
Appendix

This is the appendix of our work: ‘Structure-free Graph Condensation: From Large-scale
Graphs to Condensed Graph-free Data’. In this appendix, we provide more details of the proposed
SFGC in terms of related works, potential application scenarios, dataset statistics, method analysis,
and experimental settings with some additional results.

A Related Works

Dataset Distillation (Condensation) aims to synthesize a small typical dataset that distills the
most important knowledge from a given large target dataset, such that the synthesized small dataset
could serve as an effective substitution of the large target dataset for various scenarios [30, 49], e.g.,
model training and inference, architecture search, and continue learning. Typically, DD [59] and
DC-KRR [39] adopted the meta-learning framework to solve bi-level distillation objectives through
calculating meta-gradients. In contrast, DC [77], DM [76], and MTT [4] designed surrogate functions
to avoid unrolled optimization through the gradient matching, feature distribution matching, and
training trajectory matching, respectively, where the core idea is to effectively mimic the large target
dataset in the synthesized small dataset. Except for the image data condensed by the above-mentioned
works, GCOND [27] first extended the online gradient matching scheme in DC [77] to structural
graph data, along with parameterized graph structure learning module to synthesize condensed edge
connections. Furthermore, DosCond [26] proposed single-step gradient matching to synthesize
graph nodes, with a probabilistic graph model to condense structures on the graph classification
task. In this work, we eliminate the process of synthesizing graph structures and propose a novel
structure-free graph condensation paradigm, to distill the large-scale graph to the small-scale graph-
free data, leading to the easier optimization process of condensation. Meanwhile, the structure-free
characteristic allows condensed data better generalization ability to different GNN architectures.

Graph Size Reduction aims to reduce the graph size to fewer nodes and edges for effective and
efficient GNN training, including graph sampling [66, 6], graph coreset [47, 60], graph sparsifica-
tion [1, 5], graph coarsening [3, 28], and recently rising graph condensation [27, 9, 26]. Concretely,
graph sampling methods [66, 6] and graph coreset methods [47, 60] sample or select the subset
of nodes and edges from the whole graph, such that the information of the derived sub-graph is
constrained by the whole large-scale graph, which considerably limits the expressiveness of the
size-reduced graph. Moreover, graph sparsification methods [1, 5] and graph coarsening methods
[3, 28] reduce the number of edges and nodes by simplifying the edge connections and grouping
node representations of the large-scale graph, respectively. The core idea of both sparsification
and coarsening is to preserve specific large-scale graph properties (e.g., spectrum and principle
eigenvalues) in the sparse and coarsen small graph. The preserved graph properties in the small-scale
graph, however, might not be suitable for downstream GNN tasks. In contrast, our work focuses on
graph condensation to directly optimize and synthesize the small-scale condensed data, which breaks
information constraints of the large-scale graph and encourages consistent GNN test performance.

B Potential Application Scenarios

We would like to highlight the significance of graph condensation task to various application scenarios
within the research field of dataset distillation/condensation, while comprehensive overviews can
be found in survey works [30, 59]. Specifically, we present several potential scenarios where our
proposed structure-free graph condensation method could bring benefits:

Graph Neural Architecture Search. Graph neural architecture search (GraphNAS) aims to develop
potential and expressive GNN architectures beyond existing human-designed GNNs. By automatically
searching in a space containing various candidate GNN architecture components, GraphNAS could
derive powerful and creative GNNs with superior performance on specific graph datasets for specific
tasks [80, 81, 46, 13, 18]. Hence, GraphNAS needs to repeatedly train different potential GNN
architectures on the specific graph dataset, and ultimately selects the optimal one. When in the
large-scale graph, this would incur severe computation and memory costs. In this case, searching on
our developed small-scale condensed graph-free data, a representative substitution of the large-scale
graph, could significantly benefit for saving many computation costs and accelerating new GNN
architecture development in GraphNAS research field.
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Privacy Protection. Considering the outsourcing scenario of graph learning tasks, the original
large-scale graph data is not allowed to release due to privacy, for example, patients expect to use
GNNs for medical diagnosis without their personal medical profiles being leaked [52, 11]. In this
case, as a compact and representative substitution, the synthesized small-scale condensed graph
could be used to train GNN models, so that the private information of the original graph data can be
protected. Besides, considering the scenario that over-parameterized GNNs might easily memorize
training data, inferring the well-trained models could cause potential privacy leakage issue. In this
case, we could release a GNN model trained by the synthesized small-scale condensed graph, so that
the model avoids explicitly training on the original large-scale graph and consequently helps protect
its data privacy.

