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Abstract

The applications of direct policy search in reinforcement learning and continuous
control have received increasing attention. In this work, we present novel theoretical
results on the complexity of derivative-free policy optimization on an important
class of robust control tasks, namely the structured H∞ synthesis with static
output feedback. Optimal H∞ synthesis under structural constraints leads to
a constrained nonconvex nonsmooth problem and is typically addressed using
subgradient-based policy search techniques that are built upon the concept of
Goldstein subdifferential or other notions of enlarged subdifferential. In this paper,
we study the complexity of finding (δ, ϵ)-stationary points for such nonsmooth
robust control design tasks using policy optimization methods which can only
access the zeroth-order oracle (i.e. the H∞ norm of the closed-loop system). First,
we study the exact oracle setting and identify the coerciveness of the cost function
to prove high-probability feasibility/complexity bounds for derivative-free policy
optimization on this problem. Next, we derive a sample complexity result for the
multi-input multi-output (MIMO) H∞-norm estimation. We combine this with
our analysis to obtain the first sample complexity of model-free, trajectory-based,
zeroth-order policy optimization on finding (δ, ϵ)-stationary points for structured
H∞ control. Numerical results are also provided to demonstrate our theory.

1 Introduction

Policy optimization techniques have received increasing attention due to their impressive performance
in reinforcement Learning (RL) and continuous control tasks [65, 48, 64, 45]. Despite the empirical
successes, the theoretical properties of policy-based RL methods have not been fully understood,
even on relatively simple linear control benchmarks. This has motivated a line of recent work
developing sample complexity theory of model-free policy optimization on benchmark linear control
problems such as linear quadratic regulator (LQR) [22, 47, 72, 50, 24, 33], stabilization [57, 56],
linear robust/risk-sensitive control [30, 76, 77], Markov jump linear quadratic control [59], and
distributed LQR [44]. These existing sample complexity results heavily rely on the fact that the
cost functions in these benchmark problems are differentiable over the entire feasible set, and hence
cannot be applied to cover the H∞ robust control setting where the objective function is nonsmooth
in the first place [2, 3, 18]. In this paper, we make a meaningful initial step to bridge this gap by
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developing a novel complexity theory for an important class of H∞ robust control problems, namely
the structured H∞ synthesis with static output feedback.

H∞ synthesis is arguably the most fundamental paradigm for robust control [80, 20]. Therefore, it
is important to understand the complexity of policy optimization on such problems. In this work,
we will develop complexity theory for derivative-free policy optimization on the structured static
output-feedback H∞ synthesis problem [3]. Notice that this is an important class of H∞ control
problems with practical importance [2, 3, 4, 31, 12, 18] due to the following reasons.

• Structured control refers to fixing the structure of the controller/policy without using the
order information of the plant to be controlled. In practice, the state dimension of the true
system is typically unknown (e.g. the system is assumed to be rigid body dynamics, but there
will always be flexible modes with unknown state order for the true plant due to elasticity or
other unmodeled dynamics). It can be very challenging to learn the exact order of the plant
[55, 61]. Therefore, it is preferred to fix the structure of the controller/policy beforehand.

• Static output feedback is one of the most important forms of structured controller used in
control, and it has a long history dating back to [42, 67, 49, 60]. Static output feedback has
been extensively studied and applied in various areas, including aerospace [23], robotics
[25], and chemical engineering [1]. In addition, the static output-feedback setting covers
several important problems as special cases such as distributed controller design [14, 34]
and proportional–integral–derivative (PID) control [73].

Studying the complexity of policy optimization methods on structured H∞ synthesis is of great
importance for several reasons. First, this problem cannot be solved using convexification tech-
niques [62, 7, 26, 63] and hence it is natural to pose this problem as policy optimization [2, 3]. This
is significantly different from the full-order H∞ control design which yields convex reparameteri-
zations [80, 20]. Specifically, if the order (i.e. state dimension) of the plant is exactly known, one
can use a dynamical controller whose order is the same as the order of the plant, and the resultant
full-order H∞ synthesis can be lifted as a convex optimization problem. However, if the plant order
is unknown and the controller structure is fixed beforehand, the resultant structured H∞ problem
is non-convex by nature [2, 3]. Second, the objective function in structured H∞ synthesis can be
non-differentiable over important feasible points (e.g. stationary points), and hence the structured
H∞ synthesis is a nonconvex nonsmooth optimization problem by nature. In the model-based setting,
various advanced nonconvex nonsmooth optimization methods have been developed to solve this
problem [2, 3, 4, 31, 12, 18, 52, 13, 40], leading to practical toolboxes such as HIFOO [4, 31].
Some convergence analysis has also been recently developed in [32]. However, in the model-free
setting, the sample complexity of this problem remains largely unknown. The nonsmoothness of the
cost function raises new challenges in developing the complexity analysis. There is a gap between
the existing sample complexity theory and the model-free policy optimization on nonsmooth H∞
synthesis. Our work will bridge this gap via offering the first sample complexity result of model-free
policy optimization on nonsmooth H∞ robust control. Specifically, we study the complexity of
derivative-free policy optimization for structured H∞ static output feedback problem when we can
only access the zeroth-order oracle. We consider both exact and inexact zeroth-order oracle settings.
Our contributions are two-fold:

1. Exact zeroth-order oracle: We establish the coerciveness of the cost function and then
provide high-probability feasibility and complexity bounds by leveraging the relationship
between Goldstein’s subdifferential and uniform smoothing. Specifically, we show that to
find a (δ, ϵ)-stationary point, the required number of iterations is on the order of Θ( 1

δϵ4 ).

2. Inexact zeroth-order oracle: We first derive sample complexity bounds for the MIMO H∞
estimation, which are then combined to establish the high-probability sample complexity
bounds on the model-free, trajectory-based zeroth-order policy optimization methods for
structured H∞ problem. In particular, we show that the sample complexity bounds for
finding a (δ, ϵ)-stationary point under inexact oracle setting are on the order of Ω

(
1

δ3ϵ8

)
. To

the best of our knowledge, this is the first sample complexity result for model-free policy
optimization on nonsmooth H∞ synthesis.

More discussions on related work. Our paper focuses on the sample complexity of model-free
policy optimization. Other than sample complexity, many other results on optimization landscape and
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algorithm convergence of policy optimization for control have also been recently developed in the
literature [9, 21, 79, 78, 75, 74, 16, 58, 39, 37, 38, 69, 66, 36]. See [35] for a comprehensive survey.

2 Preliminaries and Problem Formulation

2.1 Notation

Let Rd denote the d-dimensional real vectors, Rm×n denote the set of real matrices with dimension
m × n. For a matrix A, the notations AT, σmax(A)(∥A∥), ∥A∥F , ρ(A) denote its transpose,
largest singular value (spectral norm), Frobenius norm, and spectral radius, respectively. The
symbol Br(x) denotes a closed Euclidean ball of radius r around a point x. Consider a sequence
w := {w0, w1, · · · } with wt ∈ Rnw for all t. This sequence belongs to ℓnw

2 if
∑∞
t=0∥wt∥2 < ∞

where ∥wt∥ is the standard 2-norm of a vector. In addition, the 2-norm for w ∈ ℓnw
2 is defined

as ∥w∥2 :=
∑∞
t=0∥wt∥2. We say a function f(x) = O(g(x)) if lim supx→∞

f(x)
g(x) < ∞, f(x) =

Ω(g(x)) if lim infx→∞
f(x)
g(x) > 0, and f(x) = Θ(g(x)) if f(x) = O(g(x)) and f(x) = Ω(g(x)).

Given a matrix sequence {Pk ∈ Cn×n}k∈Z+
, let T (P ) denote the infinite Toeplitz matrix T (P ) =

(Pi−j)
∞,i
i,j=0 and TN (P ) denote the N ×N block Toeplitz matrix TN (P ) = (Pi−j)

N−1,i
i,j=0 .

2.2 Static output feedback H∞ control

Consider the following linear time-invariant (LTI) system

xt+1 = Axt +But + wt, x0 = 0 (1)
yt = Cxt

where xt ∈ Rnx is the system state, ut ∈ Rnu is the control action, wt ∈ Rnw is the disturbance,
and yt ∈ Rny is the output measurement. We have A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx , and
nw = nx. The initial condition is fixed as x0 = 0. We denote w := {w0, w1, · · · }1.

In this work, we consider the static output feedback defined as ut = −Kyt = −KCxt, where
K ∈ Rnu×ny is a constant matrix. Then the closed loop system is given by

xt+1 = (A−BKC)xt + wt, x0 = 0. (2)

The structured H∞ synthesis with static output feedback is defined as the following minimax problem

min
K∈K

max
w:∥w∥≤1

∞∑
t=0

xTt (Q+ CTKTRKC)xt, (3)

where K is the set of all linear static output feedback stabilizing policies, i.e. K = {K ∈ Rnu×ny :
ρ(A−BKC) < 1} and we consider the standard quadratic cost function with worst case disturbance
w that satisfies the ℓ2 norm bound ∥w∥ ≤ 1. This is different than the conventional Linear Quadratic
Regulator (LQR) problem where only the stochastic disturbance is considered. Throughout this paper,
we also adopt the following standard assumption [21].

Assumption 2.1. There exists a K0 ∈ K. The matrices Q and R are positive definite. The matrix C
is full row rank.

In general, the problem of finding a stablizing static output feedback policy is known to be NP-
hard [5]. For the developments of policy optimization theory, it is standard to assume that such an
initial stabilizing policy is available.

In the frequency domain, we can show that the above cost function (3) is equivalent to the H∞
norm of the associated closed-loop transfer function [3]. Specifically, the structured H∞ static
output-feedback control problem can be formulated as

min
K∈K

J(K), (4)

1Our results in this work can be generalized to the case with measurement noise, i.e., yt = Cxt + vt. See
more discussions on this extension in the supplementary material.
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where J(K) is the H∞ norm of the associated closed-loop transfer function that can be calculated as

J(K) = sup
ω∈[0,2π]

σmax

(
(Q+ CTKTRKC)

1
2 (ejωI −A+BKC)−1

)
. (5)

More details on the derivation of (5) can be found in the supplementary material. We emphasize
that the policy search problem (4) is a nonconvex nonsmooth optimization problem. There are two
sources of nonsmoothness for the cost (5). Specifically, computing the largest singular value and
taking supremum over the frequency ω ∈ [0, 2π] can both be nonsmooth. Consequently, the objective
function (5) can be non-differentiable over some important feasible points [2, 3, 4, 31, 12, 18].

