
Meet in the Middle: A New Pre-training Paradigm

Anh Nguyen∗ Nikos Karampatziakis∗ Weizhu Chen

Microsoft Azure AI

Abstract

Most language models (LMs) are trained and applied in an autoregressive left-
to-right fashion, predicting the next token from the preceding ones. However,
this ignores that the full sequence is available during training. In this paper, we
introduce “Meet in the Middle” (MIM) a new pre-training paradigm that improves
data efficiency by training in two directions, left-to-right and right-to-left, and
encouraging the respective models to agree on their token distribution for each po-
sition. While the primary outcome is an improved left-to-right LM, we also obtain
secondary benefits in the infilling task. There, we leverage the two pre-trained di-
rections to propose an infilling procedure that builds the completion simultaneously
from both sides. We conduct extensive experiments on both programming and
natural languages and show that MIM significantly surpasses existing pre-training
paradigms, in left-to-right generation as well as infilling. 2

1 Introduction

Language models (LMs) are becoming essential for various assisted authoring tasks, including text
summarization and code completion. In order to be usable in many different applications, most LMs
must be able to generate the next token from the sequence of previous tokens. Thus, pre-training
has focused on optimizing the model’s ability to predict the next token given the previous tokens
(the prefix), as measured by perplexity. However, this neglects that at pre-training time we also have
access to the subsequent tokens (the suffix). While the suffix cannot be used as an input to the model,
there are other ways to incorporate it into pre-training which have not received much attention in
the literature. In this work we propose a more data-efficient approach, preserving the autoregressive
nature of LMs while fully utilizing pre-training data.

Why should we be interested in alternative pre-training procedures? After all, the main artifact
produced during pre-training is an autoregressive left-to-right LM and the pre-training objective
closely matches both how the LM is applied and the desire to predict the next token well. Nonetheless,
there are still compelling reasons to consider alternative training objectives. First, data efficiency:
current LMs are trained with sparse supervision, only learning from the actual next token. By
exploring denser supervision during training, we aim to improve performance with less data. Second,
related tasks: in real-world scenarios, users may need to infill or modify existing text. Current
left-to-right LMs are limited in this regard, as they cannot use both sides of the insertion position,
often leading to suboptimal results.

In this work, we introduce a novel pre-training paradigm named “Meet in the Middle” (MIM). The
MIM approach is founded on two central principles. Primarily, it introduces an additional right-to-left
LM to complement the standard left-to-right model, enabling both models to co-regularize and benefit
from each other’s context. This improves data efficiency and consistency, with models metaphorically
meeting in the middle by adjusting their output probabilities to agree with one another. Secondarily,
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MIM enables an efficient infilling inference procedure that capitalizes on the agreement between
the two LMs developed during the pre-training phase. For infilling, the models literally meet in
the middle, constructing the completion from both ends. This aspect of MIM, while secondary to
the pre-training objective, offers crucial benefits. Co-regularization not only reinforces consistency
between the two LMs but also aids in early termination of the generation process during infilling.

To train MIM, we employ two decoding flows within a single shared decoder-only architec-
ture [BMR+20], [CND+22]. The forward and backward LMs generate tokens in opposite directions,
predicting the next token and previous token, respectively. We pre-train both models jointly on a
large text corpus using a combination of standard LM loss and an agreement regularizer. Upon
completion, the forward model serves as a drop-in replacement for existing autoregressive LMs,
while the backward model can be discarded or utilized for tasks such as infilling.

In our experiments, we assess MIM’s effectiveness for pre-training LMs across various domains and
tasks. Using public code and language data, we pre-train LMs of different sizes and evaluate their
performance based on perplexity and code completion tasks. We compare MIM with FIM [BJT+22]
and other baselines, demonstrating its superior performance in terms of perplexity and task-specific
evaluation metrics. Furthermore, we conduct ablation studies to validate the effectiveness of our
primary proposals during training and inference. In summary, our main contributions include:

• Introducing a novel pre-training paradigm for LMs that efficiently utilizes training data by
incorporating both prefix and suffix context while retaining the autoregressive nature of LMs.
This is achieved by training forward and backward models and promoting their agreement.

• Proposing a simple, efficient infilling inference procedure that leverages context from both
sides and the tendency of forward and backward models to agree. Our approach employs
parallelism more effectively than existing procedures, resulting in superior quality and
latency compared to the state of the art.