Adversarial Robustness. In practical applications, GNNs might be attacked with disrupted perfor-
mance, when attackers impose adversarial perturbations to the original graph data [68], for instance,
poisoning attacks on graph data [53, 15, 84], where attackers attempt to alter the edges and nodes of
training graphs of a target GNN. Training on poisoned graph data could significantly damage GNNs’
performance. In this case, given a poisoned original training graph, graph condensation could synthe-
size a new condensed graph from it, which we use to train the target GNN would achieve comparable
test performance with that trained by the original training graph before being poisoned. Hence, the
new condensed graph could eliminate adversarial samples in the original poisoned graph data with
great adversarial robustness, so that using it to train a GNN would not damage its performance for
inferring test graphs.

Continual learning. Continual learning (CL) aims to progressively accumulates knowledge over
a continuous data stream to support future learning while maintaining previously learned informa-
tion [45, 12, 65]. One of key challenges of CL is catastrophic forgetting [31, 83], where knowledge
extracted and learned from old data/tasks are easily forgotten when new information from new
data/tasks are learned. Some works have studied that data distillation/condensation is an effective
solution to alleviate catastrophic forgetting [8, 48, 50, 62], where the distilled and condensed data is
taken as representative summary stored in a replay buffer that is continually updated to instruct the
training of subsequent data/tasks.

To summarize, graph condensation task holds great promise and is expected to bring significant
benefits to various graph learning tasks and applications. By producing compact, high-quality,
small-scale condensed graph data, graph condensation has the potential to enhance the efficiency and
effectiveness of future graph machine learning works.

C Dataset Details

We provide the details of the original dataset statistics in Table A1. Moreover, we also compare the
statistics of our condensed graph-free data with GCOND [27] condensed graphs in Table A2. It
can be observed that both GCOND [27] and our proposed SFGC significantly reduce the numbers
of nodes and edges from large-scale graphs, as well as the data storage. Importantly, our proposed
SFGC directly reduces the number of edges to 0 by eliminating graphs structures in the condensation
process, but with superior node attribute contexts integrating topology structure information.

Table A1: Details of dataset statistics.

Datasets #Nodes #Edges #Classes #Features Train/Val/Test

Cora 2,708 5,429 7 1,433 140/500/1000
Citeseer 3,327 4,732 6 3,703 120/500/1000
Ogbn-arxiv 169,343 1,166,243 40 128 90,941/29,799/48,603

Flickr 89,250 899,756 7 500 44,625/22312/22313
Reddit 232,965 57,307,946 41 602 15,3932/23,699/55,334

D More Analysis of Structure-free Paradigm

In this section, we theoretically analyze the rationality of the proposed structure-free paradigm from
the views of statistical learning and information flow, respectively.
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Table A2: The statistic comparison of condensed graphs by GCOND [27] and condensed graph-free
data by our SFGC.

Dataset Citeseer (r = 1.8%) Cora (r = 2.6%) Ogbn-arxiv (r = 0.25%) Flickr (r = 0.5%) Reddit (r = 0.1%)

Methods Whole GCOND [27] SFGC (ours) Whole GCOND [27] SFGC (ours) Whole GCOND [27] SFGC (ours) Whole GCOND [27] SFGC (ours) Whole GCOND [27] SFGC (ours)

Accuracy 70.7 70.5 72.4 81.5 79.8 81.7 71.4 63.2 66.1 47.1 47.1 47.0 94.1 89.4 90.0
#Nodes 3,327 60 60 2,708 70 70 169,343 454 454 44,625 223 223 153,932 153 153
#Edges 4,732 1,454 0 5,429 2,128 0 1,166,243 3,354 0 218,140 3,788 0 10,753,238 301 0
Sparsity 0.09% 80.78% - 0.15% 86.86% - 0.01% 3.25% - 0.02% 15.23% - 0.09% 2.57% -
Storage 47.1MB 0.9MB 0.9MB 14.9MB 0.4MB 0.4MB 100.4MB 0.3MB 0.2MB 86.8MB 0.5MB 0.4MB 435.5MB 0.4MB 0.4MB

The View of Statistical Learning. We start from the graph condensation optimization objective
of synthesizing graphs structures in Eq. (1) of the main submission. Considering its inner loops
θT ′ = argmin

θ
L [GNNθ (X

′,A′) ,Y′] with A′ = GSLψ (X′), it equals to learn the conditional

probability Q(Y′ | T ′) given the condensed graph T ′ = (X′,A′,Y′) as

Q(Y′ | T ′) ≈
∑

A′∈ψ(X′)