2.3 Subgradient methods in the model-based setting

A key concept in the nonconvex nonsmooth optimization theory is the so-called Clarke subdifferential
[15, 43]. A function J : K → R is said to be locally Lipschitz if for any bounded set S ⊂ K,
there exists a constant L such that |J(K) − J(K ′)| ≤ L∥K − K ′∥F for all K,K ′ ∈ S. It
is well known that the closed-loop H∞ cost (5) is locally Lipschitz over the set of stabilizing
controllers [3]. For a locally Lipschitz function, the Clarke subdifferential exists and is defined
as ∂J(K) := conv{liml→∞ ∇J(Kl) : Kl → K,Kl ∈ dom(∇J) ⊂ K}, where conv stands for
the convex hull [15]. In the model-based setting, structural H∞ synthesis is typically solved using
advanced nonsmooth optimization algorithms that generate good descent directions via enlarging the
Clarke subdifferential. Two main types of algorithms are briefly reviewed as follows.

Goldstein’s subgradient method and gradient sampling. The main workhorse for the HIFOO
toolbox is the gradient sampling method [11], which is developed based on the concept of Goldstein
subdifferential [28]. Specifically, the Goldstein δ-subdifferential for a point K ∈ K is defined as

∂δJ(K) := conv{∪K′∈Bδ(K)∂J(K
′)}, (6)

which implicitly requires Bδ(K) ⊆ K. It is well known that the minimum norm element of the
Goldstein subdifferential generates a good descent direction, i.e. J(K − δH/∥H∥F ) ≤ J(K) −
δ∥H∥F for H being the minimum norm element of ∂δJ(K) [28]. Although calculating the exact
minimum norm element from the Goldstein subdifferential can be difficult, one can still estimate
a good descent direction from approximating ∂δJ(K) as the convex hull of randomly sampled
gradients over Bδ(K). This leads to the gradient sampling method.

Frequency-domain methods. Another popular technique is generateing the descent directions via
enlarging the Clarke subdifferential in the frequency domain [17, 54]. Such an enlargement method
relies on standard chain rules to exploit the fact that the closed-loop H∞ cost can be rewritten as a
composition of a smooth mapping and a convex norm. The Matlab function Hinfstruct from the
robust control package [3] is developed based on such a frequency-domain technique.

2.4 Randomized smoothing

Our analysis relies on the concept of randomized smoothing techniques, which have been widely used
in convex/nonconvex optimization problems [19, 27]. The smoothed version of J(K) via uniform
randomized smoothing is defined as below.
Definition 2.2. Consider an L-Lipschitz function J (possibly nonconvex and nonsmooth) and a
uniform distribution P on {U ∈ Rnu×ny : ∥U∥F = 1}. Then the smoothed version of J is defined
as Jδ is defined as

Jδ(K) = EU∼P[J(K + δU)] (7)

The above definition requires both K and K + δU to belong to the feasible set K for all U ∼ P. Very
recently, [46] established the relationship between Goldstein subdifferential and uniform smoothing.
We briefly restate such connections below.
Lemma 2.3. Suppose J(K) is L-Lipschitz over some bounded set S ⊂ K, and for any K ∈ S, we
have K + δU ∈ K for all U with ∥U∥F = 1 such that Jδ(K) is well defined (see Definition 2.2). Let
∂δJ(K) be the Goldstein δ-subdifferential at K, then for any K ∈ S, we have:
(i) |J(K)− Jδ(K)| ≤ δL,
(ii) Jδ is differentiable and L-Lipschitz with the cL

√
d

δ -Lipschtiz gradient, where d = nynu is the
problem dimension and c > 0 is a constant,
(iii) ∇Jδ(K) ∈ ∂δJ(K).

4



This lemma is essentially [46, Proposition 2.3, Theorem 3.1]. Based on the definition of Goldstein
δ-subdifferential (6), we say a point K is a (δ, ϵ)-stationary point if dist(0, ∂δJ(K)) ≤ ϵ. Then
Lemma 2.3 (iii) implies that if K is a ϵ-stationary point of Jδ(K) (i.e., ∥∇Jδ(K)∥F ≤ ϵ), then K is
also a (δ, ϵ)-stationary point of the original function J(K).

Suppose that we can compute ∇Jδ(K), then we can simply apply gradient descent based on the
gradient of Jδ(K)

Kt+1 = Kt − η∇Jδ(Kt) (8)

to find a ϵ-stationary point of Jδ(K). However, how to choose the stepsize η and smooth radius δ to
guarantee the feasibility and convergence to an (δ, ϵ)-stationary points of the original cost function
(5) is unknown. We will discuss this setup more in Section 3.2.

2.5 Problem formulation: two zeroth-order oracle assumptions

In this paper, we aim to minimize the cost function J(K) in the policy space directly via derivative-
free methods. Specifically, we consider two different zeroth-order oracle settings:

1. Exact zeroth-order oracle: This oracle assumption is standard for zeroth-order optimization
literature and natural for the model-based control setting. In particular, we assume that
we can exactly calculate J(K) (which is the closed-loop H∞ norm) for every stabilizing
K. When the system dynamics are known, such an oracle is available since the closed-
loop H∞ norm can be efficiently calculated using existing robust control packages in
MATLAB (currently, the state-of-the-art techniques for model-based H∞ norm calculations
rely on using the relation between the singular values of the transfer function matrix and
the eigenvalues of a related Hamiltonian matrix [6, 8]). Under the same oracle setting,
the non-derivative sampling method has been successfully applied to state-feedback H∞
control problem in [32] without complexity guarantee. In this work, we close this gap
by showing that, for constrained policy optimization problem (4), our algorithm returns a
(δ, ϵ)-stationary point with high-probability feasibility/complexity bounds.

2. Inexact zeroth-order oracle: This oracle assumption is relevant for the model-free learning-
based control setting, where the system dynamics are unknown, and J(K) (the closed-loop
H∞ norm) can only be estimated from the input/output data of a black-box simulator of the
underlying system. In particular, we use the model-free time-reversal power-iteration-based
H∞ estimation from [70] to serve as the inexact oracle for J(K). Despite the existence of
such algorithms, the prior literature lacks sample complexity bounds for general MIMO
systems. Therefore, we presented the first sample complexity result for H∞ norm estimation
for general MIMO systems. Building upon this, we obtain the first sample complexity
results for model-free policy optimization of H∞ control with noisy function values.

3 Main Results

In this section, we present our main result for the exact zeroth-order oracle case. We will start with
the optimization landscape of the policy optimization problem (4).

3.1 Optimization landscape

Proposition 3.1. The set K = {K : ρ(A − BKC) < 1} is open and nonconvex. It can be
disconnected. In general, it can be either bounded or unbounded. The cost function (5) is locally
Lipschitz over K and hence is continuous in K.

The proof of the above proposition can be found in [10, 22, 3]. Next, we identify the coerciveness of
the cost function J(K).
Lemma 3.2. The H∞ objective function J(K) defined by (5) is coercive over the set K in the sense
that for any sequence {Kl}∞l=1 ⊂ K we have

J(Kl) → +∞

if either ∥Kl∥F → +∞, or Kl converges to an element in the boundary ∂K.
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It is worth mentioning that the above lemma relies on the assumption that both Q and R are positive
definite. The formal proof of Lemma 3.2 is deferred to the supplementary material. The continuity
and coerciveness of J(K) directly lead to the following results.
Lemma 3.3. Consider the H∞ output feedback policy search problem (4) with the objective function
J(K) defined in (5). Under Assumption 2.1, for any γ > J∗, the sublevel set defined as Sγ := {K ∈
K : J(K) ≤ γ} is compact.
Remark 3.4. Based on Lemma 3.3 and the fact that the set K is open, we can show that there is a
strict separation between the sublevel set Sγ and ∂K. It is obvious that ∂K is closed. Since Sγ is
compact and Sγ ∩ ∂K = ∅, we have dist(Sγ , ∂K) > 0.

3.2 Warm-up: convergence of smoothed function

In this section, we assume that the exact gradient oracle ∇Jδ(K) is available for each K ∈ K such
that Jδ(K) is well defined. Then we analyze the finite-time convergence and feasibility of the vanilla
gradient descent method (8). To this end, let K0 ∈ K be an arbitrary feasible initial controller.
Without loss of generality, define two feasible sets:

S0 := {K|J(K) ≤ 50J(K0)}, S1 := {K|J(K) ≤ 100J(K0)}. (9)

Denote ∆0 = dist(S0, ∂K) and ∆1 = dist(S1, ∂K). Let L0 and L1 be the Lipschitz constants of
J(K) associated with the sublevel set S0 and S1, respectively. It is obvious that ∆0 ≥ ∆1 and
L0 ≤ L1. In addition, we have ∆ = dist(S0, ∂S1) > 0 by Remark 3.4.
Remark 3.5. Since J(K) is a continuous function of K by Proposition 3.1 and the sublevel sets S0

and S1 are compact by Lemma 3.3, this implies that there exists a constant ξ > 0 such that for any
K ∈ S0, and K ′ with ∥K −K ′∥F ≤ ξ, we have K ′ ∈ S1.

Now we are ready to state the following result.
Theorem 3.6. Let K0 ∈ K be an arbitrary feasible initial controller and suppose that Jδ(K)

defined as in (7) is L1-Lipschitz with the cL1

√
d

δ -Lipschtiz gradient on the sublevel set S1. Choose

δ = min{∆1,
49J(K0)

2L1
} and η = min{ ξ

L1
, δ
cL1

√
d
}. Then the iterative method (8) stays in K and we

have:

min
t=0,1,··· ,T−1

∥∇Jδ(Kt)∥2F ≤ 2(Jδ(K
0)− J∗)

ηT
. (10)

In other words, we have min0≤t≤T−1 ∥∇Jδ(Kt)∥F ≤ ϵ after T = O( 1
ϵ2 ).

The proof of Theorem 3.6 can be found in the supplementary material. Since we have a constrained
optimization problem, it is crucial to guarantee the feasibility of the gradient descent method (8). The
careful choice of smooth radius δ and step size η ensures that Kt stays inside the feasible set.

3.3 Analysis for the exact oracle case

In this section, we consider the exact zeroth-order oracle setup, where we can obtain the exact H∞
norm of the closed-loop system for a given K ∈ K. One straightforward extension of (8) is to
compute an unbiased estimation of the gradient ∇Jδ(Kt) via the zeroth-order oracle. Then we can
perform the one-step gradient descent. In particular, we analyze the feasibility and convergence of
the Algorithm 1 in the following result.
Theorem 3.7. Let K0 ∈ K be an arbitrary feasible initial controller and suppose J(K) is L1-
Lipschtiz with the cL1

√
d

δ -Lipschtiz gradient on the sublevel set S1. Let 1 ≤ υ ≤ 80 and suppose we
choose

δ = min{∆1,∆,
J(K0)

L1
}, T =

υδJ(K0)

50η2cd3/2L3
1

, η = min{ 2δξ

d(100J(K0)− J∗)
,

δϵ2

3500cd3/2L3
1

}.

