
Supplementary Material for
Hybrid Policy Optimization from

Imperfect Demonstrations

Hanlin Yang
Sun Yat-sen University

Chao Yu∗

Sun Yat-sen University
Peng Sun
ByteDance

Siji Chen
Sun Yat-sen University

yuchao3@mail.sysu.edu.cn

A Pseudo-Code for HYPO

The pseudo-code for HYPO algorithm is shown in Algorithm 1

Algorithm 1 HYbrid Policy Optimization (HYPO)

Initialize the parameters θ̂ of the online agent policy π̂, the parameters θb of the offline guider
policy πb, the discriminator d, and the imperfect demonstrations D generated by suboptimal expert;
Set the the maximal iterations I , the replay buffer B, and the hyperparameters α, η;
for i = 1 to I do

Sample suboptimal expert trajectories τE ∼ D;
Sample agent trajectories τA ∼ B;
Update discriminator parameters from wi to wi+1 with the gradient:

ηEτE

[
∇w log dw(s, a, log πb)

]
+ EτA

[
∇w log

(
1− dw(s, a, log πb)

)]
−

ηEτE

[
∇w log

(
1− dw(s, a, log πb)

)]
;

(1)

Update the offline guider policy πb with the supervised learning method (e.g., BC) using:

EτE

[
∇θb log πb(a|s) ·

(
α− η

d(1− d)

)]
+ EτA

[
∇θb log πb(a|s) ·

(
1

1− d

)]
; (2)

Update the online agent policy π̂ with the policy gradient method (e.g., PPO) using:

EτA

[
∇θ̂ min

(
rt(θ̂)At, clip

(
rt(θ̂), 1− ϵ, 1 + ϵ

)
At

)
−∇θ̂CDKL(π̂||πb)

]
; (3)

end for

B Theoretical Derivation

In this section, we first list some common lemmas that are useful in our theoretical results, and then
give the derivation of the BC objective weights and the complete proof of the policy improvement
bound.

∗Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

B.1 Useful Lemmas

Lemma 1 (Performance Difference Lemma). For any two policies π and π̃ and any starting state
distribution µ, we have

JR(π)− JR(π̃) =
1

1− γ
E(s,a)∼πdπ,µ

[
Aπ̃

R(s, a)
]
. (4)

Lemma 2 (Achiam et al. (2017)). The divergence between the discounted future state visitation
distributions, ∥dπ − dπ

′∥1, is bounded by an average divergence of the policies π′ and π:

∥dπ − dπ
′
∥1 ≤ 2γ

1− γ
Dπ

TV(π, π
′). (5)

Lemma 3. For any two policies π and π′, we have

Dπ
TV(π, π

′) ≤
√

Dπ
KL(π, π

′)

2
. (6)

Proof. From Pinsker’s inequality, DTV(p, q) ≤
√
DKL(p, q)/2 holds for any two distributions p, q.

Combining this with Jensen’s inequality, we get Eq.(6).

B.2 Derivation of the BC Objective Weights

This derivation uses techniques from the derivation of Theorem 3.1 in (Xu et al., 2022), adapting
them to the setting of combining the offline and online data, which is considered in this paper.

As discussed in Section 4, if the offline guider policy πb only mimics the expert, the guider can only
achieve the suboptimal performance of the expert, which leads to an excessively conservative policy
of the online agent. We use LExpert to denote the objective of directly mimicking the expert behavior,
which is given as follows:

LExpert = E
(s,a)∼D

[
− log πb(a|s)

]
. (7)

In order to drive the online agent to outperform the expert, the guidance from the guider should be
kept in an appropriate range. Therefore, we enable the guider to learn from both the expert and the
online agent by introducing an auxiliary loss LAux:

Lπb
= αLExpert + LAux, (8)

where α > 1 is a weight factor. The key insight of this derivation is that, challenging d by maximizing
Ld can make the learning of discriminator d more robust and can get an exact form of LAux. Note
that the loss of discriminator has the following form:

Ld = η E
(s,a)∼D

[
− log d(s, a, log πb)

]
+ E

(s,a)∼B

[
− log

(
1− d(s, a, log πb)

)]
− η E

(s,a)∼D

[
− log

(
1− d(s, a, log πb)

)]
.

