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Abstract

Understanding the parameter estimation of softmax gating Gaussian mixture of
experts has remained a long-standing open problem in the literature. It is mainly
due to three fundamental theoretical challenges associated with the softmax gating
function: (i) the identifiability only up to the translation of parameters; (ii) the
intrinsic interaction via partial differential equations between the softmax gating
and the expert functions in the Gaussian density; (iii) the complex dependence
between the numerator and denominator of the conditional density of softmax
gating Gaussian mixture of experts. We resolve these challenges by proposing
novel Voronoi loss functions among parameters and establishing the convergence
rates of maximum likelihood estimator (MLE) for solving parameter estimation
in these models. When the true number of experts is unknown and over-specified,
our findings show a connection between the convergence rate of the MLE and a
solvability problem of a system of polynomial equations.

1 Introduction

Softmax gating Gaussian mixture of experts [32, 37], a class of statistical machine learning models
that combine multiple simpler models, known as expert functions of the covariates, via softmax
gating networks to form more complex and accurate models, has found widespread use in various
applications, including speech recognition [51, 64, 65], natural language processing [14, 20, 17, 54,
21], computer vision [52, 3, 15, 44], and other applications [26, 49, 7, 8, 48, 5, 6]. Regarding the
applications of the softmax gating Gaussian mixture of experts in medicine [43] and physical sciences
[39], the parameters of each expert function play an important role in capturing the heterogeneity of
data. Thus, the main objective of these works is to conduct statistical inference for those parameters,
which leads to a need for convergence rates of parameter estimation in the softmax gating Gaussian
mixture of experts. However, a comprehensive theoretical understanding of parameter estimation in
that model has still remained a long-standing open problem in the literature.

Parameter estimation has been studied quite extensively in standard mixture models. In his seminal
work, Chen et al. [9] established the convergence rate O(n−1/4) of parameter estimation in over-fitted
univariate mixture models, namely, the settings when the number of true components is unknown and
over-specified, and the family of distributions is strongly identifiable in the second order, e.g., location
Gaussian distributions. That slow and non-standard rate is due to the collapse of some parameters
into single pararameter or the convergence of weights to zero, which leads to the singularity of Fisher
information matrix around the true parameters. Then, Nguyen et al. [50] and Ho et al. [29] utilized
Wasserstein metrics to achieve this rate under the multivariate settings of second-order strongly
identifiable mixture models. Recently, Ho et al. [28] demonstrated that rates of the MLE can strictly
depend on the number of over-specified components when the mixture models are not strongly
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identifiable, such as location-scale Gaussian mixtures. The minimax optimal behaviors of parameter
estimation were studied in [27, 46]. From the computational side, the statistical guarantee of the
expectation-maximization (EM), e.g., [12], and moment methods had also been studied under both
exact-fitted [2, 1, 25] and over-fitted settings [19, 18, 61, 16, 62] of mixture models.

Compared to mixture models, there has been less research on parameter estimation of mixture of
experts. When the gating networks are independent of the covariates, Ho et al. [30] employed the
generalized Wasserstein loss function [59] to study the convergence rates of parameter estimation
in Gaussian mixture of experts. They proved that these rates are determined by the algebraic inde-
pendence of the expert functions and the partial differential equations with respect to the parameters.
Later, Do et al. [13] extended these results to general mixture of experts with covariate-free gating
network. Statistical guarantees of optimization methods for solving parameter estimation in Gaussian
mixture of experts with covariate-free gating functions were studied in [11, 67, 41, 63]. When the
gating networks are softmax functions, parameter estimation becomes more challenging to understand
due to the complex structures of the softmax gating function in the Gaussian mixture of experts.
Before describing these phenomena in further details, we begin by formally introducing the softmax
gating Gaussian mixture of experts and related notions.

Problem setting: Assume that (X1, Y1), . . . , (Xn, Yn) ∈ Rd × R are i.i.d. samples drawn from the
softmax gating Gaussian mixture of experts of order k∗ whose conditional density function gG∗(Y |X)
is given by:

gG∗(Y |X) :=

k∗∑

i=1

exp((β∗
1i)

⊤X + β∗
0i)∑k∗

j=1 exp((β
∗
1j)

⊤X + β∗
0j)

· f(Y |(a∗i )⊤X + b∗i , σ
∗
i ), (1)

where f(.|µ, σ) is a Gaussian density function with mean µ and variance σ. Here, we define
G∗ :=

∑k∗
i=1 exp(β

∗
0i)δ(β∗

1i,a
∗
i ,b

∗
i ,σ

∗
i )

as a true but unknown mixing measure, that is, a combination
of Dirac measures δ associated with true parameters θ∗i := (β∗

0i, β
∗
1i, a

∗
i , b

∗
i , σ

∗
i ). Notably, G∗ is not

necessarily a probability measure as the summation of its weights can be different from one. For the
purpose of the theory, we assume that θ∗i ∈ Θ ⊂ R× Rd × Rd × R× R+ where Θ is a compact set,
and X ∈ X ⊂ Rd where X is a bounded set. Furthermore, we let (a∗1, b

∗
1, σ

∗
1), . . . , (a

∗
k∗
, b∗k∗

, σ∗
k∗
)

be pairwise distinct and at least one among β∗
11, . . . , β

∗
1k∗

be non-zero to guarantee the dependence
of softmax gating function on the covariate X . Finally, we assume that the covariate X follows
a continuous distribution to ensure that the softmax gating Gaussian mixture of experts is at least
identifiable up to translations (see Proposition 1).

Maximum likelihood estimation. Since the value of true order k∗ is unknown in practice, to
estimate the unknown parameters in the softmax gating Gaussian mixture of experts (1), we consider
using maximum likelihood estimation (MLE) within a class of all mixing measures with at most k
components, which is defined as follows:

Ĝn ∈ argmax
G∈Ok(Θ)

1

n

n∑

i=1

log(gG(Yi|Xi)), (2)

where Ok(Θ) := {G =
∑k′

i=1 exp(β0i)δ(β1i,ai,bi,σi) : 1 ≤ k′ ≤ k and (β0i, β1i, ai, bi, σi) ∈ Θ}.
To guarantee that the MLE Ĝn is a consistent estimator of G∗, we need k ≥ k∗. In this paper, we
study the convergence rate of the MLE Ĝn to the true mixing measure G∗ under both the exact-fitted
settings, namely when k = k∗, and the over-fitted settings, namely when k > k∗, of the softmax
gating Gaussian mixture of experts.

Fundamental challenges from the softmax gating function: There are three fundamental challenges
arising from the softmax gating function that create various obstacles in our convergence analysis:

(i) Firstly, parameters β∗
1i, β

∗
0i of the softmax gating function are not identifiable as those of the

covariate-independent gating function in previous work. Instead, they are identifiable up to transla-
tions, that is, the softmax gating value does not change when we translate β∗

0i to β∗
0i + t1 and β∗

1i to
β∗
1i + t2 for any t1 ∈ R and t2 ∈ Rd. As a consequence, we need to introduce an infimum operator

in the Voronoi loss functions (see equations (4) and (6)) to deal with this issue.

(ii) Secondly, a key step in our proof techniques is to decompose the density discrepancy gĜn
(Y |X)−

gG∗(Y |X) into a linear combination of linearly independent elements using Taylor expansions.
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However, since the numerators and denominators of softmax gating functions are dependent, we
cannot apply the Taylor expansions directly to that density discrepancy as in previous work [30, 13].
Moreover, there are two intrinsic interactions between parameters of the softmax gating’s numerators
and the Gaussian density function via the following partial differential equations (PDEs), which
induce a lot of linearly dependent derivative terms in the Taylor expansions:

∂2u

∂β1∂b
=

∂u

∂a
;

∂2u

∂b2
= 2

∂u

∂σ
, (3)

where u(Y |X;β1, a, b, σ) := exp(β⊤
1 X) · f(Y |a⊤X + b, σ). Therefore, it takes us great effort to

group those linearly dependent terms together to obtain the desired linear combination of linearly
independent terms.

(iii) Lastly, given the above linear combination of linearly independent elements, when the density
estimation gĜn

(Y |X) converges to the true density gG∗(Y |X), the associated coefficients in that
combination also go to zero. Then, via some transformations, those limits lead to a system of
polynomial equations introduced in equation (9). This system admits a much more complex structure
than what considered in previous work [30, 13].

These fundamental challenges from the softmax gating function suggest that the previous loss
functions, such as Wasserstein distance [50, 28, 30], being employed to study parameter estimation
in standard mixture models or mixture of experts with covariate-free gating functions are no longer
sufficient as they heavily rely on the assumptions that the weights of these models are independent of
the covariates.

Main contributions: To tackle these challenges of the softmax gating function, we propose two
novel Voronoi losses among parameters and establish the lower bounds of the Hellinger distance,
denoted as h(·, ·), of the mixing densities of softmax gating Gaussian mixture of experts in terms of
these Voronoi losses to capture the behaviors of the MLE. Our results can be summarized as follows
(see also Table 1):

1. Exact-fitted settings: When k = k∗, we demonstrate that the Hellinger lower bound
EX [h(gG(·|X), gG∗(·|X))] ≥ C · D1(G,G∗) holds for any mixing measure G ∈ Ok(Θ), where C
is some universal constant and the Voronoi metric D1(G,G∗) is defined as:

D1(G,G∗) := inf
t1,t2

k∗∑

j=1

[ ∑

i∈Aj

exp(β0i)∥(∆t2β1ij ,∆aij ,∆bij ,∆σij)∥

+
∣∣∣
∑

i∈Aj

exp(β0i)− exp(β∗
0j + t1)

∣∣∣
]
, (4)

where ∆t2β1ij := β1i − β∗
1j − t2, ∆aij := ai − a∗j , ∆bij := bi − b∗j , ∆σij := σi − σ∗

j . The
infimum over t1 ∈ R and t2 ∈ Rd is to account for the identifiability up to the translation of
(β∗

0j , β
∗
1j)

k∗
j=1. Furthermore, Aj is a Voronoi cell of mixing measure G generated by the true

component ω∗
j := (β∗

1j , a
∗
j , b

∗
j , σ

∗
j ) for all 1 ≤ j ≤ k∗ [47], which is defined as follows:

Aj ≡ Aj(G) := {i ∈ {1, 2, . . . , k} : ∥ωi − ω∗
j ∥ ≤ ∥ωi − ω∗

ℓ ∥, ∀ℓ ̸= j}, (5)

where we denote ωi := (β1i, ai, bi, σi). It is worth noting that the cardinality of each Voronoi cell
Aj indicates the number of components of G approximating the true component ω∗

j of G∗. As
EX [h(gĜn

(·|X), gG∗(·|X))] = O(n−1/2), that lower bound of Hellinger distance indicates that

D1(Ĝn, G∗) = O(n−1/2). Therefore, the rates of estimating exp(β∗
0j), β

∗
1j (up to translations) and

a∗j , β
∗
j , σ

∗
j are of optimal order O(n−1/2).

2. Over-fitted settings: When k > k∗, the lower bound of Hellinger distance in terms of the Voronoi
metric D1 in the exact-fitted settings is no longer sufficient due to the collapse of softmax of vectors
in possibly k dimensions to softmax of vectors in k∗ dimensions. Our approach is to define more
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fine-grained Voronoi metric D2(G,G∗) to capture such collapse, which is given by:

D2(G,G∗) := inf
t1,t2

∑

j:|Aj |>1

∑

i∈Aj

exp(β0i)
(
∥(∆t2β1ij ,∆bij)∥r̄(|Aj |) + ∥(∆aij ,∆σij)∥r̄(|Aj |)/2

)

+
∑

j:|Aj |=1

∑

i∈Aj

exp(β0i)∥(∆t2β1ij ,∆aij ,∆bij ,∆σij)∥+
k∗∑

j=1

∣∣∣
∑

i∈Aj

exp(β0i)− exp(β∗
0j + t1)

∣∣∣, (6)

for any mixing measure G ∈ Ok(Θ). Here, the values of function r̄(·) are determined by the
solvability of a system of polynomial equations defined in equation (9). We then show in Lemma 1
that r̄(2) = 4, r̄(3) = 6, and we conjecture that r̄(m) = 2m for any m ≥ 2.