Then the following two statements hold:
(1) the controllers {Kt}T−1

t=0 generated by Algorithm 1 are all stabilizing with probability at least
0.95− 0.01υ.
(2) the output of Algorithm 1 KR satisfies

min{∥H∥F : H ∈ ∂δJ(K
R)} ≤ ϵ (11)

with probability at least 0.87− 0.17υ−
1
2 − 0.01υ.
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Algorithm 1: Derivative-Free Methods for Policy Optimization Problem (4)

Require: feasible initial point K0 ∈ Rnu×ny , stepsize η > 0, problem dimension
d := nu × ny ≥ 1, smoothing parameter δ and iteration number T ≥ 1.
for t = 0, 1, · · · , T − 1 do

Sample W t ∈ Rnu×ny uniformly at random over matrices such that ∥W∥F = 1.
Compute gt = d

2δ (J(K
t + δW t)− J(Kt − δW t))W t.

Update Kt+1 = Kt − ηgt.
end for
Output: KR where R ∈ {0, 1, 2, · · · , T − 1} is uniformly sampled.

The proof of Theorem 3.7 can be found in the supplementary material. Now we provide some
discussions regarding Theorem 3.7 in order:

Probability Bounds: Statement 1 suggests that as T increases, the probability that all the generated
controllers are stabilizing will decrease. This is because our algorithm uses a zeroth-order oracle
to build an estimator of the smoothed function gradient. As T increases, the biases and variance of
the gradient estimation accumulate, resulting in a larger failure probability. In addition, Statement
2 suggests that as T increases, the probability of finding a (δ, ϵ)-stationary point will first increase
and then decrease. Indeed, when T is too small, more iterations will improve the performance of the
generated controllers, while for large T , the probability of generating unstable controllers becomes
dominant. In addition, the constant factors in the probability bounds are not restrictive, they can be
further improved by e.g., increasing the level of S0, using smaller step size η or using smaller smooth
radius δ in the analysis.

Feasibility: Statement 1 states that all the output controllers {Kt}T−1
t=0 are feasible with high

probability under the choice of algorithm parameters. It is worth mentioning that, to ensure the
feasibility of the iterates {Kt}T−1

t=0 , we need to show that {Jδ(Kt)}T−1
t=0 are well defined so that

we can apply the smoothness property of Jδ(K) in our theoretical analysis. Furthermore, this also
guarantees that {J(Kt ± δW t)}T−1

t=0 used in Algorithm 1 are well defined. This turns out to be a
nontrivial task and one needs to design algorithm parameters carefully to resolve the feasibility issue.
More discussions will be provided in the end of this section.

Output Controller: Since our cost function J(K) is nonconvex, we consider an output con-
troller KR uniformly sampled from {Kt}T−1

t=0 . Such random output technique has been used in
smooth/nonsmooth nonconvex optimization problems for theoretical analysis [27, 46, 44]. In particu-
lar, Statement 2 implies that the output controller KR is a (δ, ϵ)-stationary point with high probability.
In practical implementation, one can just select the iterate that gives the lowest cost J(Kt) for
t = 1, · · · , T . Our numerical experiments suggest that selecting KT often yields satisfactory
performance (see Section 5).

Sample Complexity: For sufficiently small ϵ, the number of iterations to guarantee (11) is given by:

T = Θ

(
d

3
2L3

1

δϵ4

)
, (12)

where d ≥ 1 is the problem dimension, L1 is the Lipschtiz parameter. We also ignore the numerical
constants since they are conservative and not restrictive.

Finally, we close this section by highlighting the main technical contributions of Theorem 3.7 and 3.6.
In our control setup, unlike the unconstrained optimization problems [46], we need to ensure that the
iterate Kt and the perturbed iterate Kt ± δW t stay within a non-convex feasible set K. Previous
work on policy optimization theory of H∞ control addresses this feasibility issue via using the
coerciveness of J(K) and mainly relies on the fact that J(K) is a barrier function on the non-convex
set of stabilizing policies [32]. In particular, such previous results rely on model-based algorithms
(such as Goldstein’s subgradient method) which can decrease the value of J(K) directly. However,
the zeroth-order policy search can only decrease the value of the smoothed function Jδ(K), which
is not coercive over the non-convex feasible set and hence cannot be used as a barrier function.
Importantly, the descent of Jδ(K) does not imply the descent of the original function value and hence
cannot ensure feasibility by itself. In Theorem 3.7 and 3.6, by carefully choosing the smooth radius
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δ and step size η, we manage to show that the iterate Kt and the perturbed iterate Kt ± δW t stay
within a non-convex feasible set with high probability.

4 Sample Complexity for the Model-Free Case

In this section, we assume that the system dynamics in (1) are unknown and we can only use samples
to obtain an estimation of the cost function Ĵ(K) with some error Ĵ(K) = J(K) + ζ(K). To obtain
an end-to-end sample complexity result of Algorithm 1, we first derive the sample complexity of H∞
norm estimation for the general MIMO systems such that ζ(K) ≤ κ for all K ∈ K.

4.1 Complexity of H∞ norm estimation for MIMO systems

The H∞ norm estimation method via input/output data can be roughly categorized into two major
approaches: (a) try to find the worst case ℓ2-norm signal using power-iteration algorithm [71, 53]. (b)
discretizing the interval [0, 2π] and search for the maximizing frequency using multi-armed bandit
[51]. However, there are no sample complexity results of the aforementioned methods for the general
MIMO system. In this section, we analyze the H∞ norm estimation method proposed in [53] and
establish its sample complexity bounds for the general MIMO systems.

To this end, let P (z) = (Q + CTKTRKC)1/2(zI − A + BKC)−1 be the transfer function
associated with the system (1) to the cost function (3), let T (P ) denote the corresponding Toeplitz
(convolution) operator and TN (P ) be the N ×N upper-left submatrix of T (P ). Then it is known that
J(K) = ∥T (P )∥ and ∥TN (P )∥ → ∥T (P )∥ as N → ∞. With large enough N , the largest singular
value of the TN (P ) can be used as a reasonable estimation of J(K), which can be approximated
by running the power iteration algorithm n steps 2. Therefore, there are two error terms based on
this approach. The first term ζ1(K) comes from the difference between ∥TN (P )∥ and ∥T (P )∥, and
the second term ζ2(K) is induced by computing the largest singular value of TN (P ) via the power
iteration algorithm:

|ζ(K)| = |J(K)− Ĵ(K)| ≤ |J(K)− ∥TN (P )∥|+ |∥TN (P )∥ − Ĵ(K)| = ζ1(K) + ζ2(K), (13)

where Ĵ(K) is the approximated largest singular value of TN (P ) and hence an estimation of J(K).
Therefore, if we can choose N and n large enough such that ζ1(K) ≤ κ/2 and ζ2(K) ≤ κ/2, we
will have ζ(K) ≤ κ holds by (13). The finite-time condition on N has been established in [68] for
single input single output (SISO) systems only. In the following result, we extend the result in [68]
to the general MIMO system. Furthermore, we provide the finite-time condition on the number of
power iteration iterations n.
Theorem 4.1. Let P (z) =

∑∞
k=0 Pkz

−k be the corresponding transfer function of system (1) to the
cost function (3) with stability radius ι ∈ (0, 1). And choose γ ∈ (ι, 1) and D ≥ σmax(P0). Let
∥P γ∥∞ denotes the H∞ norm of the system P γ(z) := γP (γz). Then for N ≥ 3, we have

|Ĵ(K)− J(K)| ≤ ζ1(K) + ζ2(K) (14)

where

ζ1(K) = C1
D∥P γ∥∞(1− γ2) + ∥P γ∥2∞γ

∥P∥∞(1− γ)4
1

N2
+ C2

∥P γ∥2∞
∥P∥∞(1 + γ)(1− γ)5

1

N3
, (15)

ζ2(K) = C3∥P∥∞n−
2
3 (16)

are errors due to approximating T by TN and using power iteration to estimate ∥TN∥, respectively.
Here C1 = 3

√
2π(2 + 3π4), C2 = 9

√
2π2 are universal constants and C3 depends on an angle

between power iteration initialization and the eigenvector corresponding to the biggest eigenvalue of
T ∗
N (P )TN (P ).

The proof of Theorem 4.1 can be found in the supplementary material. Theorem 4.1 implies that the
approximation error |ζ(K)| ≤ κ is guaranteed by choosing

N ≥ inf
ι<γ<1

Ω

(
1

(1− γ)2

√
∥P γ∥2∞
∥P∥∞

2

κ

)
, n ≥ Ω

(
(2C3)

3
2 ∥P∥

3
2∞

κ
3
2

)
. (17)

2For completeness, the pseudo-code of the power iteration algorithm is provided in the supplementary
material.
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4.2 Sample complexity of zeroth-order optimization

In this section, we consider that Algorithm 1 can only access the inexact zeroth-order oracle of the cost
function J(K). In this case, we do not have an unbiased estimation of ∇Jδ(Kt). Nevertheless, we
can make the estimation as small as possible and assume that the estimation error ζ(K) is uniformly
upper bounded for all K ∈ S1:

|ζ(K)| ≤ κ, ∀K ∈ S1. (18)

Clearly, the smaller κ is, the larger power iteration number n and approximation horizon N are
needed. We will specify the choice of κ in the next result, where we obtain the feasibility/sample
complexity bounds of Algorithm 1 via inexact zeroth-order oracle on finding a (δ, ϵ)-stationary point.

Theorem 4.2. Let K0 ∈ K be an arbitrary feasible initial controller and suppose J is L1-Lipschtiz
on the sublevel set S1. Consider the Algorithm 1 with inexact zeroth-order oracle and suppose that
the estimation error κ ≤ δϵ2

100dL1
. Denote Γ := cL1

√
d(16

√
2πdL2

1 + (dκδ )
2). Let 1 ≤ υ ≤ 25 and

suppose we choose

δ = min{∆1,∆,
J(K0)

L1
}, T =

υδJ(K0)

2η2Γ
, η = min{ δξ

dκ(100J(K0)− J∗)
,
δϵ2

100Γ
}.

Then the following two statements hold:
(1) the controllers {Kt}T−1

t=0 generated by Algorithm 1 with inexact zeroth-order oracle are all
stabilizing with probability at least 0.95− 0.03υ.
(2) the output of Algorithm 1 KR satisfies

min{∥H∥F : H ∈ ∂δJ(K
R)} ≤ ϵ (19)

with probability at least 0.8− 0.15υ−
1
2 − 0.03υ.

The proof of Theorem 4.2 can be found in the supplementary material. For sufficiently small ϵ, we
can obtain the following lower bound on the number of iterations to guarantee (19):

T = Ω

(
d

3
2L3

1

δϵ4

)
, (20)

Since we require κ ≤ δϵ2

100dL1
, we have the following lower bounds on the power iteration number n

and approximation horizon N by (17):

N = Ω

(
d1/2L

1/2
1

δ1/2ϵ

)
, n = Ω

(
(dL1)

3
2

δ
3
2 ϵ3

)
.

