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Abstract

Conditional stochastic optimization has found applications in a wide range of
machine learning tasks, such as invariant learning, AUPRC maximization, and
meta-learning. As the demand for training models with large-scale distributed data
grows in these applications, there is an increasing need for communication-efficient
distributed optimization algorithms, such as federated learning algorithms. This
paper considers the nonconvex conditional stochastic optimization in federated
learning and proposes the first federated conditional stochastic optimization algo-
rithm (FCSG) with a conditional stochastic gradient estimator and a momentum-
based algorithm (i.e., FCSG-M). To match the lower bound complexity in the
single-machine setting, we design an accelerated algorithm (Acc-FCSG-M) via
the variance reduction to achieve the best sample and communication complexity.
Compared with the existing optimization analysis for Meta-Learning in FL, feder-
ated conditional stochastic optimization considers the sample of tasks. Extensive
experimental results on various tasks validate the efficiency of these algorithms.

1 Introduction

The conditional stochastic optimization arises throughout a wide range of machine learning tasks,
such as the policy evaluation in reinforcement learning [5], invariant learning [16], instrumental
variable regression in causal inference [30], Model-Agnostic Meta-Learning (MAML) [10], AUPRC
maximization [28] and so on. Recently many efficient conditional stochastic optimization algorithms
have been developed [16–18, 28, 34, 32] to solve the corresponding machine learning problems
and applications. However, all existing conditional stochastic optimization algorithms were only
designed for centralized learning (i.e., model and data both deployed at a single machine) or finite-
sum optimization, without considering the large-scale online distributed scenario. Many federated
learning algorithms [26, 22, 29, 23, 44, 39, 25, 45] were proposed since FL is a communication-
efficient training paradigm for large-scale machine learning training preserving data privacy. In
federated learning, clients update the model locally, and the global server aggregates the model
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parameters periodically. Although federated learning has been actively applied to numerous real-
world applications in the past years, the federated conditional stochastic optimization problem is
still underexplored. To bridge this gap, in this paper we study the following federated conditional
stochastic optimization problem:

min
x∈X

F (x) :=
1

N

N∑
n=1

Eξnf
n
ξn(Eηn|ξng

n
ηn(x, ξn)) , (1)

where X ⊆ Rd is a closed convex set, Eξnf
n
ξn(·) : Rd′ → R is the outer-layer function on the n-th

device with the randomness ξn, and Eηn|ξng
n
ηn(·, ξn) : Rd → Rd′

is the inner-layer function on the
n-th device with respect to the conditional distribution of ηn | ξn. We assume fn

ξ (·) and gnη (·, ξ) are
continuously differentiable. The objective subsumes two stochastic functions in (1), where the inner
functions rely on the randomnesses of both inner and outer layers, and ξ and η are not independent,
which makes the federated conditional stochastic optimization more challenging compared with the
standard federated learning optimization problems.

Federated conditional stochastic optimization contains the standard federated learning optimization
as a special situation when the inner-layer function gnηn(x, ξn) = x. In addition, federated stochastic
compositional optimization is similar to federated conditional stochastic optimization given that
both problems contain two-layer nested expectations. However, they are fundamentally different. In
federated stochastic compositional optimization, the inner randomness η and the outer randomness
ξ are independent and data samples of the inner layer are available directly from η (instead of a
conditional distribution as in Problem (1)). Therefore, when randomnesses η and ξ are independent
and gnηn(x, ·) = gnηn(x), (1) is converted into federated stochastic compositional optimization [11].

Recently, to solve the conditional stochastic optimization problem efficiently, [16] studied the sample
complexity of the sample average approximation for conditional stochastic optimization. Afterward,
[17] proposed the algorithm called biased stochastic gradient descent (BSGD) and an accelerated
algorithm called biased SpiderBoost (BSpiderBoost). The convergence guarantees of BSGD and
BSpiderBoost under different assumptions are established. More recently, [28, 34, 37, 32, 14]
reformulated the AUC maximization into a finite-sum version of conditional stochastic optimization
and introduced algorithms to solve it. In an increasing amount of distributed computing settings,
efficient federated learning algorithms are absolutely necessary but still lacking. An important
example of conditional stochastic optimization is MAML. In meta-learning, we attempt to train
models that can efficiently adapt to unseen tasks via learning with metadata from similar tasks [10].
When the tasks are distributed at different clients, a federated version of MAML would be beneficial
to leverage information from all workers [3]. A lot of existing efforts [19, 11] have been made to
convert FL MAML into federated compositional optimization. Nonetheless, they ignore the sample
of tasks in MAML, and federated conditional stochastic optimization problems have never been
studied. Thus, there exists a natural question: Can we design federated algorithms for conditional
stochastic optimization while maintaining the fast convergence rate to solve Problem (1)?

In this paper, we give an affirmative answer to the above question. We propose a suite of approaches
to solve Problem (1) and establish their corresponding convergence guarantee. To our best knowledge,
this is the first work that thoroughly studies federated conditional stochastic optimization problems
and provides completed theoretical analysis. Our proposed algorithm matches the lower-bound sample
complexity in a single-machine setting and obtains convincing results in empirical experiments. Our
main contributions are four-fold:

1) we propose the federated conditional stochastic gradient (FCSG) algorithm to solve Problem
(1). We establish the theoretical convergence analysis for FCSG. In the general nonconvex
setting, we prove that FCSG has a sample complexity of O(ϵ−6) and communication
complexity of O(ϵ−3) to reach an ϵ-stationary point, and achieves an appealing linear
speedup w.r.t the number of clients.

2) To further improve the empirical performance of our algorithm, we introduce a momentum-
based FCSG algorithm, called FCSG-M since the momentum-based estimator could reduce
noise from samples with history information. FCSG-M algorithm obtains the same theoreti-
cal guarantees as FCSG.

3) To reach the lower bound of sample complexity of the single-machine counterpart [17],
we propose an accelerated version of FCSG-M (Acc-FCSG-M) based on the momentum-
based variance reduction technique. We prove that Acc-FCSG-M has a sample complexity
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of O(ϵ−5), and communication complexity of O(ϵ−2), which matches the best sample
complexity attained by single-machine algorithm BSpiderBoost with variance reduction.

4) Experimental results on the robust logistic regression, MAML and AUPRC maximization
tasks validate the effectiveness of our proposed algorithms.

2 Related Work

2.1 Conditional Stochastic Optimization

[16] studied the generalization error bound and sample complexity of the sample average approxima-
tion (SAA) for conditional stochastic optimization. Subsequently, [17] proposed a class of efficient
stochastic gradient-based methods for general conditional stochastic optimization to reach either a
global optimal point in the convex setting or a stationary point in the nonconvex setting, respectively.
In the nonconvex setting, BSGD has the sample complexity of O(ϵ−6) and a variance reduction
algorithm (BSpiderBoost) has the sample complexity of O(ϵ−5). [18] utilized the Monte Carlo
method to achieve better results compared with the vanilla stochastic gradient method. Recently, [28]
converted AUPRC maximization optimization into the finite-sum version of the conditional stochastic
optimization and propose adaptive and non-adaptive stochastic algorithms to solve it. Similarly, recent
work [34] used moving average techniques to improve the convergence rate of AUPRC maximization
optimization and provide theoretical analysis for the adaptive algorithm. Furthermore, [32] focused
on finite-sum coupled compositional stochastic optimization, which limits the outer-layer function
to the finite-sum structure. The algorithms proposed in [32] improved oracle complexity with the
parallel speed-up. More recently, [14] use federated learning to solve AUC maximization. However,
algorithms proposed in [28, 34, 32, 14] for AUC maximization have a significant limitation because
they maintain an inner state for each data point. As a result, its convergence rate depends on the
number of data points and cannot be extended to other tasks and large-scale model training. It is also
not applicable to online learning due to the dependence on each local data point. [38] consider the
decentralised online AUPRC maximization but the theoretical analysis cannot be applied into the
federated learning.

2.2 Stochastic Compositional Optimization

Recently, a related optimization problem, stochastic compositional optimization, has attracted widely
attention [36, 41, 11] and solve the following objective:

min
x∈X

F (x) := Eξfξ(Eηgη(x)) . (2)

To address this problem, [36] developed SCGD, which utilizes the moving average technique to
estimate the inner-layer function value. [35] further developed an accelerated SCGD method with the
extrapolation-smoothing scheme. Subsequently, a series of algorithms [20, 43, 15, 41] were presented
to improve the complexities using the acceleration or variance reduction techniques.

More recently, [19] and [11] studied the stochastic compositional problem in federated learning.
[19] transformed the distributionally robust federated learning problem (i.e., a minimax optimization
problem) into a simple compositional optimization problem by using KL divergence regularization
and proposed the first federated learning compositional algorithm and analysis. [8] formulated the
model personalization problem in federated learning as a model-agnostic meta-learning problem. In
personalized federated learning, each client’s task assignment is fixed and there is no task sampling on
each client in the training procedure. The sampling of the inner layer and outer layer are independent.
Therefore, personalized federated learning is formulated as the stochastic compositional optimization
[19]. [33] solves personalized federated learning utilizing SCGD, in contrast to SGD in [19], to reduce
the convergence complexities. However, the algorithm in [33] has a drawback in that keeping an inner
state for each task is necessary, which is prohibitively expensive in large-scale settings. More recently,
[11] proposed a momentum-like method for nonconvex problems with better complexities to solve
the stochastic compositional problem in the federated learning setting. Although [11] claims their
algorithm can be used in the MAML problem, it does not consider the two fundamental characteristics
in MAML, i.e., task sampling and the dependency of inner data distribution on the sampled task.

Overall, problems (1) and (2) differ in two aspects: i) in Problem (2), the inner randomness η and the
outer randomness ξ are independent, while in Problem (1), η is conditionally dependent on the ξ;
and ii) in Problem (1), the inner function depends on both ξ and η. Therefore, Problem (2) can be
regarded as a special case of (1). Thus, the conditional stochastic optimization (1) is more general.

3



Table 1: Complexity summary of proposed federated conditional stochastic optimization algorithms
to reach an ε-stationary point. Sample complexity is defined as the number of calls to the First-order
Oracle (IFO) by clients to reach an ε-stationary point. Communication complexity denotes the total
number of back-and-forth communication rounds between each client and the central server required
to reach an ε-stationary point.

