
GEX: A flexible method for approximating influence
via Geometric Ensemble

Sung-Yub Kim
Graduate School of AI, KAIST
sungyub.kim@kaist.ac.kr

Kyungsu Kim†

Massachusetts General Hospital and Harvard Medical School
kskim.doc@gmail.com

Eunho Yang†

Graduate School of AI, KAIST and AITRICS
eunhoy@kaist.ac.kr

Abstract

Through a deeper understanding of predictions of neural networks, Influence Func-
tion (IF) has been applied to various tasks such as detecting and relabeling misla-
beled samples, dataset pruning, and separation of data sources in practice. However,
we found standard approximations of IF suffer from performance degradation due
to oversimplified influence distributions caused by their bilinear approximation,
suppressing the expressive power of samples with a relatively strong influence. To
address this issue, we propose a new interpretation of existing IF approximations
as an average relationship between two linearized losses over parameters sampled
from the Laplace approximation (LA). In doing so, we highlight two significant
limitations of current IF approximations: the linearity of gradients and the singu-
larity of Hessian. Accordingly, by improving each point, we introduce a new IF
approximation method with the following features: i) the removal of linearization to
alleviate the bilinear constraint and ii) the utilization of Geometric Ensemble (GE)
tailored for non-linear losses. Empirically, our approach outperforms existing IF
approximations for downstream tasks with lighter computation, thereby providing
new feasibility of low-complexity/nonlinear-based IF design.

1 Introduction

In the last decade, neural networks (NNs) have made tremendous advances in various application
areas [49, 24, 47]. To make reasonable predictions with NN-based systems, models must be able to
explain their predictions. For example, those who doubt the model’s prediction can gain insight and
foresight by referencing the explanation of the model. Moreover, mission-critical areas like finance
and medicine require a high degree of explainability to ensure that the predictions are not biased
[30]. Understanding the mechanism of predictions also allows researchers and engineers to improve
prediction quality, ensuring that NNs are performing as intended [32].

To this end, Influence Function (IF) was proposed to explain predictions of pre-trained NNs through
training data [25]. Intuitively, IF measures how the leave-one-out (LOO) retraining of a training
sample changes the loss of each sample. Therefore, the sign of influence determines whether the
training sample is beneficial to others, and the scale of influence measures its impact. Specifically,
self-influence, the increase in loss when a sample is excluded, was used to measure how much the
sample is memorized [48, 15]: When LOO training is performed on a memorized training sample,
its loss will increase substantially since matching its (corrupted) label will be difficult. Therefore,
self-influence is used to detect mislabeled samples [48, 52] where memorization occurs. Furthermore,

37th Conference on Neural Information Processing Systems (NeurIPS 2023).
† Correspondence to

recent works successfully applied IF to various downstream tasks, including dataset pruning [58] and
data resampling [59, 63].

Despite its broad applicability, we found that IF and its approximations [25, 48, 52] suffer from
oversimplified self-influence distributions due to their bilinear form1. Although these approximations
are introduced to avoid prohibitive retraining costs of IF, they impose a structural constraint that
self-influence becomes quadratic to gradients of pre-trained NNs. Due to this constraint, self-influence
follows an unimodal distribution, as gradients of pre-trained NNs typically follow a zero-centered
Stable distribution [7, 56]. Unfortunately, unimodal distributions are too restrictive for representing
self-influence in real-world datasets containing mislabeled samples. While self-influence distributions
estimated by LOO retraining may become bimodal depending on the proportion of (high self-
influential) mislabeled samples, unimodal distributions cannot handle this case.

To resolve this problem, we propose a non-linear IF approximation via Geometric Ensemble (GE;
[16]). Our method is motivated by a novel connection between IF approximation and linearized
Laplace approximation (LA; [38]) that we discovered: IF approximations can be translated to an
averaged relationship between two linearized losses over parameters sampled from LA. As linearized
losses in this connection cause bilinear forms of IF approximations, we consider an IF approximation
without linearization. However, we then identify an additional issue of this approximation due to the
singularity of Hessian and its solutions (e.g., damping and truncation). To mitigate this issue, we
propose a novel approach using GE to manage the relationship of non-linear losses more effectively.
As a result, our approach, Geometric Ensemble for sample eXplanation (GEX), accurately represents
the multimodal nature of LOO retraining, leading to improved performance in downstream tasks
across various scenarios. Furthermore, IGEX is easy to estimate as it does not require Jacobian-vector
products (JVPs) for batch estimation or sub-curvature approximations like LA.

We summarize our contributions as follows:

• We identify a distributional bias in commonly used IF approximations. We demonstrate how this
bias results in oversimplified distributions for self-influences.

• We provide a novel connection between IF approximations and LA. By identifying an inherent issue
of LA, we provide a non-linear IF approximation via GE, named IGEX. Due to its non-linear nature,
IGEX can express various influence distributions depending on the characteristic of the datasets.

• We verify that IGEX outperforms standard IF approximations in downstream tasks, including noisy
label detection, relabeling, dataset pruning, and data source separation. We also show that IGEX is
competitive with well-known baselines of downstream tasks with lighter computation.2

2 Background

Consider an independently and identically (i.i.d.) sampled training dataset S := {zn : (xn, yn)}Nn=1
where xn ∈ RD is an input vector of n-th sample and yn ∈ RK is its label. To model the relation
between inputs and outputs of training samples, we consider a neural network (NN) f : RD ×RP →
RK which maps input x ∈ RD and network parameter θ ∈ RP to a prediction ŷn := f(xn, θ) ∈ RK .
Empirical risk minimization (ERM) solves the following optimization problem

θ∗ := argmin
θ∈RP

L(S, θ)

where L(S, θ) :=
∑N
n=1 ℓ(zn, θ)/N for a sample-wise loss ℓ(zn, θ) (e.g., cross-entropy between ŷn

and yn). In general, θ∗ is trained using a stochastic optimization algorithm (e.g., stochastic gradient
descent (SGD) with momentum). For the reader’s convenience, we provide the notation table in
Appendix A for terms used in the paper.

The Leave-One-Out (LOO) retraining effect of z ∈ S on another instance z′ ∈ RD is defined as the
difference of sample-loss z′ between the θ∗ and the retrained point θ∗z without z [9]:

ILOO(z, z′) := ℓ(z′, θ∗z)− ℓ(z′, θ∗) (1)

1Here, the bilinearity refers to the IF and its approximations being bilinear with respect to the sample-wise
gradients. Consequently, the self-influence based on these bilinear metrics is quadratic for sample-wise gradients.

2Code is available at https://github.com/sungyubkim/gex.

2

https://github.com/sungyubkim/gex

where θ∗z := argminθ∈RP L(S, θ) − ℓ(z, θ)/N . Since retraining for every pair (z, z′) is computa-
tionally intractable where we have a huge number of data points as in practice, Koh and Liang [25]
proposed an efficient approximation of ILOO, named Influence Function (IF):

I(z, z′) := g⊤z′H
−1gz (2)

where gz := ∇θℓ(z, θ
∗) ∈ RP and H := ∇2

θL(S, θ
∗) ∈ RP×P by assuming the strictly convexity

of ℓ (i.e., H is positive definite). Here, I can be understood as a two-step approximation of ILOO

ILOO(z, z′) ≈ ℓlinθ∗ (z
′, θ∗z)− ℓlin(z′, θ∗) = g⊤z′(θ

∗
z − θ∗) (3)

≈ g⊤z′H
−1gz = I(z, z′) (4)

where ℓlinθ∗ (z, ψ) := ℓ(z, θ∗) + g⊤z (ψ − θ∗) and ψ ∈ RP is an arbitrary vector in the parameter space
RP . Here, we use the superscript lin to indicate linearization. Note that (3) applies linearization
to the sample-loss z′ and (4) approximates parameter difference as a Newton ascent term (i.e.,
θ∗z ≈ θ∗ +H−1gz).

While the computation of I is cheaper than ILOO, it is still intractable to modern NNs (e.g., ResNet
[20] and Transformer [62]) because of the prohibitively large Hessian. To alleviate this problem, two
additional approximations are commonly used: stochastic approximation methods such as ILiSSA [1],
and sub-curvature approximations such as ILast-Layer, which limits the Hessian computation only to
the last-layer of NNs [10]. However, both methods also have their own problems: ILiSSA takes high
time complexity since the inverse Hessian-vector product (IHVP) for each training sample needs to
be computed separately, as shown in Schioppa et al. [52]. On the other hand, ILast-Layer may cause
inaccurate IF approximations, as shown in Feldman and Zhang [15].

As another alternative, Pruthi et al. [48] recently proposed to exploit intermediate checkpoints during
pre-training, named ITracIn:

ITracIn(z, z′) :=
1

C

C∑
c=1

gc⊤z′ g
c
z (5)

where gcz := ∇θℓ(z, θ
c) for checkpoints θc (c = 1, . . . , C) sampled from the pre-training trajectory

of θ∗. Here, it further simplifies the computation by assuming the expensive H−1 in (2) is an identity
matrix. Instead, the performance of ITracIn is replenished by averaging over several intermediate
checkpoints, which capture various local geometries of loss landscapes. In addition, Pruthi et al. [48]
enhanced the efficiency of ITracIn using random projection, named ITracInRP,

ITracInRP(z, z′) :=
1

C

C∑
c=1

gc⊤z′ QRQ
⊤
Rg

c
z (6)

where QR ∈ RP×R is a random projection matrix whose components are i.i.d. sampled from
N (0, 1/R) for R ≪ P . Note that ITracInRP is an unbiased estimator of ITracIn as E[QRQ⊤

R] = IP
where IP is the identity matrix of dimension P ×P . However, ITracIn and ITracInRP cannot be applied
to checkpoints of the open-source community, such as TorchHub [45] and Huggingface models [65]
since they only provide the final checkpoints without any intermediate results during pre-training.

On the other hand, Schioppa et al. [52] proposed to approximate IF in a purely post-hoc manner as

IArnoldi(z, z′) := g⊤z′URΛ
−1
R U⊤

R gz (7)

where ΛR ∈ RR×R is a diagonal matrix whose elements are top-R eigenvalues of H and the columns
of UR ∈ RP×R are corresponding eigenvectors. They use Arnoldi iteration [3] to estimate ΛR
and UR. Contrary to ITracInRP with the random projection, IArnoldi projects gz, gz′ to the top-R
eigenspace of the Hessian. Due to this difference, Schioppa et al. [52] argued that IArnoldi perform
comparably to ITracInRP with less R.

Finally, it is important to note that ITracInRP and IArnoldi can perform batch computations using
Jacobian-vector products (JVPs). To be more precise, computing I and ITracIn for multiple samples
requires sample-wise gradient computation for each gz, gcz , which is difficult to parallelize because of
heavy memory complexity. In contrast, ITracInRP and IArnoldi can avoid this sample-wise computation
by computing JVPs for a batch at once (i.e., parallelize gc⊤z QR, g⊤z UR for multiple z).