Finally, by combining the above sample complexity bounds for MIMO H∞ estimation with (20), the
number of samples to guarantee (19) with high probability is given by:

nNT = Ω

(
d7/2L5

1

δ3ϵ8

)
. (21)

In this section, we consider the sample complexity of Algorithm 1 with the inexact oracle case. This is
particularly relevant for the model-free control setting. Specifically, we are using imperfect estimates
of J(K) that are calculated using the model-free MIMO power iteration method. Therefore, an extra
statistical error term appears in the iterations of zeroth-order policy optimization and requires special
treatment. Such an extra term has not been considered in the literature on zeroth-order optimization
for nonconvex nonsmooth problems. To address this extra technical difficulty, we first establish
sample complexity bounds for H∞ norm estimation of the general MIMO system (Theorem 4.1).
Then we carefully propagate such sample complexity bounds to obtain an error bound for ∇Jδ(K)
in terms of ϵ and δ. Built upon this, we demonstrate that Algorithm 1 remains effective even with an
inexact oracle, ensuring the feasibility of the iterates while achieving finite-time sample complexity
with high probability (Theorem 4.2).
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5 Numerical Experiments

In this section, we present the numerical study to show the effectiveness of Algorithm 1. The left
plot of Figure 1 displays the relative error trajectories of Algorithm 1 with an exact oracle for system
dimensions nx = {10, 50, 100}. The system is of form (1) with parameters (A,B,C), where the
entries of (A,B,C) are sampled from a standard normal distribution N (0, 1). The results show
that Algorithm 1 performs well even for larger-scale systems. In the middle plot, we compare the
trajectories of Algorithm 1 with both exact and inexact zeroth-order oracle. It can be observed that the
inexact oracle case closely tracks the performance of the exact oracle case. The right plot illustrates
the zeroth-order complexity of the exact oracle case with varying ϵ. As shown, the number of oracle
calls increases as ϵ decreases. It is important to note that the complexity bounds derived in (12) are
not tight. We conjecture that by leveraging other advanced properties of the cost function (5), further
improvements in complexity can be achieved.

10-2 10-1 100 101
101

102

103

Figure 1: Left: The relative error trajectories of Algorithm 1 with exact zeroth-order oracle and nx =
{10, 50, 100}, the solid lines represent the mean values and the shade represents 98% confidence
intervals; Middle: The trajectory of Algorithm 1 with exact and inexact zeroth-order oracle; Right:
Number of zeroth-order oracle calls required to find a (δ, ϵ)-stationary point with varying ϵ.

Table 1: Comparison of Algorithm 1 with model-based methods
Example (nx, nu, ny) HIFOO Hinfstruct Algorithm 1 (Ours)
AC15 (4, 2, 3) 15.2919 15.2 15.4141
HF2D11 (5, 2, 3) 7.7237× 104 7.72× 104 7.7223× 104

DLR2 (40, 2, 2) 4.0066× 103 4.01× 103 4.0094× 103

HE4 (8, 4, 6) 22.8382 22.8 22.8538

In addition, we conducted a comparison of our derivative-free method with the model-based methods
HIFOO and Hinfstruct, using several benchmark examples from COMPleib [41]. Table 1 shows the
corresponding optimal closed-loop H∞ norm. It can be seen that our derivative-free method yields
comparable results with the model-based packages even without the knowledge of system models.
More details about the numerical experiments can be found in the supplementary material.

6 Conclusion and Future Work

This paper presents the feasibility and complexity bounds for the derivative-free policy optimization
method on the structured H∞ synthesis, considering both exact and inexact zeroth-order oracles.
Despite the fact that this structured H∞ synthesis is a constrained nonconvex nonsmooth opti-
mization problem, we leverage the intriguing connections between randomized smoothing and
(δ, ϵ)-stationarity, enabling the first sample analysis for model-free, trajectory-based, zeroth-order
policy optimization in structured H∞ synthesis. One limitation of this work is the uncertain tightness
of the sample complexity bounds obtained.

For future studies, it is important to tighten the sample complexity results by exploring more properties
of H∞ control problems. In addition, it is interesting to explore the behavior of the structured H∞
problem with a dynamic output feedback controller.
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Supplementary Material

A More on Problem Formulation

A.1 Derivation of the cost function in frequency domain

The goal of the structured H∞ synthesis with static output feedback is to find the optimal controller
gain K∗ to solve the following minimax problem:

min
K∈K

max
w:∥w∥≤1

∞∑
t=0

xTt (Q+ CTKTRKC)xt, (A.1)

Now if we define zt = (Q + CTKTRKC)
1
2xt, we have ∥zt∥2 = xTt (Q + CTKTRKC)xt =

xTt Qxt+u
T
t Rut. Then the closed-loop LTI system (2) can be viewed as a linear operatorGK mapping

any disturbance sequence {wt} to another sequence {zt}. If K is stabilizing, i.e. ρ(A−BKC) < 1,
then GK is bounded in the sense that it maps any ℓ2 sequence w to another sequence z in ℓnx

2 . For
any stabilizing K, the ℓ2 → ℓ2 induced norm of GK can be defined as:

∥GK∥2→2 := sup
0̸=∥w∥≤1

∥z∥
∥w∥

(A.2)

Since GK is a linear operator, it is straightforward to show

∥GK∥22→2 := max
w:∥w∥≤1

∞∑
t=0

xTt (Q+ CTKTRKC)xt = max
w:∥w∥≤1

∞∑
t=0

(xTt Qxt + uTt Rut).

Therefore, the minimax optimization problem (A.1) can be rewritten as the policy optimization
problem: minK∈K∥GK∥22→2. We can just drop the square in the cost function and reformulate (A.1)
as minK∈K∥GK∥2→2. This is exactly the policy optimization formulation for structured H∞ with
static output-feedback control. In the frequency domain, GK can be viewed as a transfer function that
maps signal wt to zt. Applying the frequency-domain formula for the H∞ norm, we can calculate
∥GK∥2→2 as

∥GK∥2→2 = sup
ω∈[0,2π]

σmax

(
(Q+ CTKTRKC)

1
2 (ejωI −A+BK)−1

)
, (A.3)

which is the same as we defined in (5).

A.2 LTI system with measurement noise

In this section, we extend the LTI system (1) considered in the main paper to the one with measurement
noise as below:

xt+1 = Axt +But + wt x0 = 0, (A.4)
yt = Cxt + nt−1,

with n−1 = 0. We denote n := {n−1, n0, · · · }. We will show that the problem with measurement
noise falls within our framework via a proper state augmentation trick. In particular, it is obvious that
(A.4) can be rewritten as: [

xt+1

nt

]
=

[
A 0
0 0

] [
xt
nt−1

]
+

[
B
0

]
ut +

[
wt
nt

]
yt = [C I]

[
xt
nt−1

]
.

In this setup, the control inputs become

ut = −Kyt = −KCxt −Knt−1

and the closed-loop system can be represented as[
xt+1

nt

]
=

[
A−BKC −BK

0 0

] [
xt
nt−1

]
+

[
wt
nt

]
.
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Then, the min-max cost function can be written as

J(K) = max[
w
n

]
:∥
[
w
n

]
∥≤1

∞∑
t=0

xTt Qxt + utRut

= max[
w
n

]
:∥
[
w
n

]
∥≤1

∞∑
t=0

[
xt
nt−1

]T [
Q 0
0 0

] [
xt
nt−1

]
+ (KCxt +Knt−1)

TR(KCxt +Knt−1)

= max[
w
n

]
:∥
[
w
n

]
∥≤1

∞∑
t=0

[
xt
nt−1

]T [
Q+ CTKTRKC CTKTRK

KTRKC KTRK

] [
xt
nt−1

]
.

If we define zt =
[
Q+ CTKTRKC CTKTRK

KTRKC KTRK

] 1
2
[
xt
nt−1

]
, in frequency domain, we can rewrite

the above cost function as

J(K) = sup
ω∈[0,2π]

σmax

([
Q+ CTKTRKC CTKTRK

KTRKC KTRK

] 1
2
(
ejωI −

[
A−BKC −BK

0 0

])−1
)
.

(A.5)
We can slightly modify our proof of Lemma 3.2 to show that (A.5) remains coercive. Therefore, all
the results presented in the paper follow.

B Detailed Proofs

B.1 Proof of Lemma 3.2

Suppose we have a sequence {Kl} satisfying ∥Kl∥F → +∞. Let wl = {wl0, 0, 0, · · · } with
∥wl0∥ = 1 such that σmax(K

lC) = ∥KlCwl0∥. Then we have:

J(Kl) = max
wl:∥wl∥≤1

∞∑
t=0

xTt (Q+ (KlC)TRKlC)xt

≥(i) w
l
0

T
(Q+ (KlC)TRKlC)wl0

≥(ii) λmin(R)∥KlCwl0∥2

≥ λmin(R)λ
1
2

min(CC
T)σmax(K

l)

where inequality (i) holds since we plugged into a specific wl over the max operation and the
matrix Q + (KlC)TRKlC is positive definite. Inequality (ii) uses the fact that R ≥ λmin(R)I ,
where λmin(R) is the minimum eigenvalue of R. Since ∥Kl∥F → +∞ by equivalence of norms
σmax(K

l) → +∞, and knowing C is a full row rank matrix guarantees that λmin(CC
T) > 0,

therefore J(Kl) → +∞ as ∥Kl∥F → +∞.

Next, we assume Kl → K where K is on the boundary ∂K. Clearly we have ρ(A − BKC) = 1.
We will use a frequency-domain argument to prove J(Kl) → +∞. Since ρ(A−BKC) = 1, there
exists some ω0 such that the matrix (ejω0I −A+BKC) becomes singular. Obviously, for the same
ω0, the matrix (ejω0I −A+BKC) is also singular. Therefore, we have:

J(Kl) = sup
ω∈[0,2π]

σmax

(
(Q+ (KlC)TRKlC)1/2(ejωI −A+BKlC)−1

)
≥ sup
ω∈[0,2π]

σmin

(
(Q+ (KlC)TRKlC)1/2

)
σmax

(
(ejωI −A+BKlC)−1

)
≥ λ

1/2
min(Q)σmax

(
(ejω0I −A+BKlC)−1

)
.

Clearly, the above argument relies on the fact that Q is positive definite and Q ≥ λmin(Q)I . Notice
that we have ρ(A−BKlC) < 1 for each l , and hence we have σmin

(
(ejω0I −A+BKlC)

)
> 0,
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i.e. the smallest singular values of (ejω0I−A+BKlC) are strictly positive for all l. By the continuity
of the σmin(·), we must have σmin

(
(ejω0I −A+BKlC)

)
→ 0 as liml→∞Kl ∈ ∂K. Hence we

have σmax

(
(ejω0I −A+BKlC)−1

)
→ +∞ as l → ∞. Therefore, we have J(Kl) → +∞ as

Kl → K ∈ ∂K. This completes the proof.

B.2 Proof of Lemma 3.3

We first prove Lemma 3.3. Since J is continuous, for any γ > J∗, we know Sγ = {K ∈ K :
J(K) ≤ γ} is a closed set. It remains to show Sγ is bounded. Suppose that Sγ is unbounded. Then
there exists a sequence {Kl}∞l=1 ⊂ S such that ∥Kl∥2 → +∞ as l → ∞. But by coerciveness of
J(K), we must have J(Kl) → +∞ as well, which contradicts that J(Kl) ≤ γ for all l. Hence Sγ
is bounded. Therefore, Sγ is compact.