Algorithm Sample Communication
FCSG O

(
ϵ−6
)

O
(
ϵ−3
)

FCSG-M O
(
ϵ−6
)

O
(
ϵ−3
)

Lower Bound [16] O
(
ϵ−5
)

-
Acc-FCSG-M O

(
ϵ−5
)

O
(
ϵ−2
)

3 Preliminary

For solving the problem (1), we first consider the local objective Fn(x) and its gradient. We have
Fn(x) = Eξnf

n
ξn(Eηn|ξng

n
ηn(x, ξn))

∇Fn(x) = Eξn
[
(Eηn|ξn∇gnηn(x, ξn)])⊤∇fn

ξn(Eηn|ξng
n
ηn(x, ξn))

]
Since there are two layers of stochastic functions, the standard stochastic gradient estimator is not
an unbiased estimation for the full gradient. Instead of constructing an unbiased stochastic gradient
estimator, [17] considered a biased estimator of ∇F (x) using one sample of ξ and m samples of η:

∇F̂n (x; ξn,Bn) = (
1

m

∑
ηn
j ∈Bn

∇gnηn
j
(x, ξn))⊤∇fn

ξn(
1

m

∑
ηn
j ∈Bn

gnηn
j
(x, ξn))

where Bn =
{
ηnj
}m
j=1

. And ∇F̂n (x; ξn,Bn) is the gradient of an empirical objective such that

F̂n (x; ξn,Bn) := fn
ξn(

1

m

∑
ηn
j ∈Bn

gηn
j
(x, ξn)) (3)

3.1 Assumptions

Assumption 3.1. (Smoothness) ∀n ∈ [N ], the function fn
ξn(·) is Sf -Lipschitz smooth, and the

function gnηn(·, ξn) is Sg-Lipschitz smooth, i.e., for a sample ξn and m samples {ηnj }mj=1 from the
conditional distribution P (ηn | ξn), ∀x1, x2 ∈ dom fn(·), and ∀y1, y2 ∈ dom gn(·), there exist
Sf > 0 and Sg > 0 such that
E∥∇fn

ξn(x1)−∇fn
ξn(x2)∥ ≤ Sf∥x1 − x2∥ E∥∇gnηn(y1, ξ

n)−∇gnηn(y2, ξ
n)∥ ≤ Sg∥y1 − y2∥

Assumption 3.1 is a widely used assumption in optimization analysis. Many single-machine stochastic
algorithms use this assumption, such as BSGD [17], SPIDER [9], STORM [4], ADSGD [1], and
D2SG [12]. In distributed learning, the convergence analysis of distributed learning algorithms, such
as DSAL [2], and many federated learning algorithms such as MIME [21], Fed-GLOMO [6], STEM
[23] and FAFED [39] also depend on it.
Assumption 3.2. (Bounded gradient) ∀n ∈ [N ], the function fn(·) is Lf -Lipschitz continuous, and
the function gn(·) is Lg-Lipschitz continuous, i.e., ∀x ∈ dom fn(·), and ∀y ∈ dom gn(·), the second
moments of functions are bounded as below:

E∥∇fn
ξn(x)∥2 ≤ L2

f E∥∇gnηn(y1, ξ
n)∥2 ≤ L2

g

Assumption 3.2 is a typical assumption in the multi-layer problem optimization to constrain the upper
bound of the gradient of each layer, as in [36, 28, 11, 14].
Assumption 3.3. (Bounded variance) [17] ∀n ∈ [N ], and x ∈ X :

sup
ξn,x∈X

Eηn|ξn∥gηn(x, ξn)− Eηn|ξngηn(x, ξn)∥2 ≤ σ2
g

where σ2
g < +∞. Assumption 3.3 indicates that the random vector gηn has bounded variance.
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Algorithm 1 FCSG and FCSG-M Algorithm
1: Input: Parameters: T , momentum weight β, learning rate α, the number of local updates q, inner

batch size m and outer batch size b, as well as the initial outer batch size B ;
2: Initialize: xn

0 = x̄0 = 1
N

∑N
k=1 x

n
0 . Draw B samples of {ξnt,1, · · · , ξnt,B} and draw

m samples Bn
0,i =

{
ηnij
}m
j=1

from P (ηn | ξn0,i) for each ξn0,i ∈ {ξnt,1, · · · , ξnt,B};un
1 =

1
B

∑B
i=1 ∇F̂n(xn

0 ; ξ
n
0,i,Bn

0,i).
3: for t = 1, 2, . . . , T do
4: for n = 1, 2, . . . , N do
5: if mod (t, q) = 0 then
6: Server Update:
7: un

t = ūt =
1
N

∑N
i=1 u

n
t

8: xn
t = x̄t =

1
N

∑N
n=1(x

n
t−1 − αun

t )
9: else

10: xn
t = xn

t−1 − αun
t

11: end if
12: Draw b samples of {ξnt,1, · · · , ξnt,b}
13: Draw m samples Bn

t,n =
{
ηnij
}m
j=1

from P (ηn | ξnt,i) for each ξnt,i ∈ {ξnt,1, · · · , ξnt,b},

14: un
t+1 = 1

b

∑b
i=1 ∇F̂n(xn

t ; ξ
n
t,i,Bn

t,i)

15: un
t+1 = (1− β)un

t + β
b

∑b
i=1 ∇F̂n(xn

t ; ξ
n
t,i,Bn

t,i)

16: end for
17: end for
18: Output: x chosen uniformly random from {x̄t}Tt=1.

4 Proposed Algorithms

In the section, we propose a class of federated first-order methods to solve the Problem (1). We first
design a federated conditional stochastic gradient (FCSG) algorithm with a biased gradient estimator
and the momentum-based algorithm FCSG-M. To further accelerate our algorithm and achieve the
lower bound of sample complexity of the single-machine algorithm, we design the Acc-FCSG-M
with a variance reduction technique. Table 1 summarizes the complex details of each algorithm.

4.1 Federated Conditional Stochastic Gradient (FCSG)

First, we design a federated conditional stochastic gradient (FCSG) algorithm with the biased gradient
estimator. We leverage a mini-batch of conditional samples to construct the gradient estimator ut with
controllable bias as (6). At each iteration, clients update their local models xt with local data, which
can be found in Line 9-14 of Algorithm 1. Once every q local iterations, the server collects local
models and returns the averaged models to each client, as Line 5-8 of Algorithm 1. Here, the number
of local update steps q is greater than 1 such that the number of communication rounds is reduced
to T/q. The details of the method are summarized in Algorithm 1. Then we study the convergence
properties of our new algorithm FCSG. Detailed proofs are provided in the supplementary materials.

Theorem 4.1. Suppose Assumptions 3.1, 3.2 and 3.3 hold, if α ≤ 1
6qSF

, FCSG has the following
convergence result

1

T

T−1∑
t=0

∥∇F (x̄t)∥2 ≤ 2[F (x̄0)− F (x̄T )]

αT
+

2L2
gS

2
fσ

2
g

m
+

2αSFL
2
fL

2
g

N
+ 42(q − 1)qα2L2

fL
2
gS

2
F

Corollary 4.2. We choose α = 1
6SF

√
N
T and q = (T/N3)1/4, we have

1

T

T−1∑
t=0

∥∇F (x̄t)∥2 ≤ 12SF [F (x̄0)− F (x̄∗)]

(NT )1/2
+

2L2
gS

2
fσ

2
g

m
+

L2
fL

2
g

6(NT )1/2
+

19L2
fL

2
g

9(NT )1/2
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Remark 4.3. We choose B = b = O(1) ≥ 1, and m = O(ε−2), according to Corollary 4.2 to let
1
T

∑T−1
t=0 ∥∇F (x̄t)∥2 ≤ ε2, we get T = O(N−1ε−4). O(N−1ε−4) indicates the linear speedup of

our algorithm. Given q = (T/N3)1/4, the communication complexity is T
q = (NT )3/4 = O(ε−3).

Then the sample complexity is mT = O(N−1ε−6).

4.2 Federated Conditional Stochastic Gradient with Momentum (FCSG-M)

Next, we propose a momentum-based local updates algorithm (FCSG-M) for federated conditional
stochastic optimization problems. Momentum is a popular technique widely used in practice for
training deep neural networks. The motivation behind it in local updates is to use the historic
information (i.e., averaging of stochastic gradients) to reduce the effect of stochastic gradient noise.
The details of our method are shown in Algorithm 1.

Initially, each device utilizes the standard stochastic gradient descent method to update the model
parameter, as seen in Line 2 of Algorithm 1. Afterward, compared with FCSG, at each step, each
client uses momentum-based gradient estimators ut to update the local model, which can be found in
Lines 9-15 of Algorithm 1. The coefficient β for the update of ut should satisfy 0 < β < 1. In every
q iterations, the clients communicate {xt, ut} to the server, which computes the {x̄t, ūt}, and returns
the averaged model and gradient estimator to each client, as Lines 5-8 of Algorithm 1. Then we study
the convergence properties of our new algorithm FCSG-M. The details of the proof are provided in
the supplementary materials.
Theorem 4.4. Suppose Assumptions 3.1, 3.2 and 3.3 hold, α ≤ 1

6qSF
and β = 5SF η. FCSG-M has

the following convergence result

1

T

T−1∑
t=0

E∥∇F (x̄t)∥2 ≤ 2
F (x̄0)− F (x̄T )

αT

+
96S2

F

5
q2α2[L2

fL
2
g(1 +

1

N
) + 3L2

fL
2
g] +

4L2
gS

2
fσ

2
g

m
+

8L2
fL

2
g

βBT
+

8βL2
fL

2
g

N

Corollary 4.5. We choose α = 1
6SF

√
N
T , q = (T/N3)1/4, we have

1

T

T−1∑
t=0

∥∇F (x̄t)∥2 ≤12SF [F (x̄0)− F (x̄∗)]

(NT )1/2

+
112L2

fL
2
g

3(NT )1/2
+

4L2
gS

2
fσ

2
g

m
+

48L2
fL

2
g

5(NT )1/2
+

20L2
fL

2
g

3(NT )1/2

Remark 4.6. We choose b = O(1), B = O(1), and m = O(ε−2). According to Corollary 4.5, to
make 1

T

∑T−1
t=0 ∥∇F (x̄t)∥2 ≤ ε2, we get T = O(N−1ε−4). Given q = (T/N3)1/4, the commu-

nication complexity is T
q = (NT )3/4 = O(ε−3). The sample complexity is mT = O(N−1ε−6),

which indicates FCSG-M also has the linear speedup with respect to the number of clients.

4.3 Acc-FCSG-M

In the single-machine setting, [17] presents that under the general nonconvex conditional stochastic
optimization objective, the lower bound of sample complexity is O(ε−5). It means that the sample
complexity achieved by FCSG and FCSG-M could be improved for nonconvex smooth conditional
stochastic optimization objectives. To match the above lower bound of sample complexity, we
propose an accelerated version of the FCSG-M (Acc-FCSG-M) based on the momentum-based
variance reduction technique. The details of the method are shown in Algorithm 2.

