
A Supplementary Material

In what follows, we give some details of content omitted in the paper due to space limit. The
supplements are organized as follows. We give some proof of Lemma 1, 2, Proposition 1, Lemma 3,
4, and Theorem 2 in Section A.1 –A.6, respectively. We present system dynamics for Darboux,
obstacle avoidance, spacecraft rendezvous and hi-ord8 in Section A.9–A.12. We provide some
training details in Section A.13 as well as experiment details and results in Section A.14. We compare
polynomial CBFs with NCBF in A.15, compare NCBFs with different activation functions in A.16.
We present more details in A.17 on the example in 3.2.

A.1 Proof of Lemma 1

We prove by induction on L. If L = 1, then x 2 X (S) if the pre-activation input to the (1, j) neuron
is nonnegative for all j 2 S1 and nonpositive for all j /2 S1. We have that the pre-activation input is
equal to WT

1jx+ r1j , establishing the result for L = 1.

Now, inducting on L, we have that x 2 X (S1, . . . , SL�1) if and only if

x 2
L�1\

i=1

0

@
\

j2Si

{x : WT
ij (Wi�1(S)

Tx+ ri�1) + rij � 0}

\
\

j /2Si

{x : WT
ij (Wi�1(S)

Tx+ ri�1) + rij 0}

1

A

by induction. If x 2 X (S1, . . . , SL�1), then x 2 X (SL) if and only if the pre-activation input to the
j-th neuron at layer L is nonnegative for all j 2 SL and nonpositive for j /2 SL. The pre-activation
input is equal to WT

LjzL�1 + rLj , which we can expand by induction as

WT
LjzL�1 + rLj =

ML�1X

j0=1

(WLj)j0zL�1,j0 + rLj

=

ML�1X

j0=1

(WLj)j0(WL�1,j0(S)
Tx+ rL�1,j0(S) + rLj

=

0

@
ML�1X

j0=1

(WLj)j0WL�1,j0(S)

1

A
T

x+ rLj(S)

= (WL�1(S)WLj)
Tx+ rLj(S)

completing the proof.

A.2 Proof of Lemma 2

The proof approach is based on Nagumo’s Theorem, which gives necessary and sufficient conditions
for positive invariance of a set. We first define the concept of tangent cone, and then present positive
invariance conditions based on the tangent cone. The approach of the proof is to characterize the
tangent cone to the set D = {x : b(x) � 0}.
Definition 2. Let A be a closed set. The tangent cone to A at x is defined by

TA(x) =
⇢
z : lim inf

⌧!0

dist(x+ ⌧z,A)

⌧
= 0

�
(19)

The following result gives an approach for constructing the tangent cone.
Lemma 5 ([36]). Suppose that the set A is defined by

A = {x : qk(x) 0, k = 1, . . . , N}

14

for some collection of differentiable functions q1, . . . , qN . For any x, let J(x) = {k : qk(x) = 0}.

Then

TA(x) = {z : zTrqk(x) 0 8k 2 J(x)}.

The following is a fundamental preliminary result for establishing positive invariance.
Theorem 3 (Nagumo’s Theorem [36], Section 4.2). A closed set A is controlled positive invariant if

and only if, whenever x(t) 2 @A, u(t) 2 U satisfies

(f(x(t)) + g(x(t))u(t)) 2 TA(x(t)) (20)

The following lemma characterizes the tangent cone to D.
Proposition 2. For any x 2 @D, we have

TD(x) =
[

S2S(x)

2

4

0

@
\

(i,j)2T(x)\S

{z : (Wi�1(S)Wij)
T z � 0}

1

A\

0

@
\

(i,j)2T(x)\S

{z : (Wi�1(S)Wij)
T z 0}

1

A \ {z : W (S)T z � 0}

3

5 (21)

Proof. Define X 0(S) = X (S) \D. We will first show that, for all x with b(x) = 0,

TD(x) =
[

S2S(x)

TX 0(S)
(x). (22)

We observe that

dist

0

@x,D \
[

S2S(x)

X 0(S)

1

A > 0,

and hence
dist(x+ ⌧z,D) = min

S2S(x)
dist(x+ ⌧z,X 0(S))

for ⌧ sufficiently small.

