Appendix

In this section, we present additional implementation details, experiment results and discussions. The content structure is outlined as follows:

- Section A - Additional Results
- Section A. 1 - Insights for Different GPT Models
- Section A. 2 - Quantitative ablations on our DDCoT and visual components
- Section A. 3 - Hyperparameters for Fine-tuning Components
- Section A. 4 - Additional experiments on the effectiveness of our DDCoT with existing pre-trained VLMs and multimodal reasoning models
- Section A. 5 - Additional experiments on Captioning and Video Question Answering tasks
- Section B - Human Evaluation
- Section C - Detailed Prompts
- Section D - Case Studies
- Section E - Limitations

A Additional Results

Figure 1: Cases that GPT-3 and ChatGPT face the difficulty in understanding dense image information.

A. 1 Insights for Different GPT Models

In the submitted paper we have presented several findings concerning the LLMs. In this section, we aim to provide additional illustrative instances for GPT-3 [2] and the recent and potent ChatGPT [4].

Difficulty in understanding dense image information. Figure 1 presents additional instances of LLMs failing to comprehend dense image information. For sparse captions like the example in Figure 2 of the submitted paper, we observe that both GPT-3 and ChatGPT may struggle to comprehend image information in captions. Additionally, when prompted with more detailed captions, their difficulties in understanding become more pronounced. This highlights the challenges that even the most versatile and powerful language models currently available face in comprehending dense image information.
Which of the following fossils is older? Select the more likely answer.
Context:
This diagram shows fossils in an undisturbed sedimentary rock sequence.
Caption:
The figure displays three sedimentary rock layers. The uppermost layer
contains palm leaf fossils, the second layer contains root fossils, and the
bottom layer contains wood fossils. shallower
Options:
A. root
B. palm leaf
C. wood
Complete the text to describe the diagram. Solute particles moved in
both directions across the permeable membrane. But more solute
particles moved across the membrane

Context:

When there was an equal concentration on both sides, the particles reached equilibrium. The diagram below shows a solution with one solute. Each solute particle is represented by a green ball. The solution fills a closed container that is divided in half by a membrane. The membrane, represented by a dotted line, is permeable to the solute particles. The diagram shows how the solution can change over time during the process of diffusion.

Caption:

The figure illustrates the state transition of a box. In the initial state, there are three green particles to the left of the box's center line and five green particles to the right. In the subsequent state, the box shows four green particles on each side of the center line

Options:

A. to the left than to the right
B. to the right than to the left

As can be seen from the image, the initial state has five particles on the right side of the membrane and three particles on the left side of the membrane. As time passes, the left side becomes four particles, i.e., one particle is gained; the right side also becomes four particles, i.e., one particle is lost. Therefore, the direction of motion of the particles is to left.

As can be seen from the image, the initial state has five particles on the right side of the membrane and three particles on the left side of the membrane. As time passes, the left side becomes four particles, i.e., one particle is lost; the right side also becomes four particles, i.e., one particle is gained. Therefore, the direction of motion of the particles is to right.

Figure 2: Cases of rationale-sensitive reasoning with GPT-3 and ChatGPT.

Rationale-sensitive reasoning. Figure 2 shows more examples where the reasoning of GPT-3 and ChatGPT is sensitive to the input rationales. The correct answers obtained without using rationales indicate that the LLMs possess commonsense knowledge to respond to the question. However, incorrect inputs can lead to misleading outcomes for both GPT-3 [2] and ChatGPT [4].

Note that the challenges involved in understanding dense image information, coupled with the difficulty of obtaining high-quality captions in practical scenarios, limit the universal applicability of reasoning without using rationales, although it may be feasible in the presented examples.

Hallucinations during generation. Figure 3 illustrates several instances where both GPT-3 and ChatGPT fall into hallucinations during rationale generation.

Our findings indicate that in cases where the provided caption information is insufficient, such as in the first example, both GPT-3 [2] and ChatGPT [4] tend to imagine image details to respond to the question. Even when we provide ample information, as demonstrated in the second and third
Compare the average kinetic energies of the particles in each sample. Which sample has the higher temperature?

Context:

The diagrams below show two pure samples of gas in identical closed, rigid containers. Each colored ball represents one gas particle. Both samples have the same number of particles.