Similar to the FCSG-M, in the beginning, each client initializes the model parameters and utilizes
the stochastic gradient descent method to calculate the gradient estimator. Subsequently, in every q
iterations, all clients perform communication with the central server, and the model parameters and
gradient estimators are averaged. The key difference is that at Line 14 in Acc-FCSG-M, we use the
momentum-based variance reduction gradient estimator un

t+1 to track the gradient and update the
model. where β ∈ (0, 1). We establish the theoretical convergence guarantee of our new algorithm
Acc-FCSG-M. All proofs are provided in the supplementary materials.
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Algorithm 2 Acc-FCSG-M Algorithm
1: Input: T , momentum weight β, learning rate α, the number of local updates q, inner batch size

m and outer batch size b, as well as the initial outer batch size B ;
2: Initialize: xn

0 = 1
N

∑N
k=1 x

n
0 . Draw B samples of {ξn1 , · · · , ξnB} and draw m sam-

ples Bn
0,i =

{
ηnij
}m
j=1

from P (ηn | ξni ) for each ξni ∈ {ξn1 , · · · , ξnB}, then un
1 =

1
B

∑B
i=1 ∇F̂n(xn

0 ; ξ
n
0,i,Bn

0,i) for n ∈ [N ].
3: for t = 1, 2, . . . , T do
4: for n = 1, 2, . . . , N do
5: if mod (t, q) = 0 then
6: Server Update:
7: un

t = ūt =
1
N

∑N
i=1 u

n
t

8: xn
t = x̄t =

1
N

∑N
n=1(x

n
t−1 − αun

t )
9: else

10: xt,n = xn
t−1 − αun

t
11: end if
12: Draw b samples of {ξnt,1, · · · , ξnt,b}
13: Draw m samples Bn

t,n =
{
ηnij
}m
j=1

from P (ηn | ξnt,i) for each ξnt,i ∈ {ξnt,1, · · · , ξnt,B},

14: un
t+1 = 1

b

∑b
i=1 ∇F̂n(xn

t ; ξ
n
t,i,Bn

t,i) + (1− β)(un
t − 1

b

∑b
i=1 ∇F̂n(xn

t−1; ξ
n
t,i,Bn

t,i))
15: end for
16: end for
17: Output: x chosen uniformly random from {x̄t}Tt=1.

Theorem 4.7. Suppose Assumptions 3.1, 3.2 and 3.3 hold, α ≤ 1
6qSF

and β = 5SFα. Acc-FCSG-M
has the following

1

T

T−1∑
t=0

∥∇F (x̄t)∥2 ≤ 2[F (x̄0)− F (x̄T )]

Tα
+

3L2
fL

2
g

βBNT
+

13L2
fL

2
gc

2

6S2
F

α2 +
3L2

gS
2
fσ

2
g

m
+

6βL2
f

Nb

Corollary 4.8. We choose q =
(
T/N2

)1/3
. Therefore, α = 1

12qSF
= N2/3

12SFT 1/3 , since c = 30S2
F

bN , we

have β = cα2 = 5N1/3

24T 2/3b
. And let B = T 1/3

N2/3 . Therefore, we have

1

T

T−1∑
t=0

∥∇F (x̄t)∥2 ≤24SF [F (x̄0)− F (x̄∗)]

(NT )2/3

+
72L2

fL
2
gb

5(NT )2/3
+

325L2
fL

2
g

24b2(TN)2/3
+

3L2
gS

2
fσ

2
g

m
+

5L2
f

4b2(NT )2/3

Remark 4.9. We choose b as O(1)(b ≥ 1) and m = O(ε−2) . According to Corollary 4.8 to make
1
T

∑T−1
t=0 ∥∇F (x̄t)∥2 ≤ ε2, we get T = O(N−1ε−3) and T

q = (NT )2/3 = O(ε−2). The sample
complexity is O(N−1ε−5). The communication complexity is O(ε−2). T = O(N−1ε−3) indicates
the linear speedup of our algorithm.

5 Experiments

The experiments are run on CPU machines with AMD EPYC 7513 32-Core Processors as well as
NVIDIA RTX A6000. The code is available ∗ and Federated Online AUPRC maximization task
follow [38] ∗.

5.1 Invariant Logistic Regression

Invariant learning has an important role in robust classifier training [27]. In this section, We compare
the performance of our algorithms, FCSG and FCSG-M, on the distributed invariant logistic regression

∗https://github.com/xidongwu/Federated-Minimax-and-Conditional-Stochastic-Optimization/tree/main
∗https://github.com/xidongwu/D-AUPRC
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(a) m = 1 (b) m = 10 (c) m = 100

Figure 1: Test accuracy vs the number of communication rounds for different inner mini-batch (m =
1, 10, 100) under different noise ratios (σ2/σ1 = 1, 1.5, 2).

to evaluate the benefit from momentum and the effect of inner batch size, and the problem was
formulated by [16]:

min
x

1

N

N∑
n=1

Eξn=(a,b)[ln(x) + g(x)]

where ln(x) = log(1 + exp(−bEηn|ξn [(η
n)⊤x])) g(x) = λ

d∑
i=1

γx2
i

1 + γx2
i

(4)

where ln(x) is the logistic loss function and g(x) is a non-convex regularization. We follow the
experimental protocols in [17] and set the dimension of the model as 10 over 16 clients. We construct
the dataset ξn = (a, b) and η as follow: We sample a ∼ N(0, σ2

1Id), set b = {±1} according to
the sign of a⊤x∗, then sample ηnij ∼ N(a, σ2

2Id). We choose σ1 = 1, and consider the σ2/σ1 from
{1, 1.5, 2}. At each local iteration, we use a fixed mini-batch size m from {1, 10, 100}. The outer
batch size is set as 1. We test the model with 50000 outer samples to report the test accuracy. We
carefully tune hyperparameters for both methods. λ = 0.001 and α = 10. We run a grid search for the
learning rate and choose the learning rate in the set {0.01, 0.005, 0.001}. β in FCSG-M are chosen
from the set {0.001, 0.01, 0.1, 0.5, 0.9}. The local update step is set as 50. The experiments are
presented in Figure 1.

Figure 1 shows that when the noise ratio σ2/σ1 increases, larger inner samples m are needed, as
suggested by the theory because a large batch size could reduce sample noise. In addition, when
m = 100, FCSG and FCSG-M have similar performance. However, when batch size is small,
compared with FCSG, FCSG-M has a more stable performance, because FCSG-M can use historic
information to reduce the effect of stochastic gradient noise.

5.2 Federated Model-Agnostic Meta-Learning

Next, we evaluate our proposed algorithms with the few shot image classification task over the dataset
with baselines: Local-SCGD and Local-SCGDM [11]. MOML [33] is not suitable for this task since
MOML requires maintaining an inner state for each task which is not permitted due to the large
number of tasks in the Omniglot dataset. Local-SCGD is the federated version of SCGD [36]. This
task can be effectively solved via Model-Agnostic Meta-Learning [10].

Meta-learning aims to train a model on various learning tasks, such that the model can easily adapt
to a new task using few training samples. Model-agnostic meta-learning (MAML) [10] is a popular
meta-learning method to learn a good initialization with a gradient-based update, which can be
formulated as the following conditional stochastic optimization problem:

min
x

Ei∼Ptask,a∼Di
query

Li

(
Eb∼Di

support
(x− λ∇Li(x, b)) , a

)
where Ptask denotes the learning tasks distribution, Di

support and Di
query are support (training) dataset

and query (testing) dataset of the learning task i, respectively. Li(·, Di) is the loss function on dataset
Di of task i. And the λ is a fixed meta step size. Assume ξ = (i, a) and η = b, the MAML problem
is an example of conditional stochastic optimization where the support (training) samples in the inner
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Figure 2: Convergence results of the 5-way-1-shot case over Omniglot Dataset.

Figure 3: Convergence results of the 5-way-5-shot case over Omniglot Dataset.

layer for the meta-gradient update are drawn from the conditional distribution of P (η | ξ) based on
the sampled task in the outer layer.

Given there are a large number of pre-train tasks in MAML, federated learning is a good training
strategy to improve efficiency because we can evenly distribute tasks over various clients and the
global server coordinates clients to learn a good initial model collaboratively like MAML. Therefore,
in Federated MAML, it is assumed that each device has part of the tasks. The optimization problem
is defined as follows:

min
x∈Rd

1

N

N∑
n=1

Fn(x) ≜
1

N

N∑
n=1

fn (gn(x))

where gn(x) = Eηn∼Dn
i, support

[x− λ∇Ln
i (x; η

n)] , fn(y) = Ei∼Pn
task ,a

n∼Dn
i, query

Ln
i (y; a

n) .

(5)

In this part, we apply our methods to few-shot image classification on the Omniglot [24, 10]. The
Omniglot dataset contains 1623 different handwritten characters from 50 different alphabets and each
of the 1623 characters consists of 20 instances drawn by different persons. We divide the characters to
train/validation/test with 1028/172/423 by Torchmeta [7] and tasks are evenly partitioned into disjoint
sets and we distribute tasks randomly among 16 clients. We conduct the fast learning of N-way-
K-shot classification following the experimental protocol in [31]. The N-way-K-shot classification
denotes we sample N unseen classes, randomly provide the model with K different instances of each
class for training, and evaluate the model’s ability to classify with new instances from the same
N classes. We sample 15 data points for validation. We use a 4-layer convolutional neural model
where each layer has 3 × 3 convolutions and 64 filters, followed by a ReLU nonlinearity and batch
normalization [10]. The images from Omniglot are downsampled to 28 × 28. For all methods, the
model is trained using a single gradient step with a learning rate of 0.4. The model was evaluated
using 3 gradient steps [10]. Then we use grid search and carefully tune other hyper-parameters for
each method. We choose the learning rate from the set {0.1, 0.05, 0.01} and η as 1 [11]. We select
the inner state momentum coefficient for Local-SCGD and Local-SCGDM from {0.1, 0.5, 0.9} and
outside momentum coefficient for Local-SCGDM, FCSG-M and Acc-FCSG-M from {0.1, 0.5, 0.9}.

