [m], and a feasible point791

x⋆ such that for any vector in the unit cube, z ∈ Cd, one has792

min
i∈[m]

a⊤
i z − bi ≤

∑
i∈[m]

λi(a
⊤
i z − bi) ≤

∑
i∈[m]

λai

⊤

(x⋆ − z) +
∑
i∈[m]

λi(a
⊤
i x

⋆ − bi) ≤ ϵ.

This effectively replaces Lemma 4.1.793

B.2 Merging Algorithm 7 within the recursive algorithm794

Algorithms 2 to 4 from the recursive procedure need to be slightly adapted to the new format of795

the cutting-plane method’s output. In particular, the oracles do not take as input polyhedrons (and796
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eventually query their volumetric center as before), but directly take as input an point (which is an797

approximate volumetric center).798

Input: δ, ξ, Ox : Cn → Rm and Oy : Cn → Rn
1 Run Algorithm 7 with parameter c · δ/(d ln d

δ ), ξ and Oy to obtain (P⋆,x⋆,λ)
2 Store k⋆ = (ki, i ∈ [m]) where m = |P⋆|, and λ⋆ ← Discretize(λ⋆, ξ)

3 Initialize P0 := {(−1, ei,−1), (−1− ei,−1), i ∈ [d]}, x(0) = 0 and let u = 0 ∈ Rm
4 for t = 0, 1, . . . ,maxi ki do
5 if t = k⋆i for some i ∈ [m] then
6 gx = Ox(x

(t))
7 u← Discretizem(u+ λ⋆i gx, ξ)

8 Update Pt to get Pt+1, and x(t) to get x(t+1) as in Algorithm 6
9 end

10 return u
Algorithm 8: ApproxSeparationVectorδ,ξ(Ox, Oy)

Input: δ, ξ, 1 ≤ j ≤ i ≤ p, x(r) ∈ Ckr for r ∈ [i], OS : Cd → Rd
1 if i = p then
2 (g1, . . . , gp) = OS(x1, . . . ,xp)
3 return Discretizekj (gj , ξ)
4 end
5 Define Ox : Cki+1 → Rkj as ApproxOracleδ,ξ,Of

(i+ 1, j,x(1), , . . . ,x(i), ·)
6 Define Oy : Cki+1 → Rki+1 as ApproxOracleδ,ξ,Of

(i+ 1, i+ 1,x(1), . . . ,x(i), ·)
7 return ApproxSeparationVectorδ,ξ(Ox, Oy)

Algorithm 9: ApproxOracleδ,ξ,OS
(i, j,x(1), . . . ,x(i))

Input: δ, ξ, and OS : Cd → Rd a separation oracle
Check :Throughout the algorithm, if OS returned Success to a query x, return x

1 Run Algorithm 6 with parameters δ and ξ and oracle ApproxOracleδ,ξ,OS
(1, 1, ·)

Algorithm 10: Memory-constrained algorithm for convex optimization

The same proof as for Algorithm 4 shows that Algorithm 10 run with the parameters in Theorem A.1799

also outputs a successful vector using the same oracle-complexity. We only need to analyze the800

memory usage in more detail.801

Proof of Theorem 3.2. As mentioned above, we will check that Algorithm 10 with the same pa-802

rameters δ = ϵ
4d and ξ = σminϵ

32d5/2
as in Theorem A.1 satisfies the desired requirements. We have803

already checked its correctness and oracle-complexity. Using the same arguments, the computational804

complexity is of the form O(O(ComplexityCuttingPlanes)p) where ComplexityCuttingPlanes is the805

computational complexity of the cutting-plane method used, i.e., here of Algorithm 7. Hence, the806

computational complexity is O((C(d/p)1+ω lnO(1) d
ϵ )
p) for some universal constant C ≥ 2. We807

now turn to the memory. In addition to the memory of Algorithm 4, described in Table 1, we need808

1. a placement for all i ∈ [p] for the current iterate x(i): O(ki ln 1
ξ ) bits,809

2. a placement for computations, that is shared for all layers (used to compute leverage scores,810

centering procedures, etc. By Proposition B.1, since the vectors are always discretized to811

precision ξ, this requires O(maxi∈[p] k
2
i ln

d
ϵ ) bits,812

3. the placement Q to perform queries is the concatenation of the placements (x(1), . . . ,x(p)):813

no additional bits needed.814

4. a placement N to store the precision needed for the oracle responses: O(ln 1
ξ ) bits815
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5. a placement R to receive the oracle responses: O(d ln 1
ξ ) bits.816

The new memory structure is summarized in Table 2.817

With the same arguments as in the original proof of Theorem A.1, this memory is sufficient to run the818

algorithm and perform computations, thanks to the computation placement. The total number of bits819

used throughout the algorithm remains the same,O(d
2

p ln d
ϵ ). This ends the proof of the theorem.820

Table 2: Memory structure for Algorithm 10
i 1 . . . p Oracle response Precision

j j(1) j(p) R = (R1, . . . , Rp) N

Iteration index t(1) t(p)

Polyhedron P(1) =

 k1,a1, b1
k2,a2, b2

. . .
km,am, bm

 P(p)

Computation
memory

Current
iterate x(1) x(p)

Computed
dual variables (k⋆,λ⋆) =

(
k⋆1 , λ

⋆
1

k⋆2 , λ
⋆
2

. . .