• Pre-training LMs of various sizes on public code and language data using MIM, evaluating
their performance on both human and programming languages, and demonstrating that MIM
outperforms numerous baselines in standard evaluation metrics. Additionally, we make
some models and code publicly available.

2 Preliminaries

We introduce notation used throughout the paper. For a token sequence x1, x2, . . . , xN , we denote
x<i as the prefix x1, x2, . . . xi−1 and x>i as the suffix xi+1, xi+2, . . . xN . Definitions for x≤i and
x≥i are analogous. We suppress model dependencies on learnable parameters. Arrows distinguish
the two models and their outputs; for example, −→p represents the forward model and←−p the backward
model, while

−→
H and

←−
H are hidden representations from the respective models.

2.1 The Infilling task

Given a token sequence x1, x2, . . . , xN , an insertion position i, the infilling task involves generating
a plausible M -token sequence y1, . . . , yM to fill the gap between x≤i and x≥i+1. In real-world
applications, M is unknown. The infilling task is harder than the left-to-right generation task as
the latter is a special case of infilling with an empty suffix. Since generating the best M -token
left-to-right generation is a search problem that is tackled by heuristics such as greedy search or beam
search, we will also follow heuristic approaches for the strictly harder infilling problem.

A technique for infilling that utilizes context from both sides is “Fill in the Middle” (FIM) [BJT+22].
FIM forms the context by concatenating the suffix and prefix (in that order), ensuring coherence near
the completion point. FIM is easily applied to pre-trained LMs with minimal modification and is
computationally efficient. However, FIM’s drawbacks include training on unnatural concatenations
of prefix and suffix, giving the prefix more influence on the completion over the suffix, and an ad-hoc
training procedure that only considers a few of the O(N2) possible splits in an N -token document.
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2.2 Bidirectional Language Modeling

Bidirectional language modeling has been used in the literature in two different ways: The first is to
describe non-autoregressive LMs with objectives like Masked Language Modeling, which produce
better representations but face difficulties in in-context learning [PLR+22].

Earlier work [HR18, PNI+18] used the term bidirectional language modeling to describe models
with left-to-right and right-to-left autoregressive flows. Our approach falls in this category, remaining
autoregressive and using future tokens only for regularization during training.

3 Meet in the Middle

Our proposal involves pre-training two models to predict their next token from different input views
(prefix vs. suffix), while maintaining agreement on the probability distributions for these tokens. This
provides a dense supervision signal compared to simply predicting the next token. It also encourages
the models to “meet in the middle” i.e. reach a compromise prediction informed by different views.

3.1 Pre-training

We train two decoder-only LMs, a forward model −→p and a backward model ←−p , with shared pa-
rameters. −→p predicts next tokens in the forward direction, while←−p predicts previous tokens in the
backward direction. To improve data efficiency, we use a co-regularization term that encourages the
models to agree on the predicted probability distribution over the vocabulary for each token. We use
total variation distance to measure disagreement between the models. Define the disagreement on xi

DTV
i,x (−→p ||←−p ) =

1

2

∑
z∈V
|−→p (z|x<i)−←−p (z|x>i)|

where V is the vocabulary. The agreement regularizer is the sum of these terms over all sentences and
tokens. It provides the models with a denser supervision signal which improves data efficiency and
helps us train a better autoregressive LM. This is because two probability distributions over all tokens
are compared while in the traditional LM objective only the probability of the observed token matters.
Moreover it encourages the models to agree on their predictions which helps with the efficiency of
infilling as we will see later. Then, the full training loss for dataset S of sequences is given by:

∑
x∈S

|x|∑
i=1

− log (−→p (xi|x<i))− log (←−p (xi|x>i)) + β ·DTV
i,x (−→p ||←−p ). (1)

The hyperparameter β is set to 0.1 in our experiments. After pre-training, −→p can be used as a
left-to-right autoregressive LM.

3.2 Infilling

3.2.1 Inference

Our inference procedure for infilling aims to be efficient and low-latency. Our approach is shown
in Figure 1. At a high level, the two models start building a completion each from their own side
and they try to literally meet in the middle. Initially, the prefix and suffix are consumed by −→p and←−p
respectively. Then −→p and←−p generate tokens synchronously one at a time. For each generated token
from −→p (resp. ←−p ) we check whether it matches a generated token from←−p (resp. from −→p ). If there is
a match, we have a “meet in the middle” candidate position for joining the two generated sequences.