3

0.010 0.005 0.000 0.005

100

101

102

103

104

105
Components of randomly projected grad.

proj_0 (p:0.00)
proj_1 (p:0.00)
proj_2 (p:0.00)
proj_3 (p:0.00)
proj_4 (p:0.00)

(a) Random proj. of grads.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
1e2

100

101

102

103

104

AUC : 0.6908, AP : 0.1900

clean
corrupted

(b) IArnoldi

0 1 2 3 4 5 6 7 8
1e4

100

101

102

103

104

AUC : 0.9719, AP : 0.7056

clean
corrupted

(c) ITracInRP

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
1e1

100

101

102

103

104

AUC : 0.9999, AP : 0.9991

clean
corrupted

(d) IGEX

Figure 1: Since pre-trained gradients follow Gaussian distributions (Fig. 1(a)), quadratic self-influences follow
unimodal distributions (See Proposition 3.1), even in noisy label settings (Figs. 1(b)-1(c)). This issue can be
solved by removing linearization in the IF approximation (Fig. 1(d)).

3 Identifying distributional bias in bilinear influence approximations

Throughout the discussion above, IF approximations ((2), (5), (6), and (7)) are defined as bilinear
forms of gradients. In this section, we demonstrate a side effect of this form on computing self-
influence. Our key empirical observation is that gradients of pre-trained NNs follow Gaussian
distributions centered at zero. To verify this, we train VGGNet [55] on MNIST [33] with 10% label
corruption following Schioppa et al. [52]. Then, we project {gz}z∈S onto each of 5 random vectors
{di}5i=1 (with di ∈ RP), uniformly sampled on the unit sphere. If a pre-trained gradient gz follows
Gaussian distribution, its projected component g⊤z di will also follow Gaussian distributions for all
i = 1, . . . , 5. We visualize histograms of projected components g⊤z di for each di, and the resulting
p-values of the normality test [57] in Fig. 1(a). In agreement with our hypothesis, the randomly
projected components follow Gaussian distributions with significantly low p-values. Moreover, one
can observe that Gaussian distributions are centered at zero. This is because gradients at θ∗ satisfy

Ez∼S
[
g⊤z d

]
=

1

N

∑
z∈S

g⊤z d = 0⊤
P d = 0

by the first-order optimality condition at θ∗ (i.e., ∇θL(S, θ
∗) = 0P) where 0P is the zero vector of

dimension P . Note that a similar observation on the normality of gradient was reported in the context
of differential privacy in Chen et al. [7].

Now let us write the eigendecomposition of Hessian as H =
∑P
i=1 λiuiu

⊤
i where λ1, . . . , λP > 0

are eigenvalues of H in descending order and u1, . . . , uP ∈ RP are corresponding eigenvectors by
positive definite assumption of Koh and Liang [25]. We then arrange self-influence of I as

I(z, z) = g⊤z H
−1gz =

P∑
i=1

(gz,i)
2

λi
(8)

where gz,i := g⊤z ui are i-th component of gz in the eigenspace of H . Following the above discussion,
one can assume that gz,i follows a Gaussian distribution. Consequently, I(z, z) follows a (general-
ized) χ2-distribution due to squared components in (8). The following proposition shows that this
phenomenon can be generalized to any stable distribution [56] and positive definite matrix.
Proposition 3.1 (Distributional bias in bilinear self-influence). Let us assume gz follows a P -
dimensional stable distribution (e.g., Gaussian, Cauchy, and Lévy distribution) and M ∈ RP×P is
a positive (semi-)definite matrix. Then, self-influence in the form of IM (z, z) = g⊤z Mgz follows a
unimodal distribution. Furthermore, if gz follows a Gaussian distribution, then the self-influence
follows a generalized χ2-distribution.

We refer to Appendix B for the proof. Self-influence distributions approximated by IArnoldi (Fig.
1(b)) and ITracInRP (Fig. 1(c)) provide the empirical evidence of Proposition 3.1 in the noisy label
setting in Fig. 1(a). In this setting, each mislabeled sample exhibits high self-influence values since
predictions by incorrect labels are challenging to recover when removed and retrained. Therefore,
mislabeled samples constitute a distinct mode with a greater self-influence than correctly labeled
samples. Still, the distributional bias in Proposition 3.1 squeezes correct and mislabeled samples in a
unimodal distribution. As a result, two types (clean and corrupted) of samples are indistinguishable
in IArnoldi and ITracInRP. Proposition 3.1 shows that this observation can be generalized to a more
diverse setting (e.g., heavy-tailed distributions). In Sec. 5.1, we demonstrate that this bias occurs
regardless of the dataset and the architectures of NN.

4

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

Class 0
Class 1
Typical
Influential

(a) Traininig dataset

0.0 0.5 1.0 1.5 2.0 2.5
1e 1

100

101

AUC : 1.0000, AP : 1.0000

typical
influential

(b) IGT

2 4 6 8
1e 3

100

101

AUC : 0.9950, AP : 0.9769

typical
influential

(c) I (α = 100)

0 1 2 3 4
1e 2

100

101

AUC : 1.0000, AP : 1.0000

typical
influential

(d) IGEX

Figure 2: Fig. 2(a): The modified two-circle dataset in Sec. 4. Here, the typical samples are the two outer
circle samples with relatively high density, and influential samples correspond to the inner circle, demonstrating
relatively low density. The self-influence histogram estimated with ILOO, I, and IGEX are provided in Fig. 2(b)-
2(d). Fig. 2(b): ILOO properly separates the influential samples from the typical samples in the modified two-circle
dataset. Fig. 2(c): I mixes typical and influential samples due to the distributional bias in Sec. 3. Fig. 2(d): IGEX
accurately represents the bimodal nature of ILOO.

4 Geometric Ensemble for sample eXplanation

To mitigate the distributional bias in Sec. 3, we propose a flexible IF approximation method using
Geometric Ensemble (GE; [16]), named Geometric Ensemble for sample eXplanataion (GEX). Here
is a summary of how GEX is developed.

I Delinearization−→
Section 4.1

ILA
LA to GE−→

Section 4.2
IGEX

In Sec. 4.1, we ensure that the influence approximation is not a bilinear form for the gradient by
replacing gradients in IF with sample-loss deviations. The theoretical foundation for this step is
provided by our Theorem 4.1 below, which establishes a relationship between the IF and the Laplace
approximation (LA; [38]). Moving on to Sec. 4.2, we modify the parameter distribution to compute
the sample-loss deviation from LA to GE. This modification is necessary because GE is based on the
local geometry of the loss landscape around θ∗, similar to LA, while avoiding overestimating loss
deviations caused by the singularity of the Hessian.

4.1 GEX and its motivation

The proposed method, GEX, comprises three steps. The first step involves the collection of post-hoc
checkpoints {θm}Mm=1 through multiple SGD updates on the training loss starting from θ∗. Then, the
empirical distribution of Geometric Ensemble (GE) is computed as

pGE(ψ) :=
1

M

M∑
m=1

δθ(m)(ψ). (9)

where δθ(m)(·) denotes the Dirac delta distribution at θ(m). In the final step, GEX is obtained as the
expectation of the product of sample-loss deviations from the pre-trained parameter as follows

IGEX(z, z′) = Eψ∼pGE [∆ℓθ∗(z, ψ) ·∆ℓθ∗(z′, ψ)] (10)

where ∆ℓθ∗(z, ψ) := ℓ(z, ψ)− ℓ(z, θ∗) means the sample-loss deviations from θ∗. We provide the
pseudocode for computing IGEX in Appendix C.

The main motivation behind IGEX in (10) is to establish a new connection between I and LA. This
connection is demonstrated in Theorem 4.1, which shows that I is an expectation of the product of
linearized sample-loss deviations given that parameters are sampled from LA.

Theorem 4.1 (Connection between IF and LA). I in Koh and Liang [25] can be expressed as

I(z, z′) = Eψ∼pLA
[
∆ℓlinθ∗ (z, ψ) ·∆ℓlinθ∗ (z′, ψ)

]
(11)

where ∆ℓlinθ∗ (z, ψ) := ℓlinθ∗ (z, ψ) − ℓlinθ∗ (z, θ
∗) = g⊤z (ψ − θ∗) and pLA is the Laplace approximated

posterior

pLA(ψ) := N
(
ψ|θ∗, H−1

)
.

5

2 4 6 8
1e11

100

2 × 100

3 × 100

4 × 100

6 × 100

AUC : 0.0700, AP : 0.0847

typical
influential

(a) ILA (α = 0.01)

1.350 1.375 1.400 1.425 1.450 1.475 1.500 1.525
1e1

100

101

AUC : 0.0000, AP : 0.0822

typical
influential

(b) ILA (α = 100)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
1e6

100

101

AUC : 0.6333, AP : 0.1877

typical
influential

(c) ILA (R = 50)

0.2 0.4 0.6 0.8 1.0 1.2 1.4
1e 4

100

101
AUC : 0.7233, AP : 0.2330

typical
influential

(d) I(R = 50)

Figure 3: Damping trick for singular Hessian causes severe overestimation of self-influence (Fig. 3(a)). This
issue cannot be addressed with a large damping coefficient (Fig. 3(b)). Although truncating small eigenvalues
can reduce the overestimation of self-influence (Fig. 3(c)), it introduces another error that even occurs in I (Fig.
3(d)).

The LA was proposed to approximate the posterior distribution with a Gaussian distribution. Recently,
it has gained significant attention due to its simplicity and reliable calibration performance [50, 11].
Intuitively, LA is equivalent to the second-order Taylor approximation of log-posterior at θ∗ with
Gaussian prior defined as p(ψ) := N (ψ|0P , γ−1IP):

log p(θ|S) = log p(S|θ) + log p(θ)− logZ

= −L(S, θ) + log p(θ)− logZ

≈ −L(S, θ∗)− (θ − θ∗)⊤(H + γIP)(θ − θ∗)/2− logZ

∝ −(θ − θ∗)⊤(H + γIP)(θ − θ∗)/2

Here, the training loss represents the negative log-likelihood L(S, θ) = − log p(S|θ), and Z :=∫
p(θ)p(S|θ)dθ represents the evidence in Bayesian inference [5]. Similar to the IF, LA becomes

computationally intractable when dealing with modern architectures due to the complexity of the
Hessian matrix. To address this computational challenge, recent works have proposed various sub-
curvature approximations, such as KFAC [50] and sub-network [11], which provide computationally
efficient alternatives for working with LA.

According to (11), samples with a high degree of self-influence experience significant (linearized) loss
changes for the parameters sampled from LA. Furthermore, Theorem 4.1 reveals that the gradients, the
origin of distributional bias, arise from the linearizations in (11). Hence, to address the distributional
bias of the bilinear IF approximations in Proposition 3.1, we remove the linearizations in (11). This
leads us to consider a modified version of I, named ILA:

ILA(z, z′) := Eψ∼pLA [∆ℓθ∗(z, ψ) ·∆ℓθ∗(z′, ψ)] . (12)
The pseudocode for computing ILA using Kronecker-Factored Approximate Curvature (KFAC; [40])
is available in Appendix C.

