
A Appendix787

We anonymously share our pretrained models and preprocessed datasets:788

https://zenodo.org/record/7954787789

A.1 Other Pretraining Experiments790

In this section, we experiment with additional CROMA settings. We use the same experimental791

conditions as §5.1 of our paper; i.e., we linear probe representations on BigEarthNet [126] (reporting792

mAP on the combined validation and test sets) and patch encodings on DW-Expert-120 [138]793

(reporting mIoU on the validation set). We use the linear probing hyper-parameters listed in §A.3.2794

of this Appendix.795

Table 7: Linear probing results on radar-only (“R”), optical-only (“O”), and joint radar-optical
(“RO”) inputs. Across all experiments we use 2D-ALiBi with X-ALiBi, 75% shared masking, ViT-B
backbones, and 100 pretraining epochs.

Cross-Modal Cross-Modal Decoder Obj. Weights HN Mixing Classification (mAP) Segmentation (mIoU)

Image Obj. Patch Obj. Depth, Dim λCon, λMAE (1024, 0, n) Cost R O RO R O RO

InfoNCE MSE 1, 512 1, 1 ✗ 1× 77.4 83.9 84.3 40.5 56.0 56.7
InfoNCE MSE 1, 768 1, 1 ✗ 1× 77.4 83.9 84.3 40.7 56.1 56.6
InfoNCE MSE 3, 512 1, 1 ✗ 1.2× 77.5 83.9 84.4 40.5 56.3 57.1
InfoNCE MSE 3, 768 1, 1 ✗ 1.3× 77.5 83.9 84.4 40.7 56.2 56.6
InfoNCE MSE 6, 512 1, 1 ✗ 1.4× 77.5 83.9 84.4 40.3 56.0 56.7
InfoNCE MSE 6, 768 1, 1 ✗ 1.6× 77.6 83.8 84.5 40.6 56.2 56.7
InfoNCE ✗ 1, 512 1, 1 ✗ 1× 77.4 84.0 84.5 40.8 56.1 56.4
InfoNCE ✗ 1, 768 1, 1 ✗ 1× 77.5 84.2 84.5 40.8 56.1 56.2
InfoNCE ✗ 3, 512 1, 1 ✗ 1.2× 77.6 84.1 84.5 40.8 56.2 56.7
InfoNCE ✗ 3, 768 1, 1 ✗ 1.3× 77.0 83.9 84.5 40.6 56.1 56.5
InfoNCE ✗ 6, 512 1, 1 ✗ 1.4× 77.3 84.1 84.5 40.8 56.1 56.5
InfoNCE ✗ 6, 768 1, 1 ✗ 1.6× 77.5 84.1 84.6 40.6 56.5 56.8
InfoNCE InfoNCE 3, 512 1, 1 ✗ 2.2× 72.8 80.9 82.4 39.0 55.1 55.2
InfoNCE ✗ 1, 512 1, 2 ✗ 1× 77.5 84.3 84.2 40.7 55.9 56.2
InfoNCE ✗ 1, 512 1, 4 ✗ 1× 77.5 84.3 84.1 40.6 55.4 56.0
InfoNCE ✗ 1, 512 2, 1 ✗ 1× 77.5 84.1 84.5 40.4 55.9 56.3
InfoNCE ✗ 1, 512 4, 1 ✗ 1× 77.6 83.9 84.5 40.7 55.8 56.8
InfoNCE ✗ 1, 512 1, 1 128 1× 73.6 81.6 83.0 38.0 53.2 55.0
InfoNCE ✗ 1, 512 1, 1 256 1× 73.0 81.0 82.8 37.8 52.9 54.7
InfoNCE ✗ 1, 512 1, 1 512 1× 72.5 80.2 82.4 37.6 52.6 54.4
VICReg MSE 1, 768 1, 1 ✗ 1.1× 70.7 78.7 83.3 40.0 55.5 55.1

Self-supervised Objectives. Inspired by the local objective of VICRegL [143], we experiment with a796

mean squared error (MSE) objective between cross-modal patch encodings, i.e., Llocal=MSE(ER, EO).797