In high level, the aforementioned system of polynomial equations arises from the PDEs in equa-
tion (3) when we establish the lower bound EX [h(gG(·|X), gG∗(·|X))] ≥ C ′D2(G,G∗) for any
G ∈ Ok(Θ) for some universal constant C ′. Since EX [h(gĜn

(·|X), gG∗(·|X))] = O(n−1/2), we

also have D2(Ĝn, G∗) = O(n−1/2) under the over-fitted settings of the softmax gating Gaussian
mixture of experts. As a consequence, the rates for estimating true parameters whose Voronoi cells
have only one component of the MLE are of order O(n−1/2). On the other hand, for true parameters
exp(β∗

0j), β
∗
1j , a

∗
j , b

∗
j , σ

∗
j whose Voronoi cells have more than one component of the MLE, the esti-

mation rates are respectively O(n−1/2r̄(|Aj |)) for β∗
1j , b

∗
j , O(n−1/r̄(|Aj |)) for a∗j , σ

∗
j , and O(n−1/2)

for exp(β∗
0j). This rich spectrum of parameter estimation rates is due to the complex interaction

between the softmax gating and the expert functions.

Table 1: Summary of density estimation and parameter estimation rates in the softmax gating Gaussian
mixture of experts under both the exact-fitted and over-fitted settings. Recall that the cardinality
of each Voronoi cell Aj gives the number of fitted components approximating true component
ω∗
j = (β∗

1j , a
∗
j , b

∗
j , σ

∗
j ) (see equation (5)). Furthermore, the notation r̄(|Aj |) stands for the solvability

of the system of polynomial equations (9). For instance, if ω∗
j is fitted by two components, then we

have |Aj | = 2 and r̄(|Aj |) = 4. Please refer to Lemma 1 for more details of the values of function r̄.

Setting Loss Function gG∗(Y |X) exp(β∗
0j) β∗

1j , b
∗
j a∗j , σ

∗
j

Exact-fitted D1 O(n−1/2) O(n−1/2) O(n−1/2) O(n−1/2)

Over-fitted D2 O(n−1/2) O(n−1/2) O(n−1/2r̄(|Aj |)) O(n−1/r̄(|Aj |))

Practical implications: Although the slow rates of the MLE under the over-fitted settings of the
softmax gating Gaussian mixture of experts may seem discouraging, a practical implication of these
results is that we should not choose the number of experts k to be very large compared to the true
number of experts k∗. Furthermore, the slow rates can also be useful for post-processing procedures,
such as merge-truncate-merge procedure [24], with the MLE to reduce the number of experts so as to
consistently estimate k∗ when the number of data is sufficiently large. In particular, an important
insight from the theoretical results is that we can merge the MLE parameters that are close and within
the range of their rates of convergence or truncate the parameters that lead to small weights of the
experts. As the sample size becomes sufficiently large, the reduced number of experts may converge
to the true number of experts. We leave an investigation of such model selection with the Gaussian
mixture of experts via the rates of MLE for future work.

Organization: The paper is organized as follows. In Section 2, we first provide background on the
identifiability and rate of conditional density estimation in the softmax gating Gaussian mixture of
experts. Next, we proceed to establish the convergence rate of the MLE under both the exact-fitted and
over-fitted settings of these models in Section 3. Then, we conclude the paper with a few discussions
in Section 4. Finally, full proofs of the results and a simulation study are provided in the Appendices.

Notation: Firstly, we denote [n] := {1, 2, . . . , n} for any positive integer n. Next, for any vector
u ∈ Rd and z := (z1, z2, . . . , zd) ∈ Nd, we denote uz = uz1

1 uz2
2 . . . uzd

d , |u| := u1 + u2 + . . .+ ud

and z! := z1!z2! . . . zd!, while ∥u∥ represents for its 2-norm value. Additionally, the notation |A|
indicates the cardinality of any set A. Given any two positive sequences {an}n≥1 and {bn}n≥1, we
write an = O(bn) or an ≲ bn if an ≤ Cbn for all n ∈ N, where C > 0 is some universal constant.
Lastly, for any two probability density functions p, q dominated by the Lebesgue measure µ, we denote
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h2(p, q) = 1
2

∫
(
√
p−√

q)2dµ as the their squared Hellinger distance and V (p, q) = 1
2

∫
|p− q|dµ

as their Total Variation distance.

2 Background

In this section, we begin with the following result on the identifiability of the softmax gating Gaussian
mixture of experts, which was previously studied in [36].
Proposition 1 (Identifiability of the softmax gating Gaussian mixture of experts). For any mixing
measures G =

∑k
i=1 exp(β0i)δ(β1i,ai,bi,σi) and G′ =

∑k′

i=1 exp(β
′
0i)δ(β′

1i,a
′
i,b

′
i,σ

′
i)

, if we have
gG(Y |X) = gG′(Y |X) for almost surely (X,Y ), then it follows that k = k′ and G ≡ G′

t1,t2 where

G′
t1,t2 :=

∑k′

i=1 exp(β
′
0i + t1)δ(β′

1i+t2,a′
i,b

′
i,σ

′
i)

for some t1 ∈ R and t2 ∈ Rd.

Proof of Proposition 1 is in Appendix B.1. The identifiability of the softmax gating Gaussian mixture
of experts guarantees that the MLE Ĝn (2) converges to the true mixing measure G∗ (up to the
translation of the parameters in the softmax gating).

Given the consistency of the MLE, it is natural to ask about its convergence rate to the true parameters.
Our next result establishes the convergence rate of conditional density estimation gĜn

(Y |X) to the
true conditional density gG∗(Y |X), which lays an important foundation for the study of MLE’s
convergence rate.
Proposition 2 (Density estimation rate). Given the MLE in equation (2), the conditional density
estimation gĜn

(Y |X) has the following convergence rate:

P(EX [h(gĜn
(·|X), gG∗(·|X))] > C(log(n)/n)1/2) ≲ exp(−c log n),

where c and C are universal constants.

Proof of Proposition 2 is in Appendix B.2. The result of Proposition 2 indicates that under either
the exact-fitted or over-fitted settings of the softmax gating Gaussian mixture of experts, the rate of
the conditional density function gĜn

(Y |X) to the true one gG∗(Y |X) under Hellinger distance is of
order O(n−1/2) (up to some logarithmic factors), which is parametric on the sample size.

From density estimation to parameter estimation: The parametric rate of the conditional density
estimation in Proposition 2 suggests that as long as we can establish the Hellinger lower bound
EX [h(gG(·|X), gG∗(·|X))] ≳ D(G,G∗) for any mixing measure G ∈ Ok(Θ) for some metric D
among the parameters, then we obtain directly the parametric convergence rate of the MLE under the
metric D. Therefore, the main focus of the next section is to determine such metric D and to establish
that lower bound under either exact-fitted or over-fitted settings of the Gaussian mixture of experts.

3 Convergence Rate of the Maximum Likelihood Estimation

In this section, we first study the convergence rate of the MLE under the exact-fitted settings of the
softmax gating Gaussian mixture of experts in Section 3.1. Then, we move to the over-fitted settings
in Section 3.2. Finally, we provide a proof sketch of the theories in Section 3.3.

3.1 Exact-fitted Settings

For the exact-fitted settings, namely, when the chosen number of experts k is equal to the true number
of experts k∗, as we mentioned in the introduction, the proper metric between the MLE and the true
mixing measure is the metric D1 defined in equation (4), which is given by:

D1(G,G∗) := inf
t1,t2

k∗∑

j=1

[ ∑

i∈Aj

exp(β0i)∥(∆t2β1ij ,∆aij ,∆bij ,∆σij)∥

+
∣∣∣
∑

i∈Aj

exp(β0i)− exp(β∗
0j + t1)

∣∣∣
]
,
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where ∆t2β1ij := β1i − β∗
1j − t2, ∆aij := ai − a∗j , ∆bij := bi − b∗j , ∆σij := σi − σ∗

j . Here, Aj is
a Voronoi cell of G generated by (β∗

1j , a
∗
j , b

∗
j , σ

∗
j ) for all 1 ≤ j ≤ k∗. Furthermore, the infimum is

taken with respect to (t1, t2) ∈ R× Rd such that β∗
0j + t1 and β∗

1j + t2 still lie inside the domain of
the parameter space Θ.

It is clear that D1(G,G∗) = 0 if and only if G ≡ G∗ (up to translation). When D1(G,G∗) is
sufficiently small, there exist t1, t2 such that all of ∆t2β1ij , ∆aij , ∆bij , ∆σij , and

∑
i∈Aj

exp(β0i)−
exp(β∗

0j + t1) are sufficiently small as well. Therefore, the loss function D1 provides a useful metric
to measure the difference between the MLE and the true mixing measure. For any fixed t1, t2,
the computation of the summations in D1 only has the complexity of the order O(k2∗). To solve
the optimization with respect to t1, t2 in the metric D1, we can utilize the projected subgradient
method with fixed step size [4], which has the complexity of the order O(ε−2) as the functions of t1
and t2 are convex where ε is a desired tolerance. Therefore, the total computational complexity of
approximating the value of the Voronoi loss function D1 is at the order of O(k2∗/ε

2).

The following result establishes the lower bound of the Hellinger distance between the conditional
densities in terms of the loss function D1 between corresponding mixing measures, which in turn
leads to the convergence rate of the MLE.
Theorem 1. Given the exact-fitted settings of the softmax gating Gaussian mixture of experts (1), i.e.,
k = k∗, we find that

EX [h(gG(·|X), gG∗(·|X))] ≥ C1 · D1(G,G∗), (7)

for any G ∈ Ek∗(Θ) := Ok∗(Θ) \ Ok∗−1(Θ) where C1 is some universal constant depending only
on G∗ and Θ. As a consequence, there exist universal constants C ′

1 and c1 such that the convergence
rate of the MLE Ĝn under the exact-fitted settings satisfies:

P(D1(Ĝn, G∗) > C ′
1(log(n)/n)

1/2) ≲ exp(−c1 log n). (8)

Proof of Theorem 1 is in Appendix A.1. The parametric convergence rate of the MLE to G∗ under the
metric D1 suggests that the rates of estimating the true parameters exp(β∗

0j), β
∗
1j (up to translation),

a∗j , b∗j , σ
∗
j for j ∈ [k∗] are of order O(n−1/2), which are optimal up to logarithmic factors.

3.2 Over-fitted Settings

We now consider the over-fitted settings of the softmax gating Gaussian mixture of experts. Dif-
ferent from the exact-fitted settings, the softmax weights associated with the MLE collapse to
the softmax weights of the mixture of true experts as long as the MLE approaches the true mix-
ing measure G∗. More concretely, we can relabel the supports of the MLE Ĝn with k̂n com-
ponents (k̂n ≤ k) based on the Voronoi cells An

j := Aj(Ĝn) such that we can rewrite it as
Ĝn =

∑k∗
j=1

∑
i∈An

j
exp(β̂n

0i)δ(β̂n
1i,â

n
i ,̂b

n
i ,σ̂

n
i ) where

∑k∗
j=1 |An

j | = k̂n, (âni , b̂
n
i , σ̂

n
i ) → (a∗j , b

∗
j , σ

∗
j ),

∑

i∈An
j

exp((β̂n
1i)

⊤X + β̂n
0i)∑k∗

j′=1

∑
i′∈An

j′
exp((β̂n

1i′)
⊤X + β̂n

0i′)
→

exp((β∗
1j)

⊤X + β∗
0j)∑k∗

j′=1 exp((β
∗
1j′)

⊤X + β∗
0j′)

as n approaches infinity for all 1 ≤ i ≤ An
j and j ∈ [k∗].

The collapse of the softmax weights along with the PDEs (3) between the softmax gating and the
expert functions in the Gaussian density create a complex interaction among the estimated parameters.
To disentangle such interaction, we rely on the solvability of a novel system of polynomial equations
defined in equation (9). In particular, for any m ≥ 2, we define r̄(m) as the smallest natural number
r such that the following system of polynomial equations:

m∑

j=1

∑

(α1,α2,α3,α4)∈Iℓ1,ℓ2

p25j p
α1
1j pα2

2j pα3
3j pα4

4j

α1! α2! α3! α4!
= 0, (9)

for any (ℓ1, ℓ2) ∈ Nd ×N such that 0 ≤ |ℓ1| ≤ r, 0 ≤ ℓ2 ≤ r− |ℓ1| and |ℓ1|+ ℓ2 ≥ 1, does not have
any non-trivial solution for the unknown variables {p1j , p2j , p3j , p4j , p5j}mj=1, namely, all of p5j are
non-zero and at least one among p3j is different from zero. The ranges of α1, α2, α3, α4 in the above
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sum satisfy Iℓ1,ℓ2 = {α = (α1, α2, α3, α4) ∈ Nd×Nd×N×N : α1+α2 = ℓ1, |α2|+α3+2α4 =
ℓ2}. When d = 1 and r = 2, that system of equations becomes

m∑

j=1

p25jp1j = 0,

m∑

j=1

p25jp
2
1j = 0,

m∑

j=1

p25j(p1jp3j + p2j) = 0,

m∑

j=1

p25jp3j = 0,

m∑

j=1

p25j

(1
2
p23j + p4j

)
= 0.