While ILA no longer theoretically produces unimodal self-influence, it turns out that it still mixes
correct and mislabeled samples, even in toy datasets. To illustrate this problem, we train a fully-
connected NN on the two-circle dataset [29] with a modification as shown in Fig. 2(a): We add ten
influential training samples at the center of the two-circle dataset containing 30 train samples per
class (circle). These influential samples are highly susceptible (i.e., hard to recover) to leave-one-
out retraining as samples of the opposite class are densely located around them. We provide other
experimental details in Appendix E.

As discussed in Sec. 3, highly influential samples form a separate mode of high self-influence in
the histogram of ILOO (Fig. 2(b)) and I mixes typical and influential samples (Fig. 2(c)) due to the
distributional bias of bilinear form. While Proposition 3.1 does not apply to ILA, Fig. 3 shows that
ILA still fails to distinguish between correct and mislabeled samples by severely overestimating the
self-influence of typical samples (Fig. 3(a)-3(b)) or squeeze them into a unimodal distribution (Fig.
3(c)), similar to I (Fig. 3(d)).

4.2 Pitfalls of inverse Hessian in non-linear IF approximation

To analyze the limitation of ILA, we reparameterize the sampled parameter from LA as follows

ψ = θ∗ +H−1/2v = θ∗ +

P∑
i=1

vi√
λi
ui (13)

6

From this reparameterization, one can see that for (13) to be valid, all eigenvalues of H must
be positive definite (i.e., all eigenvalues are positive), as Koh and Liang [25] assumed. However,
over-parameterized NNs in practice can contain many zero eigenvalues in their Hessian.
Proposition 4.2 (Hessian singularity for over-parameterized NNs). Let us assume a pre-trained
parameter θ∗ ∈ RP achieves zero training loss L(S, θ∗) = 0 for squared error. Then, H has at least
P − NK zero-eigenvalues for NNs such that NK < P . Furthermore, if x is an input of training
sample z ∈ S, then the following holds for the eigenvectors {ui}Pi=NK+1

g⊤z ui = ∇⊤
ŷ ℓ(z, θ

∗)∇⊤
θ f(x, θ

∗)ui︸ ︷︷ ︸
0K

= 0 (14)

We refer to Appendix B for the cross-entropy version of Proposition 4.2 with empirical Fisher (EF)
matrix, a well-known approximation of the Hessian [31, 22], defined as F := 1

N

∑N
n=1 gzg

⊤
z . Note

that the over-parameterization assumption (NK < P) in Proposition 4.2 is prevalent in real-world
situations, including the settings of Fig. 1- 3. Also, the zero training loss assumption can be satisfied
with sufficient over-parameterization [14, 2]. Accordingly, empirical evidences of Proposition 4.2
have been reported in different scenarios [51, 18].

A simple solution to mitigate this singularity is adding an isotropic matrix to H , known as the
damping technique: H ≈ H(α) := H + αIP for α > 0. Then, the modified LA sample is

ψα := θ∗ + (H(α))−1/2v = θ∗ +

P∑
i=1

vi√
λi + α

ui. (15)

Although the damping trick can make all eigenvalues positive in principle, the order of the eigenvalues
remains unchanged. Therefore, the null space components (gz,i for i = NK + 1, . . . , P) in Proposi-
tion 4.2 are the most heavily weighted by 1/

√
α. These heavily weighted null space components do

not affect the linearized sample-loss deviations in (11) as follows

∆ℓlinθ∗ (z, ψα) = g⊤z (ψα − θ∗) =

P∑
i=1

vi√
λi + α

g⊤z ui =

NK∑
i=1

vi√
λi + α

g⊤z ui

by Proposition 4.2. However, this is not applicable to the sample-loss deviations in (12), since the null
space components cause ∆ℓθ∗(z, ψα) to change rapidly (i.e., overestimating the influence of samples).
This can be confirmed by observing that setting α = 0.01 in ILA (Fig. 3(a)) leads to significantly
overestimating self-influences. To prevent this issue, one can enlarge α (i.e., decrease 1/α). However,
since the scale of α does not change the order of eigenvalues, the null space components still receive
a higher weight than the others. Consequently, ILA with α = 100 (Fig. 3(b)) does not correctly
represent the multi-modality of self-influence distribution.

Another way to handle the Hessian singularity is to limit (13) to only the top-R eigenvalues of
Hessian, similar to IArnoldi. However, this approximation method may result in significant errors due
to using only the smallest R eigenvalues of the inverse Hessian (i.e., 1/

√
λi). Consequently, even

linearized sample-loss deviations (i.e., I) with R = 50 (Fig. 3(d)) suffer from severe performance
degradation, compared to full Hessian with damping (Fig. 2(c)).

Compared to damping and truncation, IGEX (Fig. 2(d)) accurately captures the bimodal self-influence
distribution. This effectiveness stems from the differential impact of SGD steps on typical and
influential samples [61]: Since typical samples are robust to SGD steps [35], loss deviation of these
samples are small in IGEX. In contrast, influential samples experience significant loss deviations as
they are sensitive to SGD steps. As GE makes diverse predictions [16], the members of GE introduce
varying levels of loss deviation for each influential sample. An ablation study exploring the impact of
ensemble size is provided in Appendix F.

4.3 Practical advantages of GEX

In addition to the above benefits, IGEX offers several implementation advantages. First, it can be
obtained using only open-source final checkpoints, unlike ITracIn and ITracInRP. This advantage
broadens the range of applicable models. Second, batch estimation is easy to implement in IGEX.
Projection-based methods like ITracInRP and IArnoldi require JVP computation, which is only efficient

7

Table 1: Area Under Curve (AUC) and Average Precision (AP) for noisy label detection tasks on four datasets.
Due to the high time complexity associated with sample-wise gradients, we do not repeatedly measure the
self-influence of ITracIn.

Synthetic label noise Real-world label noise
CIFAR-10 CIFAR-100 CIFAR-10-N CIFAR-100-N

Detection method AUC AP AUC AP AUC AP AUC AP

Deep-KNN 92.51 ± 0.19 69.93 ± 0.71 84.00 ± 0.14 40.17 ± 0.23 78.32 ± 0.19 72.60 ± 0.33 71.59 ± 0.21 59.76 ± 0.25
CL 57.60 ± 0.30 16.27 ± 0.20 84.16 ± 0.10 35.76 ± 0.50 75.94 ± 0.02 66.50 ± 0.09 69.49 ± 0.15 58.69 ± 0.23

F-score 73.34 ± 0.07 16.27 ± 0.09 59.18 ± 0.21 11.04 ± 0.05 69.39 ± 0.06 52.89 ± 0.06 68.95 ± 0.11 52.29 ± 0.14
EL2N 98.29 ± 0.03 95.82 ± 0.06 96.42 ± 0.05 73.82 ± 0.42 93.57 ± 0.17 91.26 ± 0.13 84.65 ± 0.08 77.26 ± 0.06

IRandProj 62.70 ± 0.19 17.90 ± 0.17 79.96 ± 0.32 26.25 ± 0.47 56.75 ± 0.38 45.61 ± 0.38 67.25 ± 0.09 54.14 ± 0.09
ITracIn 89.89 43.21 75.53 22.25 76,48 64.69 68.91 55.86
ITracInRP 89.56 ± 0.14 44.26 ± 0.37 74.99 ± 0.25 21.62 ± 0.26 77.24 ± 0.45 65.17 ± 0.68 69.04 ± 0.28 56.41 ± 0.31
IArnoldi 61.64 ± 0.13 17.05 ± 0.18 77.20 ± 0.35 22.61 ± 0.42 56.83 ± 0.40 45.63 ± 0.40 66.57 ± 0.12 53.26 ± 0.11

IGEX-lin 64.11 ± 0.34 18.34 ± 0.36 76.06 ± 0.36 22.26 ± 0.47 56.88 ± 0.29 45.67 ± 0.33 65.68 ± 0.15 52.66 ± 0.13
IGEX 99.74 ± 0.02 98.31 ± 0.06 99.33 ± 0.03 96.08 ± 0.12 96.20 ± 0.03 94.89 ± 0.04 89.76 ± 0.01 86.30 ± 0.01

for packages that provide forward-mode auto-differentiation, such as JAX [6]. In contrast, batch
computation in IGEX necessitates only forward computations, which are efficient in almost all
auto-differentiation packages. Since IF is computed for each training sample in most downstream
tasks [25, 48, 52], efficient batching is critical for practical applications. As a result, we believe that
this distinction will be vital for researchers and practitioners in their work. We provide the complexity
analysis of IGEX and other IF approximations in Appendix D and discuss the limitations of our method
and broader impacts in Appendix G.

5 Experiments

Here we describe experiments demonstrating the usefulness of GEX in downstream tasks. We
conducted two experiments for each noisy and clean label setting: Detection (Sec. 5.1) and relabeling
(Sec. 5.2) of mislabeled examples for noisy label setting and dataset pruning (Sec. 5.3) and separating
data sources (Sec. 5.4) for clean label setting. We refer to Appendix E for experimental details.

5.1 Noisy label detection

In this section, we evaluate the performance of IF approximation methods for detecting noisy labels.
We use self-influence as an index for the noisy label of IF approximation methods following Koh and
Liang [25] and Pruthi et al. [48]. A high degree of self-influence indicates mislabeled examples since
the removal of mislabeled examples will significantly change prediction or loss.

We train ResNet-18 [20] on CIFAR-10/100 [27] with 10% random label corruption for synthetic
noise and CIFAR-N [64] for real-world noise. We use the "worse label" version of CIFAR-10-N since
it corresponds to the highest noise level. We compare IGEX to the following baselines: ITracInRP with
5 checkpoints and 20 random projections, IRandProj with 20 random projections only for the final
checkpoint, IArnoldi with 100 iterations and 20 projections. We assess F-score [61], and EL2N [46]
as they offer alternative approaches to identifying influential samples. We also evaluate an ablative
version of IGEX: IGEX-lin, which replaces LA with GE for (11) (i.e., IGEX with linear sample-loss
deviation). Finally, we report the performance of well-known baselines, Deep-KNN [4] and CL [43],
for comparison. We provide results for cross-influence I(z, z′) in case of z ̸= z′ in Appendix F.

Table 1 shows that IGEX distinguishes mislabeled samples better than other methods. Furthermore, we
find that IGEX is more effective than CL, a state-of-the-art noisy label detection technique. Since CL
requires additional K-fold cross-validation for sample scoring (K = 2 used in our experiments), IGEX
will be an attractive alternative in terms of both computational complexity and detection performance.
Notably, results of IGEX-lin demonstrate that removing linearization is essential for performance
improvement of IGEX.