This attracts patch encodings if they match locations, i.e. if they represent the same 80 m × 80 m798

square on the ground. We find this does not improve representations. Next, we experiment with799

the VICReg [142] objective (calculating VICReg statistics based on a batch size of 800) between800

cross-modal image representations, i.e., RR and RO; we find it underperforms InfoNCE [28]. Finally,801

we experiment with the InfoNCE objective between cross-modal patch encodings; positive pairs802

are encodings that match locations across modalities, and negative pairs are all other encodings803

from the matched sample and encodings from all other samples in the batch. This does not improve804

representations and slows pretraining by 2.2× (Table 7).805

Objective Weights. We find that weighting the contrastive loss term or MAE [31] loss term does not806

uniformly improve representations; hence, we select equal weights.807

Hard Negatives. We find that hard-negative mixing [145] (N=1024, s=0, s′=n, β=0.5, with n of 128,808

256, or 512) degrades performance when used in our framework. We leave altering the contrastive809

learning objective to future work, for instance, other hard negative settings or nearest-neighbor810

contrastive learning.811

Decoder Sizes. At least in these experiments, CROMA is not sensitive to the decoder size; a812

tiny decoder with a 1-layer, 512-d transformer performs similarly to a much larger 6-layer, 768-d813

transformer.814
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Table 8: Linear probing results with shared
75% masking, ViT-B, 100 epochs.

Classification Segmentation
Method mAP mIoU

R O RO R O RO

PEG [118] 67.9 75.9 79.0 32.6 49.8 51.0
2D-Sin. 69.4 75.6 79.8 29.0 44.1 50.7

Position Encoding with Shared Masking. We find815

that using 2D-sinusoidal embeddings or PEG [118]816

with shared masking performs poorly. These two817

methods of position encoding store positional infor-818

mation in the internal representations, which can819

help solve the contrastive objective if both modal-820

ities share masks; 2D-ALiBi instead stores positional821

information in the attention matrix, which may pre-822

vent this from occurring. In our paper (Table 5), we823

show that 2D-sinusoidal or PEG can perform well in our framework if modalities are masked824

independently; although 2D-ALiBi still outperforms these approaches.825

Table 9: Lower masked tuning for 5 epochs
after pretraining CROMA-L.

Classification Segmentation
Mask Ratio mAP mIoU

R O RO R O RO

10% 80.8 84.7 84.7 43.8 56.8 56.6
25% 80.8 84.7 84.8 43.9 56.8 56.6
50% 80.8 84.8 85.0 43.9 56.8 56.6

Lower Masked Tuning. FLIP [123] performs con-826

trastive learning using the representations of masked-827

out samples; after this masked pretraining, it lever-828

ages unmasked tuning to increase accuracy by 1.3%829

on zero-shot ImageNet-1K. Unmasked tuning contin-830

ues FLIP pretraining by performing contrastive learn-831

ing using the representations of unmasked samples832

to reduce the distribution gap between pretraining833

and inference [123]. We cannot perform fully un-834

masked tuning because we must mask patches for835

our reconstruction objective. However, we can lower our mask ratio and perform lower masked836

tuning. Following FLIP, initializing parameters with our pretrained CROMA-L model, we train for 5837

additional epochs using a base learning rate of 8e-8, warmup over the first epoch, and cooldown for 4838

epochs using a cosine decay schedule. We explore mask ratios {10%, 25%, 50%} and find that lower839

masked tuning does not improve linear probing accuracy for CROMA.840

A.2 Pretraining Details841

A.2.1 Data842

We use the SSL4EO dataset [85], which consists of Sentinel-1 & 2 imagery acquired at 250K locations843

around the world; each location (a 2.64 km × 2.64 km square) is imaged four times, spread out over a844

year. We use these 1M samples of 264 × 264 pixels for pretraining. Please see the SSL4EO paper845

[85] for more details.846

A.2.2 Implementation847

We use an NVIDIA DGX server (8×A100-80GB), the maximum batch size that can fit into 640 GB848

of VRAM (7,200 for our default ViT-B), bfloat16 precision, a base learning rate of 4e-6, warmup for849