)
(k⋆

(p)
,λ⋆

(p)
)

Working
separation vector u(1) u(p)

C Improved oracle-complexity/memory lower-bound trade-offs821

We recall the three oracle-complexity/memory lower-bound trade-offs known in the literature.822

1. First, [29] showed that any (including randomized) algorithm for convex optimization uses823

d1.25−δ memory or makes Ω̃(d1+4δ/3) queries.824

2. Then, [5] showed that any deterministic algorithm for convex optimization uses d2−δ825

memory or makes Ω̃(d1+δ/3) queries.826

3. Last, [5] show that any deterministic algorithm for the feasibility problem uses d2−δ memory827

or makes Ω̃(d1+δ) queries.828

Although these papers mainly focused on the regime ϵ = 1/poly(d) and as a result ln 1
ϵ = O(ln d),829

neither of these lower bounds have an explicit dependence in ϵ. This can lead to sub-optimal lower830

bounds whenever ln 1
ϵ ≫ ln d. Furthermore, in the exponential regime ϵ ≤ 1

2O(d) , these results831

do not effectively give useful lower bounds. Indeed, in this regime, one has d2 = O(d ln 1
ϵ ) and832

as a result, the lower bounds provided are weaker than the classical Ω(d ln 1
ϵ ) lower bounds for833

oracle-complexity [32] and memory [49]. In particular, in this exponential regime, these results fail834

to show that there is any trade-off between oracle-complexity and memory.835

In this section, we aim to explicit the dependence in ϵ of these lower-bounds. We show with simple836

modifications and additional arguments that one can roughly multiply these oracle-complexity and837

memory lower bounds by a factor ln 1
ϵ each. We split the proofs in two. First we give arguments to838

improve the memory dependence by a factor ln 1
ϵ , which is achieved by modifying the sampling of839

the rows of the matrixA defining a wall term common to the functions considered in the lower bound840

proofs [29, 5]. Then we show how to improve the oracle-complexity dependence by an additional841

ln 1
ϵ / ln d factor, via a standard rescaling argument.842

C.1 Improving the memory lower bound843

We start with some concentration results on random vectors. [29] gave the following result for random844

vectors in the hypercube.845
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Lemma C.1 ([29]). Let h ∼ U({±1}d). Then, for any t ∈ (0, 1/2] and any matrix Z =846

[z1, . . . ,zk] ∈ Rd×k with orthonormal columns,847

P(∥Z⊤h∥∞ ≤ t) ≤ 2−cHk.

Instead, we will need a similar concentration result for random unit vectors in the unit sphere.848

Lemma C.2. Let k ≤ d and x1, . . . ,xk be k orthonormal vectors, and ζ ≤ 1.849

Py∼U(Sd−1)

(
|x⊤
i y| ≤

ζ√
d
, i ∈ [k]

)
≤
(

2√
π
ζ

)k
≤ (
√
2ζ)k.

Proof. First, by isometry, we can suppose that the orthonormal vectors are simply e1, . . . , ek. We850

now prove the result by induction on d. For d = 1, the result holds directly. Fix d ≥ 2, and 1 ≤ k < d.851

Then, if Sn is the surface area of Sn the n-dimensional sphere, then852

P
(
|y1| ≤

ζ√
d

)
≤ Sd−2

Sd−1

2ζ√
d
=

2ζ√
πd

Γ(d/2)

Γ(d/2− 1/2)
≤ 2√

π
ζ. (7)

Conditionally on the value of y1, the vector (y2, . . . , yd) follows a uniform distribution on the853

(d− 2)-sphere of radius
√

1− y21 . Then,854

P
(
|yi| ≤

ζ√
d
, 2 ≤ i ≤ k | y1

)
= Pz∼U(Sd−2)

(
|zi| ≤

ζ√
d(1− y21)

, 2 ≤ i ≤ k

)

Now recall that since |x1| ≤ 1/
√
d, we have d(1− x21) ≥ d− 1. Therefore, using the induction,855

P
(
|yi| ≤

ζ√
d
, 2 ≤ i ≤ k | y1

)
≤ Pz∼U(Sd−2)

(
|zi| ≤

ζ√
d− 1

, 2 ≤ i ≤ k
)
≤
(

2ζ√
π

)k−1

.