It is clear that we have non-trivial solutions p5j = 1, p1j = 0 for all j ∈ [m], |p21| = p31 = 1,
|p22| = p32 = −1, p41 = p42 = −1/2, p2j = p3j = p4j = 0 for 3 ≤ j ≤ m.

When d = 1 and r = 3, the system of equations can be written as follows:
m∑

j=1

p25jp1j = 0,

m∑

j=1

p25jp3j = 0,

m∑

j=1

p25j(p2j + p1jp3j) = 0,

m∑

j=1

p25jp
2
1j = 0,

m∑

j=1

p25j

(1
2
p23j + p4j

)
= 0,

m∑

j=1

p25j

( 1

3!
p33j + p3jp4j

)
= 0,

m∑

j=1

p25jp
3
1j = 0,

m∑

j=1

p25j

(1
2
p21jp3j + p1jp2j

)
= 0,

m∑

j=1

p25j

(1
2
p1j · p23j + p1jp4j + p2jp3j

)
= 0.

It can be seen that the following is a non-trivial solution of the above system: p5j = 1, p1j = p2j = 0

for all j ∈ [m], p31 =
√
3
3 , p32 = −

√
3
3 , p41 = p42 = − 1

6 , p3j = p4j = 0 for 3 ≤ j ≤ m. Therefore,
we obtain that r̄(m) ≥ 4 when m ≥ 2 and d = 1.

In general, when d = 1, the system of equations has (r2 + 3r)/2 equations. Intuitively, when m
is sufficiently larger than (r2 + 3r)/2, the system may not have a non-trivial solution. For general
dimension d and parameter m ≥ 2, finding the exact value of r̄(m) is a non-trivial central problem in
algebraic geometry [55]. When m is small, the following lemma provides specific values for r̄(m).

Lemma 1. For any d ≥ 1, when m = 2, r̄(m) = 4. When m = 3, r̄(m) = 6.

Proof of Lemma 1 is in Appendix B.3. As m increases, so does the value of r̄(m). We conjecture
that r̄(m) = 2m and leave the proof of that conjecture to future work.

By constructing the Voronoi loss function:

D2(G,G∗) := inf
t1,t2

∑

j:|Aj |>1

∑

i∈Aj

exp(β0i)
(
∥(∆t2β1ij ,∆bij)∥r̄(|Aj |) + ∥(∆aij ,∆σij)∥r̄(|Aj |)/2

)

+
∑

j:|Aj |=1

∑

i∈Aj

exp(β0i)∥(∆t2β1ij ,∆aij ,∆bij ,∆σij)∥+
k∗∑

j=1

∣∣∣
∑

i∈Aj

exp(β0i)− exp(β∗
0j + t1)

∣∣∣,

the following result demonstrates that the convergence rates of the MLE under the over-fitted settings
of the softmax gating Gaussian mixture of experts are determined by r̄(·).
Theorem 2. Under the over-fitted settings of the softmax gating Gaussian mixture of experts (1),
namely, when k > k∗, we obtain that

EX [h(gG(·|X), gG∗(·|X))] ≥ C2 · D2(G,G∗), (10)

for any G ∈ Ok(Θ) where C2 is some universal constant depending only on G∗ and Θ. Therefore,
that lower bound leads to the following convergence rate of the MLE:

P(D2(Ĝn, G∗) > C ′
2(log(n)/n)

1/2) ≲ exp(−c2 log n), (11)

where C ′
2 and c2 are some universal constants.
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Proof of Theorem 2 is in Appendix A.2. A few comments with the result of Theorem 2 are in order.

(i) Rates of individual parameters: The convergence rate O(n−1/2) (up to some logarithmic term)
of the MLE under the loss function D2 implies that for the true parameters exp(β∗

0j), β
∗
1j , a

∗
j , b

∗
j , σ

∗
j

whose Voronoi cells have only one component of the MLE, the rates for estimating them are O(n−1/2)
up to some logarithmic factor. On the other hand, for true parameters with greater than one component
in their Voronoi cells, the rates for estimating β∗

1j , b∗j are O(n−1/2r̄(|An
j |)) while those for a∗j , σ

∗
j

are O(n−1/r̄(|An
j |)) (up to logarithmic factors). As the maximum value of |An

j | is k̂n − k∗ + 1,

it indicates that these rates (up to logarithmic factors) can be as worse as O(n−1/r̄(k̂n−k∗+1)) for
estimating a∗j , σ

∗
j and O(n−1/2r̄(k̂n−k∗+1)) for estimating β∗

1j , b
∗
j .

(ii) Computation of Voronoi loss function D2: Similar to the Voronoi loss function D1 in the
exact-fitted setting, the loss function D2 is also computationally efficient. In particular, for any fixed
t1, t2, the computation of the summations in the formulation of D2 is at the order O(k×k∗), which is
linear on k when k∗ is fixed. Furthermore, we can solve the convex optimization problem with respect
to t1, t2 with computational complexity at the order of O(ε−2) via the projected gradient descent
method with fixed step size where ε is the error. Therefore, the total computational complexity of
approximating the Voronoi loss function D2 is at the order of O(k × k∗/ε

2).

(iii) Comparison with covariate-free gating network: We would like to remark that the results
being established for parameter estimation under the softmax gating network settings of over-fitted
Gaussian mixture of experts are in stark difference from those under the covariate-free gating network
settings of these models [30], namely, when the gating function is independent of the covariates X . In
particular, Theorem 2 in [30] shows that when the gating networks are independent of the covariates,
the convergence rates of estimating a∗j are at the order of O(n−1/4) (up to some logarithmic factor),
which are independent of the number of over-fitted components. It is different from the rates of a∗j
whose Voronoi cells have more than one component in the softmax gating settings, which depends on
the number of components that we over-fit the Gaussian mixture of experts (see discussion (i) after
Theorem 2). Furthermore, the rates of estimating b∗j , σ

∗
j when the gating networks are independent of

covariates are determined by a system of polynomial equations that is much simpler than the system
of equations (9) when the gating networks are softmax function. These differences are mainly due to
the intrinsic interaction characterized by partial differential equations with respect to the parameters
between the softmax gating networks and the expert functions in Gaussian distribution.

3.3 Proof Sketch

In this section, we provide a proof sketch for Theorems 1 and 2. To simplify the ensuing discussion,
the loss function D in the proof sketch is implicitly understood as either D1 or D2 depending on
the settings of the softmax gating Gaussian mixture of experts. Since the Hellinger distance h is
lower bounded by the Total Variation distance V , to obtain the bounds in equations (7) and (10),
it is sufficient to show that EX [V (gG(·|X), gG∗(·|X))] ≳ D(G,G∗). To establish this bound, we
respectively prove its local and global versions by contradiction as follows:

Local version: In this part, we aim to show the following local inequality:

lim
ε→0

inf
G∈Ok(Θ):D(G,G∗)≤ε

EX [V (gG(·|X), gG∗(·|X))]/D(G,G∗) > 0. (12)

Assume that this claim does not hold true, that is, there exists a sequence Gn =∑kn

i=1 exp(β
n
0i)δ(βn

1i,a
n
i ,b

n
i ,σ

n
i ) ∈ Ok(Θ) such that both EX [V (gGn

(·|X), gG∗(·|X))]/D(Gn, G∗)

and D(Gn, G∗) approach zero as n tends to infinity. This implies that for any j ∈ [k∗], we have∑
i∈Aj

exp(βn
0i) → exp(β∗

0j) and (βn
1i, a

n
i , b

n
i , σ

n
i ) → (β∗

1j , a
∗
j , b

∗
j , σ

∗
j ) and for all i ∈ Aj . For the

sake of presentation, we simplify the loss function D by assuming that it is minimized when t1 = 0
and t2 = 0d. Now, we decompose the quantity

Qn =
[ k∗∑

j′=1

exp((β∗
1j′)

⊤X + β∗
0j′)

]
· [gGn

(Y |X)− gG∗(Y |X)]

8



as follows:

Qn =

k∗∑

j=1

∑

i∈Aj

exp(βn
0i)

[
u(Y |X;βn

1i, a
n
i , b

n
i , σ

n
i )− u(Y |X;β∗

1j , a
∗
j , b

∗
j , σ

∗
j )− v(Y |X;βn

1i)

+ v(Y |X;β∗
1j)

]
+

k∗∑

j=1

( ∑

i∈Aj

exp(βn
0i)− exp(β∗

0j)
)[

u(Y |X;β∗
0j , a

∗
j , b

∗
j , σ

∗
j )− v(Y |X;β∗

1j)
]
,

where we define u(Y |X;β1, a, b, σ) := exp(β⊤
1 X)f(Y |a⊤X + b, σ) and v(Y |X;β1) :=

exp(β⊤
1 X)gGn

(Y |X). Next, for each j ∈ [k∗] and i ∈ Aj , we denote h1(X, a∗j , b
∗
j ) := (a∗j )

⊤X+b∗j
and then apply the Taylor expansions to the functions u(Y |X;βn

1i, a
n
i , b

n
i , σ

n
i ) and v(Y |X;βn

1i) up
to orders r1j and r2j (which we will choose later), respectively, as follows:

u(Y |X;βn
1i, a

n
i , b

n
i , σ

n
i )− u(Y |X;β∗

1j , a
∗
j , b

∗
j , σ

∗
j )

=

2r1j∑

|ℓ1|+ℓ2=1

Tn
ℓ1,ℓ2(j)X

ℓ1 exp((β∗
1j)

⊤X)
∂ℓ2f

∂hℓ2
1

(Y |(a∗j )⊤X + b∗j , σ
∗
j ) +R1ij(X,Y ),

v(Y |X;βn
1i)− v(Y |X;β∗

1j) =

r2j∑

|γ|=1

Sn
γ (j)X

γ exp((β∗
1j)

⊤X)gGn(Y |X) +R2ij(X,Y ),

where R1ij(X,Y ) and R2ij(X,Y ) are Taylor remainders such that Rρij(X,Y )/D(Gn, G∗) vanishes
as n → ∞ for ρ ∈ {1, 2}. As a result, the limit of Qn/D(Gn, G∗) when n goes to infinity can be
seen as a linear combination of elements of the following set:

W : =

{
Xℓ1 exp((β∗

1j)
⊤X)

∂ℓ2f

∂hℓ2
1

(Y |(a∗j )⊤X + b∗j , σ
∗
j ) : j ∈ [k∗], 0 ≤ 2|ℓ1|+ ℓ2 ≤ 2r1j

}

∪
{
Xγ exp((β∗

1j)
⊤X)gG∗(Y |X) : j ∈ [k∗], 0 ≤ |γ| ≤ r2j

}
,

which is shown to be linearly independent. By the Fatou’s lemma, we demonstrate that
Qn/D(Gn, G∗) goes to zero as n → ∞, implying that all the coefficients in the representation
of Qn/D(Gn, G∗), denoted by Tn

ℓ1,ℓ2
(j)/D(Gn, G∗) and Sn

γ (j)/D(Gn, G∗), vanish when n → ∞.
Given that result, we aim to select the Taylor orders r1j and r2j such that at least one among the limits
of Tn

ℓ1,ℓ2
(j)/D(Gn, G∗) and Sn

γ (j)/D(Gn, G∗) is different from zero, which leads to a contradiction.
Hence, we obtain the local version of the desired inequality.

Below are the details of choosing appropriate Taylor orders in each setting.

Exact-fitted settings: Under this setting, since k∗ is known, each of the Voronoi cells Aj for
j ∈ [k∗] has only one element. Thus, for any i ∈ Aj , we have exp(βn

0i) → exp(β∗
0j) and

(βn
1i, a

n
i , b

n
i , σ

n
i ) → (β∗

1j , a
∗
j , b

∗
j , σ

∗
j ). Given that result, we will select r1j = r2j = 1 for all

j ∈ [k∗] as it suffices to show that at least one among the limits of Tn
ℓ1,ℓ2

(j)/D(Gn, G∗) and
Sn
γ (j)/D(Gn, G∗) is different from zero. In particular, if all of them vanished, we would take the

sum of all the limits of Tn
ℓ1,ℓ2

(j)/D(Gn, G∗) for (ℓ1, ℓ2) such that 0 ≤ 2|ℓ1|+ ℓ2 ≤ 2, which leads
to a contradiction that 1 = D(Gn, G∗)/D(Gn, G∗) → 0.