B.3 Proof of Theorem 3.6

We first use induction to show that the iterative method (8) stays in K for all t. Since K0 ∈ S0 and
δ ≤ ∆1, we know that Jδ(K0) is well defined. In addition, we have:

∥K1 −K0∥F = η∥∇Jδ(K0)∥F ≤ ηL1 ≤ ξ, (B.1)

where we use the fact that Jδ is L1-Lipschitz on the sublevel set S1 and η ≤ ξ
L1

. Therefore we
have K1 ∈ S1 by Remark 3.5 and Jδ(K1) is well defined. Since Jδ is L1-Lipschitz with the
cL1

√
d

δ -Lipschtiz gradient, we have:

Jδ(K
1)− Jδ(K

0) ≤ ⟨∇Jδ(K0),K1 −K0⟩+ η2
cL1

√
d

2δ
∥∇Jδ(K0)∥2F

= (η2
cL1

√
d

2δ
− η)∥∇Jδ(K0)∥2F

≤ −η
2
∥∇Jδ(K0)∥2F ,

where the last inequality holds since we have 0 < η = min{ ξ
L1
, δ
cL1

√
d
}. Therefore, we have

Jδ(K
1) ≤ Jδ(K

0). This implies:

J(K1) ≤ Jδ(K
1) + δL1 ≤ Jδ(K

0) + δL1 ≤ J(K0) + 2δL1 ≤ 50J(K0). (B.2)

Hence we have K1 ∈ S0. Repeating this argument, leads to the fact that Kt ∈ S0 for all t. Thus:

Jδ(K
t+1) ≤ Jδ(K

t) + ⟨∇Jδ(Kt),Kt+1 −Kt⟩+ η2
cL1

√
d

2δ
∥∇Jδ(Kt)∥2F

≤ Jδ(K
t)− η

2
∥∇Jδ(Kt)∥2F .

Rearranging terms of the above inequality yields:
η

2
∥∇Jδ(Kt)∥2F ≤ Jδ(K

t)− Jδ(K
t+1).

Summing up the above inequality over t = 0, 1, · · · , T − 1 gives:

η

2T

T−1∑
t=0

∥∇Jδ(Kt)∥2F ≤ Jδ(K
0)− Jδ(K

T )

T
≤ Jδ(K

0)− J∗

T
,

where we use the inequality Jδ(KT ) ≥ J∗ by definition of Jδ(K). Therefore, we have:

min
t=0,1,··· ,T−1

∥∇Jδ(Kt)∥2F ≤ 1

T

T−1∑
t=0

∥∇Jδ(Kt)∥2F ≤ 2(Jδ(K
0)− J∗)

ηT
,

Therefore, we have:

min
t=0,1,··· ,T−1

∥∇Jδ(Kt)∥F ≤

√
2(Jδ(K0)− J∗)

ηT

and the sample complexity result follows. This completes the proof.
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B.4 Proof of Theorem 3.7

We first provide several technical lemmas which will be useful for proving Theorem 3.7. To this end,
let Ft denote the filtration σ(Ks, s ≤ t) for each t = 1, 2, · · · , T .

Lemma B.1. Suppose Jδ(K) ≤ 49J(K0) and δ ≤ J(K0)
L1

. Then we have K ∈ S0.

Proof. Since Jδ(K) is well defined, we must have K ∈ K by definition of Jδ. Then Proposition
2.3 (i) implies that J(K) ≤ Jδ(K) + δL1 ≤ 49J(K0) + J(K0)

L1
L1 = 50J(K0). Hence we have

K ∈ S0.

Lemma B.2. Suppose that J(K) is L1-Lipschitz on the sublevel set S1 and let {gt}T−1
t=0 and

{Kt}T−1
t=0 be generated by Algorithm 1 such that {Kt}T−1

t=0 are feasible and {Jδ(Kt)}T−1
t=0 are well

defined. Then, we have

E[gt | Ft] = ∇Jδ(Kt), (B.3)

E[∥gt∥2F | Ft] ≤ 16
√
2πdL2

1. (B.4)

Proof. The proof can be found in [46, Lemma D.1]. We omit it here.

Lemma B.3. J(K) is L0-Lipschitz on the sublevel set S0, let η ≤ 2δξ
d(100J(K0)−J∗) and δ ≤

min{∆1,∆}, then as long as Kt ∈ S0, we will have Kt+1 ∈ S1 and

E[Jδ(Kt+1) | Ft] ≤ Jδ(K
t)− η∥∇Jδ(Kt)∥2F + ηZ, (B.5)

where Z = η(8
√
2π)cd3/2L3

1δ
−1.

Proof. Since ∥W t∥F = 1, we have:

∥Kt+1 −Kt∥F = η∥ d
2δ

(J(Kt + δW t)− J(Kt − δW t))W t∥F

≤ ηd

2δ
|(J(Kt + δW t)− J(Kt − δW t)|

≤ ηd

2δ
· (100J(K0)− J∗)

≤ ξ,

where the second inequality holds since we have Kt ± δW t ∈ S1 when δ ≤ ∆. This implies
that Kt+1 ∈ S1 by Remark 3.5. In addition, Kt+1 ∈ S1 and δ ≤ ∆1 ensures that Jδ(Kt+1) is
well defined. By Proposition 2.3 (ii), we know that Jδ(K) is differentiable and L1-Lipschitz with
cL1

√
d

δ -Lipschitz gradient on the sublevel set S1. Then we have:

Jδ(K
t+1) ≤ Jδ(K

t)− η⟨∇Jδ(Kt), gt⟩+ cη2L1

√
d

2δ
∥gt∥2F . (B.6)

Taking the expectation on both sides conditioned on Ft and using Lemma B.2 yields

E[Jδ(Kt+1) | Ft] ≤ Jδ(K
t)− η⟨∇Jδ(Kt),E[gt | Ft]⟩+

cη2L1

√
d

2δ
E[∥gt∥2F | Ft]

≤ Jδ(K
t)− η∥∇Jδ(Kt)∥2F +

cη2L1

√
d

2δ
16

√
2πdL2

1

= Jδ(K
t)− η∥∇Jδ(Kt)∥2F + ηZ,

with Z = η(8
√
2π)cd3/2L3

1δ
−1. This completes the proof.

Now we are ready to prove the Theorem 3.7. We will first prove Statement 1 in Theorem 3.7: all the
generated controllers are within the feasible set with high probability. Then we will show Statement
2: the Algorithm 1 returns a (δ, ϵ)-stationary point with high probability.
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Proof of Statement 1 We first define a stopping time τ as below:

τ := min{t ∈ {0, 1, 2, · · · , T − 1} : Jδ(K
t) > 49J(K0)}. (B.7)

Based on Lemma B.1, it can be seen that as long as τ ≥ T − 1, the iterates {Kt}T−1
t=0 generated by

Algorithm 1 are feasible. Therefore our goal becomes bounding the probability Pr(τ ≤ T − 1). To
this end, we can define a nonnegative supermartingale Y (t) as below

Y (t) := Jδ(K
min{t,τ}) + (T − t)ηZ. (B.8)

To show it is a supermartingale, noticing that we have

E[Y (t+ 1) | Ft] = E[Jδ(Kτ )1τ≤t | Ft] + E[Jδ(Kt+1)1τ>t | Ft] + (T − t− 1)ηZ

=(i) Jδ(K
τ )1τ≤t + E[Jδ(Kt+1)1τ>t | Ft] + (T − t− 1)ηZ

≤(ii) Jδ(K
τ )1τ≤t + Jδ(K

t)1τ>t − η∥∇Jδ(Kt)∥2F + ηZ + (T − t− 1)ηZ

≤ Jδ(K
min{t,τ}) + (T − t)ηZ = Y (t),

where in equality (i), Jδ(Kt+1) is well defined by the definition of the τ ; in particular, we have
Jδ(K

t) ≤ 49J(K0), hence Kt ∈ S0 by Lemma B.1 and we can apply Lemma B.3 to obtain
inequality (ii). Then Doob’s maximal inequality for super-martingales gives

Pr(τ ≤ T − 1) ≤ Pr( max
t=0,1,··· ,T−1

Y (t) > 49J(K0))

≤ E[Y (0)]

49J(K0)
=
Jδ(K

0) + TηZ

49J(K0)
≤(i)

J(K0) + δL1

49J(K0)
+

TηZ

49J(K0)

≤(ii)
2

49
+

TηZ

49J(K0)
,

where inequality (i) uses Lemma 2.3 and (ii) is true since δ ≤ J(K0)
L1

. For sufficiently small ϵ, we

have η = δϵ2

3500cd3/2L3
1

, then one can verify that TηZ = 4
√
2πυ
25 J(K0). Therefore, we have

Pr(τ ≤ T − 1) ≤ 2

49
+

TηZ

49J(K0)
≤ 2

49
+

4
√
2πυ

1225
≤ 1

24
+

υ

100
≤ 0.05 + 0.01υ.

This implies that all the iterates Kt are stabilizing with probability at least 1 − (0.05 + 0.01υ) =
0.95− 0.01υ. This completes the proof for Statement 1.

Proof of Statement 2 We first show that we can extend (B.5) as

E[Jδ(Kt+1)1τ>t+1 | Ft] ≤ Jδ(K
t)1τ>t − η∥∇Jδ(Kt)∥2F1τ>t + ηZ, (B.9)

If τ > t, then we know Jδ(K
t) ≤ 49J(K0), hence J(Kt) ≤ Jδ(K

t) + δL1 ≤ 50J(K0), we have
Kt ∈ S0 and Kt+1 ∈ S1. Therefore, we can apply Lemma B.3 to show that:

E[Jδ(Kt+1)1τ>t+1 | Ft] ≤ E[Jδ(Kt+1) | Ft]
≤ Jδ(K

t)− η∥∇Jδ(Kt)∥2F + ηZ

= Jδ(K
t)1τ>t − η∥∇Jδ(Kt)∥2F1τ>t + ηZ.

On the other hand, if τ ≤ t, we have

E[Jδ(Kt+1)1τ>t+1 | Ft] = 0 ≤ Jδ(K
t)1τ>t − η∥∇Jδ(Kt)∥2F1τ>t + ηZ (B.10)

since Z ≥ 0. Therefore, (B.9) holds. Taking the expectation and rearranging the terms of (B.9) gives:

E[∥∇Jδ(Kt)∥2F1τ>t] ≤
E[Jδ(Kt)1τ>t]− E[Jδ(Kt+1)1τ>t+1]

η
+ Z. (B.11)

Summing up the above inequality over t = 0, 1, · · · , T − 1 yields

1

T

T−1∑
t=0

E[∥∇Jδ(Kt)∥2F1τ>T−1] ≤
1

T

T−1∑
t=0

E[∥∇Jδ(Kt)∥2F1τ>t] ≤
Jδ(K

0)− E[Jδ(KT )1τ>T ]

ηT
+Z.
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Since the cost function J(K) is nonnegative, we have E[Jδ(KT )1τ>T ] ≥ 0 and:

Jδ(K
0)− E[Jδ(KT )1τ>T ] ≤ Jδ(K

0) ≤ J(K0) + δL1 = 2J(K0).