5% of the total epochs, and cooldown via a cosine decay schedule. We use the same normalization850

procedure as SatMAE [26]. For data augmentation, we randomly crop 60-180 pixel squares from851

the original 264 × 264 pixels and resize the crops to 120 × 120 pixels (our default image size). We852

also perform vertical and horizontal flipping, 90-degree rotations, and mixup=0.3. Crucially, we853

apply these transformations identically to both modalities; if we applied them to each modality854

independently, our spatial alignment would break. We use the AdamW optimizer with β1=0.9,855

β2=0.999, and a weight decay of 0.01.856

A.3 Evaluation Details857

The evaluation of foundation models for Earth Observation is less mature than in other fields. We858

do our best to re-use the experimental conditions of the SoTA, i.e., SatMAE [26], and improve859

upon them where possible. One such condition is to report results from a held-out validation set;860

precisely, the best validation performance measured after each finetuning epoch is reported. No861

test sets are used. To enable fair comparisons with prior work, we copy this approach. In trying to862

improve the evaluation of foundation models for Earth Observation, we detail our approach in this863

Appendix, share code and preprocessed datasets, re-evaluate all near-SoTA models under identical864

conditions, and evaluate models in more ways than prior work (i.e., linear and nonlinear probing,865

kNN classification, and K-means clustering).866
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We initialize parameters from publicly shared pretrained weights, evaluating all models ourselves867

under identical conditions. Although this process is laborious, we believe it significantly improves868

the value of our paper; several prior studies have often evaluated their models in different ways, using869

different data splits that cannot be directly compared. When downloading pretrained weights, we use870

the latest weights that are publicly available. For instance, SatMAE [26] released improved versions871

of their multispectral ViT-B and ViT-L models, pretrained for 200 epochs, after their manuscript872

was accepted for publication (edited on arxiv on January 15th, 2023). We exclusively evaluate these873

improved models throughout our paper, ensuring we compare CROMA to the best models available.874

A.3.1 Data875

BigEarthNet. [126] We use the same splits for training (10% of the complete training set) and876

evaluating (the entire validation set) as SatMAE [26] and SeCo [25]. However, we use the combined877

validation and test sets (236,130 samples) in our ablation studies to increase the reliability of our878

findings with minimal added cost. Images are 120 × 120 pixels.879

fMoW-Sentinel. [26] Inspired by how the BigEarthNet benchmark is used (i.e., training on 10% of880

the complete training set of 354,200 samples), we create a 10% split of the complete fMoW-Sentinel881

training set of 712,874 samples. We share the IDs of the 10% of fMoW-Sentinel training samples that882

we randomly selected. We believe this smaller training set should be used in future work to reduce883

the costs of hyper-parameter searches—a single finetuning run of SatMAE on the complete training884

set requires 192 hours on a V100 GPU [26]. Following SatMAE, we use the full validation set for885

evaluation. Images vary in size, the mean height is 45 pixels, and the mean width is 60 pixels.886

Table 10: fMoW-Sentinel results (top 1 ac-
curacy) using the complete training set. *
denotes results reported in SatMAE (updated
on arxiv on January 15th, 2023).

Method Backbone Finetuning Linear Probing

SatMAE ViT-B 62.65* 37.40
CROMA ViT-B 61.00 40.94
SatMAE ViT-L 63.84* 39.19
CROMA ViT-L 63.59 41.96

In our paper, we benchmark this new split. However,887

we report results obtained by our CROMA models on888

the complete training set in Table 10. Due to the costs889

of finetuning on the complete training set (712,874890

samples), we decide to allocate our resources else-891

where and not perform any hyper-parameter tuning.892

Instead, we select hyper-parameters we believe to be893

reasonable and finetune CROMA-B and CROMA-L894

once. For finetuning, we use a base learning rate of895

1e-5 and all other hyper-parameters from §A.3.2.896

EuroSAT. [127] We use the same training and validation sets as SatMAE. Images are 64 × 64 pixels.897

Canadian Cropland. [128] We are the first to benchmark this dataset of Canadian agricultural898

croplands, consisting of 10 classes (barley, canola, corn, mixedwood, oats, orchard, pasture, potato,899

soybean, and spring wheat). We select this dataset because it is a large dataset that evaluates900

different capabilities from the other benchmarks that typically consider croplands as a single class.901

