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In this document, we present a detailed report on two test cases examined in the paper: (i) Miller1

compensated Two-stage OTA and (ii) Three-stage Ring Oscillator. For each case, we provide a2

circuit schematic that showcases the different components named according to the input design3

parameters mentioned in the subsequent tables. The chosen Figure of Merit (FOM) formulas were4

carefully designed to strike a balance between multiple performance metrics, taking into consideration5

the specific requirements of each case. Additionally, a comprehensive time-complexity analysis6

is presented, supported by experimental evidence that clearly demonstrates the superior speed and7

efficiency of our proposed algorithms compared to other competitive methods.8

1 Two-stage OTA with Miller compensation9

Figure 1: Schematic of Two-stage OTA with Miller Compensation

1.1 Theory10

The operational transconductance amplifier (OTA) is a fundamental block in analog integrated circuits,11

which in selected example is comprised of two stages: a 5 transistor based differential input and single12

ended output differential amplifier as its first stage which is followed by a common-source amplifier13

as its second stage (output stage). It uses Miller compensation to ensure stability while simultaneously14

providing a high output swing. Consequently, the OTA becomes a versatile and indispensable building15

block in circuit designs such as operational amplifiers, analog filters, analog-to-digital converters16

(ADCs), voltage-controlled oscillators (VCOs), and data communication circuits.17

The figure of merit (FOM) serves as a performance metric, providing an overall assessment of the18

OTA design’s quality. Depending on the specific application and design objectives, the FOM for a19

two-stage Miller-compensated OTA can be defined in various ways. In this paper, we have formulated20

the FOM to encompass high gain, unity-gain bandwidth (UGB), phase margin(PM), and low noise21
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and power consumption. Each of these specifications holds equal weightage within the FOM formula,22

reflecting the importance of balancing and optimizing these key performance aspects.23

FOM :=
Power × Noise

Gain × UGB × PM

1.2 Tables24

Following the designer’s recommendations, we formulate a single-objective constrained optimization25

problem. To solve this problem, we utilize our proposed algorithms, namely EASCO and ASTROG,26

and evaluate their performance against other competing algorithms [3],[1].27

minimize FOM
s.t. Gain ≥ 50 dB

Unit Gain Bandwidth ≥ 100MHz

Gain Margin ≥ 15 dB

Phase Margin ≥ 45 deg

Noise ≤ 600µVrms

Power ≤ 900µW

Miller Compensated Two-stage OTA (Optimization)
Model Gain (dB) UGB (MHz) GM (dB) PM (deg) Noise (nV ) Power( µW) FOM
DE [3] 58.6 190 18.35 45.02 478.7 766.3 0.040

BO-EI[1] 68.3 192 18 52.8 467 505.3 0.019
EASCO 67.3 205 18.53 46.05 465.5 548.7 0.022

ASTROG 80 112 24.84 52.48 497.3 495.5 0.021
Table 1: comparison table for best case performance metrics with corresponding FOM

Through our observations, we note that the figure of merit (FOM) values obtained from each28

algorithm exhibit minimal differences. Notably, the BO-EI algorithm [1] yields the lowest FOM29

value, indicating superior performance. Following closely, the ASTROG algorithm demonstrates30

commendable results, placing second in terms of FOM.31

We present the optimal input design parameters corresponding to the best FOM values achieved by32

each algorithm in the tables 2,3,4,5. Once the optimal design parameters are determined, we proceed33

to evaluate the corresponding performance metrics. To ensure their accuracy, we verify these metrics34

by comparing them with values obtained from simulations conducted using Cadence. This validation35

process enhances our confidence in the reliability of the obtained results.36

Note: The labels in the below Optimized Input design parameters corresponds to the respective circuit37

labels shown in the figures. Wx:width of transistor X and Lx: Length of transistor X .38

Design Parameters ( ASTROG Algorithm)
Parameter Value Parameter Value
Iref (µA) 20 Cc(pF ) 0.3
V dd (V ) 2 CL(pF ) 2
WM1 (µm) 4 r1(kΩ) 4
WM2

(µm) 4 WM6
(µm) 7

WM3
(µm) 4 WM7

(µm) 7
WM4

(µm) 6 WM8
(µm) 90

WM5
(nm) 35 LM1−8

(nm) 500
Table 2: Optimized Input Design parameters with
ASTROG algorithm.

Design Parameters ( EASCO Algorithm)
Parameter Value Parameter Value
Iref (µA) 30 Cc(pF ) 0.3
V dd (V ) 1.3 CL(pF ) 2
WM1 (µm) 5 r1(kΩ) 4
WM2

(µm) 5 WM6
(µm) 11

WM3
(µm) 3.65 WM7

(µm) 11
WM4

(µm) 10 WM8
(µm) 90

WM5
(nm) 40 LM1−8

(nm) 500
Table 3: Optimized Input Design parameters with
EASCO algorithm.