In an ideal scenario, −→p and ←−p generate identical sequences, albeit in reverse order, resulting in
“meeting in the middle” after half of the tokens are generated by each model. The agreement
regularizer is thus crucial; if −→p and←−p yield disparate sequences, our method’s speed is inferior to
FIM since early termination isn’t possible. However, if there’s complete agreement, with sufficient
parallelism, our method can outperform FIM in generation latency, as each model only needs to
generate half the completion autoregressively. Our experiments demonstrate our method’s superior
latency to FIM, indicating that in most instances, sequences meet close to the middle.
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Figure 1: Inference procedure for infilling. Given the prefix “The quick” and the suffix “dog”, the
models −→p and←−p generate tokens until a candidate meet-in-the-middle token is detected (shaded
area). We use a single token for illustration purposes, although the method can use more tokens.
Given the candidate MIM token, the −→p (respectively←−p ) model can in parallel verify that the tokens
generated by←−p (resp. −→p ) are acceptable completions (only the −→p verification is shown to reduce
clutter). The numbers in the top right of each box show the order of operations. Two boxes with the
same number can be executed in parallel. Similarly, thick lines show that information (embeddings,
tokens) can flow in parallel, while thin lines denote sequential steps.

However, the procedure may yield false positives. For instance, matching a token such as “the” from
both sides may not guarantee a coherent infilling upon joining. To mitigate this, we employ 4-gram
matching in our infilling experiments. Additionally, we run a parallel verification procedure to ensure
that the resultant sequence could have been generated by either −→p or←−p running to completion.

Our parallel verification procedure is adapted from [GXS+22]. Concretely, assume that the latest
token generated from −→p matches with a token in position s generated from ←−p , as is the case in
Figure 1 for the token “over”. Then we can use the tokens that were generated by←−p before s as inputs
to −→p in parallel. In the context of Figure 1 we provide the tokens “over”, “the”, “lazy” as inputs to−→p in parallel. If each output of −→p matches the corresponding input, we have verified that −→p would
have autoregressively generated the tokens it copied from←−p ’s output. Grounding the discussion
back to Figure 1, if −→p generates (in parallel) “the” and “lazy” we have verified that −→p would have
autoregressively generated the same tokens. In cases of partial or no match, the generation from −→p
either fast-forwards to the first disagreement point or resumes autoregressive generation from −→p and←−p . While our implementation use greedy top-1 sampling and comparison of input and output at each
position, we could adopt less stringent acceptance criteria, like a sufficiently high probability of the
candidate token in the previous output. If −→p and←−p finish generating without meeting or passing
verification, we return the higher-probability sequence according to its generating model.

3.2.2 Infilling Specific Enhancements

Our model’s infilling performance can be boosted by adopting the Synchronous Bidirectional Atten-
tion mechanism [ZZZ19]. Though this reduces compatibility with autoregressive language models
(LMs), it enhances generation through bidirectional conditioning. The Synchronous Bidirectional
Attention layer modifies the regular attention layer activations as follows: Let

−→
H and

←−
H be the

outputs of an attention layer in −→p and←−p respectively. For a hyperparameter λ, the fused attention
hidden representation becomes

−→
H f =

−→
H + λ

←−
H and

←−
H f =

←−
H + λ

−→
H . Instead of

−→
H and

←−
H , the

models −→p and←−p use
−→
H f and

←−
H f . If λ = 0, −→p and←−p become classic autoregressive transformers.

However, careful training is necessary to avoid information leakage with this layer. To mitigate this,
we adopt a two-stage training process, see [ZZZ19] for details.
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4 Experiments

4.1 Data and Models

Our code models are pre-trained on a large and diverse corpus of public code with permissive licenses,
covering multiple programming languages. The dominant languages in our corpus are Python, Java,
and C++. After filtering and deduplication, the corpus contains about 300B tokens. Details are
provided in Table 9. Our models train on a single pass over this data. This is about six times larger
than the dataset used to train the Incoder model [FAL+22], which included 50B tokens comprising
code and Stack Overflow data.

We train our natural language models on data from the following datasets: CC-News, OpenWebText,
CC-Stories, and CC-100 to assess the models language modeling capability. In particular:

• CC-News: 63M English news articles crawled from Sept 2016 to Feb 2019 (76GB).

