
Appendix

A Convergence of GAN with the hybrid loss

Before presenting the formal version of Theorem 4.1 and its proof, we introduce some preliminaries.
As stated in Theorem 4.1, we assume that both the discriminator class Fd and the generator class
Qg are within some Sobolev spaces. We define the Sobolev space via the wavelet bases as in
nonparametric statistics [84].

Without loss of generality, let Ω = [0, 1]d. Let ϕ be a “farther wavelet” satisfying r-regularity (see
[85] for details). For j ∈ N and s ∈ [2j ]d, where [N ] = {1, ..., N}, define

ϕj,s(x) =

{
2djϕ(2djx− s), if 2djx− s ∈ Ω,
0, otherwise.

Then, it can be shown that {ϕj,x}j∈N,s∈[2j ]d forms an orthonormal basis and for each j ∈ N, if
s ̸= s′, then ϕj,s(x) and ϕj,s′(x) have disjoint supports [85]. A Sobolev space with smoothness m
can be defined as

Wm(Ω) = {f ∈ L2(Ω) : ∥f∥Wm(Ω) <∞},

where

∥f∥2Wm(Ω) =
∑
j∈N

2jdm

 ∑
s∈[2j ]d

⟨f, ϕj,s⟩2L2(Ω)

 .

We further define a ball with radius R inWm(Ω) as

Wm(R) = {f ∈ L2(Ω) : ∥f∥Wm(Ω) ≤ R}.

Now we are ready to present a formal version of Theorem 4.1 as follows. With an abuse of notation,
we write µ ∈ Qg to denote that the density function induced by µ is inQg . Thus, µ ∈ Qg is the same
as p = dµ

dν ∈ Qg , where ν is the Lebesgue measure. With this notation, we can directly write Qg and
Fd are subsets of some Sobolev spaces respectively instead of writing “Qg and Fd are induced by
some Sobolev spaces” as in the informal version Theorem 4.1, which simplifies the statement and
proof.
Theorem A.1. Suppose the generator class Qg ⊂ Wm1(R1) and the discriminator class
Fd ⊂ Wm2(R2) are two Sobolev spaces with m1,m2 > d/2, and both Qg and Fd are sym-
metric. Suppose the underlying true density function p∗ ∈ Qg. Furthermore, assume that
G := {g : g = log(p/p∗)} ⊂ Wm1(R3) for some constant R3. Let λ be a constant. Then we
have

dFd(µ
∗, µn) = OP(n

−1/2),KL(µ∗||µn) = OP(n
−1/2)

where µ∗ is the true probability measure, µn is as in Eq.9 with hybrid loss, and KL(µ∗||µn) is the
Kullback–Leibler divergence.
Remark A.1. We assume m1,m2 > d/2 because the Sobolev embedding theorem implies that all
functions in the corresponding spaces are continuous.

Proof of Theorem A.1. Because p∗ ∈ Qg and µn is as in Eq.9, we have

dFd(µn, µ̃n)− λ
∫
Ω

log pndµ̂n ≤ dFd(µ∗, µ̃n)− λ
∫
Ω

log p∗dµ̂n, (A.1)

where pn = dµn

dν with ν the Lebesgue measure. By the basic inequality supx∈Ω(f(x) + g(x)) ≤
supx∈Ω f(x) + supx∈Ω g(x), Eq.A.1 implies

dFd(µn, µ
∗)− λ

∫
Ω

log pndµ̂n ≤dFd(µ∗, µ̃n) + dFd(µn, µ̃n)− λ
∫
Ω

log pndµ̂n

≤2dFd(µ∗, µ̃n)− λ
∫
Ω

log p∗dµ̂n, (A.2)
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where we also use the assumption that both Qg and Fd are symmetric in the first inequality.

