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Abstract

Privacy is a central challenge for systems that learn from sensitive data sets, espe-
cially when a system’s outputs must be continuously updated to reflect changing
data. We consider the achievable error for differentially private continual release
of a basic statistic—the number of distinct items—in a stream where items may
be both inserted and deleted (the turnstile model). With only insertions, existing
algorithms have additive error just polylogarithmic in the length of the stream T .
We uncover a much richer landscape in the turnstile model, even without consid-
ering memory restrictions. We show that every differentially private mechanism
that handles insertions and deletions has worst-case additive error at least T 1/4

even under a relatively weak, event-level privacy definition. Then, we identify a
parameter of the input stream, its maximum flippancy, that is low for natural data
streams and for which we give tight parameterized error guarantees. Specifically,
the maximum flippancy is the largest number of times that the contribution of a
single item to the distinct elements count changes over the course of the stream. We
present an item-level differentially private mechanism that, for all turnstile streams
with maximum flippancy w, continually outputs the number of distinct elements
with an O(

p
w · poly log T ) additive error, without requiring prior knowledge of

w. We prove that this is the best achievable error bound that depends only on w,
for a large range of values of w. When w is small, the error of our mechanism is
similar to the polylogarithmic in T error in the insertion-only setting, bypassing
the hardness in the turnstile model.

1 Introduction

Machine learning algorithms are frequently run on sensitive data. In this context, a central challenge
is to protect the privacy of individuals whose information is contained in the training set. Differential
privacy [27] provides a rigorous framework for the design and analysis of algorithms that publish
aggregate statistics, such as parameters of machine learning models, while preserving privacy. In this
work, we focus on the model of differential privacy interchangeably called continual observation
and continual release that was introduced by Dwork et al. [25] and Chan et al. [13] to study privacy
in settings when both the data and the published statics are constantly updated. One of the most
fundamental statistics about a data stream is the number of distinct elements it contains (see, e.g., the
book by Leskovec et al. [47]). The problem of counting distinct elements has been widely studied,
starting with the work of Flajolet and Martin [32], and has numerous applications [2, 30, 49, 42, 4],
including monitoring the number of logins from distinct accounts to a streaming service, tracking
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the number of different countries represented by people in a chat room, and tracking the number of
students signed up for at least one club at a university. Algorithms for this problem are also used as
basic building blocks in more complicated data analyses.

We investigate the problem of privately counting the number of distinct elements under continual
observation in the turnstile model, which allows both element insertions and deletions. In the continual
release model, a data collector receives a sensitive dataset as a stream of inputs and produces, after
receiving each input, an output that is accurate for all inputs received so far. The input stream is
denoted x and its length (also called the time horizon) is denoted T . The elements come from a
universe U . Each entry in the stream is an insertion (denoted by +u) or a deletion (denoted by �u) of
some element u 2 U or, alternatively, a no-op (denoted by ?), representing that no update occurred
in the current time step. More formally, for a universe U , let U± denote the set {+,�}⇥ U [ {?} of
possible stream entries. The shorthand +u and �u is used for the pairs (+, u) and (�, u). Given a
vector x of length T and an integer t 2 [T ], the vector x[1 : t] denotes the prefix of x consisting of
the first t entries of x.

Next, we define the function CountDistinct in the (turnstile) continual release model.
Definition 1.1 (Existence vector, CountDistinct). Fix a universe U and a time horizon T 2 N.
For an element u 2 U and a stream x 2 UT

± , the existence vector fu(x) 2 {0, 1}T is an indi-
cator vector that tracks the existence of element u in x: specifically, for each t 2 [T ], the value
fu(x)[t] = 1 if and only if there are strictly more insertions than deletions of element u in x[1 : t].

The function CountDistinct : UT
± ! NT returns a vector of the same length as its input, where

CountDistinct(x)[t] =
P

u2U fu(x)[t] for all t 2 [T ].

The focus of our investigation is the best achievable error in the continual release model for a given
time horizon T and privacy parameters. We study the worst-case (over all input streams and time
steps t) additive error of privately approximating the distinct elements counts under continual release.
Definition 1.2 (Error of an answer vector and error of a mechanism for CountDistinct). Given
an answer vector a 2 RT , the error of this vector with respect to the desired function value
f(x) 2 RT computed on dataset x is defined as ERRf (x, a) = kf(x) � ak1. A mechanism for
CountDistinct in the continual release model is ↵-accurate if it outputs a vector of answers a with
error ERRCountDistinct(x, a)  ↵ with probability at least 0.99.