Combining this equation with Eq (7) ends the proof.856

We next use the following lemma to partition the unit sphere Sd−1.857

Lemma C.3 ([17] Lemma 21). For any 0 < δ < π/2, the sphere Sd−1 can be partitioned into858

N(δ) = (O(1)/δ)d equal volume cells, each of diameter at most δ.859

Following the notation from [5], we denote by Vδ = {Vi(δ), i ∈ [N(δ)]} the corresponding partition,860

and consider a set of representatives Dδ = {bi(δ), i ∈ [N(δ)]} ⊂ Sd−1 such that for all i ∈ [N(δ)],861

bi(δ) ∈ Vi(δ). With these notations we can define the discretization function ϕδ as follows862

ϕδ(x) = bi(δ), x ∈ Vi(δ).

We then denote by Uδ the distribution of ϕδ(z) where z ∼ U(Sd−1) is sampled uniformly on the863

sphere. Note that because the cells of Vδ have equal volume, Uδ is simply the uniform distribution on864

the discretization Dδ .865

We are now ready to give the modifications necessary to the proofs, to include a factor ln 1
ϵ for866

the necessary memory. For their lower bounds, [29] exhibit a distribution of convex functions867

that are hard to optimize. Building upon their work [5] construct classes of convex functions that868

are hard to optimize, but that also depend adaptively on the considered optimization algorithm.869

For both, the functions considered a barrier term of the form ∥Ax∥∞, where A is a matrix of870

≈ d/2 rows that are independently drawn as uniform on the hypercube U({±1}d). The argument871

shows that memorizing A is necessary to a certain extent. As a result, the lower bounds can only872

apply for a memory of at most O(d2) bits, which is sufficient to memorize such a binary matrix.873

Instead, we draw rows independently according to the distribution Uδ , where δ ≈ ϵ. We explicit the874

corresponding adaptations for each known trade-off. We start with the lower bounds from [5] for ease875

of exposition; although these build upon those of [29], their parametrization makes the adaptation876

more straightforward.877
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C.1.1 Lower bound of [5] for convex optimization and deterministic algorithms878

For this lower bound, we use the exact same form of functions as they introduced,879

max

{
∥Ax∥∞ − η, ηv⊤0 x, η

(
max

p≤pmax,l≤lp
v⊤p,lx− pγ1 − lγ2

)}
,

with the difference that rows ofA are take i.i.d. distributed according to Uδ′ instead of U({±1}d). As880

a remark, they use n = ⌈d/4⌉ rows forA. Except for η, we keep all parameters γ1, γ2, etc as in the881

original proof, and we will take δ′ = ϵ and η = 2
√
dϵ. The reason why we introduced δ′ instead of δ882

is that the original construction also needs the discretization ϕδ . This is used during the optimization883

procedure which constructs adaptively this class of functions, and only needs δ = poly(1/d) instead884

of δ of order ϵ.885

Theorem C.1. For ϵ ≤ 1/(2d4.5) and any δ ∈ [0, 1], a deterministic first-order algorithm guaranteed886

to minimize 1-Lipschitz convex functions over the unit ball with ϵ accuracy uses at least d2−δ ln 1
ϵ887

bits of memory or makes Ω̃(d1+δ/3) queries.888

With the changes defined above, we can easily check that all results from [5] which reduce convex889

optimization to the optimization procedure, then the optimization procedure to their Orthogonal Vector890

Game with Hints (OVGH) [5, Game 2], are not affected by our changes. The only modifications to891

perform are to the proof of query lower bound for the OVGH [5, Proposition 14]. We emphasize that892

the distribution ofA is changed in the optimization procedure but also in OVGH as a result.893

Proposition C.2. Let k ≥ 20 M+3d log(2d)+1

n log2(
√
2(ζ+δ′

√
d))−1

. And let 0 < α, β ≤ 1 such that α(
√
d/β)5/4 ≤894

ζ/
√
d where ζ ≤ 1. If the Player wins the adapted OVGH with probability at least 1/2, then895

m ≥ 1
8 (1 +

30 log2 d

log2(
√
2(ζ+δ′

√
d))−1

)−1d.896

Proof. We use the same proof and only highlight the modifications. The proof is unchanged until the897

step when the concentration result Lemma C.1 is used. Instead, we use Lemma C.2. With the same898

notations as in the original proof, we constructed ⌈k/5⌉ orthonormal vectors Z = [z1, . . . ,z⌈k/5⌉]899

such that all rows a ofA′ (which isA up to some observed and unimportant rows) one has900

∥Z⊤a∥∞ ≤
ζ√
d
.