Q(Y′ | X′,A′)Q(A′ | X′)

=
∑

A′∈ψ(X′)

Q(X′,A′,Y′)/Q(X′,A′) ·Q(X′,A′)/Q(X′)

=
∑

A′∈ψ(X′)

Q(X′,A′,Y′)/Q(X′)

=Q(X′,Y′)/Q(X′) = Q(Y′ | X′),

(8)

where we simplify the notation of graph structure learning module GSLψ as parameterized ψ (X′).
As can be observed, when the condensed graph structures are learned from the condensed nodes
as A′ ∈ ψ (X′), the optimization objective of the conditional probability is not changed, while its
goal is still to solve the posterior probability Q(Y′ | X′). In this way, eliminating graph structures
to conduct structure-free condensation is rational from the view of statistical learning. By directly
synthesizing the graph-free data, the proposed SFGC could ease the optimization process and directly
transfer all the informative knowledge of the large-scale graph to the condensed graph node set
without structures. Hence, the proposed SFGC conducts more compact condensation to derive the
small-scale graph-free data via Eq. (6) of the main manuscript, whose node attributes already integrate
implicit topology structure information.

The View of Information Flow. For training on large-scale graphs to obtain offline parameter
trajectories, we solve the node classification task on T = (X,A,Y) with a certain GNN model as

θ∗T = argmin
θ
Lcls [GNNθ(X,A),Y] , (9)

where ∗ denotes the optimal training parameters that build the training trajectory distribution PΘT .
The whole graph information, i.e., node attributes X and topology structures A are both embedded
in the latent space of GNN network parameters. Hence, the large-scale graph information flows to
GNN parameters as (X,A) ⇒ PΘT . In this way, by meta-sampling in the trajectory distribution,
Eq. (4) and Eq. (5) in the main manuscript explicitly transfer learning behaviors of the large-scale
graph to the parameter space θ̃S of GNNS as PΘT ⇒ θ̃S . As a result, the informative knowledge
of the large-scale graphs, i.e., node attributes and topology structure information (X,A), would be
comprehensively transferred as (X,A) ⇒ PΘT ⇒ θ̃S . In this way, we could identify the critical
goal of graph condensation is to further transfer the knowledge in θ̃S to the output condensed graph
data as:

(X,A)⇒ PΘT ⇒ ΘS ⇒ T ′ = (X′,A′), GC.

(X,A)⇒ PΘT ⇒ ΘS ⇒ S = (X̃), SFGC.
(10)

where GC and SFGC are corresponding to the existing graph condensation and the proposed structure-
free graph condensation, respectively.

Hence, from the view of information flow, we could observe that condensing structures would not
inherit more information from the large-scale graph. Compared with GC which formulates the
condensed graph into nodes and structures, the proposed SFGC directly distills all the large-scale
graph knowledge into the small-scale graph node set without structures. Consequently, the proposed
SFGC conducts more compact condensation to derive the small-scale graph-free data, which implicitly
encodes the topology structure information into the discriminative node attributes.

18



Table A3: Running time comparison (seconds) of the proposed SFGC and GCOND [27] for 50 epochs
with a single GeForce RTX 3080 GPU.

Ogbn-arxiv r=0.05% r=0.25% r=0.5%

GCOND[27] 296.34 442.58 885.58
SFGC (ours) 101.07 183.54 150.35

Figure A1: Comparison of the dynamic tensor used memory cost between online short-range gradient
matching method GCOND [27] and our proposed SFGC.

E More Experimental Settings and Results

E.1 Time Complexity Analysis & Dynamic Memory Cost Comparison

We first analyze the time complexity of the proposed method and compare the running time between
our proposed SFGC and GCOND [27].

Let the number of GCN layers be L, the large-scale graph node number be N , the small-scale
condensed graph node number be N ′, the the feature dimension be d, the time complexity of
calculating training trajectory meta-matching objective function is about TKO(LN ′d2 +LN ′d), for
each process of the forward, backward, and training trajectory meta-matching loss calculation, where
T denotes the number of iterations and K denotes the meta-matching steps. Note that the offline
expert training stage costs an extra TKO(LEd+ LNd2) on the large-scale graph, where E is the
number of edges.