Next, we discuss privacy. Originally, differential privacy [27] was defined in a setting where a data
collector outputs the desired information about an entire dataset all at once. We call this the batch
model to contrast it with continual release. In the batch model, two datasets are called neighbors if
they differ in the data of one individual. There are two natural ways to adapt this definition to the
continual release model [25, 13], depending on the desired privacy guarantees.
Definition 1.3 (Neighboring streams). Let x, x0 2 UT

± be two streams of length T . Streams x and
x
0 are event-neighbors if one can be obtained from the other by replacing a stream entry with ?.

Streams x and x
0 are item-neighbors if one can be obtained from the other by replacing a subset of

stream entries pertaining to one specific element of U with symbol ?.

Differential privacy can be defined with respect to any notion of neighboring datasets. There are two
privacy parameters: " > 0 and � 2 [0, 1). An algorithm A is (", �)-differentially private (DP) if for
all pairs of neighboring datasets x, x0 and all events S in the output space of A,

Pr[A(x) 2 S]  e
"
Pr[A(x

0
) 2 S] + �.

The case when � = 0 is referred to as pure differential privacy, and the general case as approximate
differential privacy. For event-neighboring (respectively, item-neighboring) streams x, x

0 2 UT
± ,

we say that A is (", �)-event-level-DP (respectively, item-level-DP). Item-level differential privacy
imposes a more stringent requirement than event-level, since it guards against larger changes in
the input stream. To contrast with the batch setting, we refer to continual release algorithms as
mechanisms.

In the batch setting, where only CountDistinct(x)[T ] is released, there is an "-DP algorithm for
counting distinct elements with expected error O(1/") since the function CountDistinct(x)[T ] has
sensitivity 1—regardless of whether we consider event-level or item-level privacy. Privacy is more
challenging in the continual release setting, where we aim to release a sequence of estimates, one
for each time t, and we require that the privacy guarantee hold for the entire sequence of outputs.
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Bounds Item-Level Privacy Event-Level Privacy

Upper Õ

✓
min

✓�p
wx log T + log

3
T
�
·
p

log 1/�

" ,
(T log 1/�)1/3

"2/3
, T

◆◆
(Thm. 1.5)

Lower ⌦̃

⇣
min
⇣p

wx

" ,
T 1/3

"2/3
, T

⌘⌘
(Thm. 1.7) ⌦

⇣
min
⇣p

wx

" ,
T 1/4

"3/4
, T

⌘⌘
(Thm. 1.6)

Table 1: Summary of our results: bounds on the worst-case additive error for CountDistinct under
event-level and item-level (", �)-differential privacy, with "  1 and � = o(

"
T ). Upper bounds depend

on the maximum flippancy wx of the input x, for every x. Lower bounds apply to the worst-case
error of an algorithm taken over all inputs with a given maximum flippancy.

Prior work on privately estimating distinct elements in this setting considered the insertion-only
model, exclusively: Bolot et al. [9] show that one can get a sequence of estimates, all of which are
within additive error poly(log T )/". Their result holds for both item-level and event-level privacy
(which are essentially equivalent for counting distinct elements with only insertions). Follow-up work
generalized their mechanism but, again, considered only insertions [35, 29].

We uncover a much richer landscape in the turnstile model, even without considering memory
restrictions. We show that any differentially private mechanism that handles insertions and deletions
has worst-case additive error at least T 1/4 even under event-level privacy, the weaker of the two privacy
notions. To overcome this lower bound, we identify a property of the input stream, its maximum
flippancy, that is low for natural data streams and for which one can give tight parameterized error
guarantees. To define flippancy, recall the notion of the existence vector from Definition 1.1.
Definition 1.4 (Flippancy). Given a stream x of length T and an element u 2 U , the flippancy of u
in x, denoted by flip(u, x), is the number of pairs of adjacent entries in the existence vector fu(x)
with different values. That is, flip(u, x) = |{j 2 [T � 1] : fu(x)[j] 6= fu(x)[j + 1]}|. The maximum
flippancy of a stream x, denoted wx, is maxu2U flip(u, x).