• OpenWebText: An open source recreation of the GPT-2 WebText dataset (38GB).

• CC-Stories: A subset of CommonCrawl data filtered to match the story-like style of
Winograd schemas (31GB).

• CC-100: A dataset extracted from CommonCrawl snapshots between Jan 2018 and Dec
2018, filtered to match the style of Wikipedia (292GB).

Apart from the natural language data utilized in our language modeling experiments, we also train our
models on a filtered version of the Falcon RefinedWeb corpus [PMH+23] used in the previous work
of [LBE+23], that has a total of 88B tokens. We then present the performance results on common
natural language benchmarks in section 4.3.3

We use a decoder-only transformer LM [VSP+17, BMR+20] for pre-training. The model is trained
to predict the next token in both left-to-right and right-to-left directions, using the same model and
parameters. To explore the impact of model size, we pre-train models with different capacities:
350M, 1.3B, 2.7B. For the hyperparameters and training setup of each model size, please refer to the
Appendix.

As baselines, we use well-known published results but also pre-train three FIM models with context-
level FIM [BJT+22]. Character-level transformations are applied, with a FIM-rate of 0.5 and
SPM+PSM joint training. Both the MIM and FIM models are pre-trained using the Megatron-LM
framework [SPP+19]. See the Appendix for model configurations and architectural details.

4.2 Benchmarks and metrics

4.2.1 Code generation and infilling

We assess MIM’s performance both in autoregressive left-to-right generation and infilling tasks.
For the autoregressive generation, the model generates the code body from a function signature,
docstring, and test cases. Evaluation datasets include HumanEval [CTJ+21], MBPP [AON+21],
and APPS [HBK+21] for Python problems. We use the multilingual HumanEval-X dataset for
multiple programming languages. For this task, the left-to-right model alone is used for inference
without any provided suffix.

In the infilling task, the model fills blank lines in an incomplete program. This is evaluated using the
HumanEval Infilling [BJT+22] and MBXP [AGW+22] datasets. MIM is compared with Incoder,
three FIM variants we trained on the same data as MIM, and code-davinci-002, as these datasets
provide suffixes that not all models can manage effectively.

We use the pass@k metrics [CTJ+21] to measure the percentage of generated codes that pass all
tests within the top-k candidates. We report pass@1, pass@10, and pass@100. For generation, top-p
sampling with p = 0.95 is employed with temperatures of 0.2 for pass@1 and 0.8 for pass@10
and pass@100. We also include single-line exact match (EM) metrics to indicate the percentage of
completed lines matching the reference solution’s masked lines [FAL+22, BJT+22].
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4.2.2 Language Modeling

In addition to code generation and infilling, we evaluate MIM’s language modeling capabilities,
particularly its next-token prediction ability measured by perplexity. Perplexity is evaluated in both
in-domain and out-of-domain settings. The former involves a held-out subset of the combined
training data, while the latter uses the Pile dataset [GBB+21], a multi-domain public language
modeling dataset. Average perplexity across all Pile subsets is reported for our models and baselines.

4.2.3 Natural Language Benchmarks

Finally, we evaluate MIM on established benchmarks for natural language, encompassing both
commonsense reasoning and language understanding. For commonsense reasoning, we have tested
our models on Winogrande, ARC-Easy, ARC-Challenge, BoolQ, and SIQA. In terms of knowledge
and language understanding, we have assessed MIM’s performance on PIQA, HellaSwag, and
OpenbookQA. We compare against phi-1.5-web-only [LBE+23] and present zero-shot results
for these tasks using the LM-Eval Harness, with the exception of MMLU where we use 2-shot
performance.

4.3 Main results

4.3.1 Code generation and infilling

First we focus on the superior performance of our from-scratch pre-trained FIM model over various
baselines, in Table 1. For instance, our 2.7B model yields a 28.5% pass@1 in HumanEval, signifi-
cantly outperforming the 15.2% pass@1 of Incoder’s 6.7B model [BJT+22]. FIM-2.7B also beats
other strong baselines such as Codex 2.5B and CodeGen-Multi-6.1B, achieving 67.8% in pass@100
compared to their respective 44.9% and 59.5%. This performance is attributable to larger, cleaner
training data and implementation details (discussed in the Appendix).