Over-fitted settings: As k∗ becomes unknown in this scenario, we need higher Taylor orders to
obtain the same result as in the exact-fitted setting. We will reuse the proof by contradiction method
to find out those orders. More specifically, assume that all the limits of Tn

ℓ1,ℓ2
(j)/D(Gn, G∗) and

Sn
γ (j)/D(Gn, G∗) equal zero. After some steps of considering typical limits as in the previous

setting which requires r2j = 2 for all j ∈ [k∗], we encounter the following system of polynomial
equations:

∑

i∈Aj

∑

(α1,α2,α3,α4)∈Iℓ1,ℓ2

p25i p
α1
1i pα2

2i pα3
3i pα4

4i

α1! α2! α3! α4!
= 0,

for all (ℓ1, ℓ2) ∈ Nd × N such that 0 ≤ |ℓ1| ≤ r1j , 0 ≤ ℓ2 ≤ r1j − |ℓ1| and |ℓ1| + ℓ2 ≥ 1
for some j ∈ [k∗]. Due to the construction of this system, it must have at least one non-trivial
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solution. Therefore, if we choose r1j = r̄(|Aj |) for all j ∈ [k∗], then the above system does
not admit any non-trivial solutions, which leads to a contradiction. Hence, we obtain the lo-
cal inequality in equation (12), which suggests that we can find a positive constant ε′ such that
infG∈Ok(Θ):D(G,G∗)≤ε′ EX [V (gG(·|X), gG∗(·|X))]/D(G,G∗) > 0.

Global version: Therefore, it is sufficient to demonstrate the following global inequality:

inf
G∈Ok(Θ),D(G,G∗)>ε′

EX [V (gG(·|X), gG∗(·|X))]/D(G,G∗) > 0. (13)

Assume that this claim is not true, then we can find a mixing measure G′ ∈ Ok(Θ) such that
gG′(Y |X) = gG∗(Y |X) for almost surely (X,Y ). According to Proposition 1, we get that
D(G′, G∗) = 0, which contradicts the hypothesis D(G′, G∗) > ε′. These arguments hold for
both exact-fitted and over-fitted settings up to some changes of notations.

Hence, the proof sketch is completed.

4 Discussion

In the paper, we study the convergence rates of parameter estimation under both the exact-fitted and
over-fitted settings of the softmax gating Gaussian mixture of experts. We introduce novel Voronoi
loss functions among parameters to resolve fundamental theoretical challenges posed by the softmax
gating function, including identifiability up to the translation of parameters, the interaction between
softmax weights and expert functions, and the dependence between the numerator and denominator
of the conditional density function. When the true number of experts is known, we demonstrate
that the rates for estimating true parameters are parametric on the sample size. On the other hand,
when the true number of experts is unknown and over-specified, these estimation rates turn out to be
determined by the solvability of a system of polynomial equations.

There are a few natural directions arising from the paper that we leave for furture work:

• First, our work does not consider the top-K sparse softmax gating function, which has been
widely used to scale up massive deep learning architectures [68, 54, 21]. It is practically
important to extend the current theories to establish the convergence rates of parameter
estimation in the Gaussian mixture of experts with that gating function.

• Second, the paper only takes into account the regression settings, namely when the dis-
tribution of Y is assumed to be continuous. Given that mixture of experts has also been
used in classification settings [22, 31, 53, 34, 35, 60], namely when Y is a discrete response
variable, it is desirable to establish a comprehensive theory for parameter estimation under
these settings of mixtures of experts.

• Third, the theories developed in the paper lay an important foundation for understanding
parameter estimation in more complex models, including hierarchical mixture of experts [33,
51, 37, 66] and multigate mixture of experts [44, 26, 45].

• Finally, the convergence rates of the MLE in this work are established under the well-
specified settings, namely when the data are drawn from the softmax gating Gaussian
mixture of experts. Nevertheless, the convergence analysis of the MLE under the misspec-
ified settings, namely when the data are not necessarily generated from that model, has
remained poorly understood. Under those settings, the MLE Ĝn converges to the mixing
measures G ∈ argminG∈Ok(Θ) KL(gG(Y |X), p(Y |X)) where p(Y |X) is the true condi-
tional density function of Y given X , and it is not a softmax gating Gaussian mixture of
experts. Additionally, the notation KL stands for the Kullback-Leibler divergence. The
insights from our theories under the well-specified setting indicate that the Voronoi loss
functions can be used to obtain the precise rates of individual parameters of the MLE Ĝn to
those of the mixing measure G.
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Supplement to “Demystifying Softmax Gating Function in
Gaussian Mixture of Experts”

In this supplementary material, we present the proofs of Theorems 1 and 2 in Appendix A, and then
provide proofs for the remaining results in Appendix B. Finally, we carry out a simulation study to
illustrate the various convergence rates that were derived in Theorems 1 and 2 in Appendix C.

A Proofs of Main Results

In this appendix, we provide proof for Theorem 1 in Appendix A.1, while leave that for Theorem 2 in
Appendix A.2. Prior to discussing in more detail, let us recall some notations for high-dimensional
settings that we will use in our proofs. Firstly, for any vector u := (u1, u2, . . . , ud) ∈ Rd and
z := (z1, z2, . . . , zd) ∈ Nd, we denote uz = uz1

1 uz2
2 . . . uzd

d , |u| := u1 + u2 + . . . + ud and
z! := z1!z2! . . . zd!. Additionally, 0d denotes the vector zero in Rd, whereas the notation 1 stands for
the indicator function. Finally, we denote h1(X, a, b) = a⊤X + b and h2(X,σ) = σ as mean and
variance expert functions in this work for any (a, b, σ) ∈ Rd × R× R+ and X ∈ X .

A.1 Proof of Theorem 1

General Picture: In this proof, we focus mainly on establishing the following bound:

EX [V (gG(·|X), gG∗(·|X))] ≥ C1 · D1(G,G∗). (14)

Then, the above bound together with the result of Proposition 2 lead to the conclusion of Theorem 1.

Local version: Firstly, we prove the local version of the inequality (14):

lim
ε→0

inf
G∈Ek∗ (Θ):D1(G,G∗)≤ε

EX [V (gG(·|X), gG∗(·|X))]/D1(G,G∗) > 0. (15)

Suppose that the inequality in equation (15) does not hold true, then we can find a sequence Gn :=∑k∗
i=1 exp(β

n
0i)δ(βn

1i,a
n
i ,b

n
i ,σ

n
i ) ∈ Ek∗(Θ) such that

EX [V (gGn
(·|X), gG∗(·|X))]/D1(Gn, G∗) → 0,

D1(Gn, G∗) → 0,

as n → ∞. Next, we consider the Voronoi cells An
j := Aj(Gn), for j ∈ [k∗], of the mixing measure

Gn generated by the true components of G∗. Since the argument in this proof is asymptotic, we
assume without loss of generality (WLOG) that those Voronoi cells are independent of n for all n ∈ N,
i.e. Aj = An

j . Additionally, since k∗ is known under the exact-fitted settings and D1(Gn, G∗) → 0,
the Voronoi cell Aj has only one element for any j ∈ [k∗]. WLOG, we assume that Aj = {j} for
all j ∈ [k∗], which follows that (anj , b

n
j , σ

n
j ) → (a∗j , b

∗
j , σ

∗
j ) as n → ∞. Furthermore, there exist

t1 ∈ R and t2 ∈ Rd independent of n such that exp(βn
0j) → exp(β∗

0j + t1) and βn
1j → β∗

1j + t2 as n
approaches infinity for all j ∈ [k∗]. It indicates that we can upper bound the Voronoi loss function D1

as D1(Gn, G∗) ≤ D′
1(Gn, G∗), where

D′
1(Gn, G∗) :=

k∗∑

j=1

[
exp(βn

0j)∥(∆t2β
n
1j ,∆anj ,∆bnj ,∆σn

j )∥+
∣∣exp(βn

0j)− exp(β∗
0j + t1)

∣∣] ,

in which

∆t2β
n
1j := βn

1j − β∗
1j − t2, ∆anj := anj − a∗j ,

∆bnj := bnj − b∗j , ∆σn
j := σn

j − σ∗
j .

As EX [V (gGn
(·|X), gG∗(·|X))]/D1(Gn, G∗) → 0 when n → ∞, we also obtain that

EX [V (gGn
(·|X), gG∗(·|X))]/D′

1(Gn, G∗) → 0.
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Step 1: Density Decomposition

Subsequently, we consider Qn := [
∑k∗

j=1 exp((β
∗
1j+ t2)

⊤X+β∗
0j+ t1)] · [gGn(Y |X)−gG∗(Y |X)],

which can decomposed as

Qn =

k∗∑

j=1

exp(βn
0j)

[
u(Y |X;βn

1j , a
n
j , b

n
j , σ

n
j )− u(Y |X;β∗

1j + t2, a
∗
j , b

∗
j , σ

∗
j )
]

−
k∗∑

j=1

exp(βn
0j)

[
v(Y |X;βn

1j)− v(Y |X;β∗
1j + t2)

]

+

k∗∑

j=1

(
exp(βn

0j)− exp(β∗
0j + t1)

)[
u(Y |X;β∗

1j + t2, a
∗
j , b

∗
j , σ

∗
j )− v(Y |X;β∗

1j + t2)
]
,

:= An +Bn + En, (16)

where we denote u(Y |X;β1, a, b, σ) := exp(β⊤
1 X)f(Y |a⊤X + b, σ) and v(Y |X;β1) :=

exp(β⊤
1 X)gGn

(Y |X). Next, by means of the first-order Taylor expansion, we rewrite An as

An =

k∗∑

j=1

∑

|α|=1

exp(βn
0j)

2α4α!
(∆t2β

n
1j)

α1(∆anij)
α2(∆bnj )

α3(∆σn
j )

α4

×Xα1+α2 exp((β∗
1j + t2)

⊤X) · ∂
|α2|+α3+2α4f

∂h
|α2|+α3+2α4

1

(Y |(a∗j )⊤X + b∗j , σ
∗
j ) +R1(X,Y )

=

k∗∑

j=1

2∑

2|ℓ1|+ℓ2=1

∑

α∈Iℓ1,ℓ2

exp(βn
0j)

2α4α!
(∆t2β

n
1j)

α1(∆anj )
α2(∆bnj )

α3(∆σn
j )

α4

×Xℓ1 exp((β∗
1j + t2)

⊤X) · ∂
ℓ2f

∂hℓ2
1

(Y |(a∗j )⊤X + b∗j , σ
∗
j ) +R1(X,Y ), (17)

where R1(X,Y ) is a Taylor remainder such that R1(X,Y )/D′
1(Gn, G∗) → 0 as n → ∞. Here, the

first equality is due to the following partial differential equation for the univariate Gaussian density:
∂α4f

∂hα4
2

(Y |(a∗j )⊤X + b∗j , σ
∗
j ) =

1

2α4
· ∂

2α4f

∂h2α4
1

(Y |(a∗j )⊤X + b∗j , σ
∗
j ),

while the second equality is obtained by defining ℓ1 = α1 + α2, ℓ2 = |α2|+ α3 + 2α4 and
Iℓ1,ℓ2 :=

{
α = (αi)

4
i=1 ∈ Nd × Nd × N× N : α1 + α2 = ℓ1, α3 + 2α4 = ℓ2 − |α2|

}
, (18)

for all (ℓ1, ℓ2) ∈ Nd × N such that 1 ≤ 2|ℓ1|+ ℓ2 ≤ 2. Analogously, Bn can be rewritten as

Bn = −
k∗∑

j=1

∑

|γ|=1

exp(βn
0j)

γ!
(∆t2β

n
1j)

γXγ exp((β∗
1j + t2)

⊤X)gGn
(Y |X) +R2(X,Y ), (19)

where R2(X,Y ) is a Taylor remainder such that R2(X,Y )/D′
1(Gn, G∗) → 0 as n → ∞. From the

formulations of An, Bn and En, we can represent Qn as the following linear combination

Qn =

k∗∑

j=1

2∑

2|ℓ1|+ℓ2=0

Tn
ℓ1,ℓ2(j) ·Xℓ1 exp((β∗

1j + t2)
⊤X)

∂ℓ2f

∂hℓ2
1

(Y |(a∗j )⊤X + b∗j , σ
∗
j )

+

k∗∑

j=1

1∑

|γ|=0

Sn
γ (j) ·Xγ exp((β∗

1j + t2)
⊤X)gGn(Y |X) +R1(X,Y ) +R2(X,Y ),

with coefficients being denoted by Tn
ℓ1,ℓ2

(j) and Sn
γ (j) for all j ∈ [k∗], 0 ≤ 2|ℓ1| + ℓ2 ≤ 2 and

0 ≤ |γ| ≤ 1 where

Tn
ℓ1,ℓ2(j) =





∑
α∈Iℓ1,ℓ2

exp(βn
0j)

2α4α!
(∆t2β

n
1j)

α1(∆anj )
α2(∆bnj )

α3(∆σn
j )

α4 , (ℓ1, ℓ2) ̸= (0d, 0),

exp(βn
0j)− exp(β∗

0j + t1), (ℓ1, ℓ2) = (0d, 0);

(20)
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and

Sn
γ (j) =





−
exp(βn

0j)

γ!
(∆t2β

n
1j)

γ , |γ| ≠ 0,

− exp(βn
0j) + exp(β∗

0j + t1), |γ| = 0.