In other words, the maximum flippancy is the largest number of times the contribution of a single
item to the distinct elements count changes over the course of the stream. We design item-level
private mechanisms whose error scales with the maximum flippancy of the stream, even though the
maximum flippancy is not an input to the mechanism. We show matching lower bounds for item-level
privacy that hold in all parameter regimes. For a large range of the flippancy parameter, we also show
a matching lower bound for event-level privacy, via a different argument. This leaves a range with an
intriguing gap between item-level and event-level bounds.

1.1 Our results

Our results are summarized in Table 1. Our first result is a mechanism for privately approximating
CountDistinct for turnstile streams. For a stream x of length T with maximum flippancy wx,
this mechanism is item-level-DP and has error O

�
min(

p
wx· polylog T, T 1/3

�
). Crucially, the

mechanism is not given the maximum flippancy upfront.
Theorem 1.5 (Upper bound). For all ", � 2 (0, 1] and sufficiently large T 2 N, there exists an
(", �)-item-level-DP mechanism for CountDistinct that is ↵-accurate for all turnstile streams x of
length T , where

↵ = Õ

 
min

 
�p

wx log T + log
3
T
�
·
p
log 1/�

"
,
(T log 1/�)

1/3

"2/3
, T

!!
,

and wx is the maximum flippancy of the stream x.

Since this mechanism is item-level-DP, it is also event-level-DP with the same privacy parameters.
The error it achieves is the best possible in terms of dependence only on wx for item-level privacy,
and this error is nearly tight for event-level privacy. When wx is small, as is the case for many natural
streams, our mechanism has error O(polylog T ), similar to mechanisms for the insertion-only setting.

Theorem 1.5 can be easily extended to " bounded by any constant larger than 1. We fixed the bound
to be 1 to simplify the presentation. Our mechanism has polynomial time and space complexity in the
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input parameters, although it does not achieve the typically sublinear space guarantees of streaming
algorithms. (See “Bounded Memory” in Section 1.4 for discussion.)

Our lower bounds on the accuracy for CountDistinct for turnstile streams are parametrized by a
flippancy bound w, and apply for streams with maximum flippancy wx  w. For event-level DP, our
lower bound shows that for all mechanisms with error guarantees expressed solely in terms of the
maximum flippancy wx, time horizon T , and privacy parameter ", our CountDistinct mechanism is
asymptotically optimal for a large range of values of wx, namely, for all wx  T

1/2 and wx � T
2/3.

The best achievable error for wx 2 (T
1/2

, T
2/3

) for event-level DP remains an open problem.
Theorem 1.6 (Event-level lower bound). Let ", � 2 (0, 1], and sufficiently large w, T 2 N such that
w  T . For all (", �)-event-level-DP mechanisms that are ↵-accurate for CountDistinct on turnstile
streams of length T with maximum flippancy at most w, if � = o(

"
T ),

↵ = ⌦

✓
min

✓p
w

"
,
T

1/4

"3/4
, T

◆◆
.

In particular, any accuracy bound for event-level algorithms depending only on wx, as in Theorem 1.5,
must grow as ⌦

⇣
min

⇣p
wx

" ,
T 1/4

"3/4
, T

⌘⌘
, in all ranges of wx. This is reflected in Table 1.

For item-level DP, our lower bound on the error matches our upper bound for all regimes of wx up to
polylogarithmic factors.
Theorem 1.7 (Item-level lower bound). Let " 2 (0, 1], � 2 (0, 1], and sufficiently large w, T 2 N
such that w  T . For all (", �)-item-level-DP mechanisms that are ↵-accurate for CountDistinct on
turnstile streams of length T with maximum flippancy at most w,

1 If � = o("/T ), then ↵ = ⌦̃

⇣
min
⇣p

w
" ,

T 1/3

"2/3
, T )

⌘⌘
.

2 If � = 0, then ↵ = ⌦

⇣
min
⇣

w
" ,

q
T
" , T

⌘⌘
.

In particular, any accuracy bounds depending only on wx must grow at least as quickly as the
expressions in Table 1.