One interesting observation in Table 1 is that IArnoldi did not show improvement compared to
simple IRandProj. Indeed, a similar observation was reported in Table 1 in Schioppa et al. [52]. In
contrast, ITracInRP showed improvements in CIFAR-10 and SVHN compared to IRandProj, ITracInRP
is computationally expensive since it requires JVP computations for multiple checkpoints. On the
other hand, IGEX can be applied in a pure post-hoc style and does not require (framework-dependent)

8

Table 2: Noisy label detection performance for
ImageNet [12]

ViT-S-32 MLP-Mixer-S-32

Detection method AUC AP AUC AP

F-score 1.56 9.44 1.07 9.21
EL2N 87.28 38.37 88.47 41.63

IRandProj 76.09 12.08 82.36 21.86
ITracInRP 72.22 15.09 75.01 16.62
IArnoldi 73.95 16.09 82.16 21.83

IGEX 99.39 95.22 98.73 90.65

Table 3: Relabeled test accuracy for mislabeled samples
Synthetic label noise Real-world label noise

CIFAR-10 CIFAR-100 CIFAR-10-N CIFAR-100-N

Clean label acc. 95.75 ± 0.06 79.08 ± 0.05 95.75 ± 0.06 79.08 ± 0.05
Noisy label acc. 90.94 ± 0.15 72.35 ± 0.17 68.63 ± 0.32 55.50 ± 0.09

Detection method Relabeled acc.

Deep-KNN 91.58 ± 0.10 66.12 ± 0.27 69.12 ± 0.25 50.03 ± 0.19
CL 91.11 ± 0.10 72.55 ± 0.13 30.52 ± 0.02 33.17 ± 0.02

F-score 78.94 ± 0.39 58.67 ± 0.18 53.50 ± 0.28 44.34 ± 0.21
EL2N 89.40 ± 0.10 61.72 ± 0.18 72.01 ± 0.51 47.58 ± 0.22

IRandProj 90.94 ± 0.09 72.42 ± 0.16 68.55 ± 0.17 55.47 ± 0.08
ITracIn 91.24 72.07 68.36 54.87
ITracInRP 90.82 ± 0.06 71.70 ± 0.15 68.12 ± 0.23 55.20 ± 0.06
IArnoldi 91.10 ± 0.09 72.50 ± 0.08 68.67 ± 0.02 55.37 ± 0.14

IGEX-lin 91.04 ± 0.16 70.08 ± 0.12 68.44 ± 0.08 55.51 ± 0.21
IGEX 93.54 ± 0.05 75.04 ± 0.10 73.94 ± 0.24 57.13 ± 0.10

JVP computation. Motivated by IGEX, one can propose a purely post-hoc ITracInRP using checkpoints
generated by GE. We provide an ablation study for this setting in Appendix F.

To verify the scalability of results, we train Vision Transformer (ViT; [13]) and MLP-Mixer [60]
on ImageNet [12] with 10% label corruption and evaluate the performance of IF approximation
methods. Table 2 shows that the performance gap between IGEX and other baselines is still large.
Specifically, in this scenario, F-score fails since some samples have never been correctly predicted
during pre-training (i.e., no forgetting events for such samples). We provide additional results for
other vision datasets (MNIST [33] and SVHN [42]) and text classification settings in Appendix F.

5.2 Relabeling mislabeled samples

Following up on the detection task in Sec. 5.1, we improve classification performance by relabeling
mislabeled samples following Kong et al. [26]. To this end, Otsu algorithm [44] was used to find a
threshold that distinguishes between noisy and clean labels, given the self-influence of approximation
methods. Since the Otsu method has no inputs other than (influence) distribution, practitioners can
apply it for noisy label settings without onerous hyperparameter optimization. Following Kong et al.
[26], we relabel training samples as follows:

ỹk =

{
0, if k = m,
logφk

K−1
√
1− φm, otherwise (16)

where m is the training sample’s original (corrupted) label and φi is the predicted probability for i-th
class of the training sample. Therefore, the relabel function in (16) masks the original (noisy) label
and re-distributes the remaining probabilities. We provide additional results for MNIST and SVHN
in Appendix F.

Table 3 shows the relabeled test accuracy with the other settings for comparison. A critical observation
in Table 3 is that not all methods achieve performance improvements with relabeling. Otsu algorithm
did not find an appropriate threshold for mislabeled examples for these methods. In contrast, since
IGEX can separate mislabeled samples from the self-influence distribution, performance improvements
were obtained through relabeling. We provide additional results for ImageNet in Appendix F.

5.3 Dataset pruning

We evaluate methods in the previous section on data pruning task [58] to validate the efficacy of
IGEX in clean label settings. We quantify the importance of training samples based on self-influence
following Feldman and Zhang [15]: We prune low self-influence samples as they are relatively easy
samples that can be generalized by learning other training samples. We use networks and datasets in
Sec. 5.1 without label noise. We provide additional results for MNIST and SVHN in Appendix F.

As shown in Fig. 4, IGEX consistently detects samples that can be pruned. It is worth noting that among
the IF approximation methods considered, only IGEX is comparable to the well-known state-of-the-art
methods, F-score and EL2N. This suggests that existing IF approximation methods may experience
a performance decrease in downstream tasks because of the errors caused by distributional bias.

9

0 5000 10000 15000 20000 25000
Pruned data

93.0

93.5

94.0

94.5

95.0

95.5

Te
st

 a
cc

ur
ac

y
(%

)

Arnoldi

EL2N
F-score
GEX

Random
RandProj

TracInRP

(a) CIFAR-10

0 2500 5000 7500 10000 12500 15000 17500 20000
Pruned data

74

75

76

77

78

79

Te
st

 a
cc

ur
ac

y
(%

)

Arnoldi

EL2N

F-score
GEX

Random
RandProj
TracInRP

(b) CIFAR-100

Figure 4: Data pruning results using various scoring methods. We refer
to Sec. 5.3 for the details of scoring methods.

Table 4: Detection metrics for
separating MNIST and SVHN
Detection method AUC AP

Deep-KNN 44.58 ± 0.39 48.13 ± 0.27
CL 49.88 ± 0.15 49.91 ± 0.11

F-score 67.39 ± 0.02 65.37 ± 0.02
EL2N 68.36 ± 0.33 72.20 ± 0.24

IRandProj 46.88 ± 1.22 56.53 ± 0.82
ITracInRP 56.10 ± 1.83 61.53 ± 1.65
IArnoldi 38.33 ± 0.23 50.69 ± 0.11

IGEX-lin 53.69 ± 1.52 57.88 ± 1.06
IGEX 73.11 ± 0.73 74.42 ± 0.46

5.4 Separation of data sources

We also evaluate IF approximations on separating heterogeneous data sources following Harutyunyan
et al. [19]. One often combines multiple datasets to improve generalization. In general, these datasets
differ in their informativeness. Therefore, IF can be used to determine which dataset is the most
essential based on the informativeness of each dataset. In this experiment, we train ResNet-18 on a
mixed dataset of MNIST and SVHN, with 25K random subsamples for each training dataset. Then,
we use self-influence as an index for the informativeness following Harutyunyan et al. [19].

Table 4 shows detection metrics for MNIST and SVHN separation using various IF approximations
(and other baselines in previous sections). In contrast to the noisy label detection experiment in Sec.
5.1, many IF approximations in this experiment fail to distinguish between data sources: MNIST and
SVHN can only be significantly separated by IGEX, ITracInRP, and F-score. Assuming only the final
checkpoint is available, only IGEX can be applied among them.

6 Conclusion

In this work, we studied the oversimplification of influence distributions due to their bilinear ap-
proximations. To mitigate this bias, we developed a non-linear IF approximation, GEX, with GE.
Empirically, GEX consistently outperforms the standard IF approximations in various downstream
tasks in practice. Also, GEX is user-friendly as it only requires the final checkpoint of pretraining and
excludes JVP computation, often constrained by frameworks, for efficient batch estimation. With
these advantages, GEX can be used as a practical tool for researchers and practitioners.

Acknowledgements

This work was supported by the Institute of Information & Communications Technology Planning
& Evaluation (IITP) grant funded by the Korea government (MSIT) (No.2019-0-00075 / No.2022-
0-00984) and the National Research Foundation of Korea (NRF) grants (No.2018R1A5A1059921
/ RS-2023-00209060) funded by the Korea government (MSIT). This work was also supported by
Samsung Electronics Co., Ltd (No.IO201214-08133-01).

References
[1] Naman Agarwal, Brian Bullins, and Elad Hazan. Second-order stochastic optimization in linear

time. stat, 1050:15, 2016. 3

[2] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via
over-parameterization. In International Conference on Machine Learning, pages 242–252.
PMLR, 2019. 7

[3] Walter Edwin Arnoldi. The principle of minimized iterations in the solution of the matrix
eigenvalue problem. Quarterly of applied mathematics, 9(1):17–29, 1951. 3

[4] Dara Bahri, Heinrich Jiang, and Maya Gupta. Deep k-nn for noisy labels. In International
Conference on Machine Learning, pages 540–550. PMLR, 2020. 8

10

[5] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006. 6, 16

[6] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs. github, 2018. 8, 19

[7] Xiangyi Chen, Steven Z Wu, and Mingyi Hong. Understanding gradient clipping in private sgd:
A geometric perspective. Advances in Neural Information Processing Systems, 33:13773–13782,
2020. 2, 4

[8] William G Cochran. The distribution of quadratic forms in a normal system, with applications
to the analysis of covariance. In Mathematical Proceedings of the Cambridge Philosophical
Society, volume 30, pages 178–191. Cambridge University Press, 1934. 16

[9] R Dennis Cook. Detection of influential observation in linear regression. Technometrics, 19(1):
15–18, 1977. 2

[10] Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer,
and Philipp Hennig. Laplace redux - effortless bayesian deep learning. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information
Processing Systems, 2021. 3

[11] Erik Daxberger, Eric Nalisnick, James U Allingham, Javier Antoran, and Jose Miguel Hernandez-
Lobato. Bayesian deep learning via subnetwork inference. In Marina Meila and Tong Zhang,
editors, Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages 2510–2521. PMLR, 18–24 Jul 2021. 6

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009. 9, 19, 20, 21, 23

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 9, 20

[14] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International conference on machine learning, pages
1675–1685. PMLR, 2019. 7

[15] Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering
the long tail via influence estimation. Advances in Neural Information Processing Systems, 33:
2881–2891, 2020. 1, 3, 9

[16] Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson.
Loss surfaces, mode connectivity, and fast ensembling of dnns. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 31. Curran Associates, Inc., 2018. 2, 5, 7, 18, 19

[17] Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent. Fast
approximate natural gradient descent in a kronecker factored eigenbasis. Advances in Neural
Information Processing Systems, 31, 2018. 18

[18] Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net opti-
mization via hessian eigenvalue density. In International Conference on Machine Learning,
pages 2232–2241. PMLR, 2019. 7

[19] Hrayr Harutyunyan, Alessandro Achille, Giovanni Paolini, Orchid Majumder, Avinash Ravichan-
dran, Rahul Bhotika, and Stefano Soatto. Estimating informativeness of samples with smooth
unique information. arXiv preprint arXiv:2101.06640, 2021. 10, 20, 24