Next, by Lemma C.2, we have901 ∣∣∣∣{a ∈ Dδ′ : ∥Z⊤a∥∞ ≤
ζ√
d

}∣∣∣∣ ≤ |Dδ′ | · Pa∼Uδ′

(
∥Z⊤a∥∞ ≤

ζ√
d

)
≤ |Dδ′ | · Pz∼U(Sd−1)

(
∥Z⊤z∥∞ ≤

ζ√
d
+ δ′

)
≤ |Dδ′ | ·

(√
2(ζ + δ′

√
d)
)⌈k/5⌉

.

Hence, using the same arguments as in the original proof, we obtain902

H(A′ | Y ) ≤ (n−m)

(
log2 |Dδ′ |+ P(E) · k

5
log2

(√
2(ζ + δ′

√
d)
))

,

where E is the event when the algorithm succeeds at the OVGH game. In the next step, we need903

to bound H(A | V ) − H(G, j, c) where V stores hints received throughout the game, G stores904

observed rows ofA during the game, and j, c are auxiliary variables. The latter can be treated as in905

the original proof. We obtain906

H(A | V )−H(G, j, c) ≥ H(A)−H(G)− I(A;V )− 3m log2(2d)

≥ (n−m) log2 |Dδ′ | − 3m log2(2d)− I(A,V ).

Now the same arguments as in the original proof show that we still have I(A,V ) ≤ 3km log2 d+ 1,907

and that as a result, if M is the number of bits stored in memory,908

M ≥ k

10
log2

(
1√

2(ζ + δ′
√
d)

)
(n−m)− 3km log2 d− 1− 3d log2(2d).

Then, with the same arguments as in the original proof, we can conclude.909
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We are now ready to prove Theorem C.1. With the parameter k = ⌈20 M+3d log(2d)+1

n log2(
√
2(ϵd4/2+δ′

√
d))−1

⌉ and910

the same arguments, we show that an algorithm solving the convex optimization up to precision911

η/(2
√
d) = ϵ yields an algorithm solving the OVGH where the parameters α = 2η

γ1
and β = γ2

4912

satisfy913

α

(√
d

β

)5/4

≤ ηd3

4
=
d3.5ϵ

2
.

We can then apply Proposition C.2 with ζ = d4ϵ/2. Hence, if Q is the maximum number of queries914

of the convex optimization algorithm, we obtain915

⌈Q/pmax⌉+ 1 ≥ 1

8

(
1 +

30 log2 d

log2
1
d4ϵ − 1/2

)−1

d ≥ d

8 · 61
,

where in the last inequality we used ϵ ≤ 1/(2d4.5). As a result, with the same arguments, we obtain916

Q = Ω

(
d5/3 ln1/3 1

ϵ

(M + ln d)1/3 ln2/3 d

)
.

This ends the proof of Theorem C.1.917

C.1.2 Lower bound of [5] for feasibility problems and deterministic algorithms918

We improve the memory dependence by showing the following result.919

Theorem C.3. For ϵ = 1/(48d3) and any δ ∈ [0, 1], a deterministic algorithm guaranteed to solve920

the feasibility problem over the unit ball with ϵ accuracy uses at least d2−δ ln 1
ϵ bits of memory or921

makes at least Ω̃(d1+δ) queries.922

We use the exact same class of feasibility problems and only change the parameter η0 which923

constrained successful points to satisfy ∥Ax∥∞ ≤ η0, as well as the rows ofA that are sampled i.i.d.924

from Uδ . The other parameter η1 = 1/(2
√
d) is unchanged. We also take δ′ = ϵ. Because the rows of925

A are already normalized, we can take η0 = ϵ directly. Then, the same proof as in [5] shows that if an926

algorithm solves feasibility problems with accuracy ϵ, there is an algorithm for OVGH for parameters927

α = η/η1 and β = η1/2. Then, we have α(
√
d/β)5/4 ≤ 12d2η0 and we can apply Proposition C.2928

with ζ = 12d2.5η0 = 12d2.5ϵ. Similar computations as above then show that m ≥ d/(8 · 61), with929

k = Θ(M+ln d
d ln 1

ϵ

), so that the query lower bound finally becomes930

Q ≥ Ω

(
d3 ln 1

ϵ

(M + ln d) ln2 d

)
.