By

dFd(µn, µ
∗) ≥ 0,

Eq.A.2 gives us

−λ
∫
Ω

log pn(x)dµ̂n ≤ 2dFd(µ
∗, µ̃n)− λ

∫
Ω

log p∗(x)dµ̂n. (A.3)

Since {ϕj,s, j ∈ N, s ∈ [2j ]d} forms an orthogonal basis in L2(Ω), for any functions f ∈Wm2(Ω)
and p ∈Wm1(Ω), they have the expansion as

f(x) =
∑
j∈N

∑
s∈[2j ]d

⟨f, ϕj,s⟩L2(Ω)ϕj,s(x),

p(x) =
∑
j∈N

∑
s∈[2j ]d

⟨p, ϕj,s⟩L2(Ω)ϕj,s(x). (A.4)

Let

p1,n(x) =

M∑
j=1

∑
s∈[2j ]d

bj,sϕj,s(x), (A.5)

where M will be determined later, and

bj,s =
1

n

n∑
k=1

ϕj,s(Xk).

Thus, plugging Eq.A.4 and Eq.A.5 into dFd(µ
∗, µ̃n) yields

dFd(µ
∗, µ̃n)

= sup
f∈BWm2 (Ω)(1)

M∑
j=1

∑
s∈[2j ]d

⟨f, ϕj,s⟩L2(Ω)(bj,s − ⟨p, ϕj,s⟩L2(Ω)) +

∞∑
j=M+1

∑
s∈[2j ]d

⟨f, ϕj,s⟩L2(Ω)⟨p, ϕj,s⟩L2(Ω)

=I1 + I2. (A.6)

The term I2 is the truncation error, which can be bounded by

I2 ≤

 ∞∑
j=M+1

∑
s∈[2j ]d

⟨f, ϕj,s⟩2L2(Ω)

1/2  ∞∑
j=M+1

∑
s∈[2j ]d

⟨p, ϕj,s⟩L2(Ω)

1/2

≤2−(Mdm1+Mdm2)/2

 ∞∑
j=M+1

2jdm2

∑
s∈[2j ]d

⟨f, ϕj,s⟩2L2(Ω)

1/2  ∞∑
j=M+1

2jdm1

∑
s∈[2j ]d

⟨p, ϕj,s⟩L2(Ω)

1/2

≤C12
−(Mdm1+Mdm2)/2, (A.7)

where the first inequality is by the Cauchy-Schwarz inequality, and the last inequality is because
f ∈ Wm2(R2) and p ∈ Wm1(R1).

Next, we consider I1. It can be checked that

I1 =

∫
Ω

M∑
j=1

∑
s∈[2j ]d

⟨f, ϕj,s⟩L2(Ω)ϕj,sd(µ
∗ − µ̂n). (A.8)

Since m2 > d/2, we can see that the function ∥fM∥L∞
< R for all M > 1, where

fM :=

M∑
j=1

∑
s∈[2j ]d

⟨f, ϕj,s⟩L2(Ω)ϕj,s,
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which, together with Lemma 5.11 of [86], implies that∣∣∣∣∫
Ω

fMd(µ∗ − µ̂n)
∣∣∣∣ = OP(n

−1/2), (A.9)

where the right-hand-side term does not depend on M . Combining Eq.A.9 and Eq.A.8, the term I1
can be bounded by

I1 = OP(n
−1/2). (A.10)

Plugging Eq.A.7 and Eq.A.10 into Eq.A.6, and noting that the right-hand-side term of Eq.A.10 does
not depend on M , we can take M →∞ in Eq.A.7 to obtain

dFd(µ
∗, µ̃n) = OP(n

−1/2), (A.11)

which, together with Eq.A.3, leads to

−λ
∫
Ω

log
pn
p∗

dµ̂n ≤ OP(n
−1/2). (A.12)

By the triangle inequality and Eq.A.12, we obtain

−λ
∫
Ω

log
pn
p∗

dµ∗ ≤ OP(n
−1/2) + λ

∣∣∣∣∫
Ω

log
pn
p∗

d(µ∗ − µ̂n)
∣∣∣∣ . (A.13)

It remains to consider ∣∣∣∣∫
Ω

log
pn
p∗

d(µ∗ − µ̂n)
∣∣∣∣ ,

which can be bounded by Lemma 5.11 of [86] again.