Variants of the model. All our lower bounds also hold in the strict turnstile model, where element
counts never go below 0. They also apply to offline mechanisms that receive the entire input stream
before producing output; they do not rely on the mechanism’s uncertainty about what comes later in
the stream. Furthermore, our item-level lower bounds hold even in the model where each element
can be inserted only when it is absent and deleted only when it is present (as is the case, for example,
with the “like” counts on social media websites).

1.2 Our techniques

Upper bound techniques: tracking the maximum flippancy. Before describing our algorithmic
ideas, we explain the main obstacle to using the techniques previously developed for insertion-
only streams [9, 29] in the turnstile setting. Bolot et al. [9] and Epasto et al. [29] used a reduc-
tion from CountDistinct to the summation problem. A mechanism for the summation problem
outputs, at every time step t 2 [T ], the sum of the first t elements of the stream. Dwork et
al. [27] and Chan et al. [13] designed the binary-tree mechanism to obtain a O(polylog T )-accurate
mechanism for summation. Given an input stream x of length T (to the CountDistinct problem),
define a corresponding summation stream sx 2 {�1, 0, 1}T . At time step t 2 [T ], the entry
sx[t] equals the difference in the count of distinct elements between time steps t � 1 and t, i.e.,
sx[t] = CountDistinct(x)[t]� CountDistinct(x)[t� 1]. Then CountDistinct(x)[t] is precisely the
sum of the first t elements of sx. In the insertion-only model, changing one entry of x changes at most
2 entries of sx, and thus, by group privacy, the binary-tree mechanism has O(polylog T ) additive
error for CountDistinct. For turnstile streams, even under the weaker notion of event-level privacy, a
change in the stream x can cause ⌦(T ) changes to sx. To see this, consider the stream consisting of
alternating insertions (+u) and deletions (�u) of a single element u 2 U , and its event-neighboring
stream where the first occurrence of +u is replaced with ?. This example illustrates that one of the
difficulties of the CountDistinct problem for turnstile streams lies with items that switch from being
present to absent multiple times over the course of the stream, that is, have high flippancy. We present
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a private mechanism that outputs estimates of the count of distinct elements in a turnstile stream with
optimal accuracy in terms of maximum flippancy.

Our first key idea allows us to obtain a mechanism, Algorithm 1, that is given as input a flippancy
upper bound w. For a stream x whose maximum flippancy is bounded by w, changing to an item-
neighbor of x causes at most 2w changes to the corresponding summation stream sx. This observation,
combined with a group privacy argument, gives a mechanism with error O(w · polylog T ) directly
from the accuracy guarantee of the binary-tree mechanism for summation. Previous works in the
insertion-only model [9, 29] used precisely this approach for the special case w = 1. To obtain
the better

p
w dependence on w in our upper bound, we “open up” the analysis of the binary-tree

mechanism. By examining the information stored in each node of the binary tree for the summation
stream, we show that changing the occurrences of one item in a stream x with maximum flippancy at
most w can change the values of at most w nodes in each level of the binary tree. The

p
w dependence

in the error then follows from the privacy guarantees of the Gaussian mechanism (used inside the
binary-tree mechanism) for approximate differential privacy. This type of noise reduction makes
crucial use of the binary tree approach: there are optimized noise addition schemes for prefix sums
that improve quantitatively over the binary-tree mechanism (see, e.g., [18, 41]), but it is unclear if they
allow the same noise reduction. While our mechanism is only accurate for streams with maximum
flippancy at most w, it is private even for streams that violate this condition. To achieve this, our
mechanism ignores stream elements after their flippancy exceeds w.

The second key idea allows our algorithms to adapt automatically to the maximum flippancy wx of
the input, without the need for an a-priori bound w. We design a private mechanism, Algorithm 3,
that approximately keeps track of the maximum flippancy of the prefix of the stream seen so far and
invokes our first mechanism (Algorithm 1) with the current estimated maximum flippancy ŵ as an
input. Our main innovation lies in the careful application of the sparse vector algorithm [24] to track
the maximum flippancy of the stream. We cannot do this directly, since the sparse vector algorithm
achieves good utility only for queries of low sensitivity, and maximum flippancy has global sensitivity
⌦(T ) under item-level changes.