Having established a strong baseline, we now benchmark MIM’s autoregressive generation in a
prefix-only setting using both the HumanEval and MBPP datasets. While FIM vs. MIM is the apples-
to-apples comparison, we include many other models for reference and note that all these could have
leveraged our MIM objective during their training. Table 1 shows MIM consistently outperforming
FIM across all metrics for all model sizes (350M, 1.3B, 2.7B). For example, MIM-2.7B enhances
HumanEval pass@1 to 30.7%, a 2.2% gain over FIM-2.7B. The improvement on MBPP is similar, in
terms of pass@1. We note that the improvements increase with the model size. This is evidence that
the larger models benefit more from the agreement regularizer. We further evaluate this setting on the
APPS dataset, which has three different difficulty levels. We report the results in Table 3. The trend
and improvement are similar to the other two datasets, in which MIM consistently outperforms FIM
across all the metrics and difficulty levels. In the multilingual setting, we compare MIM with FIM
baselines in the HumanEval-X dataset. We observe consistent improvement across all metrics and all
the programming languages that we evaluated on. Results are reported in Table 2.

These findings illustrate MIM’s superiority over FIM for left-to-right autoregressive generation. The
main claim in [BJT+22] is that FIM does not harm the original left-to-right generative capability and
can be learned for free. We contend that MIM’s pre-training, enhanced by the agreement regularizer,
results in a superior generative model, thereby proposing a new pre-training paradigm.

Finally, we test MIM in an infilling setting, as motivated by real-world applications like GitHub
Copilot, where developers frequently edit in the middle of source files. MIM outperforms FIM across
all metrics and model sizes on both the HumanEval Infilling and the MBXP Infilling benchmarks
(Table 1). Notably, the MIM-2.7B model achieves pass@1 of 26.3% and an exact match metric of
57.8%, improvements of 3.5% and 6.1%, respectively, over the FIM-2.7B model. This underscores
the consistent improvement that MIM offers across different model sizes and tasks.

4.3.2 Language Modeling

Here we compare FIM and MIM models pre-trained on language modeling tasks. We use perplexity
as our evaluation metric and look at two different settings, namely in-domain and out-of-domain.

The perplexity results of both settings are summarized in Table 4. Across all experiments, MIM
consistently outperform FIM baselines in terms of perplexity. The MIM-2.7B model has the best
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Methods HumanEval MBPP HE Infilling MBXP
k 1 10 100 1 10 100 1 EM 1

Incoder-1.3B 8.9 16.7 25.6 11.3 26.8 42.7 8.6 31 9.2
Incoder-6.7B 15.2 27.8 47 19.4 46.5 66.2 14.5 44.1 20.8
CodeGen-Multi-6B 18.2 28.7 44.9 - - - - - -
CodeGen-Multi-16B 18.32 32.07 50.80 - - - - - -
Codex-2.5B 21.36 35.42 59.5 - - - - - -
Codex-12B 28.81 46.81 72.31 - - - - - -
code-davinci-001 39 60.6 84.1 51.8 72.8 84.1 - - -
code-davinci-002 47 74.9 94.1 58.1 76.7 84.5 51.3 74 57.6

PaLM-8B 3.6 - 18.7 5.0 - - - - -
PaLM-62B 15.9 - 46.3 21.4 - - - - -
PaLM-540B 26.2 - 76.2 36.8 - - - - -

LLaMA-7B 10.5 - 36.5 17.7 - - - - -
LLaMA-13B 15.8 - 52.5 22.0 - - - - -
LLaMA-33B 21.7 - 70.7 30.2 - - - - -
LLaMA-65B 23.7 - 79.3 37.7 - - - - -

FIM-350M 12.8 16.7 27.8 14.8 30.2 44.5 11.8 37.6 14.3
FIM-1.3B 20.8 39.4 51.7 25.9 45.6 62.5 15.7 42.2 22.1
FIM-2.7B 28.5 45.6 67.8 38.2 61.2 76.1 22.8 51.7 30.4

MIM-350M 13.7 17.2 28.5 16.5 33.7 47.4 14.6 41.7 16.4
MIM-1.3B 22.4 41.7 53.8 26.8 47.6 65.1 17.4 47.6 24.5
MIM-2.7B 30.7 48.2 69.6 42.2 64.8 79.3 26.3 57.8 35.7

Table 1: pass@k (%) on the HumanEval, MBPP and HumanEval Infilling and MBXP benchmarks.
Additionally, Exact Match (EM) metric [FAL+22] is reported for HumanEval Infilling. FIM is the
baseline ‘Fill in the Middle” (FIM). MIM is our proposed method with the enhancements from
section 3.2.2. For reference, we report evaluation numbers of other models, namely Incoder-1.3B
and Incoder-6.7B [FAL+22], Codex-12B [CTJ+21], code-davinci-001 and 002. Note that, Codex-
12B, davinci-001, PaLM [CND+22] and LLaMA [TLI+23] were trained only with left-to-right
autoregressive objective, thus, cannot perform infilling.