Specifically, since G ∈ Wm2(R3), the entropy number of G can be bounded by [87]

H(u,G, ∥·∥P ) ≤ Cδ
−d/m2 ,

where C is a constant. Therefore, since G ⊂ Wm2(R3), Lemma 5.11 of [86] gives us

sup
p∈G

∣∣∣∣∫
Ω

log
p

p∗
d(µ∗ − µ̂n)

∣∣∣∣ = OP(n
−1/2), (A.14)

which, together with Eq.A.13, gives us

KL(µ∗||µn) = OP(max{n−1/2, λ−1n−1/2}).
By Eq.A.2, Eq.A.11, and Eq.A.14, we have

dFd(µn, µ
∗) ≤ 2dFd(µ

∗, µ̃n) + λ

∣∣∣∣∫
Ω

log
pn
p∗

d(P − Pn)
∣∣∣∣ = OP(max{n−1/2, λn−1/2}). (A.15)

Taking λ as a constant finishes the proof.

B Estimating density of behavior policy using MaxEnt IRL is equivalent to
training a GAN with specific likelihood function

In this section, we prove Proposition 3.1. In offline reinforcement learning scenario, the distribution
of a trajectory τ = (s0, a0, s1, a1, ..., sH , aH) ∈ D can be written in the following form:

Pθ(τ) = P0D (s0)

H∏
t=0

πβ(at|st)TD(st+1|st, at). (B.1)

In the training process, P0D (s0), TD(st+1|st, at),∀t ∈ [0, H] are known. Therefore, the uncertainty
of the distribution of a trajectory is only related to the probability density of the behavior policy, and
we have

Pθ(τ) = C

H∏
t=0

πβ(at|st) = CL
πβ
θ (τ), (B.2)
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where Lθ(πβ) is the likelihood function of πβ given a trajectory, and C is a constant with respect to
dataset D.

Following [71], in MaxEnt IRL we try to estimate the density of the trajectory by the Boltzmann
distribution as

pθ(τ) =
1

Z
exp(−cθ(τ)). (B.3)

In [71], it has been shown that if we estimate Z in the MaxEnt IRL formulation using guided cost
learning, and suppose we have a GAN that can give an explicit density of the data, then optimizing
the cost function of guided cost learning Lcost(θ) is equivalent to optimizing the discriminator loss
Ldiscriminator(Dθ) in GAN. In the process of estimating Z, we also need to train a new sampling
distribution q(τ) and use importance sampling to estimate Z. The new sampling policy is optimized
by minimizing the KL divergence of q(τ) and the Boltzmann distribution in Eq.B.3:

Lsampler(q) = Eτ∼q[cθ(τ)] + Eτ∼q[log(q(τ))]. (B.4)

The optimal sampling distribution is the demonstration policy (we call behavior policy in offline RL),
which is an estimator of the behavior policy. In [71] setting, if we assume the sampling policy q(τ) is
just an explicit density of GAN, we will show the generator loss that has a hybrid style as in Eq.4 is
equivalent to optimize Lsampler(q). Note that

Lgenerator(q) =Eτ∼q[(log(1−Dτ ))− log(Dτ )]− λEτ∼q[log(q(τ))]

=Eτ∼q[(log
q(τ)

µ̃(τ)
− log

1
Z exp(−cθ(τ))

µ̃(τ)
]− λEτ∼q[log(q(τ))]

=Eτ∼q[(log(q(τ))− log(
1

Z
exp(−cθ(τ)))]− λEτ∼q[log(q(τ))]

= log(Z) + Eτ∼q[cθ(τ)] + Eτ∼q[(1− λ) log(q(τ))]. (B.5)