Remark C.1. The more careful analysis—involving the discretization Dδ of the unit sphere at scale931

δ instead of the hypercube {±1}d—allowed to add a ln 1
ϵ factor to the final query lower bound but932

also an additional ln d factor for both convex-optimization and feasibility-problem results. Indeed,933

the improved Proposition C.2 shows that the OVGH with adequate parameters requires O(d) queries,934

instead of O(d/ ln d) in [5, Proposition 14]. At a high level, each hint queried brings information935

O(d ln d) but memorizing a binary matrixA ∈ {±1}⌈d/4⌉×d only requires d2 bits of memory: hence936

the query lower bound is limited to O(d/ ln d). Instead, memorizing the matrixA where each row937

lies in Dδ requires Θ(d2 ln 1
ϵ ) memory, hence querying d hints (total information O(d2 ln d)) is not938

prohibitive for the lower bound.939

C.1.3 Lower bound of [29] for convex optimization and randomized algorithms940

We aim to improve the result to obtain the following.941

Theorem C.4. For ϵ ≤ 1/d4 and any δ ∈ [0, 1], any (potentially randomized) algorithm guaranteed942

to minimize 1-Lipschitz convex functions over the unit ball with ϵ accuracy uses at least d1.25−δ ln 1
ϵ943

bits of memory or makes Ω̃(d1+4δ/3) queries.944
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The distribution considered in [29] is given by the functions945

1

d6
max

{
d5∥Ax∥∞ − 1,max

i∈[N ]
(v⊤i x− iγ)

}
,

where N ≤ d is a parameter,A has ⌊d/2⌋ rows drawn i.i.d. from U({±1}d), and the vectors vi are946

drawn i.i.d. from the rescaled hypercube vi ∼ U(d−1/2{±1}d). We adapt the class of functions by947

simply changing pre-factors as follows948

µmax

{
1

µ
∥Ax∥∞ − 1,max

i∈[N ]
(v⊤i x− iγ)

}
, (8)

whereA has the same number of rows but they are draw i.i.d. from Uδ , and δ, µ > 0 are parameters949

to specify. We use the notation µ instead of η as in the previous sections because [29] already use950

a parameter η which in our context can be interpreted as η = 1/(µ
√
d). We choose the parameters951

µ = 16
√
dϵ and δ′ = ϵ.952

Again, as for the previous sections, the original proof can be directly used to show that if an algorithm953

is guaranteed to find a µ

16
√
N
(≥ ϵ)-suboptimal point for the above function class, there is an algorithm954

that wins at their Orthogonal Vector Game (OVG) [29, Game 1], with the only difference that the955

parameter d−4 (l.8 of OVG) is replaced by
√
dµ. OVG requires the output to be robustly-independent956

(defined in [29]) and effectively corresponds to β = 1/d2 in OVGH. As a result, there is a successful957

algorithm for the OVGH with parameters α =
√
dµ and β = 1/d2 and that even completely ignores958

the hints. Hence, we can now directly use Proposition C.2 with ζ = d1+25/16µ (from the assumption959

ϵ ≤ d−4 we have ζ ≤ 1/
√
d). This shows that with the adequate choice of k = Θ(M+d ln d

d ln 1
ϵ

), the960

query lower bound is Ω(d).961

Putting things together, a potentially randomized algorithm for convex optimization that uses M962

memory makes at least the following number of queries963

Q ≥ Ω

(
Nd

k

)
= Ω

(
d4/3

ln1/3 d

(
d ln 1

ϵ

M + d ln d

)4/3
)
.

C.2 Proof sketch for improving the query-complexity lower bound964

We now turn to improving the query-complexity lower bound by a factor ln 1
ϵ

ln d . At the high level, the965

idea is to replicate these constructed “difficult” class of functions at ln 1
ϵ

ln d different scales or levels,966

similarly to the manner that the historical Ω(d ln 1
ϵ ) lower bound is obtained for convex optimization967

[32]. This argument is relatively standard and we only give details in the context of improving the968

bound from [29] for randomized algorithms in convex optimization for conciseness. This result uses969

a simpler class of functions, which greatly eases the exposition. We first present the construction with970

2 levels, then present the generalization to p = Θ(
ln 1

ϵ

ln d ) levels. For convenience, we write971

Q(ϵ;M,d) = Ω

(
d4/3

ln1/3 d

(
d ln 1

ϵ

M + d ln d

)4/3
)
.

This is the query lower bound given in Theorem C.5 for convex optimization algorithms with memory972

M that optimize the defined class of functions (Eq (8)) to accuracy ϵ.973

C.2.1 Construction of a bi-level class of functions FA,v1,v2
to optimize974

In the lower-bound proof, [29] introduce the point975

x̄ = − 1

2
√
N

∑
i∈[N ]

PA⊥(vi),

where PA⊥ is the projection onto the orthogonal space to the rows ofA. They show that with failure976

probability at most 2/d, x̄ has good function value977

FA,v(x̄) := µmax

{
1

µ
∥Ax̄∥∞ − 1,max

i∈[N ]
(v⊤i x̄− iγ)

}
≤ − µ

8
√
N
.
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x

GA,v1(x)

x̄

µξ2
3

GA,v1(x̄)
+µξ2

3
(1 + ∥x− x̄∥2)

ξ2
3

µξ2 · 2ξ2
9

GA,v1(x̄) +
µξ2
3

+
µξ22
18

+
µξ22
54

maxi∈[N ]

(
v⊤
2,i

(
x−x̄
ξ2/9

)
− iγ

)

Figure 3: Representation of the procedure to rescale the optimization function.