Caption:

The diagrams below show two pure samples A and B. Options:
A. sample B
B. sample A
C. neither, the samples
have the same
temperature

What is the probability that a rat produced by this cross will have a dwarf body?

Context:

In a group of rats, some individuals have a normal-sized body and others have a dwarf body. In this group, the gene for the body size trait has two alleles. The allele for a dwarf body (b) is recessive to the allele for a normal-sized body (B). This Punnett square shows a cross between two rats.

Caption:

The image shows a table of genes. The horizontal axis is Bb , and the vertical axis is BB

Rationale: The particles in sample B have more kinetic energy on average than the particles in sample A. This means that sample B has a higher temperature.

ChatGPT

Rationale: The average kinetic energy of gas particles is directly proportional to the temperature of the gas. Sample B has a higher average kinetic energy because its particles are moving faster and have a wider range of velocities compared to Sample A. Therefore, Sample B has a higher temperature than Sample A.

Ours DDCoT w/o Caption
Rationale: The average kinetic energy of gas particles is directly proportional to temperature. The particles in sample A are moving at a much faster speed than the particles in sample B. Both samples have the same number of particles. Therefore, sample A has a higher temperature than sample B.
 on the upper left.

ChatGPT

Rationale: Based on the description of the highlighted area, we can identify that it is the Arabian Peninsula. The peninsula is connected to a detached island at the bottom right, which is the island of Socotra. The peninsula is also connected to a larger landmass at the top right, which is the continent of Asia. Therefore, the correct answer is Asia.

Rationale: The Punnett square only shows the possible genotypes of the offspring, not the phenotype. In this case, the phenotype is determined by the body size allele, which is controlled by the B gene. The B allele is dominant, so the phenotype of the offspring will be determined by the B allele. The B allele is present in 3 out of the 4 possible genotypes, so the probability that the offspring will have a normal-sized body is $3 / 4$.

Rationale: The Punnett square shows the possible genotypes of the offspring. To determine the probability of a rat having a dwarf body, we need to look at the genotype of the rat. If a rat has at least one copy of the recessive allele (bb), it will have a dwarf body. Looking at the Punnett square, we can see that there are four possible genotypes of the offspring: $\mathrm{BB}, \mathrm{Bb}, \mathrm{Bb}$, and bb . Only the last genotype (bb) will result in a dwarf body. There is only one way to get a bb genotype, which is by crossing two Bb rats. Therefore, the probability of a rat produced by this cross having a dwarf body is $1 / 4$ or 25%.

Ours DDCoT w/o Caption

Rationale: The Punnett square shows that the genotypes of the parent rats are Bb and Bb . The possible genotypes of offspring are $B B, B b$, and $b b$. The allele for a dwarf body (b) is recessive to the allele for a normal-sized body (B). Therefore, only the bb genotype will result in a dwarf body. The probability of an offspr-ing inheriting the recessive allele for dwarf body (bb) is $1 / 4$ or 25%.

Figure 3: Cases of hallucinations when generating rationales with GPT-3 and ChatGPT.
examples, we observe that both language models still may fall into hallucinations that do not align with the provided information.
In contrast to generating rationales solely based on the caption and question information, our approach can alleviate the hallucinations to some extent by decomposing the questions into simple recognition tasks and emphasizing the uncertainty of image-related aspects. It is worth noting that while the former direct methods rely on manually crafted high-quality rationales, our approach utilizes BLIP2 [3] as a visual question answering (VQA) model, serving as a visual component. However, our approach outperforms the former methods in terms of performance and interpretability.
Unfortunately, it is very challenging to entirely solve the issues of hallucinations. Although we alleviate hallucinations, we still encountered difficulties in certain cases, such as the third example, and further details regarding this limitation will be explored in section E.

	IMG	TXT	Avg
baseline(B)	72.93	85.84	79.70
B + our R	75.81	82.40	82.83
B + gt R	81.07	84.07	85.97
our model	75.16	85.25	80.45
our model + our R	83.34	91.20	87.34
our model + gt R	84.43	92.09	88.00

Table 1: Quantitative ablations on our DDCoT and visual components.

A. 2 Quantitative ablations on our DDCoT and visual components

We conduct additional ablation study on the extent of impact exerted by our DDCoT prompting and visual components, as shown in Table 1. DDCoT prompting and visual components cooperatively facilitate inducing visual information to language models for multimodal reasoning. We can observe that rationales generated by our DDCoT and visual components individually exhibit certain gains in terms of IMG improvement. However, when combined, they yield substantial gains.