(21)

Step 2: Non-vanishing coefficients

Now, we will demonstrate by contradiction that at least one among terms of the forms
Tn
ℓ1,ℓ2

(j)/D′
1(Gn, G∗) and Sn

γ (j)/D′
1(Gn, G∗) does not approach zero. Indeed, assume that all

of them vanish when n → ∞, then we get

1

D′
1(Gn, G∗)

·
k∗∑

j=1

∣∣∣ exp(βn
0j)− exp(β∗

0j + t1)
∣∣∣ =

k∗∑

j=1

|Tn
0d,0

(j)|
D′

1(Gn, G∗)
→ 0. (22)

Similarly, by considering the limits of Tn
ℓ1,ℓ2

(j)/D′
1(Gn, G∗) for all j ∈ [k∗] and 1 ≤ 2|ℓ1|+ ℓ2 ≤ 2,

we obtain that

1

D′
1(Gn, G∗)

·
k∗∑

j=1

exp(βn
0j)∥(∆t2β

n
1j ,∆anj ,∆bnj ,∆σn

j )∥ → 0. (23)

Combine the results in equations (22) and 23, we have 1 = D′
1(Gn, G∗)/D′

1(Gn, G∗) → 0, which
is a contradiction. As a result, not all the limits of Tn

ℓ1,ℓ2
(j)/D′

1(Gn, G∗) and Sn
γ (j)/D′

1(Gn, G∗)
equal to zero.

Step 3: Fatou’s lemma involvement

Thus, let mn be the maximum of the absolute values of those terms, we have that 1/mn ̸→ ∞. Then,
the Fatou’s lemma says that

lim
n→∞

EX [V (gGn
(·|X), gG∗(·|X))]

mn · D′
1(Gn, G∗)

≥
∫

lim inf
n→∞

|gGn
(Y |X)− gG∗(Y |X)|
2mn · D′

1(Gn, G∗)
d(X,Y ). (24)

By assumption, the left-hand side of the above equation equals to zero, therefore, the integrand in
the right-hand side also equals to zero for almost surely (X,Y ), which leads to the following limit:
Qn/[mnD′

1(Gn, G∗)] → 0 as n → ∞ for almost surely (X,Y ). More specifically, we have

k∗∑

j=1

2∑

2|ℓ1|+ℓ2=0

ηℓ1,ℓ2(j)·Xℓ1 exp((β∗
1j + t2)

⊤X)
∂ℓ2f

∂hℓ2
1

(Y |(a∗j )⊤X + b∗j , σ
∗
j )

+

k∗∑

j=1

1∑

|γ|=0

ωγ(j) ·Xγ exp((β∗
1j + t2)

⊤X)gG∗(Y |X) = 0,

for almost surely (X,Y ), where ηℓ1,ℓ2(j) and ωγ(j) are the limits of Tn
ℓ1,ℓ2

(j)/[mnD′
1(Gn, G∗)]

and Sn
γ (j)/[mnD′

1(Gn, G∗)], respectively, for all j ∈ [k∗] , 0 ≤ 2|ℓ1| + ℓ2 ≤ 2 and 0 ≤ |γ| ≤ 1.
Here, at least one among ηℓ1,ℓ2(j) and ωγ(j) is different from zero. On the other hand, since the set

W1 : =

{
Xℓ1 exp((β∗

1j + t2)
⊤X)

∂ℓ2f

∂hℓ2
1

(Y |(a∗j )⊤X + b∗j , σ
∗
j ) : j ∈ [k∗], 0 ≤ 2|ℓ1|+ ℓ2 ≤ 2

}

∪
{
Xγ exp((β∗

1j + t2)
⊤X)gG∗(Y |X) : j ∈ [k∗], 0 ≤ |γ| ≤ 1

}
, (25)

is linearly independent (see Lemma 2 at the end of this proof), we obtain that ηℓ1,ℓ2(j) = ωγ(j) = 0
for all j ∈ [k∗] , 0 ≤ 2|ℓ1|+ ℓ2 ≤ 2 and 0 ≤ |γ| ≤ 1, which is a contradiction.

Thus, we reach the local inequality in 15, that is, there exists ε′ > 0 that satisfies

inf
G∈Ek∗ (Θ):D1(G,G∗)≤ε′

EX [V (gG(·|X), gG∗(·|X))]/D1(G,G∗) > 0.
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Global version: Thus, it suffices to prove its following global inequality:

inf
G∈Ek∗ (Θ):

D1(G,G∗)>ε′

EX [V (gG(·|X), gG∗(·|X))]/D1(G,G∗) > 0. (26)

Assume by contrary that there exists a sequence G′
n ∈ Ek∗(Θ) that satisfies

{
limn→∞ EX [V (gG′

n
(·|X), gG∗(·|X))]/D1(G

′
n, G∗) = 0,

D1(G
′
n, G∗) > ε′.

Therefore, we obtain that EX [V (gG′
n
(·|X), gG∗(·|X))] → 0 as n → ∞. Since the set Θ is compact,

we are able to replace the sequence G′
n by its subsequence which converges to some mixing measure

G′ ∈ Ek∗(Θ) such that D(G′, G∗) > ε′. Then, by the Fatou’s lemma, we get

lim
n→∞

EX [V (gG′
n
(·|X), gG∗(·|X))] ≥ 1

2

∫
lim inf
n→∞

|gG′
n
(Y |X)− gG∗(Y |X)| d(X,Y ),

which implies that
∫

|gG′(Y |X)− gG∗(Y |X)|d(X,Y ) = 0

Thus, we obtain that gG′(Y |X) = gG∗(Y |X) for almost surely (X,Y ). Now that the softmax
gating Gaussian mixture of experts is identifiable up to a translation (see Proposition 1), the mixing
measure G′ admits the form G′ =

∑k∗
i=1 exp(β

∗
0τ(i) + t1)δ(β∗

1τ(i)
+t2,a∗

τ(i)
,b∗

τ(i)
,σ∗

τ(i)
) for some t1 ∈ R

and t2 ∈ Rd, where τ is some permutation of the set {1, 2, . . . , k}. This leads to the fact that
D1(G

′, G∗) = 0, which contradicts the hypothesis D1(G
′, G∗) > ε′ > 0. Hence, we obtain the

inequality in equation (14).

To complete the proof, we will show the previous claim regarding the independence of elements in
W1 in the following lemma:
Lemma 2. The set W1 defined in equation (25) is linearly independent w.r.t X and Y .

Proof of Lemma 2. Assume that the following holds for almost surely (X,Y ):

k∗∑

j=1

2∑

2|ℓ1|+ℓ2=0

ηℓ1,ℓ2(j) ·Xℓ1 exp((β∗
1j + t2)

⊤X)
∂ℓ2f

∂hℓ2
1

(Y |(a∗j )⊤X + b∗j , σ
∗
j )

+

k∗∑

j=1

1∑

|γ|=0

ωγ(j) ·Xγ exp((β∗
1j + t2)

⊤X)gG∗(Y |X) = 0,

where ηℓ1,ℓ2(j) ∈ R and ωγ(j) ∈ R. Then, we need to show that ηℓ1,ℓ2(j) = ωγ(j) = 0, for all
j ∈ [k∗], 0 ≤ 2|ℓ1|+ ℓ2 ≤ 2 and 0 ≤ |γ| ≤ 1. The above equation is equivalent to

k∗∑

j=1

1∑

ζ=0

[ 2−2ζ∑

ℓ2=0

ηζ,ℓ2(j)
∂ℓ2f

∂hℓ2
1

(Y |(a∗j )⊤X + b∗j , σ
∗
j ) + ωζ(j)gG∗(Y |X)

]
Xζ exp((β∗

1j + t2)
⊤X) = 0,

for almost surely (X,Y ). Since β∗
11, . . . , β

∗
1k∗

are k∗ distinct values, we get that the set{
exp((β∗

1j + t2)
⊤X) : j ∈ [k∗]

}
is linearly independent, which implies that

1∑

ζ=0

[ 2−2ζ∑

ℓ2=0

ηζ,ℓ2(j)
∂ℓ2f

∂hℓ2
1

(Y |(a∗j )⊤X + b∗j , σ
∗
j ) + ωζ(j)gG∗(Y |X)

]
Xζ = 0,

for all j ∈ [k∗] for almost surely (X,Y ). Obviously, the above equation is a polynomial of X ∈ X ,
where X is a compact subset of Rd. Then, we achieve that

2−2ζ∑

ℓ2=0

ηζ,ℓ2(j)
∂ℓ2f

∂hℓ2
1

(Y |(a∗j )⊤X + b∗j , σ
∗
j ) + ωζ(j)gG∗(Y |X) = 0,
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for all j ∈ [k∗] and ζ ∈ {0, 1}, for almost surely (X,Y ). Again, as (a∗j , b
∗
j , σ

∗
j ) for j ∈ [k∗] are k∗

distinct tuples, we have that ((a∗j )
⊤X + b∗j , σ

∗
j ) for j ∈ [k∗] are also k∗ distinct tuples for almost

surely X . Therefore,
{

∂ℓ2f

∂h
ℓ2
1

(Y |(a∗j )⊤X + b∗j , σ
∗
j ), gG∗(Y |X)

}
is a linearly independent set. As a

result, ηℓ1,ℓ2(j) = ωγ(j) = 0 for all j ∈ [k∗], 0 ≤ 2|ℓ1|+ ℓ2 ≤ 2 and 0 ≤ |γ| ≤ 1.

Hence, the proof is completed.

A.2 Proof of Theorem 2

In this proof, we adapt the framework in Appendix A.1 to the setting of Theorem 2. However, since
the arguments utilized for the global version part remain the same (up to some changes of notations)
for the over-fitted settings, they will not be presented here again. Thus, we focus only on proving the
following local inequality:

lim
ε→0

inf
G∈Ok(Θ):

D2(G,G∗)≤ε

EX [V (gG(·|X), gG∗(·|X))]/D2(G,G∗) > 0. (27)

Assume that the above claim is not true, then there exists a sequence of mixing measures Gn :=∑kn

i=1 exp(β
n
0i)δ(βn

1i,a
n
i ,b

n
i ,σ

n
i ) ∈ Ok(Θ) such that

EX [V (gGn
(·|X), gG∗(·|X))]/D2(Gn, G∗) → 0,

D2(Gn, G∗) → 0,

when n tends to infinity. Since the proof argument is asymptotic, we also assume that kn = k′ for all
n ≥ 1. Following the proof argument of Theorem 1 in Appendix A.1, we also assume that the Voronoi
cells Aj = An

j does not change with n for all j ∈ [k∗]. Additionally, since D2(Gn, G∗) → 0, we
have (ani , b

n
i , σ

n
i ) → (a∗j , b

∗
j , σ

∗
j ) for any i ∈ Aj as n approaches infinity. Furthermore, there exist

t1 ∈ R and t2 ∈ Rd such that
∑

i∈Aj
exp(βn

0i) → exp(β∗
0j + t1) and βn

1i → β∗
1j + t2 for any i ∈ Aj

and j ∈ [k∗]. Then, we can upper bound the Voronoi loss function D2 as D2(Gn, G∗) ≤ D′
2(Gn, G∗),

where

D′
2(Gn, G∗) :=

∑

j:|Aj |>1

∑

i∈Aj

exp(βn
0i)

(
∥(∆t2β

n
1ij ,∆bnij)∥r̄(|Aj |) + ∥(∆anij ,∆σn

ij)∥r̄(|Aj |)/2
)

+
∑

j:|Aj |=1

∑

i∈Aj

exp(βn
0i)∥(∆t2β1ij ,∆anij ,∆bnij ,∆σn

ij)∥+
k∗∑

j=1

∣∣∣
∑

i∈Aj

exp(βn
0i)− exp(β∗

0j + t1)
∣∣∣,

in which
∆t2β

n
1ij := βn

1i − β∗
1j − t2, ∆anij := ani − a∗j ,

∆bnij := bni − b∗j , ∆σn
ij := σn

i − σ∗
j .

Recall that EX [V (gGn
(·|X), gG∗(·|X))]/D2(Gn, G∗) → 0 as n → ∞, which leads to

EX [V (gGn
(·|X), gG∗(·|X))]/D′

2(Gn, G∗) → 0.