Suppose that z 2 TX 0(S)
(x). Then for any ⌧ � 0, dist(x + ⌧z,D) dist(x + ⌧z,X 0(S)) since

X 0(S) ✓ D, and hence

lim inf
⌧!0

dist(x+ ⌧z,D)

⌧
 lim inf

⌧!0

dist(x+ ⌧z,X 0(S))

⌧
= 0.

We therefore have z 2 TD(x).
Now, suppose that z 2 TD(x) and yet z /2

S
S2S(x) TX 0(S)

(x). Then for all S 2 S(x), there exists
✏S > 0 such that

lim inf
⌧!0

dist(x+ ⌧z,X 0(S))

⌧
= ✏S.

Let ✏ = min {✏S : S 2 S(x)}. For any � 2 (0, ✏), there exists ⌧ > 0 such that ⌧ < ⌧ implies

dist(x+ ⌧z,D)

⌧
= min

S2S(x)

dist(x+ ⌧z,X 0(S))

⌧
> �

implying that lim inf⌧!0
dist(x+⌧z,D)

⌧ > 0 and hence z /2 TD(x). This contradiction implies (22).

It now suffices to show that, for each S 2 S(x),

TX 0(S)
(x) =

0

@
\

(i,j)2T(x)\S

{z : (Wi�1(S)Wij)
T z � 0}

1

A\

0

@
\

(i,j)2T(x)\S

{z : (Wi�1(S)Wij)
T z 0}

1

A \ {z : W (S)T z � 0}.

15

We have that each X 0(S) is given by

X 0(S) = {x0 : (Wi�1(S)Wij)
Tx0 + rij(S) � 0 8(i, j) 2 S}

\ {x0 : (Wi�1(S)Wij)
Tx0 + rij(S) 0 8(i, j) /2 S} \ {x0 : W (S)Tx0 + r(S) � 0},

thus matching the conditions of Lemma 5 when each gk function is affine. Furthermore, the set J(x) is
equal to the set of functions that are exactly zero at x, which consists of {(Wi�1(S)Wij)Tx+rij(S) :
(i, j) 2 T (x)} together with W (S)Tx+ r(S). This observation combined with Lemma 5 gives the
desired result.

Lemma 2 is a consequence of Proposition 2. For ease of exposition, we first reproduce the lemma
and then present the proof.
Lemma 6. The set D is positive invariant if and only if, for all x 2 @D, there exist S 2 S(x) and

u 2 U satisfying

(Wi�1(S)Wij)
T (f(x) + g(x)u) � 0 8(i, j) 2 T(x) \ S (23)

(Wi�1(S)Wij)
T (f(x) + g(x)u) 0 8(i, j) 2 T(x) \ S (24)

(Wi�1(S)Wij)
T (f(x) + g(x)u) � 0 (25)

Proof. By Theorem 3, the set D is positive invariant if and only if for every x 2 @D, there exists u
such that (f(x) + g(x)u) 2 TD(x). By Proposition 2, this condition holds iff there exists S 2 S(x)
such that

(f(x) + g(x)u) 2

0

@

0

@
\

(i,j)2T(x)\S

{z : (Wi�1(S)Wij)
T z � 0}

1

A\

0

@
\

(i,j)2T(x)\S

{z : (Wi�1(S)Wij)
T z 0}

1

A \ {z : W (S)T z � 0}

1

A

The above condition is equivalent to the conditions of the lemma, completing the proof.

A.3 Proof of Proposition 1

First, suppose that condition (i) holds. Then for any x 2 D with S(x) = {S1, . . . ,Sr}, there exists
l 2 {1, . . . , r} and u 2 U such that x 2 X (Sl) and (7)–(8) hold. For this choice of u, we have
(f(x) + g(x)u) 2 T i(x) by Proposition 2. Hence D is positive invariant under any control policy
consistent with b by Lemma 2.

Next, suppose that condition (ii) holds. Since D is contained in the union of the activation sets X (S),
this condition implies that D ✓ C.

