
6 Appendix378

Our code is available at https://anonymous.4open.science/r/HiBug-0EE7.379

6.1 Model repair by HiBug380

We elaborate on the details of data selection methods and data generation methods of HiBug.381

Data selection. Our data selection method aims to identify crucial data for model repair from the382

unlabeled data pool. To achieve effective repair, we require the selected samples to exhibit both high383

error rates and diversity.384

To accomplish this objective, our first step is to identify data slices with high error rates. Given a385

predetermined budget and an unlabeled data pool, we assign each data point in the unlabeled pool to386

its respective data slice based on attribute values. However, a challenge arises because the labels for387

these data points are unavailable. Therefore, we turn to the validation set, which already possesses388

known labels. By leveraging the labels in the validation set, we can calculate the failures and the389

error rate associated with each data slice. This information allows us to estimate the error rates of the390

unlabeled data slices.391

Once we have obtained the error rate for each slice, we rank all data slices according to their error392

rates and select those with high error rates. This process is carried out iteratively, starting with the393

data slice that exhibits the highest error rate. We accumulate the number of failures associated with394

the selected slices as the iterations progress. The iteration continues until the accumulated number of395

failures equals or exceeds a threshold defined by the hyper-parameter � multiplied by DF . Here, �396

represents the percentage of failures we aim to address, while DF corresponds to the total number of397

failures observed in the validation set.398

After identifying slices with high error rates, we distribute the budget among the data slices propor-399

tionally to the number of failures they encompass. This allocation ensures that data slices with a400

higher number of failures receive a larger share of the budget, while also considering the diversity401

factor. Finally, we select unlabeled data from each data slice based on the budget allocated to that402

particular slice. During this selection process, we prioritize data points with lower confidence to403

maximize the potential for model improvement. In our experiments, we set the hyper-parameter � to404

a fixed value of 0.9.405

Data generation. HiBug can generate more related data (e.g., data with failure patterns) that can406

further improve the model performance. For data generation, we employ a straightforward approach.407

Firstly, we collect the attribute values of the top 200 data slices with the highest validation error rates408

for each label. Next, we construct a prompt that incorporates label name and attribute variables:409

"A photo of *1 *2 *label *3, in a *4 background" (2)

During the data generation process, the variables *1, *2, *3, *4 are replaced by the values of attributes,410

such as "several" "black" "with a person" and "snow". The variable *label is substituted with the411

corresponding label name, such as "dog" or "cat."412

We show the effectiveness of data generation with HiBug in ImageNet10. In this experiment, we413

generate a total of 10,000 data points, with 1,000 data points generated for each label. We down-414

sample the overall generated data to obtain results for 1,000 data points and 5,000 data points, as415

presented in Table 5. For comparison, we use a baseline method "Class name" that uses the following416

prompt, where the variable *label will be substituted with the corresponding label name during417

generation.418

"A photo of *label." (3)

6.2 Introduction to the user interface419

We offer a user interface for HiBug to facilitate more effective debugging. The user interface provides420

two primary functionalities. Firstly, users can easily view the distribution of attributes. For each421

attribute name, a histogram representing the various attribute values can be plotted, as demonstrated422

12



(a) Edit and display attributes (b) Display data

Figure 6: In (a), we show that users can view the distribution of attributes by histogram (left tab), and
propose or edit attributes (right tab). In (b), we show that users can view the distribution of features
by scatter plot (left tab), and attributes of a specific data point in the scatter (right tab).