Methods C++ Java Go
k 1 10 100 1 10 100 1 10 100

Incoder-6B 10.0 20.0 35.0 9.0 19.0 40.0 8.0 14.0 29.0
CodeGen-6B 12.0 20.0 36.0 15.0 18.0 40.0 9.0 22.0 40.0
CodeGen-16B 18.0 30.0 50.0 15.0 38.0 60 13.0 25.0 47.0
CodeGeeX-13B 20.0 31.0 50.0 16.0 38.0 58.0 15.0 25.0 49.0

FIM-350M 8.5 18.3 24.3 11.3 21.5 27.6 10.2 16.8 31.4
FIM-1.3B 16.7 31.5 43.2 15.4 25.2 32.6 12.5 23.7 39.6
FIM-2.7B 24.5 38.6 51.3 18.3 28.6 38.7 15.2 30.4 50.2

MIM-350M 10.2 19.6 26.3 11.1 22.4 28.2 10.8 17.5 31.8
MIM-1.3B 19.3 36.5 45.7 17.6 27.4 34.7 13.6 25.1 41.7
MIM-2.7B 27.4 41.3 54.1 21.6 30.8 39.1 17.4 32.7 53.6

Table 2: pass@k (%) results on HumanEval-X in the zero-shot settings for the baselines FIM and
our MIM approach. Results of k = 1, 10 and 100 are reported across all categories.

perplexity across all datasets in both settings. For example, MIM-2.7B model obtains a perplexity of
9.54 in OpenWebText dataset, a relative 19.9% reduction in perplexity over FIM-2.7B model, which
obtains a perplexity of 11.92. In the Pile dataset [GBB+21], which represents the out-of-domain
setting, MIM-2.7B also outperforms FIM-2.7B by a relative reduction of 15.3% in perplexity (9.24
vs 10.92), which further reinforces the advantages of MIM pre-training for natural languages.

4.3.3 Natural Language Benchmarks

We trained a MIM model with a total of 1.3B parameters, which shares architectural details with
[LBE+23], on a filtered version of the Falcon RefinedWeb corpus, comprising a total of 88B tokens.
This model was subsequently compared with the baseline model, phi-1.5-web-only in [LBE+23],
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Methods Introductory Interview Competition
k 1 10 100 1 10 100 1 10 100

FIM-350M 3.6 7.8 11.5 0.0 0.3 1.2 0.0 0.04 0.9
FIM-1.3B 8.2 11.6 17.4 0.12 0.59 1.9 0.01 0.07 1.7
FIM-2.7B 12.4 15.7 20.8 0.27 0.72 2.4 0.03 0.095 2.4

MIM-350M 4.7 9.2 14.3 0.2 0.51 2.3 0.02 0.06 1.4
MIM-1.3B 10.6 14.2 21.2 0.36 0.76 3.6 0.043 0.09 2.2
MIM-2.7B 14.3 18.2 24.6 0.52 1.4 5.2 0.067 0.18 3.3

Table 3: pass@k (%) results on the APPS benchmarks in the zero-shot settings for the baselines FIM
and our MIM approach. Results of k = 1, 10 and 100 are reported across all categories.

Methods Datasets
MODELS CC-NEWS OPENWEBTEXT CC-STORIES CC-100 THE PILE

FIM-350M 21.16 17.91 20.89 14.23 15.14
FIM-1.3B 18.78 13.28 17.52 11.34 12.48
FIM-2.7B 13.45 11.92 13.43 9.43 10.92

MIM-350M 19.43 17.23 18.75 13.45 13.97
MIM-1.3B 16.04 12.23 14.63 11.16 10.79
MIM-2.7B 11.17 9.54 11.35 8.76 9.24

Table 4: Perplexity on all datasets in in-domain setting (CC-News, OpenWebText, CC-Stories, &
CC-100 held-out datasets), and perplexity results in out-of-domain setting (The Pile [GBB+21])

which was trained on identical data using an autoregressive left-to-right objective. Tables 5 and 6
summarize the results. On commonsense reasoning MIM-1.3B-web-only outperforms by 0.42% on
average while on knowledge understanding it outperforms by 1.2% on average. Overall, (combining
the two tables) MIM improves by 0.76% on average.