Besides, please note that the annotated ground truth rationales within the ScienceQA dataset inherently encompass the final prediction, i.e., correct answers. To ensure a fair comparison, we manually exclude the answers from these annotations, using the remaining text as input rationales for fine-tuning. Under this configuration, our proposed rationale achieves a fine-tuning performance comparable to the annotated rationales.

N_{p}	1	3	5	N_{r}	8	16	32
Avg	86.72	87.34	86.02	Avg	86.63	87.34	86.30

Table 2: Ablation of N_{p} and N_{r}.

A. 3 Hyperparameters for Fine-tuning Components

Table 2 presents the results of our ablation studies on N_{p}, which denotes the number of learnable prompt tokens, and N_{r}, which represents the number of low-rank vectors. Regarding N_{p}, we conducted experiments using values of 1,3 , and 5 . Increasing the number of prompts introduces more learnable parameters and provide stronger guidance to align vision and language, while too many prompts may disrupt the model's comprehension of visual features and result in a decline in performance. Considering N_{r}, we investigated the influence of different filtering intensity in the Rational-Compressed Visual Embedding process by experimenting with values of 8, 16, and 32. The experimental results indicate that selecting 3 for N_{p} and 16 for N_{r} yields the best performance.

A. 4 Additional experiments on the effectiveness of our DDCoT with existing pre-trained VLMs and multimodal reasoning models

We also validate the effectiveness of our DDCoT with existing pre-trained VLMs and multimodal reasoning models, as shown in Table 3. We observe that rationales generated by our proposed DDCoT is compatible with such pre-trained VLMs. Without correct rationales, existing pretrained

Model	NAT	SOC	LAN	TXT	IMG	NO	G1-6	G7-12	Avg
Flamingo [1]	40.28	46.13	29.25	47.45	40.08	33.66	39.35	40.67	39.83
Flamingo with our R	40.28	46.13	29.25	47.45	40.08	33.66	39.35	40.67	39.83
MiniGPT-4 [6]	40.28	46.13	29.25	47.45	40.08	33.66	39.35	40.67	39.83
MiniGPT-4 with our R	40.28	46.13	29.25	47.45	40.08	33.66	39.35	40.67	39.83

Table 3: The effectiveness of our DDCoT with Flamingo [1] and MiniGPT-4 [6]
VLMs and multimodal reasoning models have difficulty in complex reasoning tasks. Fortunately, the generalizable rationales generated by our DDCoT prompting can help existing VLMs to comprehend visual information and reason with rich knowledge, achieving significant improvement of 11.14% and 10.96% based on Flamingo [1] and Mini GPT-4 [6] as Table 3 shows.

		NoCaps			
	CIDEr	SkipThoughtCS	EmbeddingAverageCS	GreedyMatchingScore	MSVD-QA
Acc					
BLIP-2	76.15	49.84	89.20	77.94	34.4
Ours	46.26	84.78	92.35	79.12	39.3

Table 4: Addition experiments on NoCaps and MSVD-QA.

A. 5 Additional experiments on Captioning and Video Question Answering tasks

We extend our approach to more appropriate datasets. While other existing datasets may not fully exploit the benefits of our approach, we venture into exploring the captioning task on NoCaps and the video question-answering task on MSVD-QA, as shown in Table 4.
For captioning, we prompt the LLM to solve sub-problems derived from a simple caption, aiming to optimize and enrich it using the corresponding sub-answers. The substantial knowledge within LLM enables the generation of semantically enriched captions, leading to improvements in metrics evaluating sentence semantics, i.e. 34.94%, 3.15%, and 1.18% in terms of SkipThoughtCS, EmbeddingAverageCS, and GreedyMatchingScore. Note that the CIDEr metric to evaluate ours is limiting. It is designed to measure the similarity between the tested caption and reference captions without considering the diversity and high-level semantics.
For video question answering, LLM deconstructs problems like the decomposition step on ScienceQA. We sample video frames for VQA recognition and integrate frame information for multimodal rationale and answers. Leveraging the sequence understanding in LLM and visual information returned by the VQA model, we achieve a 4.9% improvement over BLIP-2.