To conduct our analysis, we employed labeled datasets consisting of 100 samples for each algorithm.39

In order to alleviate computational strain, we limited the number of runs for each algorithm to 100.40
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Design Parameters ( BO-EI Algorithm)
Parameter Value Parameter Value
Iref (µA) 30 Cc(pF ) 0.32
V dd (V ) 1.3 CL(pF ) 2
WM1

(µm) 5 r1(kΩ) 4
WM2 (µm) 5 WM6 (µm) 11
WM3

(µm) 4 WM7
(µm) 11

WM4 (µm) 10 WM8 (µm) 90
WM5

(nm) 40 LM1−8
(nm) 500

Table 4: Optimized Input Design parameters with
BO-EI[1] algorithm.

Design Parameters ( DE Algorithm)
Parameter Value Parameter Value
Iref (µA) 30 Cc(pF ) 0.3
V dd (V ) 2 CL(pF ) 2
WM1

(µm) 5 r1(kΩ) 4
WM2 (µm) 5 WM6 (µm) 11
WM3

(µm) 3.69 WM7
(µm) 11

WM4 (µm) 9.33 WM8 (µm) 81.5
WM5

(nm) 40 LM1−8
(nm) 500

Table 5: Optimized Input Design parameters with
DE[2] algorithm.

To expedite the optimization process and reduce computational overhead, we utilized pre-trained41

surrogate models. These models effectively minimized the reliance on resource-intensive SPICE42

calls, enhancing the efficiency of our algorithms.43

Detailed timing comparisons for each algorithm are presented in a subsequent section, providing44

valuable insights into the computational aspects of our approach.45

2 Three-stage Ring Oscillator46

Figure 2: Schematic of Three-stage Ring Oscillator

2.1 Theory47

A ring oscillator is a self-sustaining oscillator that generates a continuous oscillating output signal48

without the need for an external input. It operates by utilizing an odd number of delay stages, typically49

implemented using inverters, arranged in a closed loop or ring configuration. These stages operate in50

the nonlinear region, contributing to the oscillator’s functionality.51

Each delay stage introduces a propagation delay, which establishes a positive feedback loop, leading52

to sustained oscillations. As the signal propagates through each stage, it undergoes a phase shift due53

to the inherent propagation delay.54

The collective delay introduced by each stage, combined with the propagation delay through the55

inverters, determines the frequency of oscillation produced by the ring oscillator. Additionally, the56

amplitude of the oscillation is influenced by factors such as the supply voltage and the characteristics57

of the inverters employed in the circuit.58

The choice of a specific Figure of Merit (FOM) for a ring oscillator depends on the priorities59

and design objectives of the application at hand. For low-power applications, minimizing power60

consumption (Pdis) may be the primary concern. In contrast, for high-performance applications,61

increasing oscillation frequency (fosc), reducing Jitter (J(t)), or optimizing the speed/power trade-off62
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may take precedence. The selection of the FOM should align with the specific requirements and63

goals of the design.64

The Figure of Merit (FOM) for a ring oscillator can be calculated using the following formula, where65

fm represents the offset frequency set to 1MHz. We referred [2, 4] while choosing an appropriate66

FOM formula.67

FOM := J(t)− 20 log

(
fosc

fm

)
+ 10 log

(
Pdis

1 mW

)
2.2 Tables68

Following the designer’s recommendations, we formulate a single-objective constrained optimization69

problem. To solve this problem, we utilize our proposed algorithms, namely EASCO and ASTROG,70

and evaluate their performance against other competing algorithms [3],[1].71

minimize FOM
s.t. Frequency ≥ 1000MHz

RMS Jitter ≤ 10 pS

Delay ≤ 200 pS

Power ≤ 600µW

Ring Oscillator - Three stage (Optimization)
Model Frequency

(MHz)

rms Jitter
(pS)

Delay (pS) Power
(µW)

FOM

DE [3] 1265 0.99 131.7 256 -66.96
BO-EI[1] 1217 7e-7 136.9 66.4 -73.48
EASCO 1444 2.2e-7 115.4 335.2 -67.94

ASTROG 1740 1.2 95.7 502.3 -67.27
Table 6: comparison table for best case performance metrics with corresponding FOM

The table above (Table 6) presents the optimal Figure of Merit (FOM) values obtained for each72

algorithm, along with the corresponding performance metric values. Among the algorithms, BO-73

EI[1] achieved the highest FOM value. However, when considering the overall performance metrics,74

EASCO and ASTROG outperformed the other algorithms. These algorithms demonstrated better75

performance across various metrics, indicating their superiority in terms of overall performance.76

Ring Oscillator - Three stage (Optimized Parameters)
Model Vdd (V ) c1 (fF ) W1 (µm) W2 (µm) L1 (nm) L2( nm)