Hence we conclude that

1

T

T−1∑
t=0

E[∥∇Jδ(Kt)∥2F1τ>T−1] ≤
2J(K0)

ηT
+ Z.

By the choice of η and T , the above inequality becomes:

1

T

T−1∑
t=0

E[∥∇Jδ(Kt)∥2F1τ>T−1] ≤
2J(K0)

ηT
+ Z ≤ (

5

υ
+ 1)Z ≤ (

5

υ
+ 1)

8
√
2π

3500
ϵ2.

Since the random count R ∈ {0, 1, 2, · · · , T − 1} is uniformly sampled, we have

E[∥∇Jδ(KR)∥2F1τ>T−1] =
1

T

T−1∑
t=0

E[∥∇Jδ(Kt)∥2F1τ>T−1] ≤ (
5

υ
+ 1)

8
√
2π

3500
ϵ2,

which implies
E[∥∇Jδ(KR)∥F1τ>T−1] ≤ (0.17υ−

1
2 + 0.08)ϵ.

Therefore, we have

Pr(∥∇Jδ(KR)∥F ≥ ϵ) = Pr(∥∇Jδ(KR)∥F ≥ ϵ, τ > T − 1) + Pr(∥∇Jδ(KR)∥F ≥ ϵ, τ ≤ T − 1)

≤ Pr(∥∇Jδ(KR)∥F ≥ ϵ, τ > T − 1) + Pr(τ ≤ T − 1)

≤ 1

ϵ
E[∥∇Jδ(KR)∥F1τ>T−1] + Pr(τ ≤ T − 1)

≤ 0.17υ−
1
2 + 0.08 +

1

24
+

υ

100

≤ 0.17υ−
1
2 + 0.13 + 0.01υ,

where the second inequality uses the Markov’s inequality. By Proposition 2.3 (iii), we have
∇Jδ(KR) ∈ ∂δJ(K

R). This implies that

Pr(min{∥H∥F : H ∈ ∂δJ(K
R) ≥ ϵ}) ≤ Pr(∥∇Jδ(KR)∥F ≥ ϵ) ≤ 0.17υ−

1
2 + 0.13 + 0.01υ.

Therefore our algorithm can find a (δ, ϵ)-stationary point with probability at least 1− (0.17υ−
1
2 +

0.13 + 0.01υ) = 0.87− 0.17υ−
1
2 − 0.01υ. This completes the proof for Statement 2.

Remark B.4. It is worth mentioning that the choice of sublevels in sets in (9) is WLOG. Tuning these
two numbers entails trade-offs. On the one hand, a larger sublevel in set S1 yields a higher probability
as observed from the proofs of Theorem 3.7 where we are bounding the term Pr(τ ≤ T − 1) as an
example. On the other hand, a larger sublevel set also results in a larger Lipschitz constant L1 and a
smaller smooth radius δ, thereby worsening the complexity bounds.

B.5 Proof of Theorem 4.1

We first state several technical lemmas which will be useful in proving of Theorem 4.1.
Lemma B.5. Let P (z) =

∑∞
k=0 Pkz

−k be a stable, discrete-time MIMO LTI system, where P =

{Pk ∈ Cnx×nx}k∈Z+ is the impulse response of P (z) and T (P ) = (Pi−j)
∞,i
i,j=0 denote the Toeplitz

operator associated with system P (z). Suppose for any given Euclidean unit vectors y ∈ Cnx and
x ∈ Cnx , we define a scalar sequence g = {gk = y∗Pkx}k∈Z+

. Let G(z) =
∑∞
k=0 gkz

−k denote
the z-transform of the impulse response g and T (g) = (gi−j)

∞,i
i,j=0 be the corresponding Toeplitz

matrix. For any given Euclidean unit vectors x and y, we can show:

∥TN (g)∥ ≤ ∥TN (P )∥ (B.12)

where TN (P ) and TN (g) are Nnx × Nnx and N × N upper-left submatrix of T (P ) and T (g),
respectively, ∥ · ∥ is the spectral norm of a given matrix.
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Proof. Using the definition of gk = y∗Pkx, we can write TN (g) as:

TN (g) =


g0 0 · · · 0
g1 g0 · · · 0
...

...
. . .

...
gN−1 gN−2 · · · g0

 =


y∗P0x 0 · · · 0
y∗P1x y∗P0x · · · 0

...
...

. . .
...

y∗PN−1x y∗PN−2x · · · y∗P0x



=

y
∗ · · · 0
...

. . .
...

0 · · · y∗


︸ ︷︷ ︸

Y ∗


P0 0 · · · 0
P1 P0 · · · 0
...

...
. . .

...
PN−1 PN−2 · · · P0


︸ ︷︷ ︸

TN (P )

x · · · 0
...

. . .
...

0 · · · x


︸ ︷︷ ︸

X

(B.13)

Since ∥x∥ = ∥y∥ = 1, we have σmax(Y
∗) = σmax(X) = 1.

∥TN (g)∥ = σmax(TN (g)) = σmax(Y
∗TN (P )X)

≤ σmax(Y
∗)σmax(TN (P ))σmax(X)

≤ σmax(TN (P )) = ∥TN (P )∥
(B.14)

which completes the proof.

Corollary B.6. Let P (z) and G(z) be defined as lemma B.5, fix a γ ∈ (ι, 1) and define the systems
P γ(z) := γP (γz) and Gγ(z) := γG(γz). We can show that:

∥Gγ∥∞ ≤ ∥P γ∥∞ (B.15)

Proof. This result can be shown by applying lemma B.5 to Gγ(z) and P γ(z) and considering this
fact that ∥TN (gγ)∥ and ∥TN (P γ)∥ converge to ∥Gγ∥∞ and ∥P γ∥∞ as N → ∞, respectively.

Now we are ready to extend [68] results of H∞-norm approximation of SISO system using the
corresponding truncated Toeplitz matrix to more general MIMO systems.
Lemma B.7. Let P (z) =

∑∞
k=0 Pkz

−k be a stable, discrete-time MIMO LTI system with stability
radius ι ∈ (0, 1). Fix a γ ∈ (ι, 1) and suppose that σmax(P0) ≤ D. For all N ≥ 3, we have that

∥P (z)∥∞ − ∥TN (P )∥ ≤ C1
D∥P γ(z)∥∞(1− γ2) + ∥P γ(z)∥2∞γ

∥P (z)∥∞(1− γ)4
1

N2
(B.16)

+ C2
∥P γ(z)∥2∞

∥P (z)∥∞(1 + γ)(1− γ)5
1

N3

where ∥P γ(z)∥∞ denotes the H∞-norm of the system P γ(z) := γP (γz), C1 = 3
√
2π(2 +

3π4), C2 = 9
√
2π2 are universal constants.

Proof. We can write ∥P∥∞ as follows

∥P∥∞ = max
ω∈[0,2π]

σmax(P (e
iω)) = σmax(P (e

iωopt)) (B.17)

This means that there exists Euclidean unit vectors x and y such that ∥P∥∞ = y∗P (eiωopt)x. Now de-
fine a SISO LTI system G(z) = y∗P (z)x, which has the impulse response g = {gk = y∗Pkx}k∈Z+

.
Since P (z) is a stable function, so is G(z) and we have ∥P∥∞ = ∥G∥∞. Additionally, regarding the
stability radius of G, it can be derived that, ιg ≤ ι and γ ∈ (ιg, 1). Consequently:

∥g0∥ = ∥y∗P0x∥ ≤ σmax(P0) ≤ D (B.18)

Now we invoke Theorem 4.1 from [68]; for a stable, SISO LTI system G(z) =
∑∞
k=0 gkz

−k, with a
fix γ ∈ (ιg, 1) and ∥g0∥ ≤ D, we have:

∥G∥∞ − ∥TN (g)∥ ≤ C1
D∥Gγ∥∞(1− γ2) + ∥Gγ∥2∞γ

∥G∥∞(1− γ)4
1

N2
+ C2

∥Gγ∥2∞
∥G∥∞(1 + γ)(1− γ)5

1

N3

From lemma B.5 and corollary B.6, we know that ∥TN (g)∥ ≤ ∥TN (P )∥ and ∥Gγ∥∞ ≤ ∥P γ∥∞.
Also using this fact that ∥G∥∞ = ∥P∥∞, we have

|∥P∥∞ − ∥TN (P )∥| ≤ ζ1 (B.19)

where ζ1 = C1
D∥Pγ∥∞(1−γ2)+∥Pγ∥2

∞γ
∥P∥∞(1−γ)4

1
N2 + C2

∥Pγ∥2
∞

∥P∥∞(1+γ)(1−γ)5
1
N3 .
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Algorithm 2: Power iteration method to find the maximum eigenvalue of a matrix

Require: Given a positive semi-definite matrix M ∈ RNnx×Nnx and an initial vector
v(0) ∈ RNnx

for i = 0, 1, · · · , n do
z(i) =Mv(i−1).
v(i) = z(i)/∥z(i)∥2.
λ(i) = [v(i)]∗Mv(i).

end for
Output: λ(n).