Instead, we track a low sensitivity proxy that indirectly monitors the maximum flippancy wx: given
the current estimate ŵ of the flippancy, we use the sparse vector algorithm to continuously query the
number of items in the stream with flippancy above ŵ. This query has sensitivity one for item-level
neighbors, as desired, but it is not a priori clear how to use it to upper bound the maximum flippancy
of the stream. This is remedied by observing that Algorithm 1, invoked with a flippancy bound ŵ,
has the same error (and privacy) guarantee even if at most

p
ŵ items in the stream have flippancy

higher than ŵ. That is, an exact upper bound on the maximum flippancy is not needed to design an
accurate mechanism. Items that violate the flippancy bound are safely ignored by Algorithm 1 and do
not contribute to the distinct elements count.

When the number of high-flippancy items gets large, we adjust the estimate ŵ and invoke a new
instantiation of Algorithm 1. By doubling ŵ each time this happens, we ensure that it remains at
most twice the actual maximum flippancy wx, and that we need only invoke log T different copies
of Algorithm 1 and the sparse vector algorithm1. With these ideas, we obtain an item-level private
mechanism that, for all streams x, has error that scales with

p
wx.

Lower bound techniques. Our lower bounds use the embedding technique introduced by Jain
et al. [44] to obtain strong separations between the batch and continual release models of differential
privacy. The approach of Jain et al. embeds multiple separate instances of an appropriately chosen
base problem on the same sensitive dataset in the batch model into a single instance of a continual
release problem. Then, the continual release mechanism can be used to solve multiple instances of
the base problem in the batch model. The hardness results in the continual release model follow from
lower bounds for the batch model.

A key idea in our event-level lower bound is a connection between the inner product of two binary
vectors and the count of distinct elements in the union of those indices where the vector bits equal
1. Estimates of distinct elements counts can thus be used to estimate inner products on a sensitive
dataset of binary bits. Lower bounds on the accuracy of private algorithms for estimating inner
product queries have been previously established in the batch model through the reconstruction attack
of Dinur and Nissim [21]. This connection was used by Mir et al. [50] to provide lower bounds for

1All log expressions in this article are base 2.
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pan-private algorithms for counting distinct elements. However, continual release and pan-privacy
are orthogonal notions, and their results don’t imply any lower bounds in our setting. We crucially
use deletions to embed multiple instances of inner product queries into a stream: once a query is
embedded and the desired estimate is received, the elements inserted to answer that query can be
entirely deleted from the stream to obtain a “clean slate” for the next query. We obtain a lower bound
of T 1/4 on the error of event-level private mechanisms for CountDistinct in turnstile streams.

We obtain our stronger item-level lower bounds (for pure and approximate differential privacy) by
embedding multiple instances of a 1-way marginal query. We then apply lower bounds of Hardt and
Talwar [38] and Bun et al. [12] for releasing all 1-way marginals in the batch model in conjunction
with our reduction. The 1-way marginals of a dataset y 2 {0, 1}n⇥d, consisting of n records and d

attributes, are the averages of all d attributes of y. Deletions in the stream are once again crucially
used to embed a marginal query for one attribute and then clean the slate for the next attribute.
Changing one record/row in the dataset y translates to d changes of an item in the constructed stream,
and thus this reduction is particularly tailored to item-level lower bounds.

1.3 Related work

The study of differential privacy under continual release was initiated by two concurrent works
[25, 13]. They proposed the binary-tree mechanism for computing sums of binary bits. The binary-
tree mechanism has found numerous applications in the continual release setting and elsewhere,
demonstrating the versatility of this mechanism. Under continual release, it has been extended to
work for sums of real values [52], weighted sums [9], graph statistics [55, 31], and most relevantly,
counting distinct elements [9, 29, 35]. It has also been employed for private online learning [45, 57, 1]
and for answering range queries [25, 26, 28].