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016. 3, 8, 20

11

[21] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015. 23

[22] Alexander Immer, Matthias Bauer, Vincent Fortuin, Gunnar Rätsch, and Khan Mohammad
Emtiyaz. Scalable marginal likelihood estimation for model selection in deep learning. In
International Conference on Machine Learning, pages 4563–4573. PMLR, 2021. 7

[23] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Francis Bach and David Blei, editors, Proceedings of the
32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine
Learning Research, pages 448–456, Lille, France, 07–09 Jul 2015. PMLR. 20

[24] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al.
Highly accurate protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.
1

[25] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.
In International conference on machine learning, pages 1885–1894. PMLR, 2017. 1, 2, 3, 4, 5,
7, 8, 16

[26] Shuming Kong, Yanyan Shen, and Linpeng Huang. Resolving training biases via influence-based
data relabeling. In International Conference on Learning Representations, 2021. 9

[27] A Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University
of Toronto, 2009. 8, 20

[28] Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. arXiv preprint arXiv:1808.06226, 2018.
20

[29] Brian Kulis, Sugato Basu, Inderjit Dhillon, and Raymond Mooney. Semi-supervised graph
clustering: a kernel approach. In Proceedings of the 22nd international conference on machine
learning, pages 457–464, 2005. 6

[30] Shinjini Kundu. Ai in medicine must be explainable. Nature medicine, 27(8):1328–1328, 2021.
1

[31] Frederik Kunstner, Philipp Hennig, and Lukas Balles. Limitations of the empirical fisher
approximation for natural gradient descent. Advances in neural information processing systems,
32, 2019. 7

[32] Valliappa Lakshmanan, Sara Robinson, and Michael Munn. Machine learning design patterns.
O’Reilly Media, 2020. 1

[33] Y LeCun, C Cortes, and C Burges. The mnist dataset of handwritten digits (images). NYU:
New York, NY, USA, 1999. 4, 9, 20, 21

[34] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N Mendes,
Sebastian Hellmann, Mohamed Morsey, Patrick Van Kleef, Sören Auer, et al. Dbpedia–a large-
scale, multilingual knowledge base extracted from wikipedia. Semantic web, 6(2):167–195,
2015. 20, 22

[35] Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and Carlos Fernandez-Granda. Early-
learning regularization prevents memorization of noisy labels. Advances in neural information
processing systems, 33:20331–20342, 2020. 7

[36] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016. 20

[37] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2019. 20

12

[38] David J. C. MacKay. A practical bayesian framework for backpropagation networks. Neural
Comput., 4(3):448–472, may 1992. ISSN 0899-7667. doi: 10.1162/neco.1992.4.3.448. 2, 5

[39] James Martens. New insights and perspectives on the natural gradient method. arXiv preprint
arXiv:1412.1193, 2014. 18

[40] James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approx-
imate curvature. In International conference on machine learning, pages 2408–2417. PMLR,
2015. 6

[41] Stefan Mittnik, Svetlozar T Rachev, and Jeong-Ryeol Kim. Chi-square-type distributions for
heavy-tailed variates. Econometric Theory, 14(3):339–354, 1998. 16

[42] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng.
Reading digits in natural images with unsupervised feature learning. In NIPS Workshop on
Deep Learning and Unsupervised Feature Learning 2011, 2011. 9, 20, 21

[43] Curtis Northcutt, Lu Jiang, and Isaac Chuang. Confident learning: Estimating uncertainty in
dataset labels. Journal of Artificial Intelligence Research, 70:1373–1411, 2021. 8

[44] Nobuyuki Otsu. A threshold selection method from gray-level histograms. IEEE transactions
on systems, man, and cybernetics, 9(1):62–66, 1979. 9

[45] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf. 3

[46] Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet:
Finding important examples early in training. Advances in Neural Information Processing
Systems, 34:20596–20607, 2021. 8, 20

[47] David Pfau, James S Spencer, Alexander GDG Matthews, and W Matthew C Foulkes. Ab initio
solution of the many-electron schrödinger equation with deep neural networks. Physical Review
Research, 2(3):033429, 2020. 1

[48] Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
influence by tracing gradient descent. Advances in Neural Information Processing Systems, 33:
19920–19930, 2020. 1, 2, 3, 8, 20

[49] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. arXiv preprint arXiv:2103.00020, 2021. 1

[50] Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approximation for
neural networks. In International Conference on Learning Representations, 2018. 6

[51] Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep learning:
Singularity and beyond. arXiv preprint arXiv:1611.07476, 2016. 7, 17

[52] Andrea Schioppa, Polina Zablotskaia, David Vilar, and Artem Sokolov. Scaling up influence
functions. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages
8179–8186, 2022. 1, 2, 3, 4, 8, 19

[53] Dinghan Shen, Guoyin Wang, Wenlin Wang, Martin Renqiang Min, Qinliang Su, Yizhe Zhang,
Chunyuan Li, Ricardo Henao, and Lawrence Carin. Baseline needs more love: On simple word-
embedding-based models and associated pooling mechanisms. arXiv preprint arXiv:1805.09843,
2018. 20, 22

13

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[54] Thomas Simon. A multiplicative short proof for the unimodality of stable densities. Electronic
Communications in Probability, 16:623–629, 2011. 16

[55] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations, 2015. 4, 20

[56] Umut Simsekli, Levent Sagun, and Mert Gurbuzbalaban. A tail-index analysis of stochastic
gradient noise in deep neural networks. In International Conference on Machine Learning,
pages 5827–5837. PMLR, 2019. 2, 4, 16

[57] Nickolay Smirnov. Table for estimating the goodness of fit of empirical distributions. The
annals of mathematical statistics, 19(2):279–281, 1948. 4

[58] Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari S Morcos. Be-
yond neural scaling laws: beating power law scaling via data pruning. arXiv preprint
arXiv:2206.14486, 2022. 2, 9, 23

[59] Daniel Ting and Eric Brochu. Optimal subsampling with influence functions. Advances in
neural information processing systems, 31, 2018. 2

[60] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer:
An all-mlp architecture for vision. Advances in neural information processing systems, 34:
24261–24272, 2021. 9, 20

[61] Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio,
and Geoffrey J Gordon. An empirical study of example forgetting during deep neural network
learning. arXiv preprint arXiv:1812.05159, 2018. 7, 8

[62] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017. 3

[63] Zifeng Wang, Hong Zhu, Zhenhua Dong, Xiuqiang He, and Shao-Lun Huang. Less is better:
Unweighted data subsampling via influence function. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 6340–6347, 2020. 2

[64] Jiaheng Wei, Zhaowei Zhu, Hao Cheng, Tongliang Liu, Gang Niu, and Yang Liu. Learning
with noisy labels revisited: A study using real-world human annotations. arXiv preprint
arXiv:2110.12088, 2021. 8, 20, 21

[65] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s trans-
formers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.
3

[66] Makoto Yamazato. On strongly unimodal infinitely divisible distributions of class cme. Theory
of Probability & Its Applications, 40(3):518–532, 1996. 16

[67] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization, 2017. 20

[68] Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam, Nicha Dvornek, Sekhar
Tatikonda, James Duncan, and Ting Liu. Surrogate gap minimization improves sharpness-aware
training. arXiv preprint arXiv:2203.08065, 2022. 20

14

A Notations

Table 5: Notations used in the main paper

D ≜ (true) data distribution
S := {zn : (xn, yn)}Nn=1 ≜ i.i.d. sampled training dataset from D

zn := (xn, yn) ≜ a training instance (or sample)
xn ∈ RD, yn ∈ RK ≜ training inputs/outputs

θ, ψ ∈ RP ≜ parameter of NNs
ŷn = f(xn, θ) ≜ output of NN given x, θ

ℓ(z, θ) ≜ instance-wise loss given sample z, θ
L(S, θ) ≜ 1

N

∑N
n=1 ℓ(zn, θ)

θ∗ ∈ RP ≜ pre-trained parameter of NN
θ∗z ∈ RP ≜ argminθ L(S, θ)− ℓ(z, θ)/N (leave-one-out retrained parameter)
gz ∈ RP ≜ ∇θℓ(z, θ

∗) (gradient of instance-loss w.r.t. parameter given z, θ∗)
H ∈ RP×P ≜ ∇2

θL(S, θ∗) (Hessian of training loss w.r.t. parameter given θ∗)
ℓlinθ∗ (z, ψ) ≜ ℓ(z, θ∗) + g⊤z (ψ − θ∗) (linearization of instance-loss w.r.t. parameter)

∆ℓlinθ∗ (z, ψ) ≜ ℓlinθ∗ (z, ψ)− ℓ(z, θ∗)
∆ℓθ∗(z, ψ) ≜ ℓθ∗(z, ψ)− ℓ(z, θ∗)
0P ∈ RP ≜ the P -dimensional zero vector

IP ∈ RP×P ≜ the P -dimensional identity matrix

gcz ∈ RP ≜ ∇θℓ(z, θ
c) (gradient of instance-loss w.r.t. parameter for a checkpoint c)

QR ∈ RP×R ≜ Random matrix sampled from N (0, 1/R) component-wisely
H = UΛU⊤ ≜ Eigendecomposition of Hessian

H(α) ≜ Damped Hessian matrix H + αIP
ΛR ∈ RR×R, UR ∈ RP×R ≜ Submatrices of the top-D eigenvalues/eigenvectors

λi ∈ R, ui ∈ RP ≜ the i-th largest eigenvalue of H and its eigenvector
gz,i = g⊤z ui ∈ R ≜ i-th component of gz in the eigenspace of H

pLA(ψ) ≜ N (ψ|θ∗, H−1) (the Laplace approximated posterior)
pGE(ψ) ≜ 1

M

∑M
m=1 δθ(m)(ψ) (the Geometric Ensemble distribution)

{θ(m)}Mm=1 ≜ checkpoints of Geometric Ensemble (GE)

15

B Proofs

B.1 Proof of Proposition 3.1

Proposition B.1 (Distributional bias in bilinear self-influence). Let us assume gz follows a P -
dimensional stable distribution (e.g., Gaussian, Cauchy, and Lévy distribution) and M ∈ RP×P is
a positive (semi-)definite matrix. Then, self-influence in the form of IM (z, z) = g⊤z Mgz follows a
unimodal distribution. Furthermore, if gz follows a Gaussian distribution, then the self-influence
follows a generalized χ2-distribution.

Proof. We first consider the case of gradients with stable distributions [56]. According to Corollary 1
in Mittnik et al. [41], the sum of squares of stable random variables is a stable distribution with the
stability of α/2. Since stable distributions are unimodal [66, 54], the resulting self-influence is also
unimodal.