Following EuroSAT [127], the authors selected an image size of 64 × 64 pixels [128]; therefore,902

models evaluated on EuroSAT can be evaluated on Canadian Cropland with minimal modifications.903

We use the training set and combine their validation and test sets to form a single held-out set for904

evaluation. We share these complete training and validation sets. The performance (see Table 1 in905

our paper) and representation visualizations (see Fig. 5 and 6 in this Appendix) indicate that the 10906

classes present in this dataset are challenging to separate.907

DFC2020. [137] This dataset is used for evaluation in diverse ways—both the choice of data split908

and image size. The original dataset comprises 6,114 samples of 256 × 256 pixels. These samples909

are typically split into two; a so-called “validation set” of 986 samples and a so-called “test set” of910

5,128 samples. Some studies use the “validation set” for training and the “test set” for validation;911

others use the “test set” for training and the “validation set” for validation. Some studies use the full912

256 × 256 pixels as inputs to their models, while others use smaller inputs. We select the split of913

5,128 samples for training, which we divide into 46,152 images of 96 × 96 pixels—leaving us with914

the split of 986 samples for validation, which we divide into 8,874 images of 96 × 96 pixels. We915

select this final resolution because it is the default image size of SatMAE, enabling a fair comparison916

to the SoTA. We share these complete training and validation sets.917

DW-Expert. [138] The data collected by Dynamic World [138] is a new high-quality dataset918

annotated by experts with the help of auxiliary information. Thus, it should be used in the future919

when benchmarking models. Our work uses the expertly annotated data from Dynamic World, which920
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we split into 20,422 train samples and 51,022 validation samples. All images are 96 × 96 pixels to921

enable a fair comparison with SatMAE. We share these complete training and validation sets. We922

also create a version of this dataset that consists of 120 × 120 pixel images (i.e., DW-Expert-120) that923

we only use for ablations because it is the default image size of CROMA.924

MARIDA. [139] We use the training set and combine the validation and test sets to form a single held-925

out set for evaluation. Following our approach for DFC2020 and DW-Expert, we divide the original926

images into images of 96 × 96 pixels. Because it is a sparsely labeled dataset (i.e., only a fraction927

of pixels per image are labeled), we include images with at least one labeled pixel. We select this928

dataset because it evaluates different capabilities from the other semantic segmentation benchmarks.929

It consists of the following classes: marine debris, dense Sargassum, sparse Sargassum, natural930

organic material, ship, clouds, marine water, sediment-laden water, foam, turbid water, shallow water,931

waves, cloud shadows, wakes, and mixed water. We share these complete training and validation sets.932

A.3.2 Implementation933

Finetuning. We select reasonable hyper-parameters that we use for all models and datasets unless934

otherwise stated, and sweep across learning rates. This learning rate sweep is essential to creating935

fair evaluation conditions across models since each model is given the same search budget (in terms936

of finetuning runs, not compute hours), and different models have different optimal learning rates.937

Models pretrained with reconstruction approaches tend to require higher base learning rates during938

finetuning than models pretrained with contrastive learning. For instance, MAE [31] lists a base939

learning rate of 1e-3, FLIP [123] lists a base learning rate of 5e-5, CoCa [49] lists base learning rates940

from 1e-5 to 5e-4, depending on the downstream dataset.941

No single learning rate would enable a fair comparison across all models and datasets. Therefore, we942

sweep learning rates across an extensive range {3e-5, 5e-5, 8e-5, 1e-4, 3e-4, 5e-4, 8e-4, 1e-3} and943

report the best single evaluation result obtained for each dataset; this sweep is performed for CROMA944

models and all other models. We convert these base learning rates to actual learning rates via the945

widely used linear scaling rule: lr = base_lr × batch_size/256. We use the largest batch size946

that can fit on an A100-40GB GPU (using bfloat16 precision), the AdamW optimizer with β1=0.9,947

β2=0.999, and a weight decay of 0.01. We warmup for 5 epochs and cooldown for 30 epochs using948

a cosine decay schedule (other than EuroSAT, which we cooldown for 150 epochs); this follows949

