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1 PrinCut22

1.1 How to use PrinCut23

The PrinCut GUI is shown in Figure 1. PrinCut is a MATLAB app, and its package is also provided24

in the supplementary. The app is tested and used on MATLAB 2022b.25

Figure 1: The GUI of PrinCut. The left shows raw data without annotation. The right shows both raw
data and annotation overlay.

After loading the raw data (the data should be in tif format), users can adjust the contrast, zoom26

in/out, and change different z slices to visualize the data. Users then need to give the z/x resolution27

ratio and the smooth factor to calculate the principal curvature. For example, if the voxel size of28

data is 1um × 1um × 5um, then the z/x resolution ratio should be 5. The smooth factor is the29

standard deviation (by pixel) of the Gaussian filter used to smooth data before calculating the principal30

curvature. After adjusting the z/x resolution ratio and the smooth factor, click the "calculate principal31

curvature" button.32

When the principal curvature is calculated, users can add a cell label by simply clicking the cell,33

and a 3D suggestive boundary will be automatically generated. We request the annotators check the34

suggestive boundary on every z slice to make sure it’s correct. If the suggestive boundary contains35

more than one cell, users can split the cell by clicking the center of each cell and PrinCut can give a36

suggestive boundary to each cell. If the suggestive boundary only contains part of a cell, users can37

merge two labels and PrinCut will give a suggestive boundary including the original labels. Users38

can also use the "combine" button to combine two existing boundaries without generating suggestive39

boundaries. Examples are shown in Figure 2. Four additional parameters are used to control the40

suggestive boundary, which are "smart click correction", "Add cell dilate size", "crop size", and41

"capacity design". In the methodology section, we will discuss how those parameters influence the42

suggestive boundary.43

However, there is a chance that the gap between two cells is too weak that the principal curvature is44

still negative. In this case, users need to use the brush to draw the expected boundary. The size of the45

brush can be adjusted by users, as is shown in Figure 5.46
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Figure 2: Examples of splitting, merging, and combining existing cells by clicking. PrinCut can
automatically generate a suggestive boundary after split or merge process.

Figure 3: The brushes with different sizes, from a single pixel to 17× 17 pixels.

1.2 Methodology47

1.2.1 Boundary-refine algorithm and adding a cell48

The boundary-refine algorithm can grow a given seed to the suggestive boundary in a given foreground.49

For adding a cell process, the seed is a spherical region using the pixel user clicked as the center and50

the "add cell dilate size" parameter in GUI as the radius, and the foreground is a spherical region with51

the same center and using the "crop size" parameter in GUI as the radius. The seed should be within52

the cell while the foreground should be larger than the cell.53
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The optimization criteria of the boundary-refine algorithm are to grow the seeds such that the principal54

curvature along the boundary pixels is maximized. However, this constraint alone is not enough,55

since the seed might grow to an excessively large region to meet the constraint, so we also need to56

add the constraint that the boundary should be as short as possible. Furthermore, since there can be57

multiple seeds inside one region, we need to make sure the regions grown from each seed do not58

interfere with each other, or the regions are not intersected with each other.59

Marker-based watershed inside the foreground is one common solution to solve the problem. But it60

is solely based on the score map and will always grow the marker so that all the pixels are used for61

segmentation. But in our case, we don’t want the seed to grow and fill the whole foreground, and the62

grown regions of all the seeds do not need to be in contact with each other. To align the boundary to63

the optimal position, we formulate the problem into an optimization problem.64

Figure 4: The graph for solving the refined boundary based on the seed

Consider the labeling of each pixel xn
i in the foreground as un

i , if un
i = 1, then xi will be assigned to65

the seed n, otherwise if un
i = 0, the corresponding pixel will be assign as outer region. And we can66

define the group of pixels belonging to the seed n as Sn and the group for the rest of pixels as S̄n.67

And the boundary between the two groups can be represented using the pairs of pixels Cn. In each68

pair, one belongs to the grown seed region, the other belongs to the background region.69

Cn = {(xi, xj)|xi ∈ Sn, xj ∈ S̄n} (1)

Then the objective function for seed n can be expressed as,70

argmin
Cn

∑
(i,j)∈Cn

(
Ĝ(i) + Ĝ(j)

)
(2)

where Ĝ = 1
max(G,T )p and G is the map of the principal curvature for each pixel, p is the "capacity71

design" parameter in GUI, T is a constant as 0.001. In this way, we transform the problem of72

finding the boundary pixels maximizing in the map G into minimizing in the map Ĝ. In addition,73

this objective function also implicitly minimizes the boundary length. In order to solve 2, we can74

reformulate the problem into a min-cut problem that can be efficiently solved. First, we will introduce75

graph construction. As shown in figure 4, the graph for optimizing based on seed 1 is built based on all76

the pixels in the 3D foreground, and each node i represents a pixel i. Between each pair of neighbor77

nodes, an edge eij is linked between them. The edge weight is defined as weight(eij) = Ĝ(i)+Ĝ(j).78