Lemma B.8. Given a positive semi-definite matrix M ∈ RNnx×Nnx with spectral factorization

V ∗MV = diag(λ1, ..., λNnx
)

Where V = [v1|...|vNnx
] is orthogonal, λ1 ≥ λ2 ≥ · · · ≥ λNnx ≥ 0 and λ1 > 0. Suppose we

choose a ψ such that λ1, · · · , λj ∈ [λ1 − ψ, λ1]. Let the vectors v(i) be specified by Algorithm 2 and
define θ0 ∈ [0, π/2) by cos(θ0) = |vT1 v(0)|. For i = 0, 1, ... we have

|λ(i) − λ1| ≤ tan(θ0)
2

(
ψ + λ1

(
λ1 − ψ

λ1

)2i
)

(B.20)

Proof. The idea of our proof is based on the results in section 8.2.1 of [29]. Suppose v(0) has the
eigenvector expansion v(0) = a1v1 + a2v2 + ...+ aNnx

vNnx
, then

|a1| = |vT1 v(0)| = cos(θ0) ̸= 0

a21 + a22 + ...+ a2Nnx = 1

and

λ(i) = [v(i)]TMv(i) =
[v(0)]TM2i+1v(0)

[v(0)]TM2iv(0)
=

∑Nnx

k=1 a
2
kλ

2i+1
k∑Nnx

k=1 a
2
kλ

2i
k

and so

|λ(i) − λ1| =
∣∣∣∣∑Nnx

k=2 a
2
kλ

2i
k (λk − λ1)∑Nnx

k=1 a
2
kλ

2i
k

∣∣∣∣ ≤ ∣∣∣∣∑Nnx

k=2 a
2
kλ

2i
k (λk − λ1)

a21λ
2i
1

∣∣∣∣
=

∣∣∣∣∑j
k=2 a

2
kλ

2i
k (λk − λ1)

a21λ
2i
1

∣∣∣∣+ ∣∣∣∣
∑Nnx

k=j+1 a
2
kλ

2i
k (λk − λ1)

a21λ
2i
1

∣∣∣∣
≤ ψ

1

a21

j∑
k=2

a2k

(
λk
λ1

)2i

+
1

a21

∣∣∣∣ Nnx∑
k=j+1

a2k(λk − λ1)

(
λk
λ1

)2i ∣∣∣∣
≤ ψ

1

a21

j∑
k=2

a2k

(
λ2
λ1

)2i

+ λ1
1

a21

Nnx∑
k=j+1

a2k

(
λj+1

λ1

)2i

≤(i) tan(θ0)
2

(
ψ

(
λ2
λ1

)2i

+ λ1

(
λj+1

λ1

)2i
)

≤ tan(θ0)
2

(
ψ + λ1

(
λ1 − ψ

λ1

)2i
)

where the inequality (i) follows from the fact that tan(θ0)2 =
1−a21
a21

and this completes the proof.
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Corollary B.9. Let matrix M be given as lemma B.8, we can show that for each iteration i,
ψ
(i)
min = λ1

(
1− 1

2i−1√2i

)
minimize the upper bound in power iteration algorithm (B.20), and (B.20)

can be written as:

|λ(i) − λ1| ≤ tan(θ0)
2λ1

(
1− 1

2i−1
√
2i

(
1− 1

2i

))
(B.21)

Proof. Since the right hand side of inequality (B.20) is a convex function of ψ, we can minimize it by

setting its derivative with respect to ψ equal to zero. Define f(ψ) = tan(θ0)
2

(
ψ + λ1

(
λ1−ψ
λ1

)2i)
,

we have:

f ′(ψ) = tan(θ0)
2

(
1− 2i

(
λ1 − ψ

λ1

)2i−1
)

= 0

It is straightforward to show that ψ(i)
min = λ1

(
1− 1

2i−1√2i

)
makes f ′(ψ) = 0 and substitute ψ(i)

min in

f(ψ), gives f(ψ(i)
min) = tan(θ0)

2λ1

(
1− 1

2i−1√2i

(
1− 1

2i

))
, which completes the proof.

Now we are ready to prove Theorem 4.1. As mentioned before, cost function J(K) is equal to H∞-
norm of P (z), ∥P∥∞. From lemma B.7, We can find the bound ζ1(K) for |J(K)− ∥TN (P )∥| ≤
ζ1(K). Also, using Algorithm 2 we can obtain the model-free cost function J(K) as Ĵ(K) :=

√
λ(n).

It is also well-known that
√
λ1 ≤ ∥P∥∞ and

√
λ1 → ∥P∥∞ as N → ∞. Now invoke lemma B.8,

corollary B.9 and use M := TN (P )∗TN (P ), we have

|Ĵ(K)2 − ∥TN (P )∥2| ≤ tan(θ0)
2λ1

(
1− 1

2n−1
√
2n

(
1− 1

2n

))
≤ tan(θ0)

2∥P∥2∞
(
1− 1

2n−1
√
2n

(
1− 1

2n

))
It is easy to show that

|Ĵ(K)− ∥TN (P )∥| ≤ tan(θ0)
2∥P∥∞

(
1− 1

2n−1
√
2n

(
1− 1

2n

))
.

In addition, for n ≥ 1, one can verify that

1− 1
2n−1

√
2n

(
1− 1

2n

)
≤ n−

2
3

and hence |Ĵ(K)− ∥TN (P )∥| ≤ C3∥P∥∞ 1√
n
= ζ2(K) with C3 = tan(θ0)

2. This gives us sample
complexity (16). Finally, applying triangle inequality, we have

|Ĵ(K)− J(K)| ≤ |Ĵ(K)− ∥TN (P )∥|+ |∥TN (P )− J(K)∥ ≤ ζ1(K) + ζ2(K) (B.22)

which completes the proof.

B.6 Proof of Theorem 4.2

We consider that we have an inaccurate function value estimation Ĵ(K) = J(K) + ζ(K), here we
assume that the estimation error ζ(K) is uniformly upper bounded for all K ∈ S1 as stated in (18).
Then we have:

ĝt =
d

2δ
(Ĵ(Kt + δW t)− Ĵ(Kt − δW t))W t

=
d

2δ
(J(Kt + δW t)− J(Kt − δW t))W t +

d

2δ
(ζ(Kt + δW t)− ζ(Kt − δW t))W t

= gt +
d(ζt1 − ζt2)

2δ
W t,

where we denote ζt1 = ζ(Kt + δW t) and ζt2 = ζ(Kt − δW t) for simplicity. To prove Theorem 4.2,
we first present some technical lemmas.
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Lemma B.10. Suppose that J(K) is L1-Lipschitz on the sublevel set S1 and let {gt}T−1
t=0 and

{Kt}T−1
t=0 be generated by Algorithm 1 such that {Kt}T−1

t=0 are feasible and {Jδ(Kt)}T−1
t=0 are well

defined. Then, we have

∥E[ĝt | Ft]−∇δJ(K
t)∥F ≤ dκ

δ
, (B.23)

E[∥ĝt∥2F | Ft] ≤ 32
√
2πdL2

1 + 2(
dκ

δ
)2. (B.24)

Proof. By definition of ĝt, we have:

∥E[ĝt | Ft]−∇δJ(K
t)∥F = ∥E

[
gt +

d(ζt1 − ζt2)

2δ
W t | Ft

]
−∇δJ(K

t)∥F

= ∥E
[
gt | Ft

]
+ E

[
d(ζt1 − ζt2)

2δ
W t | Ft

]
−∇δJ(K

t)∥F

= ∥E
[
d(ζt1 − ζt2)

2δ
W t | Ft

]
∥F

≤ E
[
∥d(ζ

t
1 − ζt2)

2δ
∥F ∥W t∥F | Ft

]
≤ dκ

δ
.

E[∥ĝt∥2F | Ft] = E
[
∥gt + d(ζt1 − ζt2)

2δ
W t∥2F | Ft

]
≤ 2E[∥gt∥2F | Ft] + 2E[∥(d(ζ

t
1 − ζt2)

2δ
)W t∥2F | Ft]

≤ 32
√
2πdL2

1 + 2(
dκ

δ
)2.

This completes the proof.

Lemma B.11. J(K) is L1-Lipschitz on the sublevel set S1, let η ≤ δξ
dκ(100J(K0)−J∗) and δ ≤

min{∆1,∆}, then as long as Kt ∈ S0, we will have Kt+1 ∈ S1 and

E[Jδ(Kt+1) | Ft] ≤ Jδ(K
t)− η∥∇Jδ(Kt)∥2F + η(Z1 + Z2), (B.25)

where Z1 = L1dκ
δ and Z2 = η

δΓ with Γ = cL1

√
d · (16

√
2πdL2

1 + (dκδ )
2).

Proof. Since ∥W t∥F = 1, we have:

∥Kt+1 −Kt∥F = η∥ d
2δ

(Ĵ(Kt + δW t)− Ĵ(Kt − δW t))W t∥F

≤ ηd

2δ
|(J(Kt + δW t)− J(Kt − δW t)| · |ζt1 − ζt2|

≤ ηdκ

δ
· (100J(K0)− J∗)

≤ ξ,

where the second inequality holds since we have Kt ± δW t ∈ S1 when δ ≤ ∆ and |ζt1 − ζt2| ≤ 2κ.
This implies that Kt+1 ∈ S1 by Remark 3.5. In addition, Kt+1 ∈ S1 and δ ≤ ∆1 ensures
that Jδ(Kt+1) is well defined. By Proposition 2.3 (ii), we know that Jδ(K) is differentiable and
L1-Lipschitz with cL1

√
d

δ -Lipschitz gradient on the sublevel set S1. Then we have:

Jδ(K
t+1) ≤ Jδ(K

t)− η⟨∇Jδ(Kt), ĝt⟩+ cη2L1

√
d

2δ
∥ĝt∥2F .
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Taking the expectation of both sides conditioned on Kt, we have

E[Jδ(Kt+1) | Ft] ≤ Jδ(K
t)− η⟨∇Jδ(Kt),E[ĝt | Ft]⟩+

cη2L1

√
d

2δ
E[∥ĝt∥2F | Ft]

≤(i) Jδ(K
t)− η⟨∇Jδ(Kt),∇Jδ(Kt)−∇Jδ(Kt) + E[ĝt | Ft]⟩+

η2

δ
Γ

≤(ii) Jδ(K
t)− η∥∇Jδ(Kt)∥2F + η∥∇Jδ(Kt)∥F ∥∇Jδ(Kt)− E[ĝt | Ft]∥F +

η2

δ
Γ

≤(iii) Jδ(K
t)− η∥∇Jδ(Kt)∥2F + η

L1dκ

δ
+
η2

δ
Γ

= Jδ(K
t)− η∥∇Jδ(Kt)∥2F + ηZ1 + ηZ2,

where inequality (i) and (iii) use the bounds in Lemma B.10, and (ii) holds by Cauchy-Schwarz
inequality. This completes the proof.

Now we are ready to prove the Theorem 4.2. We will first prove Statement 1 in Theorem 4.2: all the
generated controllers are within the feasible set with high probability. Then we will show Statement
2: the Algorithm 1 returns a (δ, ϵ)-stationary point with high probability.