Note that we randomly evaluated only 1000 images from NoCaps and 1000 videos from the MSVD test dataset in a zero-shot setting.

B Human Evaluation

This section introduce the details of our human evaluation. Figure 4(b) shows an example of our question. Each sample comprises the question, context, options, and image. Evaluators are asked to rate the rationales generated by GPT [2], MM-COT [5], and our method in five aspects: relevance (related to the question), correctness (accuracy of reasoning and answer), completeness (logical reasoning's comprehensiveness), coherence (consistency of reason), and explainability (interpretability of reasoning and answer). The rating scale ranges from 0 to 5 . Additionally, the questions and rationales are organized into 12 groups, with each group assigned to three evaluators. Finally, we average the scores for each aspect of each rationale, resulting in overall scores and ratios relative to the maximum score.

C Detailed Prompts

This section introduce more details about our zero-shot DDCoT prompting. We employ ChatGPT[4] as the most important component of our rationale generator. Specifically, it is utilized in breaking

Figure 4: Interface of human evaluation. Figure(a) shows the instructions, figure(b) shows one example of our question.
duties of reasoning and recognition step and joint reasoning step. Figure 5 shows complete prompts for zero-shot DDCoT prompting.

D Case Studies

To better understand the effectiveness of our proposed method in generating rationales, we randomly selected several cases from the test set along with the process of rationale generation. Figure 6 showcases several map-related questions, demonstrating how our method integrates simple visual features (such as the shape of highlighted areas) with common knowledge to obtain correct reasoning and answers. In the examples presented in Figure 7, our method successfully identifies within the images, acquiring relevant knowledge. Figure 8 illustrates four more complex questions, where our method leverages information obtained from the images to perform intricate reasoning. However, when it comes to the complex interaction between images and textual context, our method still fall into hallucinations, leading to erroneous reasoning and answers.

E Limitations

While we have succeeded in mitigating a portion of the hallucination problem arising from multimodal inputs, it is important to acknowledge that this problem is not entirely resolved. As illustrated in Figure 8, our model is also susceptible to the risk of hallucinations. Investigating methods to suppress hallucinations is a potential topic for further research and exploration. In addition, we did not use extra image-text pairs to pre-train the alignment between vision and language modalities. Such pre-trianing is expected to further improve the alignment for joint reasoning.

As our approach involves zero-shot prompting of the LLM to generate rationales, there exists a potential risk of inheriting social biases from the LLM. These biases, which encompass cultural, ethical, and various other dimensions, might be reflected in the generated rationales, potentially leading to adverse effects on users. To mitigate this issue in the future, potential solutions could involve designing constraints at each prompting stage or utilizing more advanced LLMs trained on unbiased resources.

References

[1] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for few-shot learning. Advances in Neural Information Processing Systems, 35:23716-23736, 2022.

Figure 5: The complete prompts of our zero-shot DDCoT prompting. The underlined parts are introduced in Section 3.2 of the submitted paper. The yellow background represents designs for critical thinking, and the blue background represents designs for differentiate duties of reasoning and recognition. "\{ \}" denotes the corresponding inputs, and "\{supplymentary_information\}" represents the sub-questions and sub-answers obtained before.

Figure 6: Cases that need to understand the map.

Sub-question: (1) Does the image show a mammal? (2) Is the animal in the image a poison dart frog or a rabbit? Sub-answers: (1) Uncertain (2) Uncertain VQA: Understanding[sub-questions, image] Sub-answers': (1) Yes (2)poison dart frog Rationale: The given context states that mammals have hair or fur and feed their young milk. The supplementary information confirms that the animal in the image is a mammal. Therefore, we need to select the option that represents a mammal. The option 'poison dart frog' is not a mammal as it does not have hair or fur and does not feed its young milk. On the other hand, the option 'rabbit' is a mammal as it has fur and feeds its young milk.
BECAUSE:A poison dart frog is not a mammal. GPT3(COT) Outputs

Sub-question:
(1) Is salmon a fish?
(2) Is woodpecker a fish?
Sub-answers: (1) Yes (2) Uncertain
VQA: Understanding[sub-questions, image]
Sub-answers': (1) Yes (2)no, it is a bird
Rationale: Fish live underwater and have fins, not limbs. The given image shows a fish, which
means we need to select an option that is also a fish. The supplementary information confirms
that salmon is a fish, while woodpecker is a bird.