SatMAE [26]. For classification tasks, we use mixup=0.8, cutmix=1.0, switch probability=0.5,950

and label smoothing=0.1. For both classification and segmentation tasks, we perform vertical and951

horizontal flipping and 90-degree rotations. We enlarge images to the default image size of the952

model we are finetuning (i.e., the image size on which the model was pretrained), with one exception.953

The default image size of SatMAE is 96 × 96; however, BigEarthNet images are 120 × 120 [126],954

requiring that we either crop BigEarthNet samples (losing information) or adapt SatMAE to larger955

images. We achieve better performance by adapting SatMAE to 120 × 120 images, via the widely956

used position embedding interpolation algorithm, than cropping BigEarthNet samples down to957

96 × 96. This allowed us to achieve an mAP of 86.18 for SatMAE, a significant improvement over958

the 82.62 reported in the SatMAE paper. All other datasets use images of 96 × 96, or smaller—thus,959

there is no reason to use this technique for other datasets.960

Linear and Nonlinear Probing. We encode each image without data augmentation, then train linear961

and nonlinear probes on the frozen representations. Since each model only encodes each image962

once, we can sweep through a large range of learning rates ({1, 2, 3, 4, 5, 6, 7, 8, 9}e{-4, -3, -2})963

very quickly. Unlike finetuning, we do not evaluate probes after every epoch; instead, we evaluate964

trained probes after all epochs are complete. We use a batch size of 1024, bfloat16 precision, the965

AdamW optimizer with β1=0.9, β2=0.999, and a weight decay of 0.01. We warmup for 5 epochs966

and cooldown for 100 epochs using a cosine decay schedule.967

Non-parametric kNN and K-means. For kNN, we use the implementation from [27]. This consists968

of encoding all training and validation samples, then using the representations of validation samples969

as queries and training samples as keys to fetch training labels. These fetched training labels are used970

to classify validation samples. We use k=20, other values for k (i.e., 10, 50) ranked models in the971

same order as k=20. For K-means, we use the implementation from [129]. This consists of encoding972

all training and validation samples, then clustering training samples with K-means (K-means++973

initialization run 10 times). Then, we assign validation samples to clusters, and we assign clusters to974

classes via the Hungarian matching algorithm.975
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Table 11: CROMA vs SatMAE training and inference throughput on an A100-40GB GPU.

Model Backbone Image Size Train Imgs/s Inference Imgs/s

SatMAE ViT-B 96×96 249.3 692.5
CROMA ViT-B 96×96 1,079.3 2,957.7
CROMA ViT-B 120×120 555.0 1,532.1
SatMAE ViT-L 96×96 84.2 263.2
CROMA ViT-L 96×96 389.1 1,168.2
CROMA ViT-L 120×120 209.6 640.3

SatMAE Specifics. SatMAE [26] divides spectral bands into three groups and outputs patch encod-976

ings for every group; thus, SatMAE outputs three patch encodings per patch location. To be as fair as977

possible to SatMAE, we explore four ways of merging these co-located patch encodings to perform978

segmentation: unnormalized spatial concatenation, normalized spatial concatenation, unnormalized979

spatial pooling, and normalized spatial pooling. We find unnormalized spatial concatenation (i.e.,980

concatenating the patch encodings of co-located patches before the LayerNorm) performed best.981

Thus, we use the unnormalized spatially concatenated patch encodings for all segmentation datasets982

and methods (i.e., finetuning and probing). Conversely, CROMA does not divide spectral bands into983

groups—resulting in 3× shorter sequence lengths. The computation required to process a sequence984

of tokens with a transformer increases with increasing sequence lengths. This makes CROMA much985

more computationally efficient than SatMAE for a given ViT backbone and image size (Table 11).986

A.4 Societal Impact987

Since we pretrain our models on the SSL4EO dataset [85], our models may be biased towards the988

distribution from which SSL4EO data were sampled. Although SSL4EO samples are geographically989

diverse (please see Fig. 2 from the SSL4EO paper [85]), locations are sampled from areas surrounding990

human settlements. As a result, large geographic areas that are sparsely populated—for instance, the991

Amazon rainforest, the Sahara desert, and the Australian outback—are underrepresented. This could992

negatively impact the quality of representations in these locations and any decisions made on their993

basis.994

Another distribution shift—this time, between finetuning and inference—is our primary concern.995