Proof of Statement 1 We first define a stopping time τ as below:

τ := min{t ∈ {0, 1, 2, · · · , T − 1} : Jδ(K
t) > 49J(K0)}. (B.26)

Based on Lemma 3.2, it can be seen that as long as τ ≥ T − 1, the iterates {Kt}T−1
t=0 generated by

Algorithm 1 are feasible. Therefore our goal becomes bounding the probability Pr(τ ≤ T − 1). To
this end, we can define a nonnegative supermartingale Y (t) as below

Y (t) := Jδ(K
min{t,τ}) + η(T − t)(Z1 + Z2). (B.27)

To show it is a supermartingale, noticing that we have

E[Y (t+ 1) | Ft] = E[Jδ(Kτ )1τ≤t | Ft] + E[Jδ(Kt+1)1τ>t | Ft] + η(T − t− 1)(Z1 + Z2)

= Jδ(K
τ )1τ≤t + E[Jδ(Kt+1)1τ>t | Ft] + η(T − t− 1)(Z1 + Z2)

≤(i) Jδ(K
τ )1τ≤t + Jδ(K

t)1τ>t − η∥∇Jδ(Kt)∥2F + η(Z1 + Z2) + η(T − t− 1)(Z1 + Z2)

≤ Jδ(K
min{t,τ}) + η(T − t)(Z1 + Z2) = Y (t),

where the inequality (i) uses (B.25). This is valid since τ > t implies Jδ(Kt) ≤ 49J(K0) by the
definition of τ . Then we have J(Kt) ≤ Jδ(K

t) + δL1 ≤ 50J(K0). Hence we have Kt ∈ S0. The
choice of η guarantees that Kt+1 ∈ S1. Hence Kt+1 is feasible and Jδ(Kt+1) is well defined when
δ ≤ ∆1. Then Doob’s maximal inequality for super-martingales gives

Pr(τ ≤ T − 1) ≤ Pr( max
t=0,1,··· ,T−1

Y (t) > 49J(K0))

≤ E[Y (0)]

49J(K0)
=
Jδ(K

0) + Tη(Z1 + Z2)

49J(K0)
≤ J(K0) + δL1

49J(K0)
+
Tη(Z1 + Z2)

49J(K0)

≤ 2

49
+
Tη(Z1 + Z2)

49J(K0)

For sufficiently small ϵ, we have η = δϵ2

100Γ , then one can verify that Tη(Z1 + Z2) ≤ υJ(K0) by the
choice of T , η, and κ. Therefore, we have

Pr(τ ≤ T − 1) ≤ 2

49
+

TηZ

49J(K0)
≤ 2

49
+

υ

49
≤ 0.05 + 0.03υ.

This implies that all the iterates Kt are stabilizing with probability at least 1 − (0.05 + 0.03υ) =
0.95− 0.03υ. This completes the proof for Statement 1.
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Proof of Statement 2 We first show that we can extend (B.25) as

E[Jδ(Kt+1)1τ>t+1 | Ft] ≤ Jδ(K
t)1τ>t − η∥∇Jδ(Kt)∥2F1τ>t + ηZ1 + ηZ2, (B.28)

If τ > t, then we know Jδ(K
t) ≤ 49J(K0), hence J(Kt) ≤ Jδ(K

t) + δL1 ≤ 50J(K0), we have
Kt ∈ S0 and Kt+1 ∈ S1. Therefore, we can apply Lemma B.3 to show that:

E[Jδ(Kt+1)1τ>t+1 | Ft] ≤ E[Jδ(Kt+1) | Ft]
≤ Jδ(K

t)− η∥∇Jδ(Kt)∥2F + ηZ1 + ηZ2

= Jδ(K
t)1τ>t − η∥∇Jδ(Kt)∥2F1τ>t + ηZ1 + ηZ2.

On the other hand, if τ ≤ t, we have

E[Jδ(Kt+1)1τ>t+1 | Ft] = 0 ≤ Jδ(K
t)1τ>t − η∥∇Jδ(Kt)∥2F1τ>t + ηZ1 + ηZ2 (B.29)

since Z1 ≥ 0 and Z2 ≥ 0. Therefore, (B.28) holds. Taking the expectation and rearranging the terms
of (B.28) gives:

E[∥∇Jδ(Kt)∥2F1τ>t] ≤
E[Jδ(Kt)1τ>t]− E[Jδ(Kt+1)1τ>t+1]

η
+ Z1 + Z2. (B.30)

Summing up the above inequality over t = 0, 1, · · · , T − 1 yields

1

T

T−1∑
t=0

E[∥∇Jδ(Kt)∥2F1τ>T−1] ≤
1

T

T−1∑
t=0

E[∥∇Jδ(Kt)∥2F1τ>t]

≤ Jδ(K
0)− E[Jδ(KT )1τ>T ]

ηT
+ Z1 + Z2.

Since the cost function J(K) is nonnegative, we have E[Jδ(KT )1τ>T ] ≥ 0 and:

1

T

T−1∑
t=0

E[∥∇Jδ(Kt)∥2F1τ>T−1] ≤
J(K0)

ηT
+ Z1 + Z2.

By the choice of η and T , the above inequality becomes:

1

T

T−1∑
t=0

E[∥∇Jδ(Kt)∥2F1τ>T−1] ≤
J(K0)

ηT
+ Z1 + Z2 ≤ (

2

υ
+ 1)Z2 + Z1 ≤ (

2

υ
+ 2)

ϵ2

100
.

Since the random count R ∈ {0, 1, 2, · · · , T − 1} is uniformly sampled, we have

E[∥∇Jδ(KR)∥2F1τ>T−1] =
1

T

T−1∑
t=0

E[∥∇Jδ(Kt)∥2F1τ>T−1] ≤ (
2

υ
+ 2)

ϵ2

100
,

which implies
E[∥∇Jδ(KR)∥F1τ>T−1] ≤ (0.15υ−

1
2 + 0.15)ϵ.

Therefore, we have

Pr(∥∇Jδ(KR)∥F ≥ ϵ) = Pr(∥∇Jδ(KR)∥F ≥ ϵ, τ > T − 1) + Pr(∥∇Jδ(KR)∥F ≥ ϵ, τ ≤ T − 1)

≤ Pr(∥∇Jδ(KR)∥F ≥ ϵ, τ > T − 1) + Pr(τ ≤ T − 1)

≤ 1

ϵ
E[∥∇Jδ(KR)∥F1τ>T−1] + Pr(τ ≤ T − 1)

≤ 0.15υ−
1
2 + 0.15 + 0.05 + 0.03υ

= 0.15υ−
1
2 + 0.2 + 0.03υ,

where the second inequality uses the Markov’s inequality. By Proposition 2.3 (iii), we have
∇Jδ(KR) ∈ ∂δJ(K

R). This implies that

Pr(min{∥H∥F : H ∈ ∂δJ(K
R) ≥ ϵ}) ≤ Pr(∥∇Jδ(KR)∥F ≥ ϵ) ≤ 0.15υ−

1
2 + 0.2 + 0.03υ.

Therefore our algorithm can find a (δ, ϵ)-stationary point with probability at least 1− (0.15υ−
1
2 +

0.2 + 0.03υ) = 0.8− 0.15υ−
1
2 − 0.03υ. This completes the proof for Statement 2.
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C Numerical Experiments

In this section, we provide more details on the numerical experiments. All the experiments are
performed on a desktop computer with a 3.7 GHz Intel i5-9600K processor.

C.1 Two-dimension example

In this subsection, we first present an example where the iterates of Algorthm 1 can be visualized in
controller space directly. In particular, we consider the following system

A =

[
0.5 0 −1
−0.5 0.5 0
0 0 0.5

]
, B =

[
1
1
0

]
, C =

[
1 1 0
0 0 1

]
. (C.1)

The weight matrices Q and R are set as identity matrices with proper dimensions. In this case, we
have K = [k1 k2] ∈ R1×2. Since A is a stable matrix, we initialize K0 = [0 0]. For Algorthm 1,
we set η = 1× 10−3, δ = 1× 10−4, and ϵ = 1× 10−3. The iterates and contour lines of the H∞
norm are drawn in Figure 2. It can be seen that Algorithm 1 yields to a local minimum and after 5000
iterations, it converges to a controller K∗ = [−0.1429 −0.6425].
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Figure 2: Algorithm 1 iterates in controller space for (C.1).

C.2 Experiments for Figure 1

In this subsection, we discuss more details about the three different experiments displayed in Figure 1
to show the effectiveness of Algorithm 1 with exact and inexact oracle.

Left plot of Figure 1 For the left plot of Figure 1, we show the relative error of the Algorithm 1
with exact oracle for different system dimensions nx = {10, 50, 100}. The system is of form (1)
with parameters (A,B,C). The entries of (A,B,C) are sampled from a standard normal distribution
N (0, 1). The system matrix A is scaled when necessary to make ρ(A) < 1 such that we can set K0

as zero matrices. The cost matrices Q and R are set to be identities with appropriate dimensions.
Table 2 shows the detailed algorithm parameters.

Table 2: Algorithm 1 parameters
(nx, nu, ny) η δ ϵ

(10, 5, 5) 1× 10−6 1× 10−4 1× 10−3

(50, 10, 10) 1× 10−7 1× 10−4 1× 10−3

(100, 20, 20) 1× 10−9 1× 10−4 1× 10−3
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Middle plot of Figure 1 For the second experiment, we perform the Algorithm 1 with both exact
and inexact zeroth-order oracles. In particular, we consider the following specific MIMO system:

A =

[
0.5 0 −1
−0.5 0.5 0
0 0 0.5

]
, B =

[
1 0
0 1
−1 0

]
, C =

[
1 1 0
0 0 1

]
. (C.2)

The weight matrices Q and R are set as:

Q =

[
2 −1 0
−1 2 −1
0 −1 2

]
, R =

[
1 0
0 1

]
.

Since the system matrix A is Schur stable, we set the initial point K0 as a zero matrix. We also set
the smooth radius δ = 0.001 and the stepsize η = 0.0001. It can be seen that the inexact oracle case
works well and tracks the exact oracle scenario.

Right plot of Figure 1 Finally, we examine how the sample complexity varies with different ϵ
for the exact oracle setting with system matrices (C.2). It is worth mentioning that in Algorithm 1,
we cannot really determine whether an iterate Kt is a (δ, ϵ)-stationary point or not since we cannot
calculate the exact ∇Jδ(Kt). In practice, we use the magnitude of gt as a stationarity criterion. In
particular, we terminate the algorithm when the norm of gt is less than ϵ.

Figure 3: Algorithm 1 trajectories for selected the library examples.

C.3 Comparison with model-based methods

In this subsection, we compare our derivative-free methods to model-based packages HIFOO and
Hinfstruct, which are available in MATLAB. In particular, we select several benchmark models from
COMPleib including aircraft model AC15, 2D heat flow model HF2D11, second-order model DLR2,
and helicopter models HE4 [41]. Table 3 summarized more details on the selected examples.

It is worth mentioning that the models in COMPleib are all continuous time models. In addition, the
implementations of HIFOO and Hinfstruct are also based on continuous-time models. Therefore, we
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Table 3: Selected examples form COMPleib
Physical model Example (nx, nu, ny) Structure of A Stability of A

Air craft model AC15 (4, 2, 3) dense stable
2-D heat flow model HF2D11 (5, 2, 3) dense unstable
second-order model DLR2 (40, 2, 2) sparse stable
helicopter model HE4 (8, 4, 6) dense unstable

implemented the continuous-time version of Algorithm 1. In other words, when we compute the H∞
norm of the closed-loop system, we are computing the H∞ norm of a continuous-time system instead
of a discrete-time system. Figure 3 shows the trajectories of the four selected examples when we run
Algorithm 1 for 5000 iterations. It can be seen that our algorithm converges to the ones computed
by the model-based methods HIFOO and Hinfstruct with proper initialization. In practice, one can
use multiple initial points and run Algorithm 1 multiple times then just report the best case with the
lowest J(K). Such a strategy is used in HIFOO and Hinfstruct. It can be seen that our derivative-free
method can achieve comparable results even without the knowledge of the system dynamics.
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