In addition, one pair of pseudo nodes are added, one is the pseudo source node s and the other the79

pseudo sink node t. All the pixels in the corresponding seed will be connected to the source node,80

and the boundary of the foreground will be connected to the sink (labeled in orange in figure 4). The81

weights of these two types of edges are set as infinite or very large.82
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With this graph design, the labeling of the nodes can induce a cut set C = (i, j)|u(i) ̸= u(j) and the83

following optimization of the labeling U for seed n is the same as 284

un = argmin
ui,i∈[1,N ]

∑
cut(un) (3)

where cut(u) = cut(C) =
∑

i,j∈C weight(i, j), which corresponds to the sum of the weights for85

the edges that are cut (shown in red dashed line in figure 4). By solving the min-cut of the graph, we86

can obtain the region grown from seed 1, which are the pixels connected to the source after cutting.87

1.2.2 Merging two cells and splitting a cell88

Once we know how to add a cell, merging and splitting are straightforward. When merging two cells,89

we consider the regions with two old labels as the seed and do morphological dilation for the seed to90

get the foreground. The filter of morphological dilation is a sphere using "crop size" as the radius.91

Then we do the boundary refinement for the given seed and foreground. When splitting a cell, we92

delete the old label first and add two seeds simultaneously. Then we calculate the foreground and93

refine the boundary for each seed. As the other seed will be considered as the sink when we refine94

the current seed, the grown regions of the two seeds will not overlap with each other.95

1.2.3 Smart click correction96

The boundary-refine algorithm requires the user to consistently click at the center of the cell. Failure97

to do so may result in a suggestive boundary that encompasses only the seed region. This limitation98

arises from situations where a user clicks at the edge of a cell and all pixels surrounding the seed99

exhibit relatively high positive principal curvature since using the edges around the seed as the100

boundary in such cases leads to an even smaller cut(u) compared to the correct boundary.101

To address this issue, the "smart click correction" algorithm leverages the pixel within the seed as102

the source and identifies pixels with negative principal curvature as the sink. Using the same graph103

discussed earlier, the algorithm calculates the shortest path between the source and sink. When the104

"smart click correction" checkbox is activated, all pixels along the shortest path are used to generate105

a new seed, which will replace the original seed in the boundary refinement algorithm.106
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2 Label fusion detail107

After aligning the labels assigned by various annotators with a designated ground truth, the subsequent108

step entails amalgamating these annotations to delineate the boundary of the ground truth. This109

process is underpinned by the principle of weighted voting, wherein the contribution of each annotator110

is influenced by factors such as the reviewer’s expertise and the annotator’s own experience. But there111

are some additional rules we applied to solve some overlapping issues. For two ground truth labels112

partially overlapping and two ground truth labels having different confidence scores, the ground truth113

label with the higher confidence score will keep the same. If more than 66% pixels of the lower114

confidence score ground truth are overlapping with the other label, it will be removed. If less than115

33% of its pixels are overlapping with the other label, it will be kept but only use the pixels not116

overlapping with the other label. Otherwise, the non-overlapping pixels of lower confidence score117

ground truth will be considered undefined masks. For two ground truth labels partially overlapping118

and two ground truth labels having the same confidence score, we will sort annotators by their119

annotation experience, and treat the label created by a more experienced annotator as the one with a120

higher confidence score, then do the same thing we did to two ground truths with different confidence121

scores.122

Figure 5: Example of the solution for overlapping problems
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3 Experiment detail123

3.1 Experiment setting124

Quite a few methods set the minimum and maximum cell size/volume as hyperparameters. We report125

the average cell sizes (each from 10% sample cells in the corresponding image) here so that readers126

can copy them directly when testing the existing methods. In Zebrafish 1, the cell size is around127

2500. In Zebrafish 2, the cell size is around 400. In Drosophila 1, the cell size is around 4000. In128

Drosophila 2, the cell size is around 10000. In Mus Musculus 1, the cell size is around 2500. Other129

settings for each method are summarized below.130

3.1.1 Cellpose131

The developers of Cellpose have provided the pre-trained models to do instance segmentation for132

3D images on their GitHub. We adjust the cell diameter and z-aspect for both "cyto" and “nuclei”133

models as shown in table 1. Everything else is the same as the default.134

Table 1: Cellpose parameters

Name diameter z-aspect

zebrafish 1 20 5.4
zebrafish 2 5 1.0
Drosophila 1 30 1.0
Drosophila 2 35 1.0
Mus Musculus 30 1.0