4.4 Ablation Study

4.4.1 Effect of Infilling Specific Enhancements

In this section, we perform an ablation study to qualitatively assess the effect of the enhancements we
proposed in section 3.2.2 for the infilling task. We compare the purely autoregressive MIM model
(λ = 0) where the LMs are not allowed to observe generated tokens from the opposite side, and only
utilize context from their own side during generation. We contrast this with using the Synchronous
Bidirectional Attention layer with λ = 0.3 that conditions on previously generated tokens from both
sides. We used perplexity on the validation data to select the value λ. We reuse the same value of λ
during infilling to avoid any potential mismatch between training and inference.

We conduct an experiment on HumanEval Infilling [BJT+22] and results are summarized in Table
7. We notice that models that directly incorporate bidirectional context always outperform models
that only utilize unidirectional context across all model sizes. As always, this is at the expense of the
forward model no longer being a a drop-in replacement for standard autoregressive LMs.

4.4.2 Effect of Agreement Regularizer

While MIM performs better than FIM it’s still possible that this difference is simply due to the
parameters being trained on two tasks (left-to-right and right-to-left). To preclude this, we perform
an ablation study where we remove the token-level agreement regularizer of Section 3.1 during
training while keeping the infilling enhancements (λ = 0.3). We show that encouraging agreement
during training helps improve the infilling performance of our models in the HumanEval Infilling
benchmark [BJT+22], as summarized in Table 8. Comparing with Table 7, we see that models trained
without token-level agreement regularization in general perform worse than models that do not utilize
bidirectional context (λ = 0), which further emphasizes the importance of our agreement regularizer
in making the predictions consistent between forward and backward directions.
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Methods Datasets
MODELS WINOGRANDE ARC-EASY ARC-CHALLENGE BOOLQ SIQA

phi-1.5-web-only 0.604 0.666 0.329 0.632 0.414
MIM-1.3B-web-only 0.591 0.687 0.337 0.628 0.423

Table 5: Results of MIM in standard commonsense reasoning benchmarks, including WinoGrande,
Arc-Easy, Arc-Challenge, BoolQ and SIQA, vs. the baseline phi-1.5-web-only in [LBE+23].

Methods Datasets
MODELS PIQA HELLASWAG MMLU OPENBOOKQA

phi-1.5-web-only 0.743 0.478 0.309 0.274
MIM-1.3B-web-only 0.736 0.491 0.327 0.298

Table 6: Results of MIM in standard knowledge understanding benchmarks, including PIQA,
HellaSwag, MMLU and OpenbookQA, vs. the baseline phi-1.5-web-only in [LBE+23].

Methods HE Infilling MBXP
MODELS λ pass@1 EM pass@1

MIM-350M 0.0 12.5 38.6 14.1
0.3 14.6 41.7 16.4

MIM-1.3B 0.0 15.6 45.2 21.7
0.3 17.4 47.6 24.5

MIM-2.7B 0.0 24.7 54.3 32.4
0.3 26.3 57.8 35.7

Table 7: pass@1 (%) results of MIM with (λ =
0.3) and without (λ = 0.0) bidirectional context
on HumanEval Infilling and MBXP. Exact match
results on HumanEval Infilling are also reported.

Methods HE Infilling MBXP
MODELS Regularizer pass@1 EM pass@1

MIM-350M no reg 11.8 35.9 13.5
+ reg 14.6 41.7 16.4

MIM-1.3B no reg 13.8 42.7 22.7
+ reg 17.4 47.6 24.5

MIM-2.7B no reg 23.2 52.5 30.6
+ reg 26.3 57.8 35.7

Table 8: pass@1 (%) results of MIM with and
without agreement regularizer on HumanEval In-
filling and MBXP. Exact match results on Hu-
manEval Infilling are also reported.