Step 1: Density Decomposition

In this step, we decompose the quantity Qn = [
∑k∗

j=1 exp((β
∗
1j + t2)

⊤X+β∗
0j + t1)] · [gGn(Y |X)−

gG∗(Y |X)] with abuse of notations in Appendix A.1 as follows:

Qn =

k∗∑

j=1

∑

i∈Aj

exp(βn
0i)

[
u(Y |X;βn

1i, a
n
i , b

n
i , σ

n
i )− u(Y |X;β∗

1j + t2, a
∗
j , b

∗
j , σ

∗
j )
]

−
k∗∑

j=1

∑

i∈Aj

exp(βn
0i)

[
v(Y |X;βn

1i)− v(Y |X;β∗
1j + t2)

]

+

k∗∑

j=1

( ∑

i∈Aj

exp(βn
0i)− exp(β∗

0j + t1)
)[

u(Y |X;β∗
1j + t2, a

∗
j , b

∗
j , σ

∗
j )− v(Y |X;β∗

1j + t2)
]
,

:= An +Bn + En,
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where we denote u(Y |X;β1, a, b, σ) := exp(β⊤
1 X)f(Y |a⊤X + b, σ) and v(Y |X;β1) :=

exp(β⊤
1 X)gGn

(Y |X). Since each Voronoi cell Aj possibly has more than one element, we continue
to decompose An and Bn as follows:

An =
∑

j:|Aj |=1

∑

i∈Aj

exp(βn
0i)

[
u(Y |X;βn

1i, a
n
i , b

n
i , σ

n
i )− u(Y |X;β∗

1j + t2, a
∗
j , b

∗
j , σ

∗
j )
]

+
∑

j:|Aj |>1

∑

i∈Aj

exp(βn
0i)

[
u(Y |X;βn

1i, a
n
i , b

n
i , σ

n
i )− u(Y |X;β∗

1j + t2, a
∗
j , b

∗
j , σ

∗
j )
]

: = An,1 +An,2,

and

Bn = −
∑

j:|Aj |=1

∑

i∈Aj

exp(βn
0i)

[
v(Y |X;βn

1i)− v(Y |X;β∗
1j + t2)

]

−
∑

j:|Aj |>1

∑

i∈Aj

exp(βn
0i)

[
v(Y |X;βn

1i)− v(Y |X;β∗
1j + t2)

]

: = Bn,1 +Bn,2.

Now, we apply the first-order Taylor expansions to two terms An,1 and Bn,1 as in equations (17) and
(19), while for An,2 and Bn,2, we use the Taylor expansions of orders r̄(|Aj |) and 2, respectively,
for each j : |Aj | > 1 as follows:

An,2 =
∑

j:|Aj |>1

∑

i∈Aj

2r̄(|Aj |)∑

2|ℓ1|+ℓ2=1

∑

α∈Iℓ1,ℓ2

exp(βn
0i)

2α4α!
(∆t2β

n
1ij)

α1(∆anij)
α2(∆bnij)

α3(∆σn
ij)

α4

×Xℓ1 exp((β∗
1j + t2)

⊤X) · ∂
ℓ2f

∂hℓ2
1

(Y |(a∗j )⊤X + b∗j , σ
∗
j ) +R3(X,Y ),

Bn,2 = −
∑

j:|Aj |>1

∑

i∈Aj

2∑

|γ|=1

exp(βn
0i)

γ!
(∆t2β

n
1ij)

γXγ exp((β∗
1j + t2)

⊤X)gGn(Y |X) +R4(X,Y ).

Here, Iℓ1,ℓ2 :=
{
α = (αi)

4
i=1 ∈ Nd × Nd × N× N : α1 + α2 = ℓ1, α3 + 2α4 = ℓ2 − |α2|

}
for

any (ℓ1, ℓ2) ∈ N2 such that 1 ≤ 2|ℓ1|+ ℓ2 ≤ 2r̄(|Aj |), while R3(X,Y ) and R4(X,Y ) are Taylor
remainders such that Rp(X,Y )/D′

2(Gn, G∗) → 0 when n → ∞ for p ∈ {3, 4}.

As a result, Qn can be represented as

Qn =

k∗∑

j=1

2r̄(|Aj |)∑

2|ℓ1|+ℓ2=0

Tn
ℓ1,ℓ2(j) ·Xℓ1 exp((β∗

1j + t2)
⊤X)

∂ℓ2f

∂hℓ2
1

(Y |(a∗j )⊤X + b∗j , σ
∗
j )

+

k∗∑

j=1

1+1{|Aj |>1}∑

|γ|=0

Sn
γ (j) ·Xγ exp((β∗

1j + t2)
⊤X)gGn(Y |X) +

4∑

ρ=1

Rρ(X,Y ), (28)

with coefficients Tn
ℓ1,ℓ2

(j) and Sn
γ (j) being defined for any j ∈ [k∗], 0 ≤ 2|ℓ1| + ℓ2 ≤ 2 and

0 ≤ |γ| ≤ 1 as

Tn
ℓ1,ℓ2(j) =





∑
i∈Aj

∑
α∈Iℓ1,ℓ2

exp(βn
0i)

2α4α!
(∆t2β

n
1ij)

α1(∆anij)
α2(∆bnij)

α3(∆σn
ij)

α4 , (ℓ1, ℓ2) ̸= (0d, 0),

∑
i∈Aj

exp(βn
0i)− exp(β∗

0j + t1), (ℓ1, ℓ2) = (0d, 0);

and

Sn
γ (j) =





−∑
i∈Aj

exp(βn
0i)

γ!
(∆t2β

n
1ij)

γ , |γ| ≠ 0,

−∑
i∈Aj

exp(βn
0i) + exp(β∗

0j + t1), |γ| = 0.
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Step 2: Non-vanishing coefficients

Next, we will show that not all the quantities Tn
ℓ1,ℓ2

(j)/D′
2(Gn, G∗) and Sn

γ (j)/D′
2(Gn, G∗) go to 0

as n → ∞. Assume that all of them vanish when n tends to infinity. Then, by arguing similarly as in
equations (22) and (23), we obtain that

1

D′
2(Gn, G∗)

·
[

k∗∑

j=1

∣∣∣
∑

i∈Aj

exp(βn
0i)− exp(β∗

0j + t1)
∣∣∣

+
∑

j:|Aj |=1

∑

i∈Aj

exp(βn
0i)∥(∆t2β

n
1ij ,∆anij ,∆bnij ,∆σn

ij)∥
]
→ 0.

Putting the above limit and the formulation of D2(Gn, G∗) together, we deduce that

1

D′
2(Gn, G∗)

·
∑

j:|Aj |>1

∑

i∈Aj

exp(β0i)
(
∥(∆t2β

n
1ij ,∆bnij)∥r̄(|Aj |) + ∥(∆anij ,∆σn

ij)∥r̄(|Aj |)/2
)
̸→ 0,

which indicates that there exists some index j∗ ∈ [k∗] such that |Aj∗ | > 1 and

1

D′
2(Gn, G∗)

·
∑

i∈Aj∗

exp(β0i)
(
∥(∆t2β

n
1ij∗ ,∆bnij∗)∥r̄(|Aj |) + ∥(∆anij∗ ,∆σn

ij∗)∥r̄(|Aj |)/2
)
̸→ 0,

for all t2 ∈ Rd. Without loss of generality, we may assume that j∗ = 1. Recall that for (ℓ1, ℓ2) ∈
Nd × N such that 1 ≤ |ℓ1|+ ℓ2 ≤ r̄(|A1|), we have Tn

ℓ1,ℓ2
(1)/D′

2(Gn, G∗) → 0 as n → ∞. Thus,
by dividing this ratio and the left hand side of the above equation and let t2 = 0, we obtain that

∑
i∈A1

∑
α∈Iℓ1,ℓ2

exp(βn
0i)

2α4α!
(∆t2β

n
1i1)

α1(∆ani1)
α2(∆bni1)

α3(∆σn
i1)

α4

∑
i∈A1

exp(βn
0i)

(
∥(∆t2β

n
1i1,∆bni1)∥r̄(|A1|) + ∥(∆ani1,∆σn

i1)∥r̄(|A1|)/2
) → 0, (29)

for all (ℓ1, ℓ2) such that 1 ≤ |ℓ1|+ ℓ2 ≤ r̄(|A1|).
Let us define Mn := max{∥∆t2β

n
1i1∥, ∥∆ani1∥1/2, |∆bni1|, |∆σn

i1|1/2 : i ∈ A1} and βn :=

maxi∈A1 exp(β
n
0i). Note that the sequence exp(βn

0i)/βn is bounded, therefore, we can replace
it by its subsequence that has a positive limit p25i := limn→∞ exp(βn

0i)/βn. Thus, at least one among
p25i, for i ∈ A1, equals 1.

In addition, we also define

(∆t2β
n
1i1)/Mn → p1i, (∆ani1)/Mn → p2i,

(∆bni1)/Mn → p3i, (∆σn
i1)/[2Mn] → p4i.

Here, at least one of p1i, p2i, p3i and p4i for i ∈ A1 equals either 1 or −1. Next, we divide both
the numerator and the denominator of the ratio in equation (29) by βnM

ℓ1+ℓ2
n , and then achieve the

following system of polynomial equations:

∑

i∈A1

∑

α∈Iℓ1,ℓ2

1

α!
· p25ipα1

1i p
α2
2i p

α3
3i p

α4
4i = 0,

for all (ℓ1, ℓ2) ∈ Nd × N such that 1 ≤ |ℓ1| + ℓ2 ≤ r̄(|A1|). However, based on the definition of
r̄(|A1|), the above system has no non-trivial solutions, which is a contradiction. Thus, not all the
quantities Tn

ℓ1,ℓ2
(j)/D′

2(Gn, G∗) and Sn
γ (j)/D′

2(Gn, G∗) go to 0 as n → ∞.

Step 3: Fatou’s lemma involvement

Subsequently, we denote by mn be the maximum of the absolute values of those quantities. Based
on the result in Step 2, we know that 1/mn ̸→ ∞. Then, by applying the Fatou’s lemma as in
equation (24), we get that Qn/[mnD′

2(Gn, G∗)] → 0 as n → ∞ for almost surely (X,Y ). It follows
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from the decomposition of Qn in equation (28) that

k∗∑

j=1

2r̄(|Aj |)∑

2|ℓ1|+ℓ2=0

ηℓ1,ℓ2(j) ·Xℓ1 exp((β∗
1j + t2)

⊤X)
∂ℓ2f

∂hℓ2
1

(Y |(a∗j )⊤X + b∗j , σ
∗
j )

+

k∗∑

j=1

1+1{|Aj |>1}∑

|γ|=0

ωγ(j) ·Xγ exp((β∗
1j + t2)

⊤X)gG∗(Y |X) = 0,

for almost surely (X,Y ), where ηℓ1,ℓ2(j) and ωγ(j) denote the limits of Tn
ℓ1,ℓ2

(j)/[mnD′
2(Gn, G∗)]

and Sn
γ (j)/[mnD′

2(Gn, G∗)] as n → ∞, respectively, for all j ∈ [k∗] , 0 ≤ 2|ℓ1| + ℓ2 ≤ 2r̄(|Aj |)
and 0 ≤ |γ| ≤ 1 + 1{|Aj |>1}. By definition, at least one among ηℓ1,ℓ2(j) and ωγ(j) is different from
zero. Nevertheless, as the set

W2 : =

{
Xℓ1 exp((β∗

1j + t2)
⊤X)

∂ℓ2f

∂hℓ2
1

(Y |(a∗j )⊤X + b∗j , σ
∗
j ) : j ∈ [k∗], 0 ≤ 2|ℓ1|+ ℓ2 ≤ 2r̄(|Aj |)

}

∪
{
Xγ exp((β∗

1j + t2)
⊤X)gG∗(Y |X) : j ∈ [k∗], 0 ≤ |γ| ≤ 1 + 1{|Aj |>1}

}
, (30)

is linearly independent w.r.t X and Y (proof can be done similarly to Lemma 2), it follows that

ηℓ1,ℓ2(j) = ωγ(j) = 0,

for all j ∈ [k∗] , 0 ≤ 2|ℓ1|+ ℓ2 ≤ 2r̄(|Aj |) and 0 ≤ |γ| ≤ 1 + 1{|Aj |>1}, which is a contradiction.
Hence, we achieve the inequality in equation (27), and complete the proof.

B Proofs of Auxiliary Results

In this appendix, we provide proofs for the results of Proposition 1 and Proposition 2 in Appendix B.1
and Appendix B.2, respectively, while we leave that for Lemma 1 in Appendix B.3.