In contrast, for GCOND, it has at least TKO(LN ′2d+LN ′d) + TKO(N ′2d2), and also additional
TKO(LEd+LNd2) on the large-scale graph, where K denotes the number of different initialization
here. It can be observed that our proposed SFGC has a smaller time complexity compared to GCOND,
which can be mainly attributed to our structure-free paradigm when the adjacency matrix related
calculation in O(LN ′2d) can be avoided. The corresponding comparison of running time in the
graph condensation process can be found in Table A3. As can be observed, both results on time
complexity and running time could verify the superiority of the proposed SFGC.

Moreover, we present the comparison result of the dynamic tensor used memory cost between the
online short-range gradient matching method GCOND [27] and our offline long-range meta-matching
SFGC. As shown in Fig. A1, we consider three stages of optimizing the objective function, i.e.,
before outer optimization, in the outer and inner optimization, and after outer optimization. It can be
observed that the proposed SFGC could significantly alleviate heavy online memory and computation
costs. This can be attributed to its offline parameter matching schema.

E.2 Effectiveness of Graph Neural Feature Score in SFGC

To verify the effectiveness of graph neural feature score γgnf in the proposed SFGC, we consider
the following two aspects in dynamic evaluation: (1) node classification performance at different
meta-matching steps in Table A4; (2) learning time comparison between iterative GNN training and
our closed-form γgnf in Fig. A2.

As shown in Table A4, we select certain meta-matching step intervals, i.e., 1000, 2000, and 3000,
for testing their condensed data’s performance, which is a commonly-used evaluation strategy for
existing methods. Here, we set long-enough meta-matching steps empirically to ensure sufficient
learning to expert training trajectory-built parameter distribution. And we compare these interval-step
results with the performance of our condensed graph-free data, which is selected at certain steps of
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Table A4: Performance of the condensed graph-free data between different meta-matching steps and
γgnf dynamic evaluation selected steps in the proposed SFGC.

Datasets
(Ratio)

Meta-matching Steps γgnf

1000 2000 3000 ACC Selected Steps

Citeseer
(r = 1.8%) 61.8±3.1 64.2±5.2 - 72.4±0.4 46

Cora
(r = 2.6%) 81.2±0.5 81.8±0.7 - 81.7±0.5 929

Ogbn-arxiv
(r = 0.25%) 64.5±0.8 65.8±0.3 - 66.1±0.4 90

Flickr
(r = 0.5%) 46.3±0.2 44.7±0.3 - 47.0±0.1 200

Reddit
(r = 0.1%) 86.9±0.5 89.8±0.3 89.9±0.5 90.0±0.3 2299

Figure A2: Learning time comparison (seconds) in dynamic evaluation between GNN iterative
training and closed-form GNTK in γgnf of the proposed SFGC.

the meta-matching process according to the metric γgnf. Overall, γgnf could select optimal condensed
graph-free data with superior effectiveness at best meta-matching steps.

For the learning time comparison between GNN iterative training vs. GNTK-based closed-form
solutions of γgnf in Fig. A2, we consider the time of GNN iterative training that covers all training
epochs under the best test performance for fair comparisons. This is due to the fact that the iterative
training evaluation strategy mandates the complete training of a GNN model from scratch at each
meta-matching step. For instance, in Flickr dataset (r = 0.1%), we calculate 200 epochs running time,
i.e., 0.845s, which is the optimal parameter setting for training GNN under 0.1% condensation ratio.
As can be generally observed, for all datasets, the proposed GNTK-based closed-form solutions of γgnf
significantly save the learning time for evaluating the condensed graph-free data in meta-matching,
illustrating our SFGC’s high dynamic evaluation efficiency.

E.3 Analysis of Different Meta-matching Ranges

To explore the effects of different ranges of long-term meta-matching, we present the different step
combinations of q steps (student) in GNNS and p steps (expert) of GNNT in Eq. (5) of the main
manuscript on Ogbn-arxiv dataset under r = 0.05%. The results are shown in Fig. A3. As can be
observed, there exists the optimal step combination of q student steps (600) and expert p steps (1800).
Under such a setting, the condensed small-scale graph-free data has the best node classification
performance. Moreover, the quality and expressiveness of the condensed graph-free data moderately
vary with different step combinations, but the variance is not too drastic.

More detailed settings of hyper-parameters of q steps (student) in GNNS and p steps (expert) of
GNNT in the long-term meta-matching, as well as the meta-matching learning rate (LR) in the
outer-level optimization and GNNS learning rate (step size) ζ (Algorithm 1 of the main manuscript)
in the inner-level optimization, are listed in Table A5.
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Figure A3: Performance with different step combinations of q student steps and expert p steps on
Ogbn-arxiv (r = 0.05%).