4.5 Efficiency

4.5.1 Training Efficiency

At first glance, one might hypothesize that our proposed methodology could potentially necessitate
twice the computational resources in comparison to the conventional left-to-right autoregressive
training, with most of the performance gains attributed to this additional computation. Contrary to
this supposition, empirical evidence gathered from our experiments suggests a different narrative. Our
Meet-in-the-Middle (MIM) strategy exhibits performance metrics that are not only commensurate but
often superior to those of the left-to-right autoregressive training. This assertion is corroborated by a
comparative analysis of the validation log perplexity of MIM models and left-to-right autoregressive
models across different model sizes. All models were trained on the filtered Falcon RefinedWeb
corpus [LBE+23]. As illustrated in Figures 3 and 4 in the Appendix, when assessed under the
same computational budget (either FLOP count or wall clock time), MIM models consistently
outperform left-to-right autoregressive models across all relevant computational budgets. Besides,
when comparing MIM models and left-to-right autoregressive models on a time-basis, we still observe
major speedups over the baselines.

4.5.2 Inference Efficiency

Finally we assess the efficiency of our infilling procedure, contrasting it with FIM through inference
latency across various batch sizes. Figure 2 shows that MIM achieves a speedup over FIM baselines
in both single and half precision, using a 1.3B model, across all HumanEval Infilling examples.
MIM-1.3B specifically performs 4% to 6% faster than FIM-1.3B in single precision, and 3% to 5%
faster in half precision. This is due to MIM leveraging available parallelism better than FIM.
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5 Related work

There is an extensive body of work on bidirectional language modeling. Early work such as ULMFiT
[HR18], and ELMo [PNI+18] kept the autoregressive nature of the LM, while later work such as
BERT [DCLT19], T5 [RSR+20], and SpanBERT [JCL+20] focused on representation learning and
was non-autoregressive. XLNET [YDY+19], on the other hand, utilizes bidirectional context during
training by the permutation language modeling objective, which maximizes the likelihood over all
factorization orderings of the training sequences. However, because these later models typically focus
on representation learning, in-context learning via prompting can be difficult [PLR+22].

Two works that train neural models using similar ideas are [SKS+18] and [ZWL+19]. In the former
the authors train RNNs for real-time acoustic modeling. This constraint is very similar to our desire
of having a forward model that can generate the next token from the previous ones. However, they
propose to regularize the forward and backward RNNs by requiring their representations to be close
in Euclidean distance. We suspect that this constraint may be unnecessarily stringent, and trading it
off against the LM’s perplexity during training could hurt overall performance.

On the other hand, [ZWL+19] encourage agreement in probability space. However, they are interested
only in neural machine translation and only encourage agreement of probabilities at the output
sequence level. In contrast, we encourage agreement on every token.

Sharing all parameters between different factorizations of the sequence was first proposed in XLNET
[YDY+19] but has also been used with only forward and backward models in the context of image
captioning [ZHL+22]. These works motivated us to share all parameters between our two LMs.

Using LMs for infilling was first proposed in [DLL20] where the authors tackled the more challenging
setup with multiple blanks. [BJT+22] applies “Fill in the Middle” (FIM) to the training data by
randomly splitting each training instance into a tuple of (prefix, middle, suffix) and concatenate these
sections into a single example together with their sentinel tokens after tokenization. [BJT+22] also
contains a thorough section on research related to infilling. We refer the reader there for more details.

Furthermore, [AHR+22] and [FAL+22] propose an extension of FIM, namely “Causal Masked
Language Modeling” (CM3) and explore multi-region infilling problem. Similar to us, [BJT+22] and
[FAL+22] leverage FIM to pre-train decoder-only LMs on code data and evaluate their models on
zero-shot code completion benchmark created from HumanEval dataset [CTJ+21].

In [SLB17] the authors propose bidirectional beam search that also employs forward and backward
LMs. However their focus is in improving accuracy at the expense of latency. Their procedure
performs multiple passes over the completion, fixing tokens one-by-one. Our approach focuses on
achieving better infilling accuracy than FIM while also reducing latency.

6 Conclusion

This paper presented “Meet-in-the-Middle” a novel method devised to address two significant
challenges in large LMs: pre-training data efficiency and effective context handling in infilling
tasks. By using both forward and backward LMs that share parameters and are trained for mutual
agreement and next token prediction, the method significantly enhances the performance of existing
autoregressive LMs.
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