B.1 Proof of Proposition 1

Given the notations in Proposition 1, assume that the equation gG(Y |X) = gG′(Y |X) holds true,
that is,

k∑

i=1

exp((β1i)
⊤X + β0i)∑k

j=1 exp((β1j)⊤X + β0j)
· f(Y |(ai)⊤X + bi, σi)

=

k′∑

i=1

exp((β′
1i)

⊤X + β′
0i)∑k′

j=1 exp((β
′
1j)

⊤X + β′
0j)

· f(Y |(a′i)⊤X + b′i, σ
′
i), (31)

for almost surely (X,Y ). Then, it follows from the identifiability of the location-scale Gaussian
mixtures [56, 57] that the number of components and the weight set of the mixing measure G equal
to those of its counterpart G′, i.e. k = k′ and

{
exp((β1i)

⊤X + β0i)∑k
j=1 exp((β1j)⊤X + β0j)

: i ∈ [k]

}
≡

{
exp((β′

1i)
⊤X + β′

0i)∑k
j=1 exp((β

′
1j)

⊤X + β′
0j)

: i ∈ [k]

}
,

for almost surely X . For simplicity, we may assume that

exp((β1i)
⊤X + β0i)∑k

j=1 exp((β1j)⊤X + β0j)
=

exp((β′
1i)

⊤X + β′
0i)∑k

j=1 exp((β
′
1j)

⊤X + β′
0j)

,

for all i ∈ [k]. Since the softmax function is invariant to translation, we get that β0i = β′
0i + t1 and

β1i = β′
1i + t2 for some t1 ∈ R and t2 ∈ Rd. Therefore, equation (31) reduces to

k∑

i=1

exp(β0i)u(Y |X;β1i, ai, bi, σi) =

k∑

i=1

exp(β0i)u(Y |X;β1i, a
′
i, b

′
i, σ

′
i)), (32)
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for almost surely (X,Y ), where u(Y |X;β1, a, b, σ) := exp(β⊤
1 X)f(Y |a⊤X + b, σ) for all i ∈ [k].

Next, we will partition the index set [k] into q subsets U1, U2, . . . , Uq such that for each ℓ ∈ [q], we
have exp(β0i) = exp(β0i′) for any i, i′ ∈ Uℓ. As a result, equation (32) can be rewritten as

q∑

ℓ=1

∑

i∈Uℓ

exp(β0i)u(Y |X;β1i, ai, bi, σi) =

q∑

ℓ=1

∑

i∈Uℓ

exp(β0i)u(Y |X;β1i, a
′
i, b

′
i, σ

′
i),

for almost surely (X,Y ). Given the above equation, for each ℓ ∈ [q], we obtain that
{
((ai)

⊤X + bi, σi) : i ∈ Uℓ

}
≡

{
((a′i)

⊤X + b′i, σ
′
i) : i ∈ Uℓ

}
,

for almost surely X , which directly leads to

{(ai, bi, σi) : i ∈ Uℓ} ≡ {(a′i, b′i, σ′
i) : i ∈ Uℓ} .

WLOG, we assume that (ai, bi, σi) = (a′i, b
′
i, σ

′
i) for all i ∈ Uℓ. Consequently,

q∑

ℓ=1

∑

i∈Uℓ

exp(β0i)δ{β1i,ai,bi,σi} =

q∑

ℓ=1

∑

i∈Uℓ

exp(β′
0i + t1)δ{β′

1i+t2,a′
i,b

′
i,σ

′
i},

or equivalently, G ≡ G′
t1,t2 . Hence, the proof is completed.

B.2 Proof of Proposition 2

Our proof will be based on the convergence rates of density estimation from MLE in Theorem 7.4 in
[58]. Before stating this result here, let us introduce some necessary notations. Firstly, let Pk(Θ) be
the set of conditional densities of all mixing measures in Ok(Θ), i.e., Pk(Θ) := {gG(Y |X) : G ∈
Ok(Θ)}. Additionally, we define

P̃k(Θ) := {g(G+G∗)/2(Y |X) : G ∈ Ok(Θ)},
P̃1/2
k (Θ) := {g1/2(G+G∗)/2

(Y |X) : G ∈ Ok(Θ)}.

Next, for each δ > 0, the Hellinger ball centered around the conditional density gG∗(Y |X) and
intersected with the set P̃1/2

k (Θ) is denoted by

P̃1/2
k (Θ, δ) :=

{
g1/2 ∈ P̃1/2

k (Θ) : h(g, gG∗) ≤ δ
}
.

Finally, in order to measure the size of the above set, [58] proposes using the following quantity:

JB(δ, P̃1/2
k (Θ, δ)) :=

∫ δ

δ2/213
H

1/2
B (t, P̃1/2

k (Θ, t), ∥ · ∥) dt ∨ δ, (33)

where HB(t, P̃1/2
k (Θ, t), ∥ · ∥) denotes the bracketing entropy [58] of P̃1/2

k (Θ, u) under the 2-norm,
and t ∨ δ := max{t, δ}. Now, we are ready to recall the statement of Theorem 7.4 in [58]:

Theorem 3 (Theorem 7.4, [58]). Take Ψ(δ) ≥ JB(δ, P̃1/2
k (Θ, δ)) that satisfies Ψ(δ)/δ2 is a non-

increasing function of δ. Then, for some universal constant c and for some sequence (δn) such that√
nδ2n ≥ cΨ(δn), we achieve that

P
(
EX [h(gĜn

(·|X), gG∗(·|X))] > δ
)
≤ c exp

(
−nδ2

c2

)
,

for all δ ≥ δn.

The proof of this theorem can be seen in [58].

Proof of Proposition 2. Back to our main proof, since

HB(t, P̃1/2
k (Θ, t), ∥ · ∥) ≤ HB(t,Pk(Θ, t), h)
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for any t > 0, it follows from equation (33) that

JB(δ, P̃1/2
k (Θ, δ)) ≤

∫ δ

δ2/213
H

1/2
B (t,Pk(Θ, t), h) dt ∨ δ ≲

∫ δ

δ2/213
log(1/t)dt ∨ δ,

where we apply the upper bound of a bracketing entropy in Lemma 3 (cf. the end of this proof)
in the second inequality. Let Ψ(δ) = δ · [log(1/δ)]1/2, we have Ψ(δ)/δ2 is a non-increasing
function of θ. Moreover, the above equation deduces that Ψ(δ) ≥ JB(δ, P̃1/2

k (Θ, δ)). Additionally,
let δn =

√
log(n)/n, we have that

√
nδ2n ≥ cΨ(δn) for some universal constant c. As all the

assumptions are met, Theorem 3 gives us

P(EX [h(gĜn
(·|X), gG∗(·|X))] > C(log(n)/n)1/2) ≲ exp(−c log(n)),

for some universal constant C that depends only on Θ.

For completion, we will provide the result regarding the upper bound of a bracketing entropy in the
following lemma:
Lemma 3. Assume that Θ is a bounded set, then the following inequality holds true for any
0 ≤ ε ≤ 1/2:

HB(ε,Pk(Θ), h) ≲ log(1/ε).

Proof of Lemma 3. Firstly, we will establish an upper bound for the univariate Gaussian density
f(Y |a⊤X + b, σ). Since both X and Θ are bounded sets, there exist positive constants κ, u, ℓ such
that −κ ≤ a⊤X + b ≤ κ and ℓ ≤ σ ≤ u. As a result,

f(Y |a⊤X + b, σ) =
1√
2πh2

exp
(
− (Y − h1)

2

2h2

)
≤ 1√

2πℓ
.

For any |Y | ≥ 2κ, we have that (Y−h1)
2

2h2
≥ Y 2

8u , which leads to

f(Y |a⊤X + b, σ) ≤ 1√
2πℓ

exp
(
− Y 2

8u

)
.

Putting the above results together, we obtain that f(Y |a⊤X + b, σ) ≤ K(Y |X), where we define
K(Y |X) := 1√

2πℓ
exp

(
− Y 2

8u

)
if |Y | ≥ 2κ, and K(Y |X) := 1√

2πℓ
otherwise.

Subsequently, let η ≤ ε, we assume that the set Pk(Θ) has an η-cover (under ℓ1-norm) denoted by
{π1, . . . , πN}, where N := N(η,Pk(Θ), ∥ · ∥1) is known as the η-covering number of Pk(Θ). Then,
we will build up the brackets of the form [νi(Y |X), µi(Y |X)] for all i ∈ [N ] as follows:

νi(Y |X) := max{πi(Y |X)− η, 0},
µi(Y |X) := max{πi(Y |X) + η,K(Y |X)}.

Consequently, it can be checked that Pk(Θ) ⊂ ⋃N
i=1[νi(Y |X), µi(Y |X)] with a note that µi(Y |X)−

νi(Y |X) ≤ min{2η,K(Y |X)}. Next, for each i ∈ [N ], we attempt to give an upper bound for

∥µi − νi∥1 =

∫

|Y |<2κ

(µi(Y |X)− νi(Y |X)) d(X,Y ) +

∫

|Y |≥2κ

(µi(Y |X)− νi(Y |X)) d(X,Y )

≤ Rη + exp
(
− R2

2u

)
≤ R′η,

where R := max{2κ,
√
8u} log(1/η) and R′ is some positive constant. By definition of the bracket-

ing entropy, since HB(R
′η,Pk(Θ), ∥ · ∥1) is the logarithm of the smallest number of brackets of size

R′η necessary to cover Pk(Θ), we achieve that

HB(R
′η,Pk(Θ), ∥ · ∥1) ≤ logN = logN(η,Pk(Θ), ∥ · ∥1).

Assume that the following upper bound for the covering number logN(η,Pk(Θ), ∥ · ∥1) ≲ log(1/η)
holds true (proof is provided below), then the above result leads to

HB(R
′η,Pk(Θ), ∥ · ∥1) ≲ log(1/η).
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By selecting η = ε/R′, we receive that HB(ε,Pk(Θ), ∥ · ∥1) ≲ log(1/ε). Furthermore, since the
Hellinger distance is upper bounded by the L1-norm, we reach the desired conclusion:

HB(ε,Pk(Θ), h) ≲ log(1/ε).

Upper bound of the covering number. For completion, we will establish the following upper bound
for the covering number, i.e.,

logN(η,Pk(Θ), ∥ · ∥1) ≲ log(1/η).

Let us denote ∆ := {(β0, β1) ∈ R×Rd : (β0, β1, a, b, σ) ∈ Θ} and Ω := {(a, b, σ) ∈ Rd×R×R+ :
(β0, β1, a, b, σ) ∈ Θ}. Since Θ is a compact set, ∆ and Ω are also compact. Thus, we can find
η-covers ∆η and Ωη for ∆ and Ω, respectively. It can be verified that |∆η| ≤ O(η−(d+1)k) and
|Ωη| ≲ O(η−(d+2)k).

For each mixing measure G =
∑k

i=1 exp(β0i)δ(β1i,ai,bi,σi) ∈ Ok(Θ), we consider another one
denoted by G̃ :=

∑k
i=1 exp(β0i)δ(β1i,ai,bi,σi)

, where (ai, bi, σi) ∈ Ωη such that (ai, bi, σi) are
the closest to (ai, bi, σi) in that set for all i ∈ [k]. In addition, we also take into account the
following mixing measure G :=

∑k
i=1 exp(β0i)δ(β1i,ai,bi,σi)

, where (β0i, β1i) ∈ ∆η are the closest
to (β0i, β1i) in that set. We can verify that the conditional density gG belongs to the following set:

R := {gG ∈ Pk(Θ) : (β0i, β1i) ∈ ∆η, (ai, bi, σi) ∈ Ωη, ∀i ∈ [k]} .