Prior to our work, the CountDistinct problem with continual release was studied exclusively in the
insertions-only model. Bolot et al. [9] were the first to study this problem and showed a O(log

1.5
T )-

accurate item-level-DP mechanism. Ghazi et al. [35] considered the more challenging sliding-window
model and showed nearly-matching upper and lower bounds for this setting, parameterized by the
window size, for item-level and event-level differential privacy. Epasto et al. [29] studied the more
general `p-frequency estimation problem with a focus on space efficiency. For distinct elements, i.e.,
p = 0, their mechanism provides an estimate with 1 + ⌘ multiplicative error and O(log

2
T ) additive

error, using space poly(log T/⌘). They also extended their results to the sliding-window model.
Two of the works [9, 29] reduced the CountDistinct problem to the bit summation primitive, which
allowed them to use the binary-tree mechanism. Since the streams are restricted to be insertion-only,
the bit summation primitives they considered have low constant sensitivity. The same primitives
have sensitivity ⌦(T ) for turnstile streams, and thus this approach cannot be directly extended to our
setting. Ghazi et al. [35] observed that for fixed and sliding windows, the distinct elements problem
can be reduced to range queries. For the special case when the window is the entire stream, their
reduction is to the summation problem.

In concurrent work, Henzinger et al. [40] studied CountDistinct with insertions and deletions in a
different version of the continual release model (which we call the ‘likes’ model), where an item can
be deleted at a time step only if it is already present in the stream at that time step, and inserted only
if it is absent from the stream at that time step. Our model is more general, since multiple insertions
and deletions of the same item can happen consecutively. Our upper bound and our item-level privacy
lower bound can be extended to the ‘likes’ model. On the other hand, our event-level private lower
bound provably does not apply to that model: in the ‘likes’ model, for event-level privacy, there
is a simple reduction to the bit summation problem in the continual release model such that the
resulting algorithm incurs only a polylogarithmic in T error, whereas we show that in our model, any
event-level private algorithm incurs a polynomial in T error.

Henzinger et al. [40] showed error bounds for item-level privacy in the likes model that are parame-
terized by the total number of updates K in the stream. The parameter K is related to our concept of
flippancy: in the likes model, K equals the sum of all items’ flippancies and, in general, is at least
that sum. Henzinger et al. [40] give an (", 0)-DP algorithm with error Õ(

p
K log T ) and show a

nearly matching lower bound on the error for (", 0)-DP algorithms using a packing argument. This
lower bound applies to our model as well. It is incomparable to our lower bounds, since it scales
differently and depends on a different parameter. In our model, their algorithm can be analyzed to give
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error bounds in terms of the sum K
0 of the flippancies of the items and incurs error Õ(

p
K 0 log T );

however,it is unclear if their algorithm can be analyzed in our model to give bounds in terms of the
(potentially smaller) maximum flippancy.

Another line of work investigated private sketches for distinct elements, motivated by the popularity
of sketching algorithms for the streaming setting. Mergeable sketches for counting distinct elements
have received particular attention [56, 15, 51, 39], since they allow multiple parties to estimate
the joint count of distinct elements by merging their private sketches. While these sketches can
be combined with the binary-tree mechanism to obtain private mechanisms for CountDistinct, the
utility deteriorates when many (log T ) sketches are merged. In fact, Desfontaines et al. [19] showed
that achieving both privacy and high accuracy is impossible when many sketches for counting
distinct elements are merged. Other private sketches have been studied [54, 20, 58] for the streaming
batch setting (without continual release). The distinct elements problem has also been studied in a
distributed setting [14, 34] and under pan-privacy [50]. In particular, our lower bound for event-level
privacy uses ideas from the lower bound of Mir et al. [50], as described in Section 1.2

The CountDistinct problem has been extensively studied in the non-private streaming setting, where
the goal is to achieve low space complexity [32, 3, 16, 36, 37, 6, 5, 22, 43, 59, 30, 7, 33, 10, 46].
Blocki et al. [8] showed a black-box transformation for every streaming algorithm with tunable
accuracy guarantees into a DP algorithm with similar accuracy, for low sensitivity functions. Their
transformation does not obviously extend to the continual release setting. Moreover CountDistinct
has high sensitivity for turnstile streams.

The first lower bound in the continual release model of differential privacy was an ⌦(log T ) bound on
the accuracy of mechanisms for bit summation, shown by Dwork et al. [25]. Jain et al. [44] gave the
first polynomial separation in terms of error between the continual release model and the batch model
under differential privacy. Our lower bounds also show such a separation. The lower bounds of Jain
et al. [44] were for the problems of outputting the value and index of the attribute with the highest
sum, amongst d attributes of a dataset. Our lower bounds are inspired by their sequential embedding
technique to reduce multiple instances of a batch problem to a problem in the continual release model.
Similar to them, we also reduce from the 1-way marginals problem to obtain our item-level lower
bound. However, our event-level lower bound involves reducing from a different problem, and our
reductions use the specific structure of CountDistinct for turnstile streams.