GPT

Non-binary attribute:
1. Hair color 2. Eye color
3. Skin tone 4. Nose shape
5. Gender 6. Face shape
7. Hair texture 8. Age 
9. Height 10. Body type

Binary attribute :
1. Wearing glasses 2. Wearing makeup
3. Wearing a hat 4. Has a beard 
5. Wearing nail polish 6. Has tattoos 
7. Has piercings 8. Wearing a watch 
9. Has freckles 10. Wearing tie

Non-binary attribute:
1. Item shape 2. Item layout
3. Item size 4. Item material
5. Item color 6. Item pattern
7. Item texture 8. Number of items
9. Price range 10. Item range

Binary attribute :
1. With Barcode 2. With Label Sticker
3. With Transparent Packaging 4. With Holographic 
Elements 5. With Metallic Finish 6. With Clear Window 
or Display 7. With Embossed or Raised Texture
8. With Cutout or Die-Cut Design 9. With Matte or 
Glossy Surface 10. With Multi-pack or Bundle Packaging

Non-binary attribute:
1. Photo background 2. Object color
3. Object size 4. Object texture
5. Number of objects 6. Object position
7. Time of day 8. Perspective
9. Lighting 10. Body type

Binary attribute :
1. Has Tail 2. Has Wings 
3.Has Antlers 4. Has Fins 
5. Has Feathers 6. Has Trunk 
7. Has Shell 8. Has Hooves 
9. Has Scales 10. Has Tusk 

Lipstick RPC ImageNet10

Figure 7: Attribute names proposed by chatGPT. The value of binary attributes are "yes" or "no".

in Figure 6 (a). It’s worth noting that we also provide additional flexibility by allowing users to input423

attribute names during the attribute proposal stage. This feature can be particularly useful when users424

are confident about specific tasks and seek to enhance the debugging process. Secondly, users can425

examine the data distributions in the embedding space. For example, we can display and analyze426

specific failures, as depicted in Figure 6 (b).427

6.3 Experiment details428

chatGPT attribute proposal. Figure 7 shows the attribute names proposed by chatGPT in the three429

experiment settings discussed in the main paper. We also provide additional flexibility by allowing430

users to select attribute names for HiBug to explore. We highlight the attributes selected for our431

experiments.432

HiBug ’s bug discovery outputs. Figure 8 showcases the bug discovery outputs obtained by HiBug in433

the three experiment settings outlined in the main paper. These outputs demonstrate the effectiveness434

of HiBug in identifying bugs and providing valuable insights to the user.435

Rare case:
Emotion: sad
Emotion: pensive

Correlation in all prediction:
Gender: female, Label: 1

Lipstick (train from scratch)

Rare case:
Object shape: octagon
Object layout: placed scattered
Object color: red and white 
Object color: blue 
Object color: red 
Object color: teal 

RPC

Rare case:
Photo background: inside a house
Photo background : buildings
Photo background : bridge
Photo background : house
Photo background : snow

ImageNet10

Figure 8: HiBug ’s bug discovery outputs on three experiment settings.

13



Table 6: Given the same attribute list for each data, HiBug can discover more error slices with a larger
validation set.

Size of validation set 15k 10k 5k 1k 0.5k

Number of error slices 288 238 168 71 49

Rare case:
Emotion: sad
Emotion: pensive

Correlation in all prediction:
Gender: female, Label: 1

Before model repair, Validation ACC: 0.906 

Rare case:
Emotion: sad

After model repair, Validation ACC: 0.915 

Figure 9: HiBug ’s outputs before and after repair.

6.4 Further ablation studies436

Size of the validation set. We conducted additional ablation studies to explore the impact of the437

validation set size on HiBug ’s performance. To quantify the error slices, we define them as data438

slices with validation performance lower than or equal to the overall validation performance. As439

presented in Table 6, we observed that HiBug can discover a greater number of error slices when440

the validation set size is larger. This phenomenon can be attributed to the larger dataset covering a441

broader range of attribute values, leading to the identification of a higher number of error slices by442

HiBug .443

Do bugs fixed after model repair? In the lipstick experiment, the model’s predictions are correlated444

with the gender of the person in the data. This correlation is detected in the bug discovery process445

of HiBug. For comparison, we use HiBug to test the model after repairing by data selection. The446

result is presented in Figure 9. We observe that most bugs discovered before repair disappear. This447

confirms again that our model repair strategy is effective.448

14