Table A5: Hyper-parameters of p expert steps and q student steps with meta-matching learning
rate (LR) in the outer-level optimization and GNNS learning rate (step size) ζ in the inner-level
optimization.

Datasets Ratios (r) p steps (expert) q steps (student) Meta-matching LR ζ for GNNS

Citeseer
0.9% 500 200 0.0005 1.0
1.8% 500 200 0.001 1.0
3.6% 400 300 0.001 1.0

Cora
1.3% 1500 400 0.0001 0.5
2.6% 1200 500 0.0001 0.5
5.2% 2000 500 0.0001 0.5

Ogbn-arxiv
0.05% 1800 600 0.2 0.2
0.25% 1900 1200 0.1 0.1
0.5% 1900 1000 0.1 0.1

Flickr
0.1% 700 600 0.1 0.3
0.5% 900 600 0.01 0.2
1% 900 900 0.02 0.2

Reddit
0.05% 900 900 0.02 0.5
0.1% 900 900 0.05 0.5
0.2% 900 900 0.2 0.2

E.4 Performance on Graph Node Clustering Task

Taking graph node clustering as the downstream task, we verified that, our condensed graph-free data,
synthesized based on the node classification task, can be effectively utilized for other graph machine
learning tasks, demonstrating the applicability of our condensed data. The experimental results are
shown in Table A6 and Table A7 below.

Concretely, we use our condensed graph-free data, which is generated using GNN classification
experts, to train a GCN model. Then, the trained GCN model conducts clustering on the original
large-scale graph. The clustering results in percentage on Cora and Citeseer datasets are shown by four
commonly-used metrics, including clustering accuracy (C-ACC), Normalized Mutual Information
(NMI), F1-score (F1), and Adjusted Rand Index (ARI).

Table A6: Performance comparison on Cora in terms of graph node clustering. Best results are in
bold and the second best are with underlines.

Clusterings on Cora C-ACC NMI F1 ARI

K-means 50.0 31.7 37.6 23.9
VGAE [29] 59.2 40.8 45.6 34.7
ARGA [42] 64.0 44.9 61.9 35.2
MGAE [58] 68.1 48.9 53.1 56.5
AGC [75] 68.9 53.7 65.6 44.8
DAEGC [57] 70.4 52.8 68.2 49.6
SUBLIME [35] 71.3 54.2 63.5 50.3

SFGC (ours) (r = 1.3%) 70.5 51.9 71.0 43.7
SFGC (ours) (r = 2.6%) 69.4 51.3 70.1 42.2
SFGC (ours) (r = 5.2%) 71.8 53.0 73.1 43.8
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Table A7: Performance comparison on Citeseer in terms of graph node clustering. Best results are in
bold and the second best are with underlines.

Clusterings on Citeseer C-ACC NMI F1 ARI

K-means 54.4 31.2 41.3 28.5
VGAE [29] 39.2 16.3 27.8 10.1
ARGA [42] 57.3 35.0 54.6 34.1
MGAE [58] 66.9 41.6 52.6 42.5
AGC [75] 67.0 41.1 62.5 41.5
DAEGC [57] 67.2 39.7 63.6 41.0
SUBLIME [35] 68.5 44.1 63.2 43.9
SFGC (ours) (r = 0.9%) 64.9 38.1 63.6 37.3
SFGC (ours) (r = 1.8%) 66.5 39.4 64.9 39.7
SFGC (ours) (r = 3.6%) 65.3 37.6 63.4 38.0

Figure A4: Visualization of t-SNE on condensed graph-free data by SFGC.

As can be observed, our condensed graph enables the GNN model to achieve comparable results with
many graph node clustering baseline methods, even though we do not customize the optimization
objective targeting node clustering task in the condensation process. These results could justify that:
(1) the condensed graph-free data that is synthesized based on GNN classification experts, could also
work well in other tasks, even without task-specific customization in the condensation process; (2)
the condensed graph-free data contains adequate information about the original large-scale graph,
which can be taken as the representative and informative substitution of the original large-scale graph,
reflecting the good performance of our proposed method in graph condensation.

E.5 Visualization of Our Condensed Graph-free Data

we present t-SNE [55] plots of the condensed graph-free data of our proposed SFGC under the
minimum condensation ratios over all datasets in Fig. A4. The condensed graph-free data shows
a well-clustered pattern over Cora and Citeseer. In contrast, on larger-scale datasets with larger
condensation ratios, we can also observe some implicit clusters within the same class. These
results show that the small-scale graph-free data synthesized by our method has discriminative and
representative node attributes that capture comprehensive information from large-scale graphs.
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