For example, finetuning a model on the imagery of one geography, then making predictions on the996

imagery of another geography, creates a distribution shift. As a result, biases from the finetuning997

geography may be realized in the predictions made by the finetuned model. This is particularly998

problematic when these predictions are used in decision-making, for instance, allocating poverty999

assistance. However, it is well-demonstrated that pretrained models are more robust to distribution1000

shifts than models trained from scratch. Additionally, as we develop better foundation models for1001

Earth Observation, we reduce the need for annotated data; this may allow practitioners to be more1002

selective of the data they wish to leverage during finetuning.1003

We do not expect our pretrained models to be particularly valuable for military applications, as1004

militaries likely have access to higher resolutions (spatially, spectrally, and temporally) than Sentinel-1005

1 & 2 provide. However, our framework may be leveraged to pretrain models on higher-resolution1006

imagery, which could be useful for military applications, although this is a risk of all novel learning1007

algorithms.1008

A.4.1 Compute1009

We approximate the computational resources we use for pretraining and finetuning (frozen represen-1010

tation evaluations are negligible in comparison). For pretraining, estimates are in A100-80GB GPU1011

hours; for finetuning, estimates are in A100-40GB GPU hours. Please see Table 12.1012
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Table 12: Estimated GPU hours used for developing and validating CROMA.

Method Backbone Task GPU Hours

radar↔optical [87] ResNet50 Classification Finetuning 10
radar↔optical [87] Swin-T Classification Finetuning 25

MAE [31, 85] ViT-S Classification Finetuning 20
DINO [125, 85] ViT-S Classification Finetuning 20
SatMAE [26] ViT-B Classification Finetuning 75

CROMA ViT-B Classification Finetuning 35
SatMAE [26] ViT-L Classification Finetuning 215

CROMA ViT-L Classification Finetuning 90
SatMAE [26] ViT-B Segmentation Finetuning 25

CROMA ViT-B Segmentation Finetuning 10
SatMAE [26] ViT-L Segmentation Finetuning 65

CROMA ViT-L Segmentation Finetuning 30
CROMA ViT-B Pretraining 300 epochs 80
CROMA ViT-L Pretraining 600 epochs 380
CROMA ViT-B Pretraining Ablations 1,100
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A.5 Visualizations1013

We visualize representations and patch encodings using UMAP and t-SNE. For both segmentation1014

datasets (DFC2020 [137] and DW-Expert [138]), we visualize patch encodings of 50,000 randomly1015

sampled patches and use the most dominant class in a patch as its label.1016

CROMA (ViT-B) SatMAE (ViT-B) DINO (ViT-S) radar↔optical (Swin-T)

Permanent Crop Residential Industrial Highway Pasture
Sea & Lake Forest River Annual Crop Herbaceous Vegetation

Figure 4: t-SNE plots of EuroSAT [127] representations.

CROMA (ViT-B) SatMAE (ViT-B) DINO (ViT-S) radar↔optical (Swin-T)

Barley Canola Corn Mixedwood Oat
Orchard Pasture Potato Soybean Spring Wheat

Figure 5: UMAP plots of Canadian Cropland [128] representations.

CROMA (ViT-B) SatMAE (ViT-B) DINO (ViT-S) radar↔optical (Swin-T)

Barley Canola Corn Mixedwood Oat
Orchard Pasture Potato Soybean Spring Wheat

Figure 6: t-SNE plots of Canadian Cropland [128] representations.
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CROMA-B (UMAP) CROMA-B (t-SNE) SatMAE-B (UMAP) SatMAE-B (t-SNE)

Water Trees Grass Flooded vegetation Crops
Shrub & Scrub Built-up Barren Snow & Ice

Figure 7: UMAP and t-SNE plots of DW-Expert [138] patch encodings.

CROMA-B (UMAP) CROMA-B (t-SNE) SatMAE-B (UMAP) SatMAE-B (t-SNE)

Forest Shrubland Grassland Wetlands Croplands
Built-up Barren Water

Figure 8: UMAP and t-SNE plots on DFC2020 [137] patch encodings.
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