1.4 Broader impact, limitations, and open questions

We study the achievable error of DP mechanisms for CountDistinct under continual observation in
streams with insertions and deletions. We show that it is characterized by the maximum flippancy of
the stream. Our work is motivated by societal concerns, but focused on fundamental theoretical limits.
It contributes to the broader agenda of obtaining privacy-preserving algorithms for data analysis. We
discuss natural directions for future research and some limitations of our work.

Tight bounds: We found the best achievable error in some settings, but our upper and lower bounds
do not match in some parameter regimes. What is the right error bound for event-level privacy for
streams x with maximum flippancy wx between

p
T and T

2/3? Our results yield a lower bound of
T

1/4 and an upper bound of roughly
p
wx.

Bounded memory: We did not consider any memory restrictions. Prior to our work, no other work
addressed CountDistinct with deletions under continual release—with or without space constraints.
We consider only the privacy constraint since it is more fundamental—it cannot be avoided by buying
more memory—and the best algorithms with unbounded memory provide a benchmark by which to
evaluate space-constrained approaches.

Space complexity is certainly a natural topic for future work. While it is not clear how to apply the
sketching techniques of Epasto et al. [29] to the turnstile setting, it would be interesting to come
up with accurate, private, and low-memory mechanisms for counting distinct elements in turnstile
streams. Such algorithms would necessarily mix multiplicative and additive error guarantees (due to
space and privacy constraints, respectively).
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1.5 Organization

In Section 2, we present a mechanism for privately approximating CountDistinct on turnstile streams.
Preliminaries on differential privacy, proofs omitted from Section 2 as well as proofs of Theorems 1.6
and 1.7 all appear in the supplementary material.

2 Item-level private mechanisms for CountDistinct

In this section, we present our item-level-DP mechanism for CountDistinct for turnstile streams. Its
guarantees are stated in Theorem 2.1 with zero Concentrated Differential Privacy (zCDP). Using this
notion of privacy, one can show tight bounds for the Gaussian mechanism and cleaner and tighter
bounds for composition. Theorem 2.1 is the key ingredient in our proof of Theorem 1.5. This section
is dedicated to our CountDistinct mechanism and the main ideas behind it. All proofs are deferred to
the supplementary material.
Theorem 2.1 (Upper bound). For all ⇢ 2 (0, 1] and sufficiently large T 2 N, there exists a ⇢-item-
level-zCDP mechanism for CountDistinct that is ↵-accurate for all turnstile streams x of length T ,
where

↵ = O

⇣p
wx log T + log

3
T

p
⇢

⌘
,

and wx is the maximum flippancy of the stream x.

In Section 2.1, we describe a modification to the binary-tree mechanism which, when analyzed
carefully, provides the desired error guarantees—but only if the maximum flippancy of the stream is
known upfront. In Section 2.2, we use this mechanism, in conjunction with a method for adaptively
estimating the flippancy bound, to obtain our item-level-DP mechanism for CountDistinct.

2.1 Enforcing a given flippancy bound w

When a flippancy upper bound w is given upfront, we leverage the structure of the binary-tree
mechanism to privately output the number of distinct elements at each time t 2 [T ], where T is the
stream length. The mechanism and its error guarantees are presented in Algorithm 1 and Theorem 2.2,
respectively. To provide intuition, we first describe the mechanism when it is run on streams with
maximum flippancy at most w. We then discuss a modification that ensures privacy of the mechanism
for all streams regardless of maximum flippancy.

Algorithm 1 stores vectors f̃u 2 {0, 1}T for all elements u 2 U that appear in the stream. For
streams with maximum flippancy at most w, the vector f̃u is equal to the existence vector fu. In
this case, by Definition 1.1, the number of distinct elements at timestep t 2 [T ] equals

P
u2U f̃u[t].

The mechanism outputs values
P

u2U f̃u[t] with Gaussian noise added according to the binary-tree
mechanism, with privacy parameter ⇡ ⇢/w (see Definition 2.4)—that is, with noise scaled up by a
factor of ⇡

p
w/⇢. The accuracy of this mechanism follows from that of the binary-tree mechanism.