This is shown in [29, Lemma 25]. On the other hand, from Theorem C.4, during the first978

Q1 = Q(ϵ;M,d)

queries of any algorithm, with probability at least 1/3, all queries are at least µ/(16
√
N)-suboptimal979

compared to x̄ in function value [29, Theorem 28, Lemma 14 and Theorem 16]. Precisely, if FA,v is980

the sampled function to optimize, with probability at least 1/3,981

FA,v(xt) ≥ FA,v(x̄) +
µ

16
√
N
≥ FA,v(x̄) +

µ

16
√
d
, ∀t ≤ Q1.

As a result, we can replicate the term maxi∈[N ](v
⊤
i x − iγ) at a smaller scale within the ball982

Bd(x̄, 1/(16
√
d)). For convenience, we introduce ξ2 = 1/(16

√
d) which will be the scale of the983

duplicate function. We separate the wall term ∥Ax∥∞ − µ for convenience. Hence, we define984

GA,v1
(x) := µmax

i∈[N ]

(
v⊤1,ix− iγ

)
GA,v1,v2

(x) := max{GA,v(1)(x), GA,v1
(x̄) +

µξ2
3
·

max

{
1 + ∥x− x̄∥2, 1 +

ξ2
6

+
ξ2
18

max
i∈[N ]

(
v⊤2,i

(
x− x̄
ξ2/9

)
− iγ

)}}
An illustration of the construction is given in Fig. 3. The resulting optimization functions are given985

by adding the wall term:986

FA,v1
(x) = max {∥Ax∥∞ − µ,GA,v1

(x)}
FA,v1,v2

(x) = max {∥Ax∥∞ − µ,GA,v1,v2
(x)}

We first explain the choice of parameters. First observe that since ∥Ax̄∥ = 0, we have GA,v1(x̄) =987

FA,v1(x̄). We can then check that for all x ∈ Bd(0, 1),988

GA,v1,v2
(x) ≤ max

{
GA,v1

(x), GA,v1
(x̄) +

2

3
µξ2

}
. (9)

Further, for any x ∈ Bd(x̄, ξ2/3), since FA,v1
is 1-Lipschitz, we can easily check that989

GA,v1,v2
(x)−GA,v1

(x̄)

=
µξ2
3

max

{
1 + ∥x− x̄∥2, 1 +

ξ2
6

+
ξ2
18

max
i∈[N ]

(
v⊤2,i

(
x− x̄
ξ2/9

)
− iγ

)}
≤ 2

3
µξ2.

Thus, GA,v1,v2(x) does not coincide with GA,v1(x) on Bd(x̄, ξ2/3). Then, the ∥x − x̄∥2 term990

ensures that any minimizer of GA,v1,v2 is contained within the closed ball Bd(x̄, ξ2/3). Also,991

to obtain a µξ2/3-suboptimal solution of FA,v1,v2 , the algorithm needs to find what would be a992

µξ2-suboptimal solution of FA,v1
, while receiving the same response as when optimizing the latter.993
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Next, for any x ∈ Bd(x̄, ξ2/9), the term maxi∈[N ]

(
v⊤2,i

(
x−x̄
ξ2/9

)
− iγ

)
lies in [−1, 1]. Hence, we994

can check that for x ∈ Bd(x̄, ξ2/9),995

GA,v1,v2(x) = GA,v1(x̄) +
µξ2
3

+
µξ22
18

+
µξ22
54

max
i∈[N ]

(
v⊤2,i

(
x− x̄
ξ2/9

)
− iγ

)
. (10)

We now argue that FA,v1,v2 acts as a duplicate function. Until the algorithm reaches a point with996

function value at mostGA,v1(x̄)+µξ2, the optimization algorithm only receives responses consistent997

with the function FA,v1 by Eq (9). Next, all minimizers of FA,v1,v2 are contained in Bd(x̄, ξ2/3),998

which was the goal of introducing the term in ∥x − x̄∥2. As a result, optimizing FA,v1,v2 on this999

ball is equivalent to minimizing1000

F̃A,v2
(y) = max

{
∥Ay∥∞ − µ2, c2 + ν2 max

i∈[N ]
(v⊤2,iy − iγ), c′2 + ν′2∥y∥

}
, y ∈ Bd(0, 3),

where y = x−x̄
ξ2/9

. The function has been rescaled by a factor ξ2/9 compared to FA,v1,v2 so that1001