Now we proof the case of the Gaussian gradient. By positive semi-definite assumption, let us write
the eigendecomposition of M as M =

∑P
i=1 λiuiu

⊤
i where eigenvalues are sorted in descending

order. Specifically, one can compress this summation for the strictly positive eigenvalues: M =∑T
i=1 λiuiu

⊤
i where T is the cardinality of strictly positive eigenvalues. Then the self-influence IM

can be expressed as follows:

IM (z, z) = g⊤z Mgz =

T∑
i=1

λig
2
z,i

where gz,i = g⊤z ui is the i-th component of gz in the eigenspace of M . As a linearly transformed
Gaussian random variable follows Gaussian distribution [5], one can write gz,i as follows

gz,i ∼ N (gz,i | µi, σ2
i).

Therefore, gz,i follows following generalized χ2-distribution [8]

g2z,i ∼ χ̃2(g2z,i | σ2
i , 1, µ

2
i).

where µ2
i is the non-centrality parameter and σ2

i is the weight of non-central χ2. As a result, IM
follows following generalized χ2-distribution

IM (z, z) ∼ χ̃2(IM (z, z) | σ2,1T , µ
2).

where µ2 = (µ2
1, . . . , µ

2
T) ∈ RT , σ2 = (σ2

1 , . . . , σ
2
T) ∈ RT , and 1T = (1, . . . , 1) ∈ RT .

B.2 Proof of Theorem 4.1

Theorem B.2 (Connection between IF and LA). I in Koh and Liang [25] can be expressed as

I(z, z′) = Eψ∼pLA
[
∆ℓlinθ∗ (z, ψ) ·∆ℓlinθ∗ (z′, ψ)

]
(17)

where ∆ℓlinθ∗ (z, ψ) := ℓlinθ∗ (z, ψ) − ℓlinθ∗ (z, θ
∗) = g⊤z (ψ − θ∗) and pLA is the Laplace approximated

posterior

pLA(ψ) := N
(
ψ|θ∗, H−1

)
.

Proof. One can express ∆ℓlinθ∗ (z, ψ) as follows

∆ℓlinθ∗ (z, ψ) = ℓlinθ∗ (z, ψ)− ℓlinθ∗ (z, θ
∗) = g⊤z (ψ − θ∗)

Therefore, E
ψ∼pLA

[
∆ℓlinθ∗ (z, ψ) ·∆ℓlinθ∗ (z′, ψ)

]
can be arranged as follows

E
ψ∼pLA

[
∆ℓlinθ∗ (z, ψ) ·∆ℓlinθ∗ (z′, ψ)

]
= E
ψ∼pLA

[
g⊤z (ψ − θ∗) (ψ − θ∗)

⊤
gz′

]
= g⊤z E

ψ∼pLA

[
(ψ − θ∗) (ψ − θ∗)

⊤
]
gz′

= g⊤z H
−1gz′ = I(z, z′).

16

B.3 Proof of Proposition 4.2

Proposition B.3 (Singular Hessian for over-parameterized NNs). Let us assume a pre-trained
parameter θ∗ ∈ RP achieves zero training loss L(S, θ∗) = 0 for squared error. Then, H has at least
P − NK zero-eigenvalues for NNs such that NK < P . Furthermore, if x is an input of training
sample z ∈ S, then the following holds for the eigenvectors {ui}Pi=NK+1

g⊤z ui = ∇⊤
ŷ ℓ(z, θ

∗)∇⊤
θ f(x, θ

∗)ui︸ ︷︷ ︸
0K

= 0 (18)

Proof. The Hessian matrix of training loss w.r.t. parameters can be expressed as follows [51]

H =
1

N

N∑
n=1

∇θf(xn, θ
∗)∇2

ŷnℓ(zn, θ
∗)∇⊤

θ f(xn, θ
∗) +∇ŷnℓ(zn, θ

∗)∇2
θf(xn, θ

∗)

=
1

N

N∑
n=1

∇θf(xn, θ
∗)∇2

ŷnℓ(zn, θ
∗)∇⊤

θ f(xn, θ
∗)

=
1

N

N∑
n=1

∇θf(xn, θ
∗)∇⊤

θ f(xn, θ
∗)

where the first equality holds due to the zero training loss assumption

∇ŷnℓ(zn, θ
∗) = (f(xn, θ

∗)− yn) = 0K ∀n = 1, . . . , N

and the second equality holds due to the squared error assumption

∇2
ŷnℓ(zn, θ

∗) = IK ∀n = 1, . . . , N.

Therefore,H is a sum ofNK rank-one products. As a result,H has at mostNK non-zero eigenvalues
and at least P −NK zero-eigenvalues for over-parameterized NNs such that NK < P . As training
Jacobians ∇⊤

θ f(x, θ
∗) for n = 1, . . . , N are contained in the linear span of {ui}NKi=1 , which is

orthogonal to {ui}Pi=NK+1, the following holds for any training input x

∇⊤
θ f(x, θ

∗)ui = 0K , ∀ui ∈ {ui}Pi=NK+1.

B.4 Cross-entropy version of Proposition 4.2 and its proof

Proposition B.4 (Cross-entropy version of Proposition 4.2). Let us assume a pre-trained parameter
θ∗ ∈ RP for cross-entropy loss. Then, the empirical Fisher (EF) matrix F = 1

N

∑
z∈S gzg

⊤
z has at

least P −N zero-eigenvalues for NNs such that N < P . Furthermore, the following holds for the
last P −N eigenvectors {ui}Pi=N+1 and any training sample z ∈ S

g⊤z ui = 0 (19)

Proof. As F is a sum of N rank-one products. As a result, F has at most N non-zero eigenvalues
and at least P −N zero-eigenvalues for over-parameterized NNs such that N < P . As gradients
∇⊤
θ ℓ(zn, θ

∗) for n = 1, . . . , N are contained in the linear span of {ui}Ni=1, which is orthogonal to
{ui}Pi=N+1, the following holds for any training input x

gzui = 0, ∀ui ∈ {ui}Pi=N+1.

17

C Implementations

C.1 Pseudocode of LA for IF approximation

Algorithm 1 ILA with KFAC [39, 17] sub-curvature approximation

1: Input: training data S, pre-trained parameter θ∗, number of LA samples M , two data samples z, z′

2:
3: # Estimation of KFAC sub-curvature
4: Initialize activation statistics Al and gradient statistics Gl for each layer l = 1, . . . , L
5: for n = 1, . . . , N (This computation can be conducted batch-wisely.) do
6: for l =, 1, . . . , L do
7: Accumulate activation statistics Al and gradient statistics Gl

8: end for{End accumulation for layers}
9: end for{End accumulation for training samples}

10: Compute eigendecomposition of activation/gradient statistics:

Al = UAlΛAlUAl , G
l = UGlΛGlUGl .

11:
12: # Sample Laplace approximated posteriors
13: for m = 1, . . . ,M do
14: Sample P -dimensional standard Gaussian random variable vm ∼ N (v | 0P , IP)
15: for l =, 1, . . . , L do
16: Use reparameterization trick for each layer:

ψl
m ← (θ∗)l + UGl

(
vlm ⊙

√
(diag(ΛGl)diag(ΛAl)⊤

)
U⊤

Al

where diag(A) is the diagonal components of matrix A, ⊙ denotes Hadamard product of two matrices,
and the square root is applied for each component of the matrix.

17: end for
18: end for{End LA sampling {ψm}Mm=1}
19:
20: # Compute MC estimator of non-linear IF approximation (12)
21: ÎLA(z, z′)←

∑M
m=1 [∆ℓθ∗(z, ψm) ·∆ℓθ∗(z′, ψm)]

22:
23: Output: ÎLA(z, z′)

C.2 Pseudocode of GEX

Algorithm 2 IGEX
1: Input: training data S, pre-trained parameter θ∗, number of LA samples M , number of fine-tuning steps T ,

two data samples z, z′

2:
3: # Generating Geometric Ensemble (GE; [16])
4: for m = 1, . . . ,M (This computation can be parallelized for multiple devices) do
5: Initialized the m-th checkpoint θ0m ← θ∗ (or θTm−1)
6: for t = 1, . . . , T do
7: Apply stochastic optimization update (e.g., SGD with momentum): θtm ← θt−1

m

8: end for{End fine-tuning the m-th checkpoint θTm}
9: end for{End generation of GE {θTm}Mm=1}

10:
11: # Compute the non-linear IF approximation (10)
12: ÎGEX(z, z′)←

∑M
m=1

[
∆ℓθ∗(z, θ

T
m) ·∆ℓθ∗(z′, θTm)

]
13:
14: Output: ÎGEX(z, z′)

18

D Complexity analysis

Table 6: Comparison of computational complexity between IF approximations. P and PLast are the entire
parameter dimension and the last-layer parameter dimension, respectively. N is the number of training samples
and R is the projection dimension used in IArnoldi and ITracInRP. C is the number of checkpoints used in ITracIn
and ITracInRP and T is the number of SGD steps used in IGEX (See Appendix C). MGE and MLA are the number of
samples used in Geometric Ensemble and Laplace approximation, respectively. Cforward, Cbackward, and Cjvp

are the constant for the single computation of forward, backward, and JVP. Cforward and Cjvp are similar for
packages that offer forward-mode AD computation and Cbackward is much slower than the others.

Time complexity for cache Space complexity for cache Time complexity for evaluation

ILiSSA O(NLiSSA · Cbackward · P ·N) O(P ·N) O(Cbackward · P)
ILast-Layer O(N · P 3

Last) O(P 2
Last) O(Cbackward · P)

ITracIn Requires intermediate ckpts during pre-training O(C · P) O(C · Cbackward · P)
ITracInRP Requires intermediate ckpts during pre-training O(C · P) O(C ·R · Cjvp · P)
IArnoldi O(NArnoldi · Cbackward · P) O(NArnoldi · P) O(R · Cjvp · P)

ILA with KFAC O(CKFAC · P ·N) O(MLA · P) O(MLA · Cforward · P)
IGEX-lin O(T ·MGE · Cbackward · P) O(MGE · P) O(MGE ·R · Cjvp · P)
IGEX O(T ·MGE · Cbackward · P) O(MGE · P) O(MGE · Cforward · P)

In Table 6, we compare computational complexities of various IF approximations, including IGEX.
We provide three computational complexities of each IF approximation method: time and space
complexity for cache construction and the time complexity for evaluation. As discussed in Sec. 4.3, all
IF approximations except ITracIn and ITracInRP can be implemented using only the final checkpoint,
which is usually publicly released. However, the time and space complexity of cache construction are
significantly different between the post-hoc methods: As mentioned in Sec. 2, the time and space
complexity of ILiSSA for cache construction are proportional to the size of the training dataset N ,
as ILiSSA requires IHVP computation for each training sample. Therefore, ILiSSA cannot be used in
datasets with many training samples. On the other hand, ILast-Layer requires high space complexity
proportional to the square of the number of last-layer parameters PLast. As a result, ILast-Layer cannot
be applied to classification tasks with many classes (e.g., ImageNet [12]). While IArnoldi avoid
this issue by using the principal subspace of H , we found that they suffer from the OOM issue on
GPU RAM, as eigendecomposition computation (the DISTILL procedure in Schioppa et al. [52])
requires the space complexity proportional to NArnoldi, the number of steps in IArnoldi, which is
about 100-200 in Schioppa et al. [52]. However, IGEX and IGEX-lin does not suffer from the high time
and space complexity for cache construction, as the cache construction procedure of them is just
post-hoc fine-tuning in Garipov et al. [16].