Figures 2 and 3 show experimental results in the 5-way-1-shot and 5-way-5-shot cases, respectively.
Results show that our algorithms outperform baselines by a large margin. The main reason for Local-
SCGD and Local-SCGDM to have bad performance is that converting the MAML optimization to the
stochastic compositional optimization is unreasonable. It ignores the effect of task sampling on the
training and inner training data distribution changes based on the sampled tasks in the outer layer. The
use of the momentum-like inner state to deal with the MAML will slow down the convergence and
we have to tune the extra momentum coefficient for the inner state. In addition, the momentum-like
inner state also introduces extra communication costs because the server needs to average the inner
state as in Local-SCGDM. In addition, comparing the results in Figures 2 and 3, we can see when

9



Table 2: Final averaged AP scores on the testing data.

Datasets FedAvg CODA+ FCSG FCSG-M Acc-FCSG-M
MNIST 0.9357 0.9733 0.9868 0.9878 0.9879
CIFAR-10 0.5059 0.6039 0.7130 0.7157 0.7184

the K increases in the few-shot learning, the training performance is improved, which matches the
theoretical analysis that a large inner batch-size m benefits the model training.

5.3 Federated Online AUPRC maximization

AUROC maximization in FL has been studied in [13, 42, 40] and AUPRC maximization is also
used to solve the imbalanced classification. Existing AUPRC algorithms maintain an inner state for
each data point. [38] consider the online AUPRC in the decentralized learning. For the large-scale
distributed data over multiple clients, algorithms for online AUPRC maximization in FL is necessary.

Following [28] and [38], the surrogate function of average precision (AP) for online AUPRC maxi-
mization is:

ÂP = Eξ+∼D+

Eξ∼DI (y = 1) ℓ (x; z+, z)

Eξ∼D ℓ (x; z+, z)

where ℓ (x; z+, z) = (max{s− h(x; z+) + h(x; z), 0})2 and h(x; z) is the prediction score function
of input z with model x. Federated Online AUPRC maximization could be reformulated as:

min
x

F (x) = min
x

1

N

n∑
n=1

Eξn∼D+
n
f(Eξ′n∼Dng

n(x; ξn, ξ
′
n)) (6)

where ξn = (zn, yn) ∼ Dn and ξ+n = (z+n , y
+
n ) ∼ D+

n are samples drawn from the whole datasets
and positive datasets, respectively. It is a two-level problem and the inner objective depends on both
ξ and ξ+. Since federated online AUPRC is a special example of a federated conditional stochastic
optimization, our algorithms could be directly applied to it.

We choose MNIST dataset and CIFAR-10 datasets. As AUROC maximization in federated settings
has been demonstrated in existing works [13, 42], we use CODA+ in [42] as a baseline. Another
baseline is the FedAvg with cross-entropy loss. Since AUPRC is used for binary classification, the
first half of the classes in the MNIST and CIFAR10 datasets are designated to be the negative class,
and the rest half of the classes are considered to be the positive class. Then, we remove 80% of the
positive examples in the training set to make it imbalanced, while keeping the test set unchanged. The
results in Table 2 show that our algorithms could be used to solve the online AUPRC maximization
in FL and it largely improves the model’s performance.

6 Conclusion

In this paper, we studied federated conditional stochastic optimization under the general nonconvex
setting. To the best of our knowledge, this is the first paper proposing algorithms for the federated
conditional stochastic optimization problem. We first used the biased stochastic first-order gradient
to design an algorithm called FCSG, which we proved to have a sample complexity of O(ϵ−6), and
communication complexity of O(ϵ−3) to reach an ϵ-stationary point. FCSG enjoys an appealing
linear speedup with respect to the number of clients. To improve the empirical performances of
FCSG, we also proposed a novel algorithm (i.e., FCSG-M), which achieves the same theoretical
guarantees as FCSG. To fill the gap from lower-bound complexity, we introduced an accelerated
version of FCSG-M, called Acc-FCSG-M, using variance reduction technique, which is optimal for
the nonconvex smooth federated conditional stochastic optimization problems as it matches the best
possible complexity result achieved by the single-machine method. It has a sample complexity of
O(ϵ−5), and communication complexity of O(ϵ−2). And the communication complexity achieves the
best communication complexity of the nonconvex optimization in federated learning. Experimental
results on the machine learning tasks validate the effectiveness of our algorithms.

Limitation Conditional stochastic optimization has much broader applications and a more com-
prehensive evaluation of our proposed algorithms on other use cases would be a promising future
direction. In addition, FCSG-M and accelerated FCSG-M require higher communication overhead.
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A Supplementary material

st denotes the st = ⌊t/q⌋. We define gn(x, ξn) = Eηn|ξng
n
ηn(x, ξn) and ĝn(x, ξ) =

1
m

∑m
j=1 g

n(x, ξ; ηj), F̂
n(x; ξn, {ηnj }mj=1) = fn

ξn(ĝ
n(x, ξn)).

A.1 Basic Lemma

For convenience, in the subsequent analysis, st denotes the st = ⌊t/q⌋ and st ∈ [⌊T/q⌋]. gn(x, ξn) =
Eηn|ξng

n
ηn(x, ξn) and ĝn(x, ξn) = 1

m

∑m
j=1 g

n(x, ξn; ηj), F̂
n(x; ξn, {ηnj }mj=1) = fn

ξn(ĝ
n(x, ξn)).

∇Fn(x) = ∇Eξn
[
fn
ξn(g

n(x, ξn))
]
= Eξn

[
∇
(
fn
ξn(g

n(x, ξn))
)]

= Eξn
[
∇gn(x, ξn)⊤ · ∇gf

n
ξn(g

n(x, ξn))
]

(7)

F̂n(x) = EF̂n(x; ξn, {ηnj }mj=1) = EξnEηn|ξn
[
fn
ξn(ĝ

n(x, ξn))
]
,∇F̂n(x)

= E∇F̂n(x; ξn, {ηnj }mj=1)

F (x) =
1

N

N∑
n=1

Fn(x), F̂ (x) =
1

N

N∑
n=1

F̂n(x) (8)

Lemma A.1. [23] For xn
t ∈ Rd, n ∈ [N ] and x̄t ∈ Rd, we have

N∑
n=1

∥xn
t − x̄t∥2 ≤

N∑
n=1

∥xn
t ∥2 (9)

Lemma A.2. Under Assumption 3.1 3.2 and 3.3, in the n-th device, for a sample ξn and m i.i.d. sam-
ples {ηnj }mj=1 from the conditional distribution P (ηn | ξn), and ∀x, x1, x2 ∈ X that is independent
of ξn and {ηnj }mj=1, we have
(a) (Lemma 2.2 in [16])

∥E∇F̂n(x; ξn, {ηnj }mj=1)−∇Fn(x)∥2 ≤
L2
gS

2
fσ

2
g

m
(10)

(b) (Proposition B.1 in [17] Fn(x) and F̂n(x) are SF -Lipschitz smooth where SF = SgLf + SfL
2
g

and we also have

E
∥∥∥∇F̂n

(
x1; ξ, {ηj}mj=1

)
−∇F̂n

(
x2; ξ, {ηj}mj=1

)∥∥∥ ≤ SF ∥x1 − x2∥ (11)

(c) (Proposition B.1 in [17])

Eξn
∥∥∇fn

ξn(y)−∇Efn
ξn(y)

∥∥2
2
≤ L2

f Eξn|ηn

∥∥∇gnη (x, ξ
n)−∇Egnη (x, ξn)

∥∥2
2
≤ L2

g

EξnEξn|ηn

∥∥∥∇ (fn
ξn(ĝ

n(x, ξn))
)
−∇F̂n(x)

∥∥∥2 ≤ L2
fL

2
g

∥∥∥∇F̂n(x)
∥∥∥2 ≤ L2

fL
2
g

(d) (Bounded Heterogeneity) ∥∥∥∇F̂n(x)−∇F̂ k(x)
∥∥∥2 ≤ 4L2

fL
2
g (12)

Proof. (e) Based on the (d), we know ∇F̂n(x) has bounded gradient, therefore,∥∥∥∇F̂n(x)−∇F̂ k(x)
∥∥∥2 ≤ 2∥∇F̂n(x)∥2 + 2∥∇F̂ k(x)∥2 ≤ 4L2

fL
2
g

Lemma A.3. For n ∈ [N ], we have

E∥1
b

b∑
i=1

∇F̂n(xn
t ; ξ

n
t,i,Bn

t,i)−∇F̂n(xn
t )∥2 ≤

L2
fL

2
g

b

N∑
n=1

E∥∇F̂n(xn
t )−

1

N

N∑
k=1

∇F̂ k(xk
t )∥2 ≤ 6S2

F

N∑
n=1

E∥xn
t − x̄t∥2 + 12NL2

fL
2
g

14



Proof. 1) we have

E∥1
b

b∑
i=1

∇F̂n(xn
t ; ξ

n
t,i,Bn

t,i)−∇F̂n(xn
t )∥2 =

1

b2
E∥

b∑
i=1

∇F̂n(xn
t ; ξ

n
t,i,Bn

t,i)−∇F̂n(xn
t )∥2

=
1

b2

b∑
i=1

E∥∇F̂n(xn
t ; ξ

n
t,i,Bn

t,i)−∇F̂n(xn
t )∥2 ≤

L2
fL

2
g

b

where the second equality is due to E[∇F̂n(xn
t ; ξ

n
t,i,Bn

t,i)−∇F̂n(xn
t )] = 0 and the last inequality

follows Lemma A.2 (c).

2)
N∑

n=1

E∥∇F̂n(xn
t )−

1

N

N∑
k=1

∇F̂ k(xk
t )∥2

≤3

N∑
n=1

E

[
∥∇F̂n(xn

t )−∇F̂n(x̄t)∥2 + ∥∇F̂ (x̄t)−
1

N

N∑
k=1

∇F̂ (xk
t )∥2 + ∥∇F̂n(x̄t)−∇F̂ (x̄t)∥2

]

≤6S2
F

N∑
n=1

E∥xn
t − x̄t∥2 + 3

N∑
n=1

E∥∇F̂n(x̄t)−∇F̂ (x̄t)∥2

≤6S2
F

N∑
n=1

E∥xn
t − x̄t∥2 + 12NL2

fL
2
g (13)

where the second inequality is due to Assumption A.2 (b) and the last inequality is due to Assumption
A.2 (d).