A.4 Proof of Lemma 3

Suppose that condition 1 holds. Then for any x 2 @D with S(x) = {S1, . . . ,Sr}, there exists
l 2 {1, . . . , r} such that x 2 X (Sl) and u 2 U satisfy (7) and (8). For this choice of u, we have
(f(x) + g(x)u) 2 TD(x) by Proposition 2. Hence D is positive invariant under any control policy
consistent with b by Theorem 3.

If Condition 2 holds, then there is no x with b(x) = 0 and x 2 int(X (S)) such that x /2 C. Hence,
there are no counterexamples to condition (ii) of Proposition 1.

A.5 Proof of Lemma 4

The approach is to prove that condition (ii) of Proposition 1 holds; condition (i) holds automatically if
each S1, . . . ,Sr satisfies condition (ii) of Lemma 3. We have that conditions (a) and (b) are equivalent

16

to b(x) = 0 and (11). In order for x to be a safety counterexample, for all l = 1, . . . , r, at least one
of Eqs. (7) and (8) must fail. Equivalently, for all l = 1, . . . , r, there does not exist u satisfying

�(Wi�1(Sl)Wij)
T g(x)u (Wi�1(Sl)Wij)

T f(x) 8(i, j) 2 T (S1, . . . ,Sr) \ Sl

�(Wi�1(Sl)Wij)
T g(x)u � (Wi�1(Sl)Wij)

T f(x) 8(i, j) 2 T (S1, . . . ,Sr) \ Sl

�W ij(Sl)
T g(x)u W (Sl)

T f(x)

Au c

By Farkas Lemma, non-existence of such a u is equivalent to existence of yl satisfying yl � 0 as well
as (17) and (18).

A.6 Proof of Theorem 2

Suppose that x is a safety counterexample for the NCBF b with b(x) = 0. If x 2 intX (S) for some
S, then we have that S 2 S and hence a contradiction with Lemma 3. If x 2 X (S1) \ · · · X (Sr) for
some S1, . . . ,Sr, then there is a contradiction with Lemma 4.

A.7 Details on the IBP Procedure

Interval bound propagation aims to compute an interval of possible output values by propagating a
range of inputs layer-by-layer, and is integrated into our approach as follows. We first use partition
the state space into cells and, for each cell, use LiRPA to derive upper and lower bounds on the value
of b(x) when x takes values in that cell. When the interval of possible b(x) values in a cell contains
zero, we conclude that that cell may intersect the boundary b(x) = 0. For each neuron, we use IBP
to compute the pre-activation input interval for values of x within the cell. When the pre-activation
input has a positive upper bound and negative lower bound, we identify the neuron as unstable, i.e., it
may be either positive or negative for values of x within the cell. Using this approach, we enumerate
a collection of activation sets S. We then identify the activation sets S 2 S̃ such that b(x) = 0 for
some x 2 X (S) by searching for an x that satisfies the linear constraints in (16). This approach uses
LiRPA and IBP to identify the activation regions that intersect the boundary {x : b(x) = 0} without
enumerating and checking all possible activation sets, which would have exponential runtime in the
number of neurons in the network.

A.8 Nonlinear Programming

The condition 2 of Lemma 3 suffices to solve the nonlinear program

minimize h(x)
s.t. W ij(S)Tx+ rij(S) � 0 8(i, j) 2 S

W ij(S)Tx+ rij(S) 0 8(i, j) /2 S
W (S)Tx+ r(S) = 0

(26)

and check whether the optimal value is nonnegative (unsafe) or negative (safe).

The verification problem of Lemma 4 can then be mapped to solving the nonlinear program

minx,y1,...,yr maxl=1,...,r

�
yTl ⇤l(S1, . . . ,Sr, x)

s.t. (Wi�1(S1)Wij)Tx+ rij(S1) < 0 8(i, j) /2 S1 [· · · [Sr

(Wi�1(S1)Wij)Tx+ rij(S1) > 0 8(i, j) 2 S1 \ · · · \ Sr

(Wi�1(S1)Wij)Tx+ rij(S1) = 0 8(i, j) 2 T(S1, . . . ,Sr)
yTl ⇥l(S1, . . . ,Sr(x)) = 0 8l = 1, . . . , r
yl � 0 8l = 1, . . . , r

(27)

and checking whether the optimal value is nonnegative (safe) or negative (unsafe).