In Eq.B.5, the term log(Z) is can be seen as a constant since it is just a normalizing term, so
optimizing the generator loss Lgenerator(q) is equivalent to minimizing the KL divergence between
C̃q(τ) and the Boltzmann distribution of the real trajectory density pθ(τ). Therefore, if we use a
hybrid loss in the generator, the optimization of the generator is still equivalent to the optimization of
Lsampler(q) up to a constant C̃. As q(τ) ∝ exp(−cθ(τ)) ∝ pθ(τ), and combined with Eq.B.2, we
have

L
πβ
θ (τ) =

1

C
Pθ(τ) ∝ exp(−cθ(τ)) ∝ q(τ). (B.6)

If we further denote the sampling policy estimated by GAN as qGθ (τ), then we can get the result in
Proposition 3.1.

C Details of the performance of the learning policy on the estimated product
space of CPED

In this section, we will give a brief proof of Theorem 4.2, and show that the learning policy can find
the optimal (state, action) w.r.t the training dataset D.

Suppose the offline replay buffer isD, with state space S = {S,PD} and action space A = {A, πβ}.
Suppose the stationary point of the Bellman equation w.r.t the production sample space S ×A is
Q∗(s∗, a∗). We consider two cases.

(1) If πβ is an expert policy, then we have (s∗, a∗) ∈ D, Q(s∗, πβ(s
∗)) = Q∗. Thus, the

optimal (state, action) pair appears on the seen area of dataset D.

(2) If πβ is an not an expert policy, then we have (s∗, a∗) /∈ D, Q(s∗, πβ(s
∗)) < Q∗. In this

situation, the optimal (state, action) pair appears on the unseen area of dataset D, which
belongs to the product space S ×A .

CPED mainly focuses on the second scenario, and we give proof of the performance of the learning
policy when the optimal stationary point of the Bellman equation is in the unseen area of D.
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Let π̂(s) := argmaxaQ
∗(s, a). We first show that Q∗(s, a) = Q(s, π̂∆(s)), where π̂∆(s) is the

probability-controlled learning policy using CPED that is defined on the support of behavior policy
πβ . Suppose π̂∆(s) > 0 on S ×A and |Q(s, a)| ≤M, ∀(s, a) ∈ S ×A . Then we have

Q∗(s, a) =r(s, a) + γEs∼PD,a′∼π∗ [Q∗(s′, π∗(s′))]

≤r(s, a) + γEs∼PD,a′∼π̂[Q
∗(s′, a′)]

=r(s, a) + γEs∼PD,a′∼π̂[Q
∗(s′, a′)1(a′∈∆πβ(s′))] + γEs∼PD,a′∼π̂[Q

∗(s′, a′)1(a′ /∈∆πβ(s′))]

≤r(s, a) + γEs∼PD,a′∼π̂∆ [Q∗(s′, a′)] + γMEs∼PD,a′∼π̂[1(a′ /∈∆πβ(s′))]

= r(s, a) + γEs∼PD,a′∼π̂∆ [Q∗(s′, a′)]︸ ︷︷ ︸
I1

+ γMP((a′ /∈ ∆πβ(s
′)))︸ ︷︷ ︸

I2

(C.1)

Let action set Ω = {a′ : πβ(a′|s′) = 0, π̂(a′|s′) > ϵ,∀s′ ∈ S }. If the conditional probability
space πβ can be estimated accurate, then by CPED, P(Ω) is tending to zero. By Theorem 4.1, when
using GAN with hybrid loss to estimate the density of πβ , with probability tending to one, we have
P(Ω)→ 0. Then for term I2,

I2 = γMP((a′ /∈ ∆πβ(s
′))) ≤ γMP(Ω)→ 0. (C.2)

For term I1, based on iteration, we obtain

I1 =r(s, a) + γEs∼PD,a′∼π̂∆ [r(s′, a′) + γEs∼PD,a′′∼π∗ [Q∗(s′′, π∗(s′′))]]

≤r(s, a) + γEs∼PD,a′∼π̂∆ [I ′1 + γMP(Ω)]