B Proof of FCSG Algorithm

B.1 Proofs of the Intermediate Lemmas

Lemma B.1. Assume the sequence {x̄t}T−1
t=0 is generated from FCSG in Algorithm 1, if α ≤ 1

6SF q ,
we have

T−1∑
t=0

1

N

N∑
n=1

E ∥xn
t − x̄t∥2 ≤ 39(q − 1)qα2L2

fL
2
gT (14)

Proof. (1) if t = stq, we have
N∑

n=1

∥∥xn
stq − x̄stq

∥∥2 = 0 (15)

(2) if t > stq, we have

xn
t = xn

stq −
t∑

s=stq+1

αun
s x̄t = x̄stq −

t∑
s=stq+1

αūs (16)

It implies that

1

N

N∑
n=1

E ∥xn
t − x̄t∥2 =

1

N

N∑
n=1

E

∥∥∥∥∥xn
stq − x̄stq −

(
t∑

s=stq+1

αun
s −

t∑
s=stq+1

αūs

)∥∥∥∥∥
2

=
1

N

N∑
n=1

E∥
t∑

s=stq+1

α(un
s − ūs)∥2

≤ (q − 1)α2

N

t∑
s=stq+1

N∑
n=1

E∥un
s − ūs∥2 (17)
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Furthermore, based on the definition of un
t , we have

1

N

N∑
n=1

E ∥xn
t − x̄t∥2

≤ (q − 1)α2

N

t−1∑
s=stq

N∑
n=1

E

∥∥∥∥∥1b
b∑

i=1

∇F̂n(xn
t ; ξ

n
t,i,Bn

t,i)−
1

N

N∑
k=1

1

b

b∑
i=1

∇F̂ k(xk
t ; ξ

k
t,i,Bk

t,i)

∥∥∥∥∥
2

(a)

≤ 2(q − 1)α2

N

t−1∑
s=stq

N∑
n=1

E

[∥∥∥∥∥
[
1

b

b∑
i=1

∇F̂n(xn
t ; ξ

n
t,i,Bn

t,i)−∇F̂n(xn
t )

]

− 1

N

N∑
k=1

[
1

b

b∑
i=1

∇F̂ k(xk
t ; ξ

k
t,i,Bk

t,i)−∇F̂ k(xk
t )

]∥∥∥∥∥
2

+

∥∥∥∥∥
[
∇F̂n(xn

t )−
1

N

N∑
k=1

∇F̂ k(xk
t )

]∥∥∥∥∥
2


(b)

≤ 2(q − 1)α2

N

t−1∑
s=stq

 N∑
n=1

E

∥∥∥∥∥1b
b∑

i=1

∇F̂n(xn
t ; ξ

n
t,i,Bn

t,i)−∇F̂n(xt)

∥∥∥∥∥
2

+

N∑
n=1

E∥F̂n(xn
t )− F̂ (xt)∥2


(c)

≤
t−1∑

s=stq

[26(q − 1)α2L2
fL

2
g +

12(q − 1)α2S2
F

N

N∑
n=1

E∥xn
t − x̄t∥2]

≤26(q − 1)qα2L2
fL

2
g +

12(q − 1)qα2S2
F

N

N∑
n=1

E∥xn
t − x̄t∥2] (18)

where (a) holds by ∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2; the (b) holds due to Lemma A.1; the (c) holds by
Lemma A.3. Summing both sides from s = stq to s̄ where s̄ = [stq, (st + 1)q), we get

s̄∑
s=stq

1

N

N∑
n=1

E ∥xn
s − x̄s∥2 ≤

s̄∑
s=stq

[26(q − 1)qα2L2
fL

2
g +

12(q − 1)qα2S2
F

N

N∑
n=1

E∥xn
s − x̄s∥2]

Rearranging the terms, we get

(
1− 12S2

F q
2α2
) s̄∑
s=stq

1

N

N∑
n=1

E ∥xn
s − x̄s∥2 ≤

s̄∑
s=stq

26(q − 1)qα2L2
fL

2
g (19)

Finally, using the fact that αq ≤ 1
6SF

we have 1− 12S2
F q

2α2 ≥ 2/3. Multiplying, both sides by 3/2
we get

s̄∑
s=stq

1

N

N∑
n=1

E ∥xn
t − x̄t∥2 ≤

s̄∑
s=stq

39(q − 1)qα2L2
fL

2
g (20)

Finally, when we consider the sum over t from 0 to T - 1, we get

T−1∑
t=0

1

N

N∑
n=1

E ∥xn
t − x̄t∥2 ≤ 39(q − 1)qα2L2

fL
2
gT (21)

Lemma B.2. Suppose the sequence {xt}Tt=0 be generated from FCSG in Algorithms 1. We have

EF (x̄t+1) ≤ EF (x̄t)−
α

2
E∥∇F (x̄t)∥2 +

αS2
F

N

N∑
n=1

∥xn
t − x̄t∥2 +

αL2
gS

2
fσ

2
g

m
+

α2SFL
2
fL

2
g

N

16



Proof.

EF (x̄t+1)

(a)

≤EF (x̄t) + E⟨∇F (x̄t), x̄t+1 − x̄t⟩+
SF

2
E ∥x̄t+1 − x̄t∥2

(b)

≤EF (x̄t)− αE⟨∇F (x̄t), ūt+1⟩+
α2SF

2
E∥ūt+1∥2

(c)
=EF (x̄t)− (

α

2
− α2SF )∥

1

N

N∑
n=1

∇F̂n(xn
t )∥2 −

α

2
∥∇F (x̄t)∥2 +

α

2
E∥∇F (x̄t)−

1

N

N∑
n=1

∇F̂n(xn
t )∥2

+ α2SFE∥ūt+1 −
1

N

N∑
n=1

∇F̂n(xn
t )∥2

(d)

≤EF (x̄t)−
α

2
E∥∇F (x̄t)∥2 +

α

2
E∥∇F (x̄t)−

1

N

N∑
n=1

∇F̂n(xn
t )∥2 + α2SFE∥ūt+1 −

1

N

N∑
n=1

∇F̂n(xn
t )∥2

≤ EF (x̄t)−
α

2
E∥∇F (x̄t)∥2 + αE∥∇F (x̄t)−

1

N

N∑
n=1

∇Fn(xn
t )∥2

+ αE∥ 1

N

N∑
n=1

∇Fn(xn
t )−

1

N

N∑
n=1

∇F̂n(xn
t )∥2 + α2SFE∥

1

N

N∑
n=1

∇F̂n(xn
t )− ūt+1∥2 (22)

where inequality (a) holds by the smoothness of F (x); equality (b) follows from update step in Step 9
of Algorithm 1; (c) uses the fact that ⟨a, b⟩ = 1

2 [∥a∥
2+∥a∥2−∥a−b∥2], ∥a+b∥2 ≤ 2∥a∥2+2∥b∥2,

and E[ūt+1] = ∇F̂ (xt); (d) results from that αSF ≤ 1
2 . Taking expectation on both sides and

considering the last third term

E∥∇F (x̄t)−
1

N

N∑
n=1

∇Fn(xn
t )∥2 ≤ 1

N

N∑
n=1

E∥∇Fn(x̄t)−∇Fn(xn
t )∥2

≤ S2
F

N

N∑
n=1

∥xn
t − x̄t∥2 (23)

Considering the last second term and using Lemma A.2 (a), we have

E∥ 1

N

N∑
n=1

∇Fn(xn
t )−

1

N

N∑
n=1

∇F̂n(xn
t )∥2

≤ 1

N

N∑
n=1

E∥∇Fn(xn
t )−∇F̂n(xn

t )∥2 ≤
L2
gS

2
fσ

2
g

m
(24)

For the last term, given that Eūt+1 = 1
N

∑N
n=1 ∇F̂n(xn

t ), we have

E∥ 1

N

N∑
n=1

∇F̂n(xn
t )− ūt+1∥2 ≤

L2
fL

2
g

N
(25)

Therefore, we obtain the final result.

B.2 Proof of Theorem 4.1

Based on previous lemmas, we start to prove the convergence of Theorem 4.1.
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Proof. Taking the telescoping sum of B.2 over t from 0 to T − 1,

1

T

T−1∑
t=0

∥∇F (x̄t)∥2

≤2[F (x̄0)− F (x̄T )]

αT
+

2S2
F

TN

T−1∑
t=0

N∑
n=1

∥xn
t − x̄t∥2 +

2L2
gS

2
fσ

2
g

m
+

2αSFL
2
fL

2
g

N

≤2[F (x̄0)− F (x̄T )]

αT
+

2L2
gS

2
fσ

2
g

m
+

2αSFL
2
fL

2
g

N
+ 78(q − 1)qα2L2

fL
2
gS

2
F . (26)

where the second inequality holds due to Lemma B.1. Furthermore, we choose α = 1
6SF

√
N
T and

q = (T/N3)1/4, we have

1

T

T−1∑
t=0

∥∇F (x̄t)∥2 ≤ 12SF [F (x̄0)− F (x̄∗)]

(NT )1/2
+

2L2
gS

2
fσ

2
g

m
+

L2
fL

2
g

6(NT )1/2
+

19L2
fL

2
g

9(NT )1/2
(27)

To let the right hand side less than ε2 when m = ε−2, we get T = O(N−1ε−4) and T
q = (NT )3/4 =

ε−3.

C Proof of FCSG-M Algorithm

C.1 Proofs of the Intermediate Lemmas

Lemma C.1. Suppose the sequence {xt}Tt=0 be generated from FCSG-M in Algorithms 1. We have

EF (x̄t+1) ≤ EF (x̄t)− (
α

2
− α2SF

2
)E∥ūt+1∥2 −

α

2
E∥∇F (x̄t)∥2 +

4αS2
F

N

N∑
n=1

E∥xn
t − x̄t∥2

+
2αL2

gS
2
fσ

2
g

m
+ 2αE∥∇F̂ (x̄t)− ūt+1∥2 (28)

Proof.