µ2 = 9µ
ξ2

, ν2 = µξ2
6 , ν′2 = 6µ, c2 = 9

ξ2
GA,v1

(x̄) + 3µ + µξ2
2 , and c′2 = 9

ξ2
GA,v1

(x̄) + 3µ. By1002

Eq (10), the two first terms of F̃A,v1
are preponderant for y ∈ Bd(0, 1).1003

The form of F̃A,v2
is very similar to the original form of functions1004

FA,v2 = max

{
∥Ay∥∞ − µ′

1, µ
′
2 max
i∈[N ]

(v⊤2,iy − iγ)
}
,

In fact, the same proof structure for the query-complexity/memory lower-bound can be applied in1005

this case. The main difference is that originally one had µ′
1 = µ′

2; here we would instead have1006

µ′
1 = µ2 + c2 = Θ(µ/ξ2) and µ′

2 = ν2 = Θ(µξ2). Intuitively, this corresponds to increasing the1007

accuracy to Θ(ϵξ22)—a factor ξ2 is due to the fact that F̃A,v2
was rescaled by a factor ξ2/9 compared1008

to FA,v1,v2 , and a second factor ξ2 is due to the fact that within F̃A,v2 , we have µ′
2 = Θ(µξ2)—while1009

the query lower bound is similar to that obtained for Θ(ϵ/ξ2). As a result, during the first1010

Q2 = Q

(
Θ

(
ϵ

ξ2

)
;M,d

)
queries of any algorithm optimizing F̃A,v2 , with probability at least 1/3 on the sample ofA and v2,1011

all queries are at least Θ(ϵξ2)-suboptimal compared to1012

ȳ = − 1

2
√
N

∑
i∈[N ]

PA⊥(v2,i).

We are now ready to give lower bounds on the queries of an algorithm minimizing FA,v1,v2
to1013

accuracy Θ(ϵξ22). Let T2 be the index of the first query with function value at most GA,v1(x̄) + µξ2.1014

We already checked that before that query, all responses of the oracle are consistent with minimizing1015

FA,v1 , hence on an event E1 of probability at least 1/3, one has T2 ≥ Q1. Next, consider the1016

hypothetical case when at time T2, the algorithm is also given the information of x̄ and is allowed to1017

store this vector. Given this information, optimizing FA,v1,v2
reduces to optimizing F̃A,v2

since we1018

already know that the minimum is achieved within Bd(x̄, ξ2/3). Further, any query outside of this1019

ball either1020

• returns a vector v1,i which does not give any useful information for the minimization (v11021

and v2 are sampled independently and x̄ is given),1022

• or returns a row fromA, as covered by the original proof.1023

Hence, on an event E2 of probability at least 1/3, even with the extra information of x̄, during the1024

next Q2 queries starting from T2, the algorithm does not query a Θ(µξ32)−suboptimal solution to1025

FA,v1,v2
. This holds a fortiori for the model when the algorithm is not given x̄ at time T2.1026
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C.2.2 Recursive construction of a p-level class of functions FA,v1,...,vp1027

Similarly as in the last section, one can inductively construct the sequence of functions FA,v1 ,1028

FA,v1,v2 , FA,v1,v2,v3 , etc. Formally, the induction is constructed as follows: let (vp)p≥1 be an i.i.d.1029

sequence of N i.i.d. vectors (vk,i)i∈[N ] sampled from the rescaled hypercube d−1/2{±1}d. Next,1030

we pose1031

GA,v1(x) = µ(1) max
i∈[N ]

(
v⊤1,i

(
x− x̄(1)

s(1)

)
− iγ

)
,

where µ(1) = µ, x̄(1) = 0 and s(1) = 1. For k ≥ 1, we pose1032

x̄(k+1) = x̄(k) − s(k)

2
√
N

∑
i∈[N ]

PA⊥(vk,i), and F (k) := GA,v1,...,vk
(x̄(k)) + µ(k)ξk+1,

for a certain parameter ξk+1 to be specified. We then define the next level as1033

GA,v1,...,vk+1
(x) := max

{
GA,v1,...,vk

(x), GA,v1,...,vk
(x̄(k+1)) +

µ(k)ξk+1

3
·

max

{
1 +
∥x− x̄(k+1)∥2

s(k)
, 1 +

ξk+1

6
+
ξk+1

18
max
i∈[N ]

(
v⊤k+1,i

(
x− x̄(k+1)

s(k)ξk+1/9

)
− iγ

)}}
.

We then pose µ(k+1) := µ(k)ξ2k+1/54 and s(k+1) := s(k)ξk+1/9, which closes the induction. The1034

optimization functions are defined simply as1035

FA,v1,...,vk+1
(x) = max

{
∥Ax∥∞ − µ,GA,v1,...,vk+1

(x)
}
.