≤r(s, a) + γEs∼PD,a′∼π̂∆ [r(s′, a′) + γEs∼PD,a′∼π̂∆ [I
′′

1 + γMP(Ω)] + γMP(Ω)]
≤E[r(s, a) + γr(s′, π̂∆(s′)) + γ2r(s′′, π̂∆(s′′)) + . . . ] + (γ + γ2 + γ3 + . . . )MP(Ω)

=Q(s, π̂∆(s)) +
γ

1− γ
MP(Ω). (C.3)

Since P(Ω)→ 0, combining Eq.C.1 and Eq.C.3 yields

Q∗(s, a) ≤I1 + I2

≤Q(s, π̂∆(s)) +
γ

1− γ
MP(Ω) + γMP(Ω)→ Q(s, π̂∆(s)) (C.4)

On the other hand, obviously Q∗(s, a) ≥ Q(s, π̂∆(s)), a.s..

Hence, with probability tending to one, Q∗(s, a) is close to Q(s, π̂∆(s)).

Then the learning policy π̂∆ trained by CPED is close to the optimal policy in product space S ×A
with probability tending to one.

D Details of the convergence learning policy of CPED when using policy
iteration

In this section, we will give a brief proof of Theorem 4.3, and show the convergence of the learning
policy when using policy iteration to update the learning policy. The whole proof is divided into two
parts. First, we show the monotonic improvement of Q function of the iterated policy by CPED. Then
we give the convergence of the iterated value function.

D.1 Monotonic improvement of Q function Qπ
∆
k+1(s, a) ≥ Qπ∆

k (s, a)

Proof. Suppose we use iteration to improve our policy in each training step by

πk+1 := argmax
a

Qπk(s, a),∀s ∈ S (D.1)
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Then at iteration k + 1, we have

Qπk+1(s, a)−Qπk(s, a) =γEs′∼PD [Q
πk+1(s′,max

a′k+1

πk+1(s
′))−Qπk(s′,max

a′k

πk(s
′))]

=γEs′∼PD [Q
πk+1(s′,max

a′k+1

πk+1(s
′))−Qπk(s′,max

a′k+1

πk+1(s
′))+

Qπk(s′,max
a′k+1

πk+1(s
′))−Qπk(s′,max

a′k

πk(s
′))︸ ︷︷ ︸

≥0,by definition of policy iteration

]

≥γEs′∼PD [Q
πk+1(s′,max

a′k+1

πk+1(s
′))−Qπk(s′,max

a′k+1

πk+1(s
′))]

≥γEs′∼PD,a′k+1∼πk+1
[Qπk+1(s′, a′k+1)−Qπk(s′, a′k+1)]

= γEs′∼PD,a′k+1∼πk+1
[(Qπk+1(s′, a′k+1)−Qπk(s′, a′k+1))1(a′k+1∈∆πβ(s))]︸ ︷︷ ︸

I1

+

γEs′∼PD,a′k+1∼πk+1
[(Qπk+1(s′, a′k+1)−Qπk(s′, a′k+1))1(a′k+1 /∈∆πβ(s))]︸ ︷︷ ︸

I2

.

(D.2)

For term I2, let Xk+1 = (Qπk+1(s′, a′k+1)−Qπk(s′, a′k+1))1(a′k+1 /∈∆πβ(s)). Then it holds that

(1) Xk+1 → 0 in probability, as 1(a′k+1 /∈∆πβ(s)) → 0 by policy control defined in CPED.

(2) Xk+1 is bounded by some constant.

So based on the Dominated Convergence Theorem, EXk+1 → 0.