GPT3(COT) Outputs

BECAUSE:Salmon are fish. Woodpeckers are not fish.

Figure 7: Cases that need to identify objects and acquire relevant knowledge.
Compare the average kinetic energies of
the particles in each sample. Which
sample has the higher temperature?
Context: The diagrams below show two pure
samples of gas in identical closed, rigid containers.
Each colored ball represents one gas particle. Both
samples have the same number of particles.
Options:
A. sample B B. sample A
C. neither; the samples have
the same temperature

Sub-question: (1) What is the relationship between the average kinetic energy of gas particles and temperature? (2) Is there any difference in the speed or mass of the particles in each sample? (3) Is there any difference in the number of particles in each sample? Sub-answers: (1) The average kinetic energy of gas particles is directly proportional to temperature. (2) It is uncertain whether there is any difference in the speed or mass of the particles in each sample. (3) Both samples have the same number of particles. VQA: Understanding[sub-questions, image] Sub-answers': (1) The average kinetic energy of gas particles is directly proportional to temperature. (2) the particles in sample a are moving at a much faster speed than the particles in sample b. (3) Both samples have the same number of particles. Rationale: The average kinetic energy of gas particles is directly proportional to temperature. The particles in sample A are moving at a much faster speed than the particles in sample B. Both samples have the same number of particles. Therefore, sample A has a higher temperature than sample B. GPT3(COT) Outputs BECAUSE:The average kinetic energy of the particles in sample B is higher than the average kinetic energy of the particles in sample A. This means that sample B has a higher temperature.

Sub-question:
(1) What do the blue balls represent in the diagram?
(2) Is there a difference in the number of blue balls in Solution A and Solution B?
Sub-answers: (1) The blue balls represent particles of solute. (2) Uncertain
VQA: Understanding[sub-questions, image]
Sub-answers': (1) The blue balls represent particles of solute. (2) no
Rationale: The blue balls represent particles of solute in both Solution A and Solution B. As there is no difference in the number of blue balls in both solutions, the concentration of blue particles in both solutions is the same.
BECAUSE:The concentration of a solution is the amount of solute in a given amount of solvent. In other words, it is the amount of solute per unit volume of solvent.The concentration of a solution can be expressed in several ways. One way is to express it as the number of moles of solute per liter of solution. Another way is it express it as the number of grams of solute per liter of solution.The concentration of Solution A in 0.5 moles per liter. The concentration of Solution B is 1.0 moles per liter. Therefore, Solution B has a higher concentration of blue particles.

Sub-question:
(1) What does the graph show?
(2) How can we determine the average precipitation for each month?
(3) Which month has the lowest average precipitation?
Sub-answers: (1) The graph shows the precipitation levels in London for each month of the year.(2) We can
determine the average precipitation for each month by calculating the total precipitation for that month and dividing
it by the number of years in the dataset. (3) The month with the lowest average precipitation in London is February.
VQA: Understanding[sub-questions, image]
Sub-answers': (1) The graph shows the precipitation levels in London for each month of the year.(2) We can
determine the average precipitation for each month by calculating the total precipitation for that month and dividing
it by the number of years in the dataset. (3) The month with the lowest average precipitation in London is February.
Rationale: We need to look at the graph to determine the month with the lowest average precipitation in London.
From the graph, we can see that the bar for July is the shortest, indicating the lowest precipitation level. To confirm
this, we can calculate the average precipitation for each month by dividing the total precipitation for each month by
the number of years in the dataset. Doing so, we will find that February has the lowest average precipitation.
BECAUSE:The graph shows the average monthly precipitation in London from January to December. The months are BETS listed across the bottom of the graph. The precipitation is measured in millimeters and in shown by the blue bars. ITThe tallest blue bar shows that the month with the highest average precipitation is July. The shortest blue bar shows that the month with the lowest average precipitation is February.

Figure 8: Complex and Challenging cases.
[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.
[3] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models. arXiv preprint arXiv:2301.12597, 2023.
[4] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. Advances in Neural Information Processing Systems, 35:27730-27744, 2022.
[5] Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alex Smola. Multimodal chain-ofthought reasoning in language models. arXiv preprint arXiv:2302.00923, 2023.
[6] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing visionlanguage understanding with advanced large language models. arXiv preprint arXiv:2304.10592, 2023.