(9)

This implies that πb has the potential to influence Ld, subsequently influencing the learning process
of d. The integral form of Ld can be formulated as follows:

Ld(d, log πb) =

∫
Ωs

∫
Ωa

[
PD(s, a) · η

[
− log d(s, a, log πb(a|s))

]
+ PB(s, a) ·

[
− log

(
1− d(s, a, log πb(a|s))

)]
− PD(s, a) · η

[
− log

(
1− d(s, a, log πb(a|s))

)]]
dsda

≜
∫
Ωs

∫
Ωa

F (s, a, d, log πb(a|s))dsda,

(10)

2

where PD(s, a) and PB(s, a) denote the probability distributions for the state-action pair (s, a) within
the demonstrations set D and the replay buffer B, respectively. Meanwhile, Ωs and Ωa represent the
domains for state s and action a along these trajectories. The functional form of F (s, a, d, log π(a|s))
is given as:

F (s, a, d, log π(a|s)) = PD(s, a) · η
[
− log d(s, a, log πb(a|s))

]
+ PB(s, a) ·

[
− log

(
1− d(s, a, log πb(a|s))

)]
− PD(s, a) · η

[
− log

(
1− d(s, a, log πb(a|s))

)]
.

(11)

Given that the online data in the replay buffer undergoes continuous evolution, enhancing the
robustness of the discriminator becomes imperative. This can be attained through the maximization
of Ld(d, log πb). Essentially, this leads to the subsequent formulation of the min-max optimization
problem for Ld(d, log πb):

min
d

max
π

Ld(d, log πb). (12)

A tractable form of LAux can be derived by solving the inner maximization problem for πb in Eq. (12).
According to the calculus of variations (Gelfand et al., 2000), the extrema of functional Ld(d, log πb)
with respect to πb (d is a given function and considered as fixed) can be obtained by solving the
associate Euler-Lagrangian equation as follows:

∂F

∂πb
− ∂

∂s
F ∂πb

∂s

− ∂

∂a
F ∂πb

∂a

= 0. (13)

The later two terms are zero since ∂πb

∂s and ∂πb

∂a do not appear in F . So we get:

∂F

∂πb
=

∂F

∂d
· ∂d

∂ log πb
· ∂ log πb

∂πb
= 0. (14)

Consider θb as the parameters of πb, above equation also suggests that:

∂F

∂d
· ∂d

∂ log πb
· ∂ log πb

∂πb
· ∂πb

∂θb
=

∂F

∂d
· ∂d

∂ log πb
· ∇θb log πb = 0. (15)

As both d and F are real-valued functions, hence the same with their derivatives ∂F/∂d and
∂d/∂ log π. If the continuity of ∂F/∂d and ∂d/∂ log π is satisfied, their order in Eq. (15) can be
swapped since the set of real-valued continuous function is a commutative ring (Hewitt, 1948). So
we get

∂d

∂ log π
· ∂F
∂d

· ∇θb log πb = 0, (16)

where d is determined by the outer minimization problem in Eq. (12), obtaining ∂d/∂ log π solely
from the inner maximization problem proves to be infeasible. Thus, we consider a solution where
∂F
∂d · ∇θb log πb = 0. In our specific framework, both D and B are finite, while Ωs and Ωa are
closed and bounded. Consequently, we can establish a relaxed and tractable condition, given that the
integration of ∂F

∂d · ∇θb log πb yields 0:

∫
Ωs

∫
Ωa

∂F

∂d
· ∇θb log πbdsda = 0. (17)

Substituting Eq. (11) into Eq. (17), we obtain:

3

0 =

∫
Ωs

∫
Ωa

∂F (s, a, d, log πb(a|s))
∂d(s, a, d, log πb(a|s))

· ∇θb log πb(a|s)dsda

=

∫
Ωs

∫
Ωa

[
− PD(s, a) ·

η

d(s, a, log πb(a|s))

+ PB(s, a)
1

1− d(s, a, log πb(a|s))

− PD(s, a) ·
η

1− d(s, a, log πb(a|s))

]
· ∇θb log πb(a|s)dsda

= E
(s,a)∼D

[η
d
· ∇θb log πb(a|s)

]
+ E

(s,a)∼B

[1

1− d
· ∇θb log πb(a|s)

]
− E

(s,a)∼D

[η

1− d
· ∇θb log πb(a|s)

]
,

(18)

where d denotes d(s, a, log π(a|s)). This implies that condition (17) can be met by minimizing the
auxiliary loss LAux in the following form with respect to θb:

LAux = E
(s,a)∼D

[η
d
· log πb(a|s)

]
+ E

(s,a)∼B

[1

1− d
· log πb(a|s)

]
− E

(s,a)∼D

[η

1− d
· log πb(a|s)

]
.