A.9 Experiment Settings: Darboux

We show the settings of NCBF verification for Darboux system whose dynamic is defined as

ẋ1

ẋ2

�
=

x2 + 2x1x2

�x1 + 2x2
1 � x2

2

�
. (28)

17

We define state space, initial region, and unsafe region as X :
�
x 2 R2 : x 2 [�2, 2]⇥ [�2, 2]

,

XI :
�
x 2 R2 : 0 x1 1, 1 x2 2

and xU :

�
x 2 R2 : x1 + x2

2 0

respectively.

A.10 Experiment Settings: Obstacle Avoidance

We next evaluate that our proposed method on a controlled system [39]. The system state consists of
2-D position and aircraft yaw rate x := [x1, x2,]T . We let u denote the control input to manipulate
yaw rate and define the dynamics as

2

4
ẋ1

ẋ2

 ̇

3

5 =

"
v sin
v cos

0

#
+

"
0
0
u

#
. (29)

We define the state space, initial region and unsafe region as X , XI and XU , respectively as

X :
�
x 2 R3 : x1, x2, 2 [�2, 2]⇥ [�2, 2]⇥ [�2, 2]

XI :
�
x 2 R3 : �0.1 x1 0.1,�2 x2 �1.8, �⇡/6 < < ⇡/6

XU :
�
x 2 R3 : x2

1 + x2
2 0.04

(30)

A.11 Experiment Settings: Spacecraft Rendezvous

The state of the chaser is expressed relative to the target using linearized Clohessy–Wiltshire–Hill
equations, with state x = [px, py, pz, vx, vy, vz]T , control input u = [ux, uy, uz]T and dynamics
defined as follows.

2

666664

ṗx
ṗy
ṗz
v̇x
v̇y
v̇z

3

777775
=

2

666664

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

3n2 0 0 0 2n 0
0 0 0 �2n 0 0
0 0 �n2 0 0 0

3

777775

2

666664

px
py
pz
vx
vy
vz

3

777775
+

2

666664

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

3

777775

"
ux

uy

uz

#
. (31)

We define the state space and unsafe region as X and XU , respectively as

X :
�
x 2 R3 : p, v,2 [�1.5, 1.5]⇥ [�1.5, 1.5]

XU :
n
0.25 r 1.5, where r =

q
p2x + p2y + p2z

o (32)

We obtain the trained NCBF with neural CLBF training in [13] with a nominal model predictive
controller.

A.12 Experiment Settings: hi-ord8

The dynamic model of the system is captured by an ODE as follows.

x(8)+20x(7)+170x(6)+800x(5)+2273x(4)+3980x(3)+4180x(2)+2400x(1)+576 = 0 (33)

where we denote the i-th derivative of variable x by x(i). We define the state space and unsafe region
as X and XU , respectively as

X :
�
x2
1 + . . .+ x2

8 4

XU :
n
(x1 + 2)2 + . . .+ (x8 + 2)2 0.16

o (34)

We obtain the trained NCBFs with training method proposed in [21].

A.13 Training Details

We trained the NCBFs for Darboux and obstacle avoidance via the approach proposed in [23]. Models
are trained with their open source code 1 with default settings. Detailed parameters for both cases
listed in Table 3a.

1
https://github.com/zhaohj2017/HSCC20-Repeatability

18

https://github.com/zhaohj2017/HSCC20-Repeatability

We then trained NCBFs for Spacecraft Rendezvous by following approach proposed in [13] with
the empirical loss defined in Eq. (5) in [12]. Models are trained with their open source code 2 with
default settings. The hyper-parameters are listed in Table 3b.