For the time complexity for evaluation, we assume each method computes a single influence pair (e.g.,
I(z, z′) or I(z, z)). According to Table 6, all methods except ILA and IGEX require either backward
computation (Cbackward) or JVP computation (Cjvp). Among them, methods that require backward
computation (ILiSSA, ILast-Layer, and ITracIn) do not support batch computation for multiple samples,
as mentioned in Sec. 2. Therefore, computing self-influence for all training samples in practice
is inefficient. On the other hand, methods that require JVP computation (ITracInRP, IArnoldi, and
IGEX-lin) are efficient for packages that offer forward-mode AD computation (e.g., JAX [6]). On the
contrary, ILA and IGEX do not suffer from these issues, as they require only forward computation.

E Experimental settings

In the main paper, we conducted empirical studies in four different settings. We provide details
on these settings in this section. We use four random seeds to compute the standard errors for all
experiments in the main paper. We use 8 NVIDIA RTX 3090 GPUs for all experiments.

Two-circle classification task We use a modified two-circle classification task to study the side
effects of damping and truncation in Sec. 4. We use sklearn.datasets.make_circles function
to sample the training samples. We use 30 train samples for each class (circle) and add ten influential
samples at the center. We use a two-layer fully connected NN with a hidden dimension of 200. We
use jax.hessian function to compute the Hessian matrix of training loss and np.linalg.eigh to
compute the principal subspace of H−1.

19

Detecting and relabeling of mislabeled samples Noisy label settings [67] are used to study the
distributional bias of the standard bilinear IF approximations. We use standard datasets in the computer
vision domain: MNIST [33], CIFAR-10/100 [27], and SVHN [42]. For MNIST, we use VGGNet-B
[55] with batch normalization [23] after each convolution layer, similar to pytorch implementation
in https://pytorch.org/vision/main/models/vgg.html. We use ResNet-18 [20] for CIFAR
and SVHN. We use random label corruption for 10% of randomly selected training samples for
synthetic noise and CIFAR-N [64] for real-world label noise. We use a batch size of 1024 for all
datasets. For all datasets, we use the cosine learning rate annealing [36] with a linear warm-up where
the peak learning rate is 0.4, and the warm-up ratio (percentage of warm-up steps to training steps) is
10%. We use 0.0005 for the L2 regularization coefficient. We use 200 training epochs for all datasets.

To verify the scalability of our method, we also use ImageNet [12] with Vision Transformer [13]
and MLP-Mixer [60]. We use the "S-32" setting due to the heavy computation of ImageNet. We use
random label corruption for 10% of randomly selected training samples. We use a batch size 4096
and RandomResizedCrop, following Zhuang et al. [68]. We use the cosine learning rate annealing
with a linear warm-up where the peak learning is 0.003 and the warm-up step is 10,000. We use
AdamW [37] with 0.3 for the weight decay coefficient. We train 300 epochs for ImageNet, following
Zhuang et al. [68].

To verify the effectiveness of our method in another modality, we train SWEM [53] to DBpedia [34],
following Pruthi et al. [48]. However, Pruthi et al. [48] used this setting for a clean label case study,
while we used it for noisy label detection with 10% label corruption. For text representation, we use
SentencePiece [28] tokenizer and apply average pooling of word embeddings. We train 60 epochs
using the AdamW [37] optimizer with a peak learning rate of 0.001 and a weight decay of 0.001.
We performed a grid search on the search space mentioned in [53] to find these hyperparameters,
aiming to achieve the 95.5% train accuracy mentioned in [48]. We provide our results in Appendix F.
Deep-KNN was omitted because it took more than 15 hours to calculate for each random seed.

We use 20 dimensions for all projection-based methods (i.e., IRandProj, ITracInRP, IArnoldi). We use
100 iterations for IArnoldi. Five checkpoints, evenly sampled from the latter half of training epochs,
are used for ITracInRP and Deep-KNN. We use 10% of training samples to compute the neighborhoods
in Deep-KNN. For CL, we use two-fold cross-validation. Thus, CL requires at least a separate pre-
training level of computational cost. We use 20 initial training epochs for EL2N with five repetitions.
We use 32 samples for ILA and IGEX. We use a cosine learning rate of 0.05 with 800 steps for the
fine-tuning procedure to generate GE. We provide an ablation study exploring the impact of ensemble
size in Appendix F.

Dataset pruning We conducted a dataset pruning task in Paul et al. [46] to validate IGEX for clean
label settings. We use the same pre-training and post-hoc hyperparameters as noisy label settings
for this task (except for the presence of mislabeled samples). Since the pruning capacity (i.e., the
maximum number of samples to be pruned) of all datasets is not the same, we prune 40K samples for
MNIST (within 1% test acc. degradation for all methods), 25K samples for CIFAR-10 and SVHN
(within 0.5% test acc. degradation for F-score, EL2N, and IGEX), and 20K samples for CIFAR-100
(within 4% test ACC. degradation for IGEX, F-score, ILA).

Sepearation of data sources We also conducted a data source separation task in Harutyunyan et al.
[19] to validate IGEX for clean label settings. In this task, we train a ResNet-18 on a mixed dataset of
MNIST and SVHN, with 25,000 random subsamples for each training dataset. The other pre-train
and post-hoc hyperparameters are the same as for noisy labels.

F Additional results

In this section, we conducted additional experiments for completeness. To this end, we provide an
ablation study for the ensemble size of IGEX in Appendix F.1. We also provide additional results of
Sec. 5 in Appendix F.2- F.4. In Appendix F.5, we report the noisy label detection performance with
cross-influence. Finally, we study a purely post-hoc ITracInRP by using GE in Appendix F.6.

20

https://pytorch.org/vision/main/models/vgg.html

F.1 Ablation study for the ensemble size

Table 7: AUC and AP for noisy label detection with 10% label corruption
CIFAR-10 CIFAR-100

MGE AUC AP AUC AP

32 99.74 ± 0.02 98.31 ± 0.06 99.33 ± 0.03 96.08 ± 0.12
28 99.73 ± 0.01 98.16 ± 0.06 99.32 ± 0.03 95.92 ± 0.12
24 99.72 ± 0.01 98.08 ± 0.07 99.29 ± 0.03 95.79 ± 0.11
20 99.70 ± 0.01 97.99 ± 0.06 99.25 ± 0.04 95.59 ± 0.12
16 99.68 ± 0.02 97.86 ± 0.07 99.2 ± 0.04 95.32 ± 0.11
12 99.64 ± 0.01 97.64 ± 0.07 99.12 ± 0.05 94.94 ± 0.12
8 99.57 ± 0.02 97.23 ± 0.11 98.96 ± 0.05 94.16 ± 0.11
4 99.40 ± 0.04 96.27 ± 0.18 98.75 ± 0.07 92.99 ± 0.18

IArnoldi (NArnoldi = 100, R = 20) 61.64 ± 0.13 17.05 ± 0.18 77.20 ± 0.35 22.61 ± 0.42
ITracInRP (C = 5, R = 20) 89.56 ± 0.14 44.26 ± 0.37 74.99 ± 0.25 21.62 ± 0.26

To evaluate the effectiveness of the size of an ensemble in IGEX, we conduct an ablation study for
the number of fine-tuned models MGE for the noisy label detection task in Sec. 5.1 with 10% label
corruption. Table 7 shows that even a small number of checkpoints (about 8) can achieve better
performance of GEX than other state-of-the-art IF approximations. While we used 32 checkpoints to
ensure a low variance of results, small checkpoints - as small as 4 - may be sufficient in situations
requiring a low computational cost.

F.2 Results on MNIST and SVHN

Table 8: Noisy label detection performance on MNIST and SVHN
MNIST SVHN

Detection method AUC AP AUC AP

Deep-KNN 97.28 ± 0.13 90.34 ± 0.41 93.07 ± 0.06 77.33 ± 0.36
CL 87.31 ± 0.07 58.16 ± 0.26 59.18 ± 0.21 11.04 ± 0.05

F-score 96.67 ± 0.03 57.24 ± 0.13 85.38 ± 0.07 25.42 ± 0.07
EL2N 99.99 ± 0.00 99.90 ± 0.02 99.70 ± 0.01 96.33 ± 0.04

IRandProj 70.90 ± 0.48 20.61 ± 0.46 58.82 ± 0.28 17.94 ± 0.19
ITracInRP 97.22 ± 0.05 71.22 ± 0.54 91.52 ± 0.16 47.25 ± 0.77
IArnoldi 70.02 ± 0.44 19.88 ± 0.40 58.23 ± 0.48 17.71 ± 0.24

IGEX-lin 91.67 ± 0.23 62.93 ± 0.75 61.59 ± 0.18 18.95 ± 0.17
IGEX 99.99 ± 0.00 99.90 ± 0.02 99.74 ± 0.00 96.59 ± 0.06

Table 9: Relabeled test accuracy
for mislabeled samples

MNIST SVHN

Clean label acc. 98.93 ± 0.02 97.50 ± 0.01
Noisy label acc. 95.21 ± 0.04 94.84 ± 0.10

Detection method Relabeled acc.

Deep-KNN 98.75 ± 0.04 95.15 ± 0.06
CL 64.57 ± 0.30 79.08 ± 0.05

F-score 97.75 ± 0.08 91.71 ± 0.10
EL2N 99.13 ± 0.04 95.86 ± 0.04

IRandProj 97.78 ± 0.07 94.89 ± 0.06
ITracInRP 98.08 ± 0.03 94.54 ± 0.06
IArnoldi 97.69 ± 0.07 94.84 ± 0.03

IGEX-lin 95.37 ± 0.14 94.78 ± 0.11
IGEX 98.89 ± 0.03 96.32 ± 0.03

0 5000 10000 15000 20000 25000 30000 35000 40000
Pruned data

99.62

99.64

99.66

99.68

99.70

99.72

Te
st

 a
cc

ur
ac

y
(%

)

Arnoldi

EL2N
F-score

GEX

Random

RandProj

TracInRP

(a) MNIST

0 5000 10000 15000 20000 25000
Pruned data

96.9

97.0

97.1

97.2

97.3

97.4

97.5

Te
st

 a
cc

ur
ac

y
(%

)

Arnoldi

EL2N

F-score

GEX-lin

GEX

LA-KFAC
Random

RandProj

TracInRP

(b) SVHN

Figure 5: Data pruning results on MNIST and SVHN.

In this section, we provide the additional results of Sec. 5 for MNIST [33] and SVHN [42] with 10%
label corruption. The overall tendency of MNIST and SVHN is similar to the results in Sec. 5. While
EL2N is comparable (or even better) to IGEX on MNIST, their good performance is not generalized to
more scalable and practical settings in CIFAR-N [64], and ImageNet [12].