(19)

Hence, minimizing LAux with respect to πb (make ∂LAux/∂θb = 0) satisfies the condition (17).
Therefore, by adding the auxiliary loss LAux to LExpert, we obtain the final loss objective of πb for
the offline guider policy:

Lπb
= E

(s,a)∼D

[
− log πb(a|s) ·

(
α− η

d(1− d)

)]
+ E

(s,a)∼B

[
− log πb(a|s) ·

(1

1− d

)]
. (20)

The weights of FExpert and GAgent can be extracted from Eq.(20), that is:

FExpert(d) = α− η

d(1− d)
, GAgent(d) =

1

1− d
, (21)

B.3 Proof of Policy Improvement Bound

Proposition 1. Let π̃ be a policy that satisfies Assumption 1. Then, for policy π̂, we have

JR(π̂)− JR(π̃) ≥ (1− γ)−1ξ − (1− γ)−1ϵR,π̃

√
2Dπ̂

KL(π̂, πb), (22)

where ϵR,π̃ = maxs,a|Aπ̃
R(s, a)|.

4

Proof. Starting from Lemma 1:

JR(π̂)− JR(π̃) =
1

1− γ
E(s,a)∼πdπ,µ

[
Aπ̃

R(s, a)
]

=
1

1− γ

∑
s

dπ̂(s)
∑
a

πb(s, a)A
π̃
R(s, a)

+
1

1− γ

∑
s

dπ̂(s)
∑
a

(
π̂(s, a)− πb(s, a)

)
Aπ̃

R(s, a)

(a)

≥ 1

1− γ
ξ +

1

1− γ

∑
s

dπ̂(s)
∑
a

(
π̂(s, a)− πb(s, a)

)
Aπ̃

R(s, a)

(b)

≥ 1

1− γ
ξ − 1

1− γ
ϵR,π̃2D

π̂
TV(π̂, πb)

(c)

≥ 1

1− γ
ξ − 1

1− γ
ϵR,π̃

√
2Dπ̂

KL(π̂, πb),

(23)

where (a) follows from the premise that π̃ satisfies Assumption 1, (b) is obtained by denoting
ϵR,π̃ = maxs,a |Aπ̃

R(s, a)|, and (c) follows Lemma 3.

Proposition 2. For policy π̂ and any policy π̃, we have

JR(π̂)− JR(π̃) ≥ − 3Rmax

2(1− γ)2

√
2Dmax

KL (π̂, π̃), (24)

where Rmax = maxs,a|R(s, a)|.

Proof.

JR(π̂)− JR(π̃) =
1

1− γ

(∑
s,a

dπ̂(s)π̂(s, a)R(s, a)−
∑
s,a

dπ̃(s)π̃(s, a)R(s, a)

)

=
1

1− γ

(∑
s,a

dπ̂(s)π̂(s, a)R(s, a)−
∑
s,a

dπ̃(s)π̂(s, a)R(s, a)

)

+
1

1− γ

(∑
s,a

dπ̃(s)π̂(s, a)R(s, a)−
∑
s,a

dπ̃(s)π̃(s, a)R(s, a)

)

≥ − 1

1− γ
Rmax∥dπ̃ − dπ̂∥1 −

1

1− γ
RmaxD

max
TV (π̃, π̂)

(a)

≥ − 1

1− γ
Rmax

2γ

1− γ
Dmax

TV (π̂, π̃)− 1

1− γ
RmaxD

max
TV (π̂, π̃)

≥ − 3Rmax

(1− γ)2
Dmax

TV (π̂, π̃)

(b)

≥ − 3Rmax

2(1− γ)2

√
2Dmax

KL (π̂, π̃),

(25)

where (a) follows Lemma 2, and (b) follows Lemma 3.

C Implementation Details

All experiments in this paper are implemented with PyTorch (Paszke et al., 2019) and executed on
NVIDIA A30 GPUs. All the runs in experiments use 5 random seed.