F (x̄t+1)

(a)

≤F (x̄t) + ⟨∇F (x̄t), x̄t+1 − x̄t⟩+
SF

2
∥x̄t+1 − x̄t∥2

(b)
=F (x̄t)− α⟨∇F (x̄t), ūt+1⟩+

α2SF

2
∥ūt+1∥2

(c)
=F (x̄t)− (

α

2
− α2SF

2
)∥ūt+1∥2 −

α

2
∥∇F (x̄t)∥2 +

α

2
∥∇F (x̄t)− ūt+1∥2

≤F (x̄t)− (
α

2
− α2SF

2
)∥ūt+1∥2 −

α

2
∥∇F (x̄t)∥2 +

4α

2
∥∇F (x̄t)−

1

N

N∑
n=1

∇Fn(xn
t )∥2

+
4α

2
∥ 1

N

N∑
n=1

[∇Fn(xn
t )−∇F̂n(xn

t )]∥2 +
4α

2
∥ 1

N

N∑
n=1

∇F̂n(xn
t )−∇F̂ (x̄t)∥2

+
4α

2
∥∇F̂ (x̄t)− ūt+1∥2

where inequality (a) holds by the smoothness of F (x); equality (b) follows from update step in Step
9 of FCSG-M in Algorithm 1; (c) uses the fact that ⟨a, b⟩ = 1

2 [∥a∥
2 + ∥a∥2 − ∥a − b∥2]. Taking

18



expectation on both sides and give the fact that

E∥∇F (x̄t)−
1

N

N∑
n=1

∇Fn(xn
t )∥2 ≤ 1

N

N∑
n=1

E∥∇Fn(x̄t)−∇Fn(xn
t )∥2 ≤ S2

F

N

N∑
n=1

E∥xn
t − x̄t∥2

E∥ 1

N

N∑
n=1

∇Fn(xt)−
1

N

N∑
n=1

∇F̂n(xt)∥2 ≤ 1

N

N∑
n=1

E∥∇Fn(xt)−∇F̂n(xt)∥2
(a)

≤
L2
gS

2
fσ

2
g

m

E∥ 1

N

N∑
n=1

∇F̂n(xn
t )−∇F̂ (x̄t)∥2 ≤ S2

F

N

N∑
n=1

E∥xn
t − x̄t∥2

where (a) holds due to Lemma A.2 (a). Therefore, taking the expectation on both sides, we obtain the
final results.

Lemma C.2. Suppose that the sequence {ut}Tt=1 be generated from FCSG-M in Algorithm 1, we
have

1

T

T−1∑
t=0

E
∥∥∥ūt+1 −∇F̂ (x̄t)

∥∥∥2
≤ 2

βT
E
∥∥∥ū1 −∇F̂ (x̄0)

∥∥∥2 + 4α2S2
F

β2T

T−1∑
t=0

E ∥ūt+1∥2 +
2βL2

fL
2
g

N
+

2S2
F

NT

T−1∑
t=0

N∑
n=1

E ∥xn
t − x̄t∥2

Proof. Recall that ūt+1 = 1
N

∑N
n=1[

β
b

∑b
i=1 ∇F̂n(xn

t ; ξ
n
t,i,Bn

t,i) + (1− β)un
t ],

E
∥∥∥ūt+1 −∇F̂ (x̄t)

∥∥∥2 = E

∥∥∥∥∥ βN
N∑

n=1

1

b

b∑
i=1

∇F̂n(xn
t ; ξ

n
t,i,Bn

t,i) + (1− β)ūt −∇F̂ (x̄t)

∥∥∥∥∥
2

=E∥∇F̂ (x̄t)− (1− β)ūt − β
1

N

N∑
n=1

∇F̂n (xn
t )− β

1

N

N∑
n=1

[
1

b

b∑
i=1

∇F̂n(xn
t ; ξ

n
t,i,Bn

t,i)−∇F̂n (xn
t )]∥2

(a)
=E

∥∥∥∥∥(1− β)(∇F̂ (x̄t)− ūt) + β

(
∇F̂ (x̄t)−

1

N

N∑
n=1

∇F̂n(xn
t )

)∥∥∥∥∥
2

+ β2E

∥∥∥∥∥ 1

N

N∑
n=1

[
1

b

b∑
i=1

∇F̂n(xn
t ; ξ

n
t,i,Bn

t,i)−∇F̂n (xn
t )]

∥∥∥∥∥
2

(b)

≤ (1 + c1) (1− β)
2 E
∥∥∥∇F̂ (x̄t)− ūt

∥∥∥2 + β2

(
1 +

1

c1

)
E

∥∥∥∥∥∇F̂ (x̄t)−
1

N

N∑
n=1

∇F̂n(xn
t )

∥∥∥∥∥
2

+ β2
L2
fL

2
g

N

Here, (a) holds due to the definition of ∇F̂n(xn
t ). (b) holds due to Young’s inequality and A.2 (c).

We choose c1 = β
1−β , and (1− β)(1 + c1) = 1 and (1 + 1

c1
)β = 1. Therefore, we have
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E
∥∥∥ūt+1 −∇F̂ (x̄t)

∥∥∥2
≤ (1− β)E

∥∥∥∇F̂ (x̄t)−∇F̂ (x̄t−1) +∇F̂ (x̄t−1)− ūt

∥∥∥2 + β

N

N∑
n=1

S2
FE ∥xn

t − x̄t∥2 +
β2L2

fL
2
g

N

≤ (1− β)

[
(1 + c2)E

∥∥∥ūt −∇F̂ (x̄t−1)
∥∥∥2 + (1 + 1

c2

)
E
∥∥∥∇F̂ (x̄t)−∇F̂ (x̄t−1)

∥∥∥2]+ β2L2
fL

2
g

N

+
βS2

F

N

N∑
n=1

E ∥xn
t − x̄t∥2

(a)

≤
(
1− β

2

)
E
∥∥∥ūt −∇F̂ (x̄t−1)

∥∥∥2 + 2

β
S2
FE ∥x̄t − x̄t−1∥2 +

β2L2
fL

2
g

N
+

βS2
F

N

N∑
n=1

E ∥xn
t − x̄t∥2

=

(
1− β

2

)
E
∥∥∥ūt −∇F̂ (x̄t−1)

∥∥∥2 + 2α2S2
F

β
E ∥ūt∥2 +

β2L2
fL

2
g

N
+

βS2
F

N

N∑
n=1

E ∥xn
t − x̄t∥2

where in inequality (a) we choose c2 = β
2 . Then, (1− β)

(
1 + β

2

)
≤ 1− β

2 , and (1− β)
(
1 + 2

β

)
≤

2
β . Then we have

E
∥∥∥ūt+1 −∇F̂ (x̄t)

∥∥∥2 − E
∥∥∥ūt −∇F̂ (x̄t−1)

∥∥∥2
≤− β

2
E
∥∥∥ūt −∇F̂ (x̄t−1)

∥∥∥2 + 2α2S2
F

β
E ∥ūt∥2 +

β2L2
fL

2
g

N
+

βS2
F

N

N∑
n=1

E ∥xn
t − x̄t∥2

By rearranging the terms and summing the t from 0 to T − 1, one can get the final result.

Lemma C.3. Assume α ≤ 1
6qSF

and the sequence {x̄t}T−1
t=0 be generated from FCSG-M in Algorithm

1, the consensus error E ∥xn
t − x̄t∥2 satisfies

T−1∑
t=0

1

N

N∑
n=1

E ∥xn
t − x̄t∥2 ≤ 6q(q − 1)α2T

5
[L2

fL
2
g(1 +

1

N
) + 12L2

fL
2
g]
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Proof. Based on the definition of ut, we have

1

N

N∑
n=1

∥un
t+1 − ūt+1∥2

=
1

N

N∑
n=1

E

∥∥∥∥∥(1− β) (un
t − ūt) + β[

1

b

b∑
i=1

∇F̂n(xn
t ; ξ

n
t,i,Bn

t,i)−
1

N

N∑
k=1

1

b

b∑
i=1

∇F̂ k(xk
t ; ξ

k
t,i,Bk

t,i)]

∥∥∥∥∥
2

≤ (1 + c3) (1− β)
2

N

N∑
n=1

E ∥un
t − ūt∥2

+

(
1 +

1

c3

)
β2

N

N∑
n=1

E

∥∥∥∥∥1b
b∑

i=1

∇F̂n(xn
t ; ξ

n
t,i,Bn

t,i)−
1

N

N∑
k=1

1

b

b∑
i=1

∇F̂ k(xk
t ; ξ

k
t,i,Bk

t,i)

∥∥∥∥∥
2

(a)
=

(1− β)

N

N∑
n=1

E ∥un
t − ūt∥2 +

β

N

N∑
n=1

E∥1
b

b∑
i=1

∇F̂n(xn
t ; ξ

n
t,i,Bn

t,i)−∇F̂n (xn
t ) +∇F̂n (xn

t )

−∇F̂n (x̄t) +∇F̂n (x̄t)−
1

N

N∑
k=1

[
1

b

b∑
i=1

∇F̂ k(xk
t ; ξ

k
t,i,Bk

t,i)−∇F̂ k
(
xk
t

)
+∇F̂ k

(
xk
t

)]

+
1

N

n∑
k=1

[
∇F̂ k (x̄t)−∇F̂ k (x̄t)

]
∥2

≤ (1− β)

N

N∑
n=1

E ∥un
t − ūt∥2 +

β

N

N∑
n=1

E

∥∥∥∥∥1b
b∑

i=1

∇F̂n(xn
t ; ξ

n
t,i,Bn

t,i)−∇F̂n (xn
t )

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

N

N∑
k=1

[
1

b

b∑
i=1

∇F̂ k(xk
t ; ξ

k
t,i,Bk

t,i)−∇F̂ k
(
xk
t

)]∥∥∥∥∥
2

+
∥∥∥∇F̂n (xn

t )−∇F̂n (x̄t) +∇F̂n (x̄t)

− 1

N

N∑
k=1

[
∇F̂ k

(
xk
t

)
−∇F̂ k (x̄t)

]
−∇F̂ (x̄t) ∥2

]

≤ (1− β)

N

N∑
n=1

E ∥un
t − ūt∥2 +

β

N

N∑
n=1

[
L2
fL

2
g +

L2
fL

2
g

N
+ 3E

∥∥∥∇F̂n (xn
t )−∇F̂n (x̄t)

∥∥∥2
+ 3E

∥∥∥∇F̂n (x̄t)−∇F̂ (x̄t)
∥∥∥2 + 3E

∥∥∥∇F̂n (xn
t )−∇F̂n (x̄t)

∥∥∥2]
(b)

≤ (1− β)

N

n∑
n=1

E ∥un
t − ūt∥2 + β[L2

fL
2
g(1 +

1

N
) + 12L2

fL
2
g] +

6βS2
F

N

N∑
n=1

E ∥xn
t − x̄t∥2 (29)

where (a) holds due to c3 = β
1−β . So (1 − β)(1 + c3) = 1, and (1 + 1

c3
)β = 1; (b) holds due to

Lemma A.2 (d). When mod (t, q) ̸= 0, using un
stq = ūstq , we have

1

N

N∑
n=1

∥un
t − ūt∥2 ≤

t−1∑
s=stq

(1− β)t−1−s

[
β[L2

fL
2
g(1 +

1

N
) + 12L2

fL
2
g] +

6βS2
F

N

N∑
n=1

E ∥xn
s − x̄s∥2

]
(30)
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Summing (30) from t = stq + 1 to (st + 1)q, we have