21

F.3 Results on DBpedia

Table 10: Noisy label detection performance
on DBpedia

DBPedia

Detection method AUC AP

CL 86.49 ± 0.01 56.14 ± 0.04
F-score 45.18 ± 0.15 8.91 ± 0.01
EL2N 99.56 ± 0.00 95.26 ± 0.02

IRandProj 98.42 ± 0.05 79.05 ± 0.90
ITracInRP 98.42 ± 0.04 79.34 ± 0.60
IArnoldi 98.54 ± 0.02 80.69 ± 0.25

IGEX-lin 97.10 ± 0.13 74.46 ± 1.14
IGEX 99.79 ± 0.00 97.83 ± 0.03

In this section, we provide the additional results of Sec. 5.1 for DBPedia [34] with SWEM [53].
Table 10 shows that GEX better discriminates noisy labels than other methods. In addition to the
robustness of various model types (including VGGNet, ResNet, ViT, and MLP-Mixer) and noise
types (synthetic label noise and real-world label noise), this result indicates that GEX has consistently
excellent performance for various data types.

F.4 Results on 30% label corruption

Table 11: Noisy label detection performance with 30% label cor-
ruption

CIFAR-10 CIFAR-100

Detection method AUC AP AUC AP

Deep-KNN 88.39 ± 0.57 77.94 ± 1.04 82.09 ± 0.23 64.01 ± 0.37
CL 82.28 ± 0.04 64.55 ± 0.06 78.36 ± 0.13 60.42 ± 0.18

F-score 64.40 ± 0.21 31.98 ± 0.10 53.61 ± 0.12 28.91 ± 0.05
EL2N 99.13 ± 0.01 97.81 ± 0.05 97.50 ± 0.03 93.27 ± 0.10

IRandProj 57.93 ± 0.51 33.36 ± 0.29 71.72 ± 0.01 46.33 ± 0.20
ITracInRP 84.08 ± 0.56 59.56 ± 0.85 68.30 ± 0.29 43.79 ± 0.37
IArnoldi 57.26 ± 0.51 32.80 ± 0.28 69.34 ± 0.05 43.38 ± 0.23

IGEX-lin 58.82 ± 0.46 33.93 ± 0.26 69.36 ± 0.25 43.96 ± 0.21
IGEX 99.74 ± 0.01 98.19 ± 0.06 98.98 ± 0.01 97.84 ± 0.03

Table 12: Relabeled test accu-
racy for mislabeled samples

CIFAR-10 CIFAR-100

Clean label acc. 95.75 ± 0.06 79.08 ± 0.05
Noisy label acc. 79.81 ± 0.28 58.92 ± 0.04

Detection method Relabeled acc.

Deep-KNN 82.57 ± 0.43 56.26 ± 0.08
CL 35.26 ± 0.02 30.25 ± 0.65

F-score 65.29 ± 0.57 44.13 ± 0.40
EL2N 88.07 ± 0.17 60.86 ± 0.13

IRandProj 79.80 ± 0.26 58.88 ± 0.19
ITracInRP 79.59 ± 0.23 58.50 ± 0.28
IArnoldi 80.08 ± 0.13 58.76 ± 0.32

IGEX-lin 79.72 ± 0.17 58.79 ± 0.10
IGEX 89.88 ± 0.06 67.25 ± 0.07

In this section, we provide the additional results of Sec. 5.1-5.2 with 30% label corruption. Table
11-12 shows that IGEX achieves better detection and relabeling performance than other methods on
higher label noise settings. This is consistent with the empirical evaluation in Sec. 5 and shows the
practicality of IGEX.

F.5 Cross-influence results for noisy label detection

Table 13: AUC and AP for noisy label detection tasks on four datasets

MNIST CIFAR-10 CIFAR-100 SVHN

Detection method AUC AP AUC AP AUC AP AUC AP

IRandProj 56.64 ± 1.92 87.42 ± 0.61 58.72 ± 0.40 36.35 ± 0.56 51.59 ± 0.47 37.51 ± 0.39 59.97 ± 1.62 37.21 ± 1.45
ITracInRP 57.09 ± 1.11 87.84 ± 0.31 60.74 ± 0.77 51.04 ± 1.11 51.88 ± 0.22 36.67 ± 0.35 64.10 ± 0.69 54.46 ± 1.49
IArnoldi 76.09 ± 0.66 93.76 ± 0.17 77.64 ± 0.93 62.20 ± 2.00 53.64 ± 0.67 38.8 ± 0.39 80.85 ± 1.52 64.62 ± 2.84

IGEX 99.83 ± 0.03 99.83 ± 0.03 86.82 ± 1.24 81.98 ± 1.58 98.96 ± 0.01 97.69 ± 0.02 99.32 ± 0.19 97.51 ± 0.55

In this section, we apply the cross-influence on test dataset Stest defined as

I(z, Stest) :=
1

|Stest|
∑

z′∈Stest

I(z, z′)

22

for the noisy label detection task in Appendix F.4. As the overfitting/memorization of mislabeled
samples causes performance degradation for NNs, the estimated cross-influence values should be
negative for these samples. Table 13 shows that IF approximations represent this tendency correctly.
Mislabeled samples are best distinguished from clean samples using IGEX.

F.6 TracInRP with Geometric Ensemble checkpoints

Table 14: Noisy label detection performance for ITracInRP with Geometric Ensemble checkpoints
MNIST CIFAR-10 CIFAR-100 SVHN

Detection method AUC AP AUC AP AUC AP AUC AP

IRandProj 70.90 ± 0.48 20.61 ± 0.46 62.70 ± 0.19 17.90 ± 0.17 79.96 ± 0.32 26.25 ± 0.47 58.82 ± 0.28 17.94 ± 0.19
ITracInRP 94.37 ± 0.12 68.87 ± 0.97 89.56 ± 0.14 44.26 ± 0.37 74.99 ± 0.25 21.62 ± 0.26 91.52 ± 0.16 47.25 ± 0.77

ITracInRP with GE 99.78 ± 0.03 97.00 ± 0.47 90.96 ± 0.14 41.52 ± 0.20 88.84 ± 0.22 48.91 ± 0.85 85.35 ± 0.20 23.06 ± 0.23

IGEX 99.98 ± 0.00 99.87 ± 0.01 99.74 ± 0.02 98.31 ± 0.06 99.33 ± 0.03 96.08 ± 0.12 99.74 ± 0.00 96.59 ± 0.06

As discussed in Sec. 2, ITracIn and ITracInRP are not purely post-hoc as they require intermediate
checkpoints during pre-training. Motivated by IGEX, one can propose to replace the intermediate
checkpoints of ITracInRP with post-hoc checkpoints generated by Geometric Ensemble. In this
section, we evaluate this setting for the noisy label detection task in Sec. 5.1. Table 14 shows
that this modification consistently outperforms IRandProj, which uses the last checkpoint θ∗ only.
Also, ITracInRP with GE performs better than the original ITracInRP except SVHN. However, this
improvement does not outperform IGEX.

F.7 Further ImageNet results

Table 15: Relabeled accuracy for ImageNet [12]

ViT-S-32 Mixer-S-32

Clean acc. 67.83% 64.37%
Noisy acc. 63.42% 61.84%

Relabeled with EL2N 63.18% 63.16%
Relabeled with GEX 66.17% 63.45%

Table 16: Pruned acc. for ImageNet [12]

Mixer-S-32

Full sample acc. 67.83%
Pruned with EL2N 54.87%
Pruned with GEX 56.34%

Our first additional ImageNet experiment is the relabeling task presented in Sec. 5.2 on the ImageNet-
1K environment with ViT and MLP-Mixer. To this end, we follow the relabeling process in Sec. 5.2
with the estimated influence in Table 2. As ViT and Mixer use multi-task binary classification loss
instead of cross-entropy loss, the relabel function in (16) cannot be applied to this setting. To mitigate
this issue, we use well-known distillation loss [21] for detected influential samples. Therefore, these
influential samples receive a milder signal than from the hard label of the initial training. Table 15
presents the relabeled test accuracy for IGEX and EL2N (the best method for noisy label detection
except ours). It shows that IGEX can detect mislabeled samples that require relabeling more accurately
than EL2N. The second additional ImageNet experiment is the dataset pruning task in Sec. 5.3 on
the ImageNet-1K with MLP-Mixer. For this purpose, we reproduce Mixer-S-32 and estimate the
self-influence of IGEX and EL2N score (which verified its scalability on the dataset pruning task in
Sorscher et al. [58]). Then, we prune 512,466 samples (40%) with the smallest self-influence in
ImageNet-1K and retrain neural networks with these pruned datasets. Table 16 presents the pruned test
accuracy for IGEX and EL2N. Similar to the results shown in Fig. 4, IGEX demonstrates more effective
identification of prunable samples than EL2N on the scalable ImageNet-1K dataset. Additionally, it is
worth noting that EL2N cannot make use of open-source checkpoints and requires a computational
cost of (10 ∼ 20 epochs) × (number of checkpoints) from an initialized neural network. In summary,
the better-pruned accuracy and the lower computational cost further illustrate the effectiveness of
IGEX in scalable settings.

23

G Limitations and Broader Impacts

While IGEX effectively captures the multi-modal nature of ILOO’s self-influence distribution, we do not
delve into the theoretical guarantees, such as approximation bounds, for IGEX. Nevertheless, we believe
that this concern can be addressed in future research by making assumptions about the SGD steps used
in generating checkpoints. Furthermore, although the data pruning results of IGEX are significantly
superior to other methods approximating IF, they do not outperform the performance achieved by
state-of-the-art techniques like F-score and EL2N. This issue can be resolved by implementing the
iterative pruning approach proposed in Harutyunyan et al. [19].

Our study examines the distributional bias present in current IF approximations and proposes an
efficient solution. As a result, our approach has broad applicability in different scenarios. Specifically,
our method offers enhanced efficiency in identifying mislabeled and prunable samples compared
to existing approaches. Consequently, we believe that our method can contribute to enhancing and
expediting the training process of energy-intensive deep learning models.

24

	Introduction
	Background
	Identifying distributional bias in bilinear influence approximations
	Geometric Ensemble for sample eXplanation
	GEX and its motivation
	Pitfalls of inverse Hessian in non-linear IF approximation
	Practical advantages of GEX

	Experiments
	Noisy label detection
	Relabeling mislabeled samples
	Dataset pruning
	Separation of data sources

	Conclusion
	Notations
	Proofs
	Proof of Proposition 3.1
	Proof of Theorem 4.1
	Proof of Proposition 4.2
	Cross-entropy version of Proposition 4.2 and its proof

	Implementations
	Pseudocode of LA for IF approximation
	Pseudocode of GEX

	Complexity analysis
	Experimental settings
	Additional results
	Ablation study for the ensemble size
	Results on MNIST and SVHN
	Results on DBpedia
	Results on 30% label corruption
	Cross-influence results for noisy label detection
	TracInRP with Geometric Ensemble checkpoints
	Further ImageNet results

	Limitations and Broader Impacts