C.1 MuJoCo Simulation Experiment

In MuJoCo tasks, we use a two layered (64 × 64) fully connected neural network with the tanh
activation function to parameterize our policy and value function. The policies of the guider and the

5

agent have the same structure. The common parameters of all algorithms in the MuJoCo environment
are shown in Table 1.

Table 1: Common hyperparameters used in all algorithms in MuJoCo

Hyperparameter Hopper Walker2d HalfCheetah Ant

learning rate 0.0003 0.0003 0.0003 0.0003
gamma 0.995 0.995 0.995 0.995

clip 0.2 0.2 0.2 0.2
optimizer Adam Adam Adam Adam
lambda 0.97 0.97 0.97 0.97
epoch 10 10 10 10

batch size 2048 4096 4096 4096
mini batch size 256 256 256 256

gradient clip norm 10.0 10.0 10.0 10.0

Input
/255

72×96×16

Conv. 3×3, stride 1

Max 3×3, stride 2

Residual Block

Residual Block

×4
[16, 32, 32, 32] ch. Conv. 3×3, stride 1

Conv. 3×3, stride 1

ReLU

ReLU

+

ReLU

FC 256
ReLU

𝜋𝜋(𝑎𝑎𝑡𝑡) 𝑉𝑉𝑡𝑡

Figure 1: Architecture of the policy and value function networks used in the GRF environment.

C.2 Google Research Football Experiment

Problem Setting In the football experiments, the playing field is restricted to the frontcourt of
the left team, which is also the backcourt of the right team. We use the Football Academy, which
includes a diverse set of scenarios of varying difficulty.

Reward Setting In the sparse reward setting, there is only a +1 reward when the players scores
a goal. In the dense reward setting, there are non-zero rewards when the players reach the specific
region.

Observation Representation We use the default Super Mini Map (SMM) representation, which
consists of four 72× 96 matrices encoding information about the home team, the away team, the ball,
and the active player, respectively. The encoding is binary, representing whether there is a player or
ball in the corresponding coordinate. We use a sequence of 4 consecutive observations as input, thus
the channels of input is 16. The architecture of network is shown in Figure 1.

6

C.3 AirSim Simulation Experiment

Problem Setting This environment is built on Unreal Engine 4, which is a professional game
engine. In the AirSim task, the drone needs to avoid obstacles and reach the designated endpoint.
If a collision occurs, the task fails. Moreover, there are several checkpoint levels on the way to the
endpoint.

Reward Setting In the sparse reward setting, the agent only receives a reward when it reaches the
checkpoint levels. In the dense reward setting, there will be a penalty if the speed of the drone is too
slow, or the collision occurs. The drone also can receive an additional reward which is related to the
forward speed in the dense reward setting.

Observation Representation As shown in Figure 2, the drone uses the depth images from its front
camera as the observation, which has the shape of (72× 128). As the same in the GRF tasks, we use
a sequence of 4 consecutive observations as input. The architecture of network is similar to the one
in GRF tasks, but a GRU layer is added after flattening.

Figure 2: Demo of the AirSim task. The image in left-bottom is the observation of the drone.

D Additional Results

D.1 Comparison of Run Time

Figure 3: Run time comparison of the main base-
lines.

We evaluate the run time of training HYPO and
other baselines for 6M training steps in Hopper
environment, while keeping all the external fac-
tors the same (e.g., the evaluation, batch size).
All the run time experiments are executed on
NVIDIA A30 GPUs. For a fair comparison,
we use the same policy network size and the
same discriminator network size. The results are
shown in Figure 3. As expected, the run time of
HYPO is only slightly more than GAIL due to
the additional cost to train an offline guider.

D.2 Complete Results in MuJoCo

In order to present the detailed experimental results and a digital comparison in MuJoCo environments,
we give the the original un-scaled results in Table 2.

7

Table 2: Detailed results in MuJoCo environments

Task HYPO(ours) LOGO GAIL POfD PPO

Hopper 3163.6±95.7 627.0±908.8 1245.4±1058.2 804.2±962.2 8.4±9.2

Walker2d 4200.0±118.7 1778.1±839.7 2157.2±554.3 2296.0±343.0 -6.2±6.4

HalfCheetah 5105.4±162.7 2746.2±1093.3 1359.7±161.8 2178.9±696.5 247.74±120.2

Ant 5096.7±228.5 3194.0±722.0 1982.4±403.8 2479.8±1636.0 -862.1±690.1

Figure 1. The sensitivity of 𝜂𝜂 in Hopper environment.
(a) (b) (c)

Figure 4: The sensitivity of η in Hopper environment.