Table 3: Hyper-parameters for training NCBFs to be verified

(a) Hyper-parameters for Darboux and OA

Hyper-Parameters Value

LEARNING_RATE 0.01
LOSS_OPT_FLAG 1e-16
TOL_MAX_GRAD 6
EPOCHS 5
TOL_INIT 0.0
TOL_SAFE 0.0
TOL_BOUNDARY 0.05
TOL_LIE 0.0
TOL_NORM_LIE 0.0
WEIGHT_LIE 1
WEIGHT_NORM_LIE 0
DECAY_LIE 1
DECAY_INIT 1
DECAY_UNSAFE 1

(b) Hyper-parameters for Spacecraft Randezvous

Hyper-Parameters Value

LEARNING_RATE 0.01
BATCH_SIZE 512
CONTROLLER_PERIOD 0.01
SIMULATION_DT 0.01
CBF_HIDDEN_LAYERS 1
CBF_HIDDEN_SIZE 16
CBF_LAMBDA 0.1
CBF_RELAXATION_PEN 1e4
SCALE_PARAMETER 10.0
PRIMAL_LEARNING_RATE 1e-3
LEARN_SHAPE_EPOCHS 100

A.14 Experiment Details and Results

We use translators and verifiers proposed in FOSSIL3 for SMT-based verification with solver dReal
and Z3 as baselines. Our proposed enumerating algorithm utilize auto-LiRPA 4 with default settings
and linear program with HiGHS solvers provided by SciPy 5. Detailed settings can be found in our
attached code.

We further visualize the trend of the number of activation sets and run-time with respect to the total
number of neurons with ReLU activation function in Fig. 3. We can find that the logarithm of the
activation sets size grows with the size of the neural network. The dimensionality of the state is the
dominant factor in determining the run-time. The logarithm of the run-time is determined by both the
state dimension and the number of ReLU hidden layers. The potential result can be cause by loose
activation set estimation. Methods deriving tighter bounds than IBP may mitigate the influence of the
ReLU hidden layers.

A.15 Comparison of NCBF and SOS-based Synthesis

We compare NCBF with traditional SOS synthesized polynomial CBF for the obstacle avoidance
case study in two aspects, namely, training time Tt and volume V of the guaranteed safe region. In
order to synthesize the polynomial CBF, we adopt the procedure introduced in [44]. This procedure
first constructs a nominal controller µ(x), and then uses SOS programming to construct a barrier
certificate for the system ẋ(t) = f(x)+ g(x)µ(x). We choose µ(x) = �x3 as the nominal controller
and synthesize CBFs of degree 2, 4, 6, 8, and 10 using the Matlab SOSTOOLS toolbox. We compared
the result with an NCBF with one hidden layer of 32 neurons trained using the method proposed in
[23] with the same nominal controller. The experiment results are shown below. The time of SOS
CBF synthesis grows with the degree of the barrier function. Degree 10 CBF takes twice the time
compared to NCBF. On the other hand, NCBF outperforms all SOS synthesized CBFs by having the
largest safe region volume.

2
https://github.com/MIT-REALM/neural_clbf

3
https://github.com/oxford-oxcav/fossil

4
https://github.com/Verified-Intelligence/auto_LiRPA

5
https://docs.scipy.org/doc/scipy-1.10.1/reference/optimize.linprog-highs.html

19

https://github.com/MIT-REALM/neural_clbf
https://github.com/oxford-oxcav/fossil
https://github.com/Verified-Intelligence/auto_LiRPA
https://docs.scipy.org/doc/scipy-1.10.1/reference/optimize.linprog-highs.html

(a) (b)

Figure 3: Comparison of the number of activation sets and run-time with respect to number of neurons
in total. (a) shows logarithm of activation set size. (b) shows logarithm of run-time. We denote
NCBFs for Darboux with 1 and 2 hidden layers as Darboux 1 and Darboux 2, respectively. We denote
NCBFs for obstacle avoidance with 1 and 2 hidden layers as obs 1 and obs 2, respectively.