(st+1)q∑
t=stq+1

1

N

N∑
n=1

∥un
t − ūt∥2

≤
(st+1)q−1∑
t=stq+1

t−1∑
s=stq

(1− β)t−1−s

[
β[L2

fL
2
g(1 +

1

N
) + 12L2

fL
2
g] +

6βS2
F

N

N∑
n=1

E ∥xn
s − x̄s∥2

]

≤
(st+1)q−1∑
t=stq+1

(

q∑
s=0

(1− β)s)

[
β[L2

fL
2
g(1 +

1

N
) + 12L2

fL
2
g] +

6βS2
F

N

N∑
n=1

E ∥xn
t − x̄t∥2

]

≤
(st+1)q−1∑
t=stq+1

[
[L2

fL
2
g(1 +

1

N
) + 12L2

fL
2
g] +

6S2
F

N

N∑
n=1

E ∥xn
t − x̄t∥2

]
(31)

where the last inequality holds due to
∑q

s=0(1− β)s ≤ 1
β . Similar to the (17), we have

1

N

N∑
n=1

E ∥xn
t − x̄t∥2 ≤ (q − 1)α2

N

t∑
s=stq+1

N∑
n=1

E∥un
s − ūs∥2

By summing t from stq + 1 to (st + 1)q, we have

(st+1)q∑
t=stq+1

1

N

N∑
n=1

E ∥xn
t − x̄t∥2

≤ (q − 1)α2

N

(st+1)q∑
t=stq+1

t∑
s=stq+1

N∑
n=1

E∥un
s − ūs∥2

≤q(q − 1)α2

N

(st+1)q∑
t=stq+1

N∑
n=1

E∥un
t − ūt∥2

≤q(q − 1)α2

(st+1)q−1∑
t=stq+1

[
[L2

fL
2
g(1 +

1

N
) + 12L2

fL
2
g] +

6S2
F

N

N∑
n=1

E ∥xn
t − x̄t∥2

]

where the last inequality holds due to (31). Rearrange the terms in the above inequality, we have

1− 6q(q − 1)α2S2
F

N

(st+1)q∑
t=stq+1

N∑
n=1

E ∥xn
t − x̄t∥2 ≤

(st+1)q−1∑
t=stq+1

q(q − 1)α2[L2
fL

2
g(1 +

1

N
) + 12L2

fL
2
g]

Assume α ≤ 1
6qSF

, we have 1−6q(q−1)α2S2
F

N ≥ 5
6N , then by summing the t from 0 to T - 1, we get

the final result.

C.2 Proof of Theorem 4.4

Based on aforementioned lemmas, we are ready to prove the convergence of Theorem
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Proof. Based on the C.1, we have

1

T

T−1∑
t=0

E∥∇F (x̄t)∥2

≤2
F (x̄0)− F (x̄T )

αT
− (1− αSF )

1

T

T−1∑
t=0

E∥ūt+1∥2 +
8S2

F

N

1

T

T−1∑
t=0

N∑
n=1

E∥xn
t − x̄t∥2

+
4L2

gS
2
fσ

2
g

m
+

4

T

T−1∑
t=0

E∥∇F̂ (x̄t)− ūt+1∥2

≤2
F (x̄0)− F (x̄T )

αT
− (1− αSF − 16α2S2

F

β2
)
1

T

T−1∑
t=0

E∥ūt+1∥2 +
16S2

F

N

1

T

T−1∑
t=0

N∑
n=1

E ∥xn
t − x̄t∥2

+
4L2

gS
2
fσ

2
g

m
+

8

βT
E
∥∥∥ū1 −∇F̂ (x̄0)

∥∥∥2 + 8βL2
fL

2
g

N

≤2
F (x̄0)− F (x̄T )

αT
− (1− αSF − 16α2S2

F

β2
)
1

T

T−1∑
t=0

∥ūt+1∥2

+
96S2

F

5
q(q − 1)α2[L2

fL
2
g(1 +

1

N
) + 12L2

fL
2
g] +

4L2
gS

2
fσ

2
g

m
+

8

βT
E
∥∥∥ū1 −∇F̂ (x̄0)

∥∥∥2 + 8βL2
fL

2
g

N

≤2
F (x̄0)− F (x̄T )

αT
− (1− αSF − 16α2S2

F

β2
)
1

T

T−1∑
t=0

∥ūt+1∥2

+
96S2

F

5
q(q − 1)α2[L2

fL
2
g(1 +

1

N
) + 12L2

fL
2
g] +

4L2
gS

2
fσ

2
g

m
+

8L2
fL

2
g

βBT
+

8βL2
fL

2
g

N

where (1− αSF − 16α2S2
F

β2 ) > 0 when we choose α ≤ 1
6qSF

and β = 5SFα. Finally, we have

1

T

T−1∑
t=0

E∥∇F (x̄t)∥2

≤2
F (x̄0)− F (x̄T )

αT
+

96S2
F

5
q2α2[L2

fL
2
g(1 +

1

N
) + 12L2

fL
2
g] +

4L2
gS

2
fσ

2
g

m
+

8L2
fL

2
g

βBT
+

8βL2
fL

2
g

N

We choose b = O(1), B = O(1), α = 1
6SF

√
N
T , q = (T/N3)1/4, and m = ε−2 , we have

1

T

T−1∑
t=0

∥∇F (x̄t)∥2 ≤ 12SF [F (x̄0)− F (x̄∗)]

(NT )1/2
+

8[14L2
fL

2
g]

3(NT )1/2
+

4L2
gS

2
fσ

2
g

m
+

48L2
fL

2
g

5(NT )1/2
+

20L2
fL

2
g

3(NT )1/2

To let the right hand is less than ε2, we get T = O(N−1ε−4) and T
q = (NT )3/4 = ε−3.

D Proof of Acc-FCSG-M Algorithm

D.1 Proofs of the Intermediate Lemmas

Lemma D.1. Suppose the sequence {xt}T0 be generated from Acc-FCSG-M. We have

F (x̄t+1) ≤ F (x̄t)− (
α

2
− α2SF

2
)∥ūt+1∥2 −

α

2
∥∇F (x̄t)∥2 +

3αS2
F

2N
∥xn

t − x̄t∥2

+
3αL2

gS
2
fσ

2
g

2m
+

3α

2
∥ 1

N

N∑
n=1

∇F̂n(xt)− ūt+1∥2 (32)
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Proof.

F (x̄t+1)
(a)

≤ F (x̄t) + ⟨∇F (x̄t), x̄t+1 − x̄t⟩+
SF

2
∥x̄t+1 − x̄t∥2

(b)
= F (x̄t)− α⟨∇F (x̄t), ūt+1⟩+

α2SF

2
∥ūt+1∥2

(c)
= F (x̄t)− (

α

2
− α2SF

2
)∥ūt+1∥2 −

α

2
∥∇F (x̄t)∥2 +

α

2
∥∇F (x̄t)− ūt+1∥2

≤ F (x̄t)− (
α

2
− α2SF

2
)∥ūt+1∥2 −

α

2
∥∇F (x̄t)∥2 +

3α

2
∥∇F (x̄t)−

1

N

N∑
n=1

∇Fn(xt)∥2

+
3α

2
∥ 1

N

N∑
n=1

∇Fn(xt)−
1

N

N∑
n=1

∇F̂n(xt)∥2 +
3α

2
∥ 1

N

N∑
n=1

∇F̂n(xt)− ūt+1∥2 (33)

where inequality (a) holds by the smoothness of F (x); equality (b) follows from update step in Step
9 of Acc-FCSG-M in Algorithm 2; (c) uses the fact that ⟨a, b⟩ = 1

2 [∥a∥
2 + ∥a∥2 −∥a− b∥2]. Taking

expectation on both sides and considering the last third term

E∥∇F (x̄t)−
1

N

N∑
n=1

∇Fn(xt)∥2 ≤ 1

N

N∑
n=1

E∥∇Fn(x̄t)−∇Fn(xt)∥2

≤ S2
F

N

N∑
n=1

∥xn
t − x̄t∥2 (34)

Considering the last second term, we have

E∥ 1

N

N∑
n=1

∇Fn(xt)−
1

N

N∑
n=1

∇F̂n(xt)∥2 ≤ 1

N

N∑
n=1

E∥∇Fn(xt)−∇F̂n(xt)∥2

≤
L2
gS

2
fσ

2
g

m
(35)

Therefore, we obtain

F (x̄t+1) ≤ F (x̄t)− (
α

2
− α2SF

2
)∥ūt+1∥2 −

α

2
∥∇F (x̄t)∥2 +

3αS2
F

2N
∥xn

t − x̄t∥2

+
3αL2

gS
2
fσ

2
g

2m
+

3α

2
∥ 1

N

N∑
n=1

∇F̂n(xt)− ūt+1∥2 (36)

Lemma D.2. (Lemma C.6 in [23]) Using the fact that Eūt+1 = ∇F̂ (xt) and ūt+1 is the momentum-
based variance reduction estimator, we have

E∥ūt+1 −∇F̂ (xt)∥2 ≤(1− β)2E∥ūt −∇F̂ (xt−1)∥2 +
8(1− β)2S2

F

N2b

q − 1

q

N∑
n=1

α2E∥un
t − ūt∥2

+
4(1− β)2S2

Fα
2

Nb
E∥ūt∥2 +

2β2L2
f

Nb
(37)

Lemma D.3. Assume that the sequences ut are generated from Acc-FCSG-M, set γ = 1
q and

α ≤ 1
12SF q , and given that β = cα2, c = 30S2

F

bN we have

15

72N

s̄∑
t=st

α

N∑
n=1

E∥un
t − ūt∥2 ≤ 1

8

s̄∑
t=st

αE∥ūt∥2 +

[
L2
fc

2

8bS2
F

+
3L2

fL
2
gc

2

8S2
F

]
s̄∑

t=st

α3 (38)
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Proof.
N∑

n=1

E∥un
t+1 − ūt+1∥2 ≤

N∑
n=1

E

∥∥∥∥∥1b
b∑

n=1

∇F̂n(xn
t ; ξ

n
t,i,Bn

t,i) + (1− β)(un
t − 1

b

b∑
n=1

∇F̂n(xn
t−1; ξ

n
t,i,Bn

t,i))

− 1

N

N∑
k=1

[
1

b

b∑
i=1

∇F̂ k(xk
t ; ξ

k
t,i,Bk

t,i) + (1− β)(uk
t − 1

b

b∑
i=1

∇F̂ k(xk
t−1; ξ

k
t,i,Bk

t,i))