For term I1, we have

I1 =γEs′∼PD,a′k+1∼πk+1
[(Qπk+1(s′, a′k+1)−Qπk(s′, a′k+1))1(a′k+1∈∆πβ(s))] (D.3)

=γEs′∼PD,a′k+1∼π
∆
k+1

[Qπk+1(s′, a′k+1)−Qπk(s′, a′k+1)]. (D.4)

By iteration,

(Qπk+1(s′, a′k+1)−Qπk(s′, a′k+1))1(a′k+1∈∆πβ(s))

≥γEs′′∼PD,a′′k+1∼π
∆
k+1

[Qπk+1(s′′, a′′k+1)−Qπk(s′′, a′′k+1)] + γI2. (D.5)

So we have

Qπk+1(s, a)−Qπk(s, a) ≥ γ∞ +
γ

1− γ
I2 → 0 when a ∈ ∆πβ . (D.6)

Therefore, for sufficiently large k, Qπ
∆
k+1(s, a) ≥ Qπ

∆
k (s, a). Furthermore, we have V π

∆
k+1(s) ≥

V π
∆
k (s).

D.2 Convergence of the iterated value function∥V π̂
∆
k+1 − V ∗∥∞ ≤ γk+1∥V π̂∆

0 − V ∗∥∞

Proof. Direct computation shows that

V ∗(s)− V π̂
∆
k+1(s) =max

a
[r(s, a) + γEs′∼PDV

∗(s′)]− [r(s, π̂∆
k+1(s)) + γEs′∼PDV

π̂∆
k+1(s′)]

≤max
a

[r(s, a) + γEs′∼PDV
∗(s′)]− [r(s, π̂∆

k+1(s)) + γEs′∼PDV
π̂∆
k (s′)

=max
a

[r(s, a) + γEs′∼PDV
∗(s′)]−max

a
[r(s, a) + γEs′∼PDV

π̂∆
k (s′)]

≤max
a

(r(s, a) + γEs′∼PDV
∗(s′)− (r(s, a) + γEs′∼PDV

π̂∆
k (s′)))

≤γ∥V ∗ − V π̂
∆
k ∥∞ ≤ γ2∥V ∗ − V π̂

∆
k−1∥∞ ≤ · · · ≤ γk+1∥V π̂

∆
0 − V ∗∥∞.

(D.7)
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Since Eq.D.7 holds for ∀s ∈ S , we have

∥V π̂
∆
k+1 − V ∗∥∞ ≤ γk+1∥V π̂

∆
0 − V ∗∥∞.

This finishes the proof.

E Experiment Details and More Results

E.1 The Mujoco and AntMaze tasks

• Gym-MuJoCo Task. The Gym-MuJoCo is a commonly used benchmark for offline RL task. Each
Gym-MuJoCo task contains three types of static offline datasets, generated by different behavior
policies. The three offline datasets include: i) Random dataset originates from random policies and
contains the least valuable information ii) The medium-quality dataset is generated by a partially
trained policy (which performs about 1/3 as well as an expert policy).The medium-quality dataset
contains three types of mixture: medium, medium-replay,medium-expert. iii) The expert dataset is
produced by a policy trained to completion with SAC.
In offline RL, the datasets generated by the medium-quality policy are better considered since we
are confronted with such dataset in most practical scenarios. Therefore, in our experiments, we
consider the datasets from the medium-quality policy.

• AntMaze Task. The AntMaze task is a challenging navigation task that requires a combination of
different sub-optimal trajectories to find the optimal path. According to different task levels, the
AntMaze task is divided into umaze, medium, and large types.

E.2 Implementation Details and Discussion

Implementation of CPED algorithm contains Flow-GAN training and Actor-Critic training.

Flow-GAN training. The generator of GAN follows the NICE [34] architecture of the flow model,
and the discriminator is a 4-layer MLPs. The entire code of training Flow-GAN is based on the
implementation of FlowGAN[33]4. FlowGAN[33] is intended to deal with image data, while the
D4RL dataset does not contain image features. So in our training, we replace the image data-specific
network architecture(such as convolution layers, Residual block) with fully connected layers. The
hyperparameters used in Flow-GAN is shown in Table E.1.