We checked before that we can use ξ2 = 1/(16
√
d). For general k ≥ 0, given that the form of1036

the function slightly changes to incorporate the absolute term (see F̃A,v2
), this constant may differ1037

slightly. In any case, one has ξk = Θ(1/
√
d). Now fix a construction level p ≥ 1 and for any k ∈ [p],1038

let Tk be the first time that a point with function value at most F (k) is queried. For convenience1039

let T0 = 0. Using the same arguments as above recursively, we can show that on an event Ek with1040

probability at least 1/3,1041

Tk − Tk−1 ≥ Qk = Q
(
Θ
( µ

s(k)

)
;M,d

)
Next note that the sequence F (k) is decreasing and by construction, if one finds a µ(p)ξp+1-suboptimal1042

point of FA,v1,...,vp
, then this point has value at most F (p). As a result, for an algorithm that finds a1043

µ(p)ξp+1-suboptimal point, the times T0, . . . , Tp are all well defined and non-decreasing. We recall1044

that µ = Θ(
√
dϵ). Therefore, we can still have µ/s(p) ≤

√
ϵ and µ(p)ξp+1 ≥ ϵ2 for p = Θ(

ln 1
ϵ

ln d ).1045

Combining these observations, we showed that when optimizing the functions FA,v1,...,vp to accuracy1046

Θ(µ(p)ξp+1) = Ω(ϵ2), the total number of queries Q satisfies1047

E[Q] ≥ 1

3

∑
k∈[p]

Qk ≥
p

3
Q(
√
ϵ;M,d) = Θ

(
d4/3 ln 1

ϵ

ln4/3 d

(
d ln 1

ϵ

M + d ln d

)4/3
)
.

Changing ϵ to ϵ2 proves the desired result.1048

Theorem C.5. For ϵ ≤ 1/d8 and any δ ∈ [0, 1], any (potentially randomized) algorithm guaranteed1049

to minimize 1-Lipschitz convex functions over the unit ball with ϵ accuracy uses at least d1.25−δ ln 1
ϵ1050

bits of memory or makes Ω̃(d1+4δ/3 ln 1
ϵ ) queries.1051

The same recursive construction can be applied to the results from Theorems C.1 and C.3 to improve1052

their oracle-complexity lower bounds by a factor ln 1
ϵ

ln d , albeit with added technicalities due to the1053

adaptivity of their class of functions. This yields Theorem 3.3.1054
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Input: Number of iterations T , computation accuracy η ≤ 1, target accuracy ϵ ≤ 1
Initialize: x = 0;
for t = 0, . . . , T do

Query the oracle at x
if x successful then return x;
Receive a separation vector g with accuracy η
Update x as x− ϵg up to accuracy η

end
return x

Algorithm 11: Memory-constrained gradient descent

D Memory-constrained gradient descent for the feasibility problem1055

In this section, we prove a simple result showing that memory-constrained gradient descent applies1056

to the feasibility problem. We adapt the algorithm described in [49].1057

We now prove that this memory-constrained gradient descent gives the desired result of Proposi-1058

tion 3.1.1059

Proof of Proposition 3.1. Denote by xt the state of x at iteration t, and gt (resp. g̃t) the separation1060

oracle without rounding errors (resp. with rounding errors) at xt. By construction,1061

∥xt+1 − (xt + ϵg̃t)∥ ≤ η and ∥g̃t − gt∥ ≤ η. (11)

As a result, recalling that ∥gt∥ = 1,1062

∥xt+1−x⋆∥2 ≤ (∥xt+ϵg̃t−x⋆∥+η)2 ≤ (∥xt+ϵgt−x⋆∥+(1+ϵ)η)2 ≤ ∥xt+ϵgt−x⋆∥2+20η.

By assumption, Q contains a ball Bd(x⋆, ϵ) for x⋆ ∈ Bd(0, 1). Then, because gt separates xt from1063

Bd(x
⋆, ϵ), one has g⊤t (x

⋆ − xt) ≥ ϵ. Therefore,1064

∥xt+1 − x⋆∥2 ≤ ∥xt − x⋆∥2 + 2ϵg⊤t (xt − x⋆) + ϵ2∥gt∥2 + 20η

≤ ∥xt − x⋆∥2 − ϵ2 + 20η.

Then, take η = ϵ2/40 and T = 8
ϵ2 . If iteration T was performed, we have using the previous equation1065

∥xT − x⋆∥2 ≤ ∥x0 − x⋆∥2 −
ϵ2

2
T ≤ 4− ϵ2

2
T ≤ 0.

Hence, xT is an ϵ-suboptimal solution.1066

We now turn to the memory usage of gradient descent. It only needs to store x and g up to the desired1067

accuracy η = O(ϵ2). Hence, this storage and the internal computations can be done with O(d ln d
ϵ )1068

memory. Because we suppose that ϵ ≤ 1√
d

, this gives the desired result.1069
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