3.1.2 QCAnet135

The developers of QCAnet have provided the pre-trained models to do instance segmentation for 3D136

images on their GitHub. All settings remained as default.137

3.1.3 StarDist138

The developers of StarDist have provided the pre-trained models to do instance segmentation for 3D139

images on their GitHub. Moreover, they have provided a detailed tutorial on how to use their 2D140

segmentation model on GitHub. We referred to their tutorial and only changed the path of the model141

from 2D to 3D. Other settings remained as default.142

3.1.4 3Dsuite143

The developers have provided a Fiji plug-in for the 3d Suite method, which has included several144

different segmentation algorithms such as 3D watershed, 3D spot segmentation, 3D iterative thresh-145

olding, etc. We select the 3D iterative thresholding algorithm since it yields the best segmentation146

performance. The main hyperparameters that need to be tuned are the minimum cell volume, maxi-147

mum cell volume (both in terms of the number of pixels). We adjust the minimum and maximum148

volumes according to the cell sizes in each image.149

3.1.5 Vaa3D150

The developers of Vaa3D have provided a software for 3D bioimage processing. In the Vaa3D151

software, the only segmentation algorithm is based on gradient vector flow. The hyperparameters that152

need to be tuned include: the iterations of diffusion, fusion threshold, and the minimum cell size. We153

employ the default setting for the first two hyperparameters while the third one is based on the cell154

sizes in each image.155
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3.2 Other methods we tried156

There are many famous semantic segmentation methods, but we didn’t compare them with instance157

segmentation methods. If the cells are far away from each other, we can use some post-processing to158

split them easily, but for data like NIS3D, they are not very useful. An example is shown in Figure 6.

Figure 6: An example of semantic segmentation result (Labkits). The left is the human input, and the
right is the segmentation result. The connected component can only give several instances as they are
highly connected in 3D space.

159

We also tested the methods from MorphoLibJ, which provides a group of unsupervised 3D instance160

segmentation methods. We tried a wide range of parameters, but the result is much worse than the161

other method we tested and we did not put it into baseline methods. An example is shown in Figure 7.162

Figure 7: Segmentation result by morphological segmentation in MorphoLibJ. This result is based on
parameters: "object image" and "gradient radius = 3"
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4 Other questions163

4.1 Compared with STABLE164

An alternative approach involves combining the ground truth created solely by human annotators165

using the STAPLE algorithm with conventional unweighted F1 scores or Intersection over Union166

(IoU) scores. This particular method attributes uniform weight to all cells identified through the167

STAPLE approach, whereas cells exclusively identified by a single annotator are typically classified168

to a background. Besides this, STAPLE algorithm will still generate misleading ground truth when169

annotators give conflicted labels, rather than giving an undefined mask like our method. Drawing170

from our experience, we have observed a preference among users for the identification of strong cells,171

and a willingness to accept the omission of inconspicuous cells that might elude human perception.172

This differential weighting within our proposed method aligns with this user preference.173

4.2 Why three annotators174

The intricacies of annotating 3D nuclei are profound, and it is almost inevitable that within this175

complex process, discrepancies such as incomplete or erroneous labels may arise (check Figure176

Example of incomplete labels and noise label of C.elegans dataset). Without proofreading from177

different annotators, the quality of ground truth cannot be guaranteed. In contrast, NIS3D not178

only boasts a larger number of annotated instances, but also encompasses a wider array of species,179

experimental situations, and developmental stages. Besides, NIS3D carefully designed a strategy to180

fuse the ground truth from different annotators, which increase the boundary accuracy and significantly181

reduces the chance of incomplete labels.

Figure 8: Example of incomplete labels and noise labels
182

4.3 Supervised learning183

We fine-tuned Stardist model to show the ability of the dataset to improve the existing model. Here184

we use in-image split (50% of the image as the training set and the other 50% as the test set for all185

images) and default train parameters provided by Stardist. We didn’t use the confidence score and186

treated the undefined mask as pixels without cells. With the default setting, Stardist model shows187

significant improvement under the measure of both W-F1 score and W-SEG score.

Figure 9: Stardist before and after a simple fine-tuning for in-image split
188
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4.4 Evaluation metrics design189

Choosing the correct metric that adequately reflects the biological nature is important but usually190

neglected. When employing the existing metric of the cell tracking challenge and the 2018 Data191

Science Bowl, three distinct issues encountered deviate result from human intuition, thereby affecting192

the evaluation process. Firstly, some methods can only detect the central portions of cells. Considering193

the true positive criteria in those existing benchmarks requiring 50% or more IoU score, even194

when a cell is successfully identified by 3D suite, its precision and recall may fall short of human195

expectations. This disparity becomes particularly relevant for biological studies that prioritize cell196

location, rendering the IoU score less informative. Secondly, approaches like Vaa3D yield favorable197

foreground detection outcomes but are plagued by a pronounced under-segmentation dilemma,198

existing metrics can’t show their advantage for foreground detection. Thirdly, users express a199

preference for the detection of robust cells and can tolerate the omission of inconspicuous ones that200

may be overlooked by a human. To address these issues, we have reformulated the evaluation metric201

to align more closely with our specific objectives. For instance, a high W-F1 score coupled with202

a low W-SEG score now indicates successful cell detection while indicating room for boundary203

enhancement. Similarly, a high W-IoU score combined with a low W-SEG score signifies accurate204

foreground detection, while highlighting potential over-segmentation or under-segmentation concerns.205
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