Table 4: Comparison of the training time Tt and safe region volume V of a NCBF and SOS
synthesized CBFs for Obstacle Avoidance

Types Tt (s) V (m2 ⇥ deg)

NCBF 3-32-�-1 262.89s 37.76
SOS Degree 2 7.36s 16.14
SOS Degree 4 6.65s 13.44
SOS Degree 6 19.88s 31.36
SOS Degree 8 125.10s 25.93
SOS Degree 10 551.31s 19.99

A.16 Comparison between Activation Functions

We considered three case studies, namely, Darboux, obstacle avoidance, and spacecraft rendezvous.
For each case study, we trained and verified three NCBFs with the same architecture (2 hidden layers
of 32 neurons each) but different activation functions, namely, ReLU, sigmoid, and tanh. We found

Table 5: Comparison of training time Tt, safety region volume V and verification time Tv of ReLU,
Sigmoid and Tanh NCBF for Darboux, Obstacle Avoidance and Spacecraft Rendezvous. ReLU NNs
are verified by proposed method while others are verified by dReal and Z3. We write UTD when the
method cannot be not directly used for verification

Case Darboux Obstacle
Avoidance

Spacecraft
Rendezvous

ReLU Sigmoid Tanh ReLU Sigmoid Tanh ReLU Tanh

Tt 28.53s 51.14s 69.49s 71.44s 78.66s 76.49s 879.388s 953.469s
V 2.27 1.62 2.8 4.99 2.17 3.50 0.20 0.22
Tv 14.64 >3hrs >3hrs 273.37s >3hrs >3hrs 13906.19s UTD

that, for the Darboux and obstacle avoidance case studies, the ReLU NCBF completed training faster
than both sigmoid and tanh NCBFs. The volume of the safe region was comparable for all three
activation functions, with the tanh outperforming the ReLU NCBF in Darboux and the ReLU NCBF
providing the largest volume for obstacle avoidance. The most significant difference between the
three activation functions was at the verification stage. Our proposed method for verifying ReLU
NCBFs terminated within 15 and 274 seconds in the Darboux and obstacle avoidance, respectively,
while SMT-based methods did not terminate within three hours for both test cases. In the spacecraft
rendezvous example, the ReLU NCBF completed training before the tanh NCBF. Moreover, while
our approach verified the correctness of the ReLU NCBF within 4 hours, the tanh NCBF exhibited a
safety violation.

20

A.17 Example Details

Consider the setting of the example in Section 3.2. Let bc denote the NCBF defined in the example,
which fails our defined safety conditions. For comparison, we trained an NCBF b✓ and verified it
using our proposed approach. We then constructed a nominal controller µnom as a Linear Quadratic
Regulator (LQR) controller that drives the system from initial point (0, 0.1) to the origin. We
compared the trajectories arising from the optimization-based controller defined by Eq. (10) using
the b✓ and bc. For the unsafe NCBF bc, the optimization-based controller is unable to satisfy the
safety constraints at the boundary point (0, 1), resulting in a safety violation as described in the
manuscript. On the other hand, while the NCBF b✓ contained multiple non-differentiable points, it is
possible to choose u to ensure safety at these points. For example, the point (�0.19, 2.91) is a non-
differentiable point on the boundary b✓ = 0. There are four activation sets intersecting at this point,
with corresponding values of @bc

@x g(x) given by {�0.0455,�0.053,�0.025,�0.033}. Since any
control input u with negative sign and sufficiently large magnitude will satisfy @bc

@x (f(x)+g(x)u) � 0
for all of these values, this non-differentiable point does not compromise safety of the system, and
the trajectory of the system constrained by b✓ remains in the safe region for all time.

Figure 4: Comparison of optimization-based controller using trained NCBF b✓ and unsafe NCBF bc.

21

	Introduction
	Model and Preliminaries
	System Model and Safety Definition
	Neural Network Background and Notation

	Problem Formulation and Safety Conditions
	Problem Formulation
	Exact Conditions for Safety

	Verification Algorithm
	Enumeration of Activation Set Boundaries
	Verifying Safety of Each Activation Set
	Verification of Activation Set Intersections

	Experiments
	Experiment Setup
	Experiment Results

	Conclusion
	Supplementary Material
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Proposition 1
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Theorem 2
	Details on the IBP Procedure
	Nonlinear Programming
	Experiment Settings: Darboux
	Experiment Settings: Obstacle Avoidance
	Experiment Settings: Spacecraft Rendezvous
	Experiment Settings: hi-ord_8
	Training Details
	Experiment Details and Results
	Comparison of NCBF and SOS-based Synthesis
	Comparison between Activation Functions
	Example Details