]∥∥∥∥∥
2

=

N∑
n=1

E

∥∥∥∥∥(1− β)(un
t − ūt) + [

1

b

b∑
i=1

∇F̂n(xn
t ; ξ

n
t,i,Bn

t,i)−
1

N

N∑
k=1

1

b

b∑
i=1

∇F̂ k(xk
t ; ξ

k
t,i,Bk

t,i)

− (1− β)[
1

b

b∑
i=1

∇F̂n(xn
t−1; ξ

n
t,i,Bn

t,i)−
1

N

N∑
k=1

1

b

b∑
i=1

∇F̂ k(xk
t−1; ξ

k
t,i,Bk

t,i)]]

∥∥∥∥∥
2

≤ (1 + γ)(1− β)2
N∑

n=1

E∥un
t − ūt∥2

+ (1 +
1

γ
)E

∥∥∥∥∥
[
1

b

b∑
i=1

∇F̂n(xn
t ; ξ

n
t,i,Bn

t,i)−
1

N

N∑
k=1

1

b

b∑
i=1

∇F̂ k(xk
t ; ξ

k
t,i,Bk

t,i)

]

− (1− β)

[
1

b

b∑
i=1

∇F̂n(xn
t−1; ξ

n
t,i,Bn

t,i)−
1

N

N∑
k=1

1

b

b∑
i=1

∇F̂ k(xk
t−1; ξ

k
t,i,Bk

t,i)

]∥∥∥∥∥
2

(39)

where the second inequality is due to Young’s inequality. For the second term, we have
N∑

n=1

E

∥∥∥∥∥
[
1

b

b∑
i=1

∇F̂n(xn
t ; ξ

n
t,i,Bn

t,i)−
1

N

N∑
k=1

1

b

b∑
i=1

∇F̂ k(xk
t ; ξ

k
t,i,Bk

t,i)

]

− (1− β)

[
1

b

b∑
i=1

∇F̂n(xn
t−1; ξ

n
t,i,Bn

t,i)−
1

N

N∑
k=1

1

b

b∑
i=1

∇F̂n(xn
t−1; ξ

n
t,i,Bn

t,i)

]∥∥∥∥∥
2

=

N∑
n=1

E

∥∥∥∥∥
[
1

b

b∑
i=1

∇F̂n(xn
t ; ξ

n
t,i,Bn

t,i)−
1

N

N∑
k=1

1

b

b∑
i=1

∇F̂ k(xk
t ; ξ

k
t,i,Bk

t,i)

]
−

[
1

b

b∑
i=1

∇F̂n(xn
t−1; ξ

n
t,i,Bn

t,i)

− 1

N

n∑
k=1

1

b

b∑
i=1

∇F̂ k(xk
t−1; ξ

k
t,i,Bk

t,i)

]
+ β

[
1

b

b∑
i=1

∇F̂n(xn
t−1; ξ

n
t,i,Bn

t,i)−
1

N

N∑
k=1

1

b

b∑
i=1

∇F̂ k(xk
t−1; ξ

k
t,i,Bk

t,i)

]∥∥∥∥∥
2

≤2

N∑
n=1

E

∥∥∥∥∥
[
1

b

b∑
i=1

∇F̂n(xn
t ; ξ

n
t,i,Bn

t,i)−
1

N

N∑
k=1

1

b

b∑
i=1

∇F̂ k(xk
t ; ξ

k
t,i,Bk

t,i)

]

−

[
1

b

b∑
i=1

∇F̂n(xn
t−1; ξ

n
t,i,Bn

t,i)−
1

N

n∑
k=1

1

b

b∑
i=1

∇F̂ k(xk
t−1; ξ

k
t,i,Bk

t,i)

]∥∥∥∥∥
2

+ 2β2
N∑

n=1

E

∥∥∥∥∥1b
b∑

i=1

∇F̂n(xn
t−1; ξ

n
t,i,Bn

t,i)−
1

N

N∑
k=1

1

b

b∑
i=1

∇F̂ k(xk
t−1; ξ

k
t,i,Bk

t,i)

∥∥∥∥∥
2

(a)

≤2

N∑
n=1

E

∥∥∥∥∥1b
b∑

i=1

∇F̂n(xn
t ; ξ

n
t,i,Bn

t,i)−
1

b

b∑
i=1

∇F̂n(xn
t−1; ξ

n
t,i,Bn

t,i)

∥∥∥∥∥
2

+ 2β2
N∑

n=1

E∥1
b

b∑
i=1

∇F̂n(xn
t−1; ξ

n
t,i,Bn

t,i)−
1

N

N∑
k=1

1

b

b∑
i=1

∇F̂ k(xk
t−1; ξ

k
t,i,Bk

t,i)∥2

(b)

≤2S2
F

N∑
n=1

E∥xn
t − xn

t−1∥2 + 2β2
N∑

n=1

E

∥∥∥∥∥1b
b∑

i=1

∇F̂n(xn
t−1; ξ

n
t,i,Bn

t,i)−
1

N

N∑
k=1

1

b

b∑
i=1

∇F̂ k(xk
t−1; ξ

k
t,i,Bk

t,i)

∥∥∥∥∥
2

(40)
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where (a) holds due to Lemma A.1, and (b) uses Lemma A.2 (b). For the last term in (40), we have

N∑
n=1

E

∥∥∥∥∥1b
b∑

i=1

∇F̂n(xn
t−1; ξ

n
t,i,Bn

t,i)−
1

N

N∑
k=1

1

b

b∑
i=1

∇F̂ k(xk
t−1; ξ

k
t,i,Bk

t,i)

∥∥∥∥∥
2

=

N∑
n=1

E

∥∥∥∥∥1b
b∑

i=1

∇F̂n(xn
t−1; ξ

n
t,i,Bn

t,i)−∇F̂n(xn
t−1)−

1

N

N∑
k=1

[
1

b

b∑
i=1

∇F̂ k(xk
t−1; ξ

k
t,i,Bk

t,i)−∇F (xk
t−1)

]

+

[
∇F̂n(xn

t−1)−
1

N

N∑
k=1

∇F̂ k(xk
t−1)

]∥∥∥∥∥
2

≤2

N∑
n=1

E∥1
b

b∑
i=1

∇F̂n(xn
t−1; ξ

n
t,i,Bn

t,i)−∇F̂n(xn
t−1)∥2 + 2

N∑
n=1

E∥F̂n(xn
t−1)−

1

N

N∑
k=1

∇F̂ k(xk
t−1)∥2

≤26NL2
fL

2
g + 12S2

F

N∑
n=1

E∥xn
t−1 − x̄t−1∥2 (41)

where the first inequality is due to Lemma A.1 and the last inequality is due to Lemma A.2 (c) and
Lemma A.3. Therefore, by combining above inequalities (39), (40) and (41), when mod (t+1, q) ̸=
0 we have

N∑
n=1

E∥un
t+1 − ūt+1∥2

≤ (1− β)2(1 + γ)

N∑
n=1

E∥un
t − ūt∥2 + 2S2

F (1 +
1

γ
)

N∑
n=1

E∥xn
t − xn

t−1∥2

+ 52NL2
fL
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γ
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γ
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γ
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where (a) is due to (17). Then we have

N∑
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t+1 − ūt+1∥2 = [(1− β)2(1 + γ) + 4S2
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1

γ
)α2]
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γ
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Set γ = 1
q and α ≤ 1

12SF q , and given that β ∈ (0, 1),

(1− β)2(1 + γ) + 4S2
F (1 +

1

γ
)α2 ≤ 1 +

1

q
+ 4S2

F (1 + q)α2 ≤ 1 +
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q
+

q + 1

36q2
≤ 1 +
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(44)
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Putting the (44) in (43), and considering γ = 1
q and α ≤ 1

12SF q , β = cα2, we have
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γ
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s − ūs∥2
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3
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+
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2
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2

3SF
α3 + 24S2

F q
2c2α4
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s − ūs∥2 (45)

We know that when mod (t, q) = 0 (i.e. t = stq),
∑N

n=1 ∥un
t − ūt∥2 = 0

N∑
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2
gc

2

SF

t∑
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F q
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1

12SF q
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α

N∑
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E∥un
s − ūs∥2

where the third inequality is due to (1 + 19/18q)q ≤ e19/18 ≤ 3. Multiplying α on both side and
summing over [stq, s̄) in one inner loop, where s̄ = (st + 1)q we have

s̄∑
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α

N∑
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α
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s − ūs∥2
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α
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t − ūt∥2

≤ N

6

s̄∑
t=stq
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Rearranging the terms, we get,

[1− 72S2
F q

4c2(
1

12SF q
)6]
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t=stq+1

α

N∑
n=1
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t − ūt∥2 ≤N

6

s̄∑
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13NL2
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2
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2

6S2
F

s̄∑
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Given that c =
30S2

F

bN , and (1 − 72S2
F q

4c2( 1
12SF q )

6)/2 ≥ 101
240 . By multiply 1

2N on both size and
summing t from 1 to T , we have

101

240N

T∑
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α
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t − ūt∥2 ≤ 1
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13L2
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2
gc

2

12S2
F

Tα3 (46)

D.2 Proof of Theorem 4.7

In this section, we show the Proof of Theorem 4.7.

Proof. Set α = 1
12qSF

, β = c · α2, c = 30S2
F

bN . Recall Lemma D.2, we have
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q − 1
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f

Nb
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We define the potential function as a linear combination of the objective function and the gradient
estimation error:

Φt = F (x̄t) +
3α

2β
∥ūt+1 −∇F̂ (xt)∥2 (48)

Therefore, we have
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Rearranging (49) and taking the telescoping sum over t in [stq, s̄) in one inner loop, where s̄ =
(st + 1)q, we have
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where the last inequality uses (17). Furthermore,
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where the last equality holds by to c =
30S2

F

bN . Therefore, by summing t from 0 to T , we have
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where (a) holds due to D.3. Therefore,
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let b as O(1)(b ≥ 1), and choose q =
(
T/N2

)1/3
. Therefore, α = 1

12qSF
= N2/3

12SFT 1/3 , since
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bN , we have β = cα2 = 5N1/3

24T 2/3b
. And let B = T 1/3
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Therefore, we have

1

T

T−1∑
t=0

∥∇F (x̄t)∥2

≤24SF [F (x̄0)− F (x̄∗)]

(NT )2/3
+

72L2
fL

2
gb

5(NT )2/3
+

325L2
fL

2
g

24b2(TN)2/3
+

3L2
gS

2
fσ

2
g

m
+

5L2
f
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(51)

To let the right hand less than ε2 when m = ε−2 and b = O(1), we get T = O(N−1ε−3) and
T
q = (NT )2/3 = ε−2.
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