Actor-Critic training. The Actor-Critic training implementation follows TD3[45], as SPOT[22]
suggested TD3 architecture performs better than SAC in offline RL tasks. Additionally, the reward
in AntMaze tasks is centered following the implementation of CQL/IQL. When training CPED in
practice, the Flow-GAN updates first after initializing the CPED. The policy and Q networks start to
update when Flow-GAN has trained 20 thousand steps, and a relatively reliable density estimator
is provided. Afterward, the Actor-Critic begins to train simultaneously. To prevent overfitting, the
Flow-GAN stops training when it becomes stable.The hyperparameters used in Actor-Critic training
are shown in Table E.2.

Hyperparameter tuning of the time(epoch) varying α. The key element in the time-varying setting
of policy constraint parameter α is to find the task’s strongest and weakest α values. We follow the
pattern we observed in automatic learning of α in BEAR[17] and set the strongest and weakest α
values for different offline RL tasks. We find that after 200-300 thousand steps of learning with the
strongest policy constraint, we get a relatively strong learning policy. Then we decrease α to the
weakest value. Indeed, this decreasing process is robust to small changes of α. The settings in Figure
2(b) and 2(c) are generally applicable for most tasks in Mujoco task and AntMaze task.

E.3 Training Curve

The training curve of Mujoco tasks is shown in Figure E.1. The training curve of AntMaze tasks is
shown in Figure E.2.

4https://github.com/ermongroup/flow-gan
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Table E.1: The hyperparameter used in Flow-GAN training.

Hyperparameter Value

Optimizer Adam
Batch size 256
Gradient penalty for WGAN-GP[59] 0.5

Shared parameter Training ratio of the generator and discriminator 5:1 for DCGAN[60]
1:5 for WGAN-GP

Maximium Likelihood Estimation(MLE) adjustment weight 1
Activation in the hidden layer LeakyRelu

Learning rate 1e-4
Latent layer of m network in NICE[34] 3

Generator Latent dim 750
Hidden Layer 4
Output activation LeakyRelu

Learning rate 1e-5 for DCGAN
1e-4 for WGAN-GP

Latent dim [2 × (action dim +state dim),
4 × (action dim +state dim)]

Discriminator Hidden Layer 2
Normalization Batch Norm for DCGAN

Layer Norm for WGAN-GP
Output activation Sigmoid for DCGAN

Identity for WGAN-GP
Dropout rate 0.2 for DCGAN

0.0 for WGAN-GP

Table E.2: The hyperparameters used in Actor-Critic training.

Hyperparameter Value

Optimizer Adam
Batch size 256
Actor learning rate 3e-4

TD3 Critic learning rate 3e-4
Discount factor 0.99
Number of iterations 1e6
Target update rate τ 0.005
Policy noise 0.2
Policy noise clipping 0.5
Policy update frequency 2

Actor hidden dim 256
Architecture Actor layers 3

Critic hidden dim 256
Critic layers 3

CPED Time varying α see in Figure 2(b)-(c)

E.4 Target Q function during training

We show the target Q function of different Mujoco Tasks in Figure E.3 and give an experimental
analysis of the policy constraint method. The target Q function of the AntMaze task is quite small
due to the sparse reward, and we only show the target Q function of the Mujoco Task. In the
offline RL scenario, the target Q function in the Bellman equation is vulnerable to OOD points. For
OOD points, the target Q function are overestimated, and the Q value could be very large when
the extrapolation errors are accumulated continuously. As a consequence, the learning policy fails
to predict a reasonable action for most cases. CQL[13] discusses that policy control alone can not
prevent the target Q function from being overestimated on OOD points. The experiment shows if we
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Figure E.1: Training curve of different Mujoco Tasks. All results are averaged across 5 random
seeds. Each epoch contains 1000 training steps.

can get an explicit and relatively accurate density function of the behavior policy, we can get a stable
and meaningful target Q function.