Let us denote Softmax(β⊤
1iX + β0i) :=

exp(β⊤
1iX + β0i)∑k

j=1 exp(β
⊤
1jX + β0j)

. From the formulation of G̃, we

get the following bounds:

∥gG − gG̃∥1 ≤
k∑

i=1

∫

X
Softmax(β⊤

1iX + β0i)
∣∣∣f(Y |(ai)⊤X + bi, σi)− f(Y |(ai)⊤X + bi, σi)

∣∣∣dX

≤
k∑

i=1

∫

X

∣∣∣f(Y |(ai)⊤X + bi, σi)− f(Y |(ai)⊤X + bi, σi)
∣∣∣dX

≲
k∑

i=1

(∥ai − ai∥+ |bi − bi|+ |σi − σi|)

≲ η, (34)

where the second inequality follows from the facts that X is a bounded set. Note that Softmax is a
Lipschitz function with Lipschitz constant L ≥ 0. Additionally, since X is a bounded set, there exists
a constant B > 0 such that ∥X∥ ≤ B for any X ∈ X . As a result, we get

∥gG̃ − gG∥1 ≤
k∑

i=1

∫

X

∣∣∣Softmax(β⊤
1iX + β0i)− Softmax(β

⊤
1iX + β0i)

∣∣∣f(Y |(ai)⊤X + bi, σi)dX

≲ L

k∑

i=1

∫

X

(
∥β1i − β1i∥ · ∥X∥+ |β0i − β0i|

)
dX

≤ Lkη(B + 1), (35)

where the second inequality follows from the fact that Softmax is a Lipschitz function and the
Gaussian density f(Y |(ai)⊤X + bi, σi) is bounded. Putting the bounds in equations (34) and (35)
together with the triangle inequality, we receive that

∥gG − gG∥1 ≤ ∥gG − gG̃∥1 + ∥gG̃ − gG∥1 ≲ η,

which means that R is an η-cover (not necessarily smallest) of the metric space (Pk(Θ), ∥ · ∥1). By
definition of the covering number, we know that

N(η,Pk(Θ), ∥ · ∥1) ≤ |R| = |∆η| × |Ωη| ≤ O(η−(d+1)k) · O(η(−d+2)k) ≤ O(η−(2d+3)k),

which implies that,

logN(η,Pk(Θ), ∥ · ∥∞) ≲ log(1/η).

Hence, the proof is completed.
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B.3 Proof of Lemma 1

First of all, let us recall the system of polynomial equations of interest here:

m∑

j=1

∑

α∈Iℓ1,ℓ2

p25j p
α1
1j pα2

2j pα3
3j pα4

4j

α1! α2! α3! α4!
= 0, (36)

where Iℓ1,ℓ2 = {α = (α1, α2, α3, α4) ∈ Nd×Nd×N×N : α1+α2 = ℓ1, α3+2α4 = ℓ2−|α2|}
for any (ℓ1, ℓ2) ∈ Nd × N such that 0 ≤ |ℓ1| ≤ r, 0 ≤ ℓ2 ≤ r − |ℓ1| and |ℓ1|+ ℓ2 ≥ 1.

In this proof, we denote p1j = (p1j1, p1j2, . . . , p1jd) and p2j = (p2j1, p2j2, . . . , p2jd).

When m = 2: By observing a portion of the above system when ℓ1 = 0d, which is given by

m∑

j=1

∑

α3+2α4=ℓ2

p25j p
α3
3j pα4

4j

α3! α4!
= 0, ℓ2 = 1, 2, . . . , r. (37)

It follows from Proposition 2.1 in [28] that the smallest natural number r such that the system (37)
does not have any non-trivial solutions when m = 2 is r = 4. It is worth noting that a solution of the
system 37 is considered non-trivial in [28] if all the values of p5j are different from zero, whereas
at least one among p3j is non-zero, which aligns with our definition of non-trivial solutions for the
system (36). Thus, we get r̄(m) ≤ 4, and it suffices to demonstrate that r̄(m) > 3. Indeed, when
r = 3, the system in equation (36) can be written as follows:

m∑

j=1

p25jp1jl = 0 ∀l ∈ [d],

m∑

j=1

p25jp3j = 0,

m∑

j=1

p25j(p2ju + p1jvp3j) = 0 ∀u, v ∈ [d],

m∑

j=1

p25jp1jup1jv = 0 ∀u, v ∈ [d],

m∑

j=1

p25j

(1
2
p23j + p4j

)
= 0,

m∑

j=1

p25j

( 1

3!
p33j + p3jp4j

)
= 0,

m∑

j=1

p25jp1jup1jvp1jl = 0 ∀u, v, l ∈ [d],

m∑

j=1

p25j

(1
2
p1jup1jvp3j + p1jlp2jτ

)
= 0 ∀u, v, l, τ ∈ [d],

m∑

j=1

p25j

(1
2
p1ju · p23j + p1jvp4j + p2jlp3j

)
= 0 ∀u, v, l, τ ∈ [d].

(38)

It can be seen that the following is a non-trivial solution of the above system: p5j = 1, p1j = p2j = 0d

for all j ∈ [m], p31 = 1, p32 = −1, p41 = p42 = − 1
2 . Therefore, we obtain that r̄(m) > 3, which

leads to r̄(m) = 4.

When m = 3: Note that r̄(m) is a monotonically increasing function of m. Therefore, it follows
from the previous result that r̄(m) > r̄(2) = 4, or equivalently, r̄(m) ≥ 5. Additionally, according
to Proposition 2.1 in [28], we deduce that r̄(m) ≤ 6 based on the reduced system in equation (37).
Thus, we only need to show that r̄(m) > 5. Indeed, the system (36) when r = 5 is a combination of
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the system in equation (38) and the following system:
m∑

j=1

p25jp1jup1jvp1jlp1jτ = 0 ∀u, v, l, τ ∈ [d],

m∑

j=1

p25j

( 1

4!
p43j +

1

2!
p23jp4j +

1

2!
p24j

)
= 0,

m∑

j=1

p25j

( 1

3!
p1jup

3
3j + p1jvp3jp4j +

1

2!
p2jlp

2
3j + p2jτp4j

)
= 0 ∀u, v, l, τ ∈ [d],

m∑

j=1

p25j

( 1

3!
p1ju1

p1ju2
p1ju3

p3j +
1

2!
p1jv1p1jv2p2jv3

)
= 0 ∀(ui)

3
i=1, (vi)

3
i=1 ∈ [d]3,

m∑

j=1

p25j

( 1

2!2!
p1ju1

p1ju2
p23j +

1

2!
p1ju3

p1ju4
p4j + p1ju5

p1ju6
p3j

)
= 0 ∀(ui)

6
i=1 ∈ [d]6,

m∑

j=1

p25j

5∏

i=1

p1jui = 0 ∀(ui)
5
i=1 ∈ [d]5,

m∑

j=1

p25j

( 1

5!
p53j +

1

3!
p33jp4j +

1

2!
p3jp

2
4j

)
= 0,

m∑

j=1

p25j

( 1

4!
p1ju1

p43j +
1

2!
p1ju2

p23jp4j +
1

2!
p1ju3

p24j +
1

3!
p2ju4

p33j + p2ju5
p3jp4j

)
= 0

∀(ui)
5
i=1 ∈ [d]5,

m∑

j=1

p25j

( 1

4!

4∏

i=1

p1jui
p3j +

1

3!

7∏

i=5

p1jui
p2ju8

)
= 0 ∀(ui)

8
i=1 ∈ [d]8,

m∑

j=1

p25j

( 1

2!3!

2∏

i=1

p1jui
p33j +

1

2!

4∏

i=3

p1jui
p3jp4j + p1ju5

p2ju6
(
1

2
p23j + p4j) +

1

2!

8∏

i=7

p2jui
p3j

)
= 0

∀(ui)
8
i=1 ∈ [d]8,

m∑

j=1

p25j

( 1

3!2!

3∏

i=1

p1jui
p23j +

1

3!

6∏

i=4

p1jui
p4j +

1

2!
p1ju7

p2ju8
p3j +

1

2!
p1ju9

11∏

i=10

p2jui

)
= 0

∀(ui)
11
i=1 ∈ [d]11.

We can verify that the following is a non-trivial solution of this system:

p5j = 1, p1j = p2j = 0d, ∀j ∈ [m],

p31 =

√
3

3
, p32 = −

√
3

3
, p33 = 0,

p41 = p42 = −1

6
, p43 = 0.

Hence, we conclude that r̄(m) = 6.

C Experiments

In this appendix, we conduct a simulation study to empirically validate our theoretical results on the
convergence rates of maximum likelihood estimation (MLE) in the softmax gating Gaussian mixture
of experts established in Theorem 1 and Theorem 2.

C.1 Numerical Schemes

We illustrate the heterogeneity convergence rates of the MLE under the softmax gating Gaussian
mixture of experts via exact-fitted and over-fitted models, which correspond to the exact-fitted
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and over-fitted settings described in Sections 3.1 and 3.2, respectively. For each case, we let X
be uniformly distributed over [0, 1] and we generate observations Y from the conditional density
gG∗(Y |X) of softmax gating Gaussian mixture of experts model in equation (1). Here, the true
mixing measure G∗ =

∑k∗
i=1 exp(β

∗
0i)δ(β∗

1i,a
∗
i ,b

∗
i ,σ

∗
i )

, where k∗ = 2, is specified as follows:

β∗
01 = −8, β∗

11 = 25, a∗1 = −20, b∗1 = 15, σ∗
1 = 0.3,

β∗
02 = 0, β∗

12 = 0, a∗2 = 20, b∗2 = −5, σ∗
2 = 0.4.

Then, we compute the MLE Ĝn w.r.t. a number of components k for each sample. For both of these
settings, we choose k ∈ {k∗, k∗ + 1, k∗ + 2}. In order to perform the MLE, we use a numerical
scheme based on the EM algorithm [12] similar to the one used by Chamroukhi et al. [7, 8]. Note
that the main difference with a classical EM is in the maximization step, as there are no closed
formulas for updating the softmax gating parameters (β0i, β1i),∀i ∈ [k]. For this purpose, following
the results of Chamroukhi et al. [7, 8], see also [38, 10, 23], we use a multi-class iterative reweighted
least-squares algorithm. All code for our simulation study below was written in Python 3.9.13 on a
standard Unix machine.

We choose the convergence criteria ϵ = 10−6 and 2000 maximum EM iterations. Our goal is to
illustrate the theoretical properties of the estimator Ĝn. Therefore, we have initialized the EM
algorithm in a favourable way. More specifically, we first randomly partitioned the set {1, . . . , k}
into k∗ index sets J1, . . . , Jk∗ , each containing at least one point, for any given k and k∗ and for each
replication. Finally, we sampled β∗

1j (resp. a∗j , b
∗
j , σ

∗
j ) from a unique Gaussian distribution centered

on β∗
1t (resp. a∗t , b

∗
t , σ

∗
t ), with vanishing covariance so that j ∈ Jt.

C.2 Empirical Convergence Rates

The empirical mean of discrepancies D1 and D2 between Ĝn and G∗, and the choice of k for exact-
fitted and over-fitted models are reported in Figures 1 and 2, respectively. It can be observed that
the average discrepancies from Ĝn to G0 vanish at a rate of O(n−1/2) up to a logarithmic factor, as
envisaged by Theorems 1 and 2. Although these empirical rates of convergence are similar for the
two models, they imply that the convergence behaviour of the individual fitted parameters is very
different in an over-fitted setting, which was already discussed in more detail in the Section 3.2.

C.2.1 Exact-fitted Model

We generate 40 samples of size n for each setting, given 200 different choices of sample size n
between 102 and 105. The empirical parametric convergence rate of the MLE to G∗ under the metric
D1 in Figure 1 is consistent with the theoretical rates of estimating the true parameters exp(β∗

0i), β
∗
1i

(up to translation), a∗i , b∗i , σ
∗
i for i ∈ [k∗], which are of order O(n−1/2) up to logarithmic factors.

C.2.2 Over-fitted Model

In the over-fitted setting, we generate 40 samples of size n for each setting, given 200 different
choices of sample size n between nmin ≈ 14 ∗ 103 for k = k∗ + 1, nmin ≈ 27 ∗ 103 for k = k∗ + 2
and nmax = 105. To the best of our knowledge, there is still a lack of theoretical understanding of EM
performance, in particular an established algorithm that enjoys global convergence for the parameter
estimation of the over-fitted softmax gating Gaussian mixture of experts. The most related theoretical
results are only for the mixture of expert with covariate-free gating networks in [41, 40, 42]. This
explains why in Figure 2 for over-fitted setting, we have not plotted the error bar due to the instability
of the EM algorithm for finding the global solution. Moreover, the sample size must be large enough
so that the empirical behaviour of the MLE from the EM algorithm matches the theoretical rate of
order O(n−1/2) up to a logarithmic term.
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Figure 1: Log-log scaled plots of the simulation results for exact-fitted setting. We compute the
estimator Ĝn on 40 independent samples of size n between 102 and 105. We plot its mean discrepancy
from the true mixing measure in red, with error bars representing two empirical standard deviations.
We also plot the least-squares fitted linear regression line of these points in a black dash-dotted line.
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(a) Over-fitted, k = 3, nmin = 14070
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(b) Over-fitted, k = 4, nmin = 26733

Figure 2: Log-log scaled plots of the empirical mean of the discrepancy D2 between Ĝn and G∗
(red curves) and least-squares fitted linear regression (black dash-dotted lines) are shown using 40
independent sample sizes n between nmin and 105.
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