DE [3] 1 3 7.72 12 300 200
BO-EI[1] 1 3 2.4 2 300 200
EASCO 1 3 12 9.48 300 200

ASTROG 1.4 3 4.5 4.5 300 400
Table 7: Optimized Input Design parameters with DE[3], BO-EI[1], EASCO and ASTROG

Table 7 provides the optimal input design parameters corresponding to the best-case Figure of Merit77

(FOM) for each scenario. These parameters represent the input configurations that yielded the highest78

FOM values for each case.79

3 Time Complexity for each algorithm80

Let’s deconstruct each algorithm and thoroughly analyze each step to enhance our comprehension of81

the time complexity linked to each of them.82
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3.1 Differential Evolution (DE) algorithm83

The overall time complexity of the algorithm can be expressed as:84

O(n+ E ∗ P ∗D ∗ iter + S +R)85

where, n: The number of initial samples, E: The number of epochs, P: The population size in the86

differential evolution algorithm, D: The number of dimensions in the problem, iter: The number of87

iterations in the differential evolution algorithm, S: The number of samples to predict using surrogate88

models, R: The number of rows in the X and y matrices.89

This time complexity analysis takes into account the various steps involved in the algorithm, such90

as initializing the dataset and variables, iterating through epochs, running the differential evolution91

algorithm, predicting new values using surrogate models, and updating the X and y matrices. Please92

note that this is an approximation, and the actual time complexity may vary depending on specific93

implementation details and the complexity of the surrogate models used.94

3.2 Bayesian Optimization-Expected Improvement (BO-EI) algorithm95

The time complexity of using a Gaussian regressor in Bayesian optimization can be summarized as96

follows:97

1. Initializing the dataset and variables: O(n)98

2. Iterating through epochs: O(epochs)99

3. Gaussian Process (GP) Regression:100

3.1 Computing the kernel matrix: O(N3)101

3.2 Inverting the kernel matrix: O(N3)102

4. Predicting new values: O(N2)103

5. Predicting new values using surrogate models: O(S); S is the number of samples on which104

prediction will be performed.105

6. Updating the X and y matrices: O(R); R is number of rows in X and y.106

Overall, the time complexity can be approximated as:107

O(n+ epochs ∗O(N3) + S +R)108

3.3 Efficient Analog Sizing via Constrained Optimization (EASCO) algorithm109

The given code incorporates pre-trained surrogate models, so the training time of the models is not110

utilized in the code.111

1. Initializing the dataset and variables: O(nodes)112

2. Graph Learning:113

2.1 Creating sparse matrices: O(nodes2),114

2.2 Training loop over epochs:115

2.2.1 Computing gradients: O(nodes2)116

2.2.2 Updating weight vector: O(nodes2)117

3. Label prediction using GNNs : O(nodes)118

4. Differential Evolution:119

4.1 Generating new solutions: O(popsize ∗ bounds)120

4.2 Evaluating the objective function: O(popsize)121

Thus, the overall time complexity can be summarised as follows:122

O(nodes2 + popsize ∗ bounds)123
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3.4 Analog Sizing through Real-time Online Graphs (ASTROG) algorithm124

The given code incorporates pre-trained surrogate models, so the training time of the models is not125

utilized in the code. The time complexity of the given algorithm can be analyzed as follows:126

1. Initialization: Generating random weight matrix of size nodes2: O(nodes2), Normalizing feature127

matrix: O(nodes ∗ features).128

2. Graph Learning:129

2.1 Creating sparse matrices: O(nodes2),130

2.2 Training loop over epochs:131

2.2.1 Computing gradients: O(nodes2)132

2.2.2 Updating weight vector: O(nodes2)133

3. Rearranging data based on performance ranking: O(nodes ∗ features)134

4. Differential Evolution:135

4.1 Generating new solutions: O(popsize ∗ bounds)136

4.2 Evaluating the objective function: O(popsize)137

4.3 Graph Learning with updated data:138

4.3.1 Creating sparse matrices: O(nodes2)139

4.3.2 Training loop over epochs:140

4.3.2.1 Computing gradients: O(nodes2)141

4.3.2.2 Updating weight vector: O(nodes2)142

4.3.2.3 Predicting values using neural networks: Forward pass through the models: O(nodes).143

Overall, the time complexity of the algorithm can be approximated as:144

O(nodes2 + epochs ∗ nodes2 + popsize ∗ bounds+ nodes ∗ features)145

The below graphs display real-time estimations of the computational time for each algorithm. These146

graphs serve as experimental evidence, showcasing the relative speed of our algorithms. The bar147

plots illustrate the performance of four algorithms, namely DE, BO-EI, EASCO, and ASTROG, for148

two different test cases.

Figure 3: The bar plots in Figure (i) compare computational times for different algorithms in the Miller-
compensated Two-stage OTA. Figure (ii) does the same for the Three-stage Ring Oscillator. The bar heights
represent the computational times, and the time values are displayed on top of each bar for precise comparison.
These plots provide real-time estimates and experimental evidence of algorithm speeds.

149
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