E.5 Ablations

In the ablation study, we compare the performances of two different settings of ϵ in Eq.7, in which ϵ
is set to 0 (traditional quantile setting ) and batch mean likelihood (our setting), respectively[17, 22].
The learning curves of these two settings are shown in Figure E.4. We only show the performance of
the Mujoco task as AntMaze tasks are very unstable in the ablation study. For most Mujoco tasks, the
batch mean likelihood setting for ϵ achieves higher normalized return, while the learning cure of the
traditional quantile setting is quite volatile.

We further analyze the time-varying constraint setting we used in CPED by comparing its performance
with that of the constant constraint setting. To better show the differences between two kinds of
constraint settings on α, we take the maximum and minimum values of the time-varying constraint as
the constant constraint value. The learning curves of these two settings are shown in Figure E.5. We
only show the Mujoco task performance as AntMaze tasks are unstable. For most Mujoco tasks, the
time-varying constraint setting of α outperforms the constant setting with a large margin.
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Figure E.2: Training curve of different Antmaze Tasks. All results are averaged across 5 random
seeds. Each epoch contains 1000 training steps.

We also used the time-varying constraint trick for Spot and randomly selected three tasks to compare
the performance difference between Spot using its own constant alpha and the time-varying alpha
setting (Figure E.6). We can see that the performances with time-varying α are close or even inferior
to those with constant α setting, indicating the trick of varying does not result in too much benefit.

E.6 Density estimation accuracy by Flow-GAN and VAE: a toy example

To assess the accuracy of Flow-GAN for distribution estimation, this section conducts a straightfor-
ward toy experiment. The experiment involves a comparison between the performance of Flow-GAN
and VAE in learning Gaussian mixture distributions and generating samples. Specifically, two
Gaussian distribution settings were employed in the experiment:

• We gather approximately 12800000 data points from a multivariate Gaussian distribution
with a mean of µ = [1, 9] and covariance matrix of Σ = [[1, 0], [0, 1]].

• We gather a similar amount (with setting 1) data points from a Gaussian mixture distribution,
in which data are randomly drawn from two independent Gaussian distributions (µ1 = [1, 1]
and µ2 = [9, 9], Σ1 = Σ2 = [[1, 0], [0, 1]]) with equal probability.

We then employ both VAE and Flow-GAN to generate samples and calculate the mean of log-
likelihood. Table E.3 demonstrates that Flow-GAN outperforms VAE significantly in approximating
the original data distribution. So, as many previous studies [29, 30, 31, 32] have shown, VAE has
shortcomings in estimating complex distributions, especially multimodal distributions or complex
behavior policy distributions.Flow-GAN has a stronger advantage in learning complex distributions
due to the use of MLE and GAN-based adversary loss.
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Figure E.3: Target Q function of different Mujoco Tasks. All results are averaged across 5 random
seeds. Each epoch contains 1000 training steps.

Table E.3: The mean of log-likelihood of the generated sample by Flow-GAN and VAE.

Setting Ground Truth VAE Flow-GAN

setting1 -2.89 -140.83 -24.18

setting2 -2.78 -50.05 -6.12
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Figure E.4: Training curve of different Mujoco Tasks when using different likelihood threshold ϵ.
All results are averaged across 5 random seeds. Each epoch contains 1000 training steps. The green
line denotes the training curve under ϵ = 0, and the blue line denotes the training curve under our
batch mean likelihood setting.
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Figure E.5: Training curve of different Mujoco Tasks when using different constraint threshold α.
All results are averaged across 5 random seeds. Each epoch contains 1000 training steps. For each
task (halfcheetah/hopper/walker2d), the selected α in the experiment remains the same under three
types of dataset (medium-expert-v2/medium-v2/medium-replay-v2).
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Figure E.6: Training curve of three randomly chosen tasks for spot when using constant α and the
time-varying α setting. All results are averaged across 5 random seeds. Each epoch contains 1000
training steps. The blue line denotes the training curve using SPOT’s constant α setting, and the red
line denotes the training curve using time-varying α setting.
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