Figure 2. The sensitivity of 𝛼𝛼 in Hopper environment.
(a) (b) (c)

Figure 5: The sensitivity of α in Hopper environment.

Figure 3. The sensitivity of 𝐶𝐶 in Hopper environment.
(a) (b) (c)

Figure 6: The sensitivity of C in Hopper environment.

8

E Sensitivity Analysis

There are three main hyperparameters in our method HYPO: the positive class prior η, the weight
factor α, and the regularization coefficient C. During the development of our algorithm, we did not
tune these hyperparameters much, as they are easy to estimate. For example, η is set to 0.5 in most of
the PU-Learning tasks, while we set it to [0.2, 0.8] due to the performance improving of the online
agent policy. As for α, we need to ensure FExpert > 0 whith the domains of η and d. Therefore, the
value of α must be greater than 5.0. Finally C, which can be set like the entropy coefficient, needs to
ensure that the losses are within the similar order of magnitude.

First, Figure 4 illustrates the impact of parameter η on our method. In this figure η indicates the initial
value, and linearly increases to the end value of 1− η. η primarily affects the updates of the guider,
since it determines the weight of the positive samples that come from the online agent. But the online
agent performance is rarely affected by the value of η (Figure 4a). Second, Figure 5 illustrates the
impact of parameter α on HYPO. Similar to η, α also primarily affects the updates of the guider.
However, the offline imitation policy can dynamically adjust these two weights of F and G, which
means that bigger F can lead to bigger G (Figure 5b, 5c). In this way, the weight factor α rarely
affect the learning of the guider. Therefore, the agent’s performance is not sensitive to α (Figure 5a).
Finally, Figure 6 illustrates the impact of parameter C on HYPO. In this figure the Cmin indicates
the end value of C (all decay from 1.0). If C has a large value, such as 0.5 or 1.0 (not decaying), the
performance of the online agent can be affected due to the overly restrictions (Figure 6a). However,
C also can not be too small, such as 0. In this case, the KL between the offline guider and the online
agent would be very large, leading to collapse in the agent’s performance.

F Performance of the LOGO Baseline

The experimental results of the LOGO algorithm presented in our paper were directly conducted
using the publicly available LOGO source code, without any modifications to its components. Our
reproduced results align with the outcomes reported in their paper. The reason for the comparatively
weaker performance of LOGO in the figures of our paper is attributed to the limitations imposed
by the training samples. In the original LOGO paper, the x-axis reaches 1e7, which consumes an
enormous amount of samples. However, in our experiments, such as the Hopper environment, we
only considered a maximum of 6M (x-axis is 1e6) samples.

Furthermore, although both LOGO and HYPO use suboptimal samples, LOGO’s suboptimal samples
reach over 60% of the performance of the optimal expert (e.g., in the Walker and HalfCheetah
environments). In contrast, HYPO requires suboptimal samples that achieve just 20% or 10% of the
optimal expert’s performance, indicating that HYPO imposes less stringent requirements on expert
trajectories.

References
Achiam, J., Held, D., Tamar, A., and Abbeel, P. Constrained policy optimization. In International

conference on machine learning, pp. 22–31. PMLR, 2017.

Gelfand, I. M., Silverman, R. A., et al. Calculus of variations. Courier Corporation, 2000.

Hewitt, E. Rings of real-valued continuous functions. i. Transactions of the American Mathematical
Society, 64(1):45–99, 1948.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., et al. Pytorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems, 32, 2019.

Xu, H., Zhan, X., Yin, H., and Qin, H. Discriminator-weighted offline imitation learning from
suboptimal demonstrations. In International Conference on Machine Learning, pp. 24725–24742.
PMLR, 2022.

9

	Pseudo-Code for HYPO
	Theoretical Derivation
	Useful Lemmas
	Derivation of the BC Objective Weights
	Proof of Policy Improvement Bound

	Implementation Details
	MuJoCo Simulation Experiment
	Google Research Football Experiment
	AirSim Simulation Experiment

	Additional Results
	Comparison of Run Time
	Complete Results in MuJoCo

	Sensitivity Analysis
	Performance of the LOGO Baseline