However, if the mechanism computed fu instead of f̃u, it would not be private for streams with
maximum flippancy greater than w, since it adds noise that scales according to w. That is because for
every stream x 2 UT

± with maximum flippancy wx > w there exists a neighboring stream x
0 such

that the vectors CountDistinct(x) and CountDistinct(x0
) differ in as many as ⇥(wx) indices. To

provide privacy for such streams, the mechanism simply “truncates” the vector fu 2 {0, 1}T to obtain
f̃u[t] = 0 for all t � t

⇤ if the flippancy of u in x[1 : t
⇤
] exceeds w. This corresponds to running the

naive version of the mechanism (that uses fu instead of f̃u) on the “truncated” version of the stream
x, where elements in x are ignored after their flippancy exceeds w. (Note that the computation of f̃u
can be done online since f̃u[t] depends only on x[1 : t].) With a careful analysis of the value stored
in each node of the binary tree, we are able to show that this mechanism is ⇢-item-level-zCDP for all
streams, however, it loses accuracy for streams with many high flippancy elements. In Section 2.2,
we leverage this mechanism to provide estimates of CountDistinct that are both accurate and private
for all streams.
Theorem 2.2 (Mechanism for a given flippancy bound w). Fix ⇢ 2 (0, 1], sufficiently large T 2 N,
and w  T . Algorithm 1 is a mechanism for CountDistinct for turnstile streams that is ⇢-item-
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level-zCDP for all input streams of length T , and ↵-accurate for streams of length T with maximum
flippancy at most w, where ↵ = O

⇣p
w log T+log3 Tp

⇢

⌘
.

Algorithm 1 Mechanism M for CountDistinct with given flippancy bound

Input: Time horizon T 2 N, privacy parameter ⇢ > 0, flippancy bound w > 0, stream x 2 UT
±

Output: Vector s 2 RT of distinct count estimates
1: Sample a binary-tree random variable Z 2 RT with parameter ⇢0 = ⇢

4w(log T+1) . Definition 2.4
2: Initialize Ux = ;
3: for all t 2 [T ] do

4: Obtain entry x[t] and skip to Step 10 if x[t] = ?
5: Suppose x[t] is an insertion or deletion of a universe element u
6: if u /2 Ux then insert u into Ux; initialize countu = 0 and f̃u = 0T . vector with T zeros
7: if x[t] = +u then countu += 1 else countu � = 1

8: for all v 2 Ux do

9: if flip(v, x[1 : t])  w and countv > 0 then set f̃v[t] = 1

10: Return s[t] = (
P

u2Ux
f̃u[t]) + Z[t]

Definition 2.3 (Dyadic decomposition). For t 2 N, the dyadic decomposition of the interval (0, t] is
a set of at most log t+ 1 disjoint intervals whose union is (0, t], obtained as follows. Consider the
binary representation of t (which has at most log t+1 bits), and express t as a sum of distinct powers
of 2. Then, the first interval is (0, r], where r is the largest power of 2 in the sum. The second interval
starts at r + 1 and its size is the second largest power of 2 in the sum. The remaining intervals are
defined similarly for all remaining summands. For example, for t = 11 = 8 + 2 + 1, the dyadic
decomposition of (0, 11] is the intervals (0, 8], (8, 10] and (10, 11].
Definition 2.4 (Binary tree and binary-tree random variable). Let ⇢ > 0 be a privacy parameter and
T 2 N be a power of 2. Consider a complete binary tree with T leaves whose nodes are labeled as
follows. The T leaves are labeled by the intervals (t � 1, t] for all t 2 [T ] and the internal nodes
are labeled by intervals obtained from the union of their children’s intervals. Specifically, the binary
tree consists of log T + 1 levels. A level ` 2 [0, log T ] partitions the interval (0, T ] into a set of T

2`

disjoint intervals, each of length 2
`, of the form ((i� 1) · 2`, i · 2`]. The nodes in level ` are labelled

by the intervals in this partition.

The binary-tree random variable Z 2 RT with parameter ⇢ is defined as follows. For each node
(t1, t2] in the binary tree with T leaves, let Z(t1,t2] ⇠ N (0, 1/⇢). For each t 2 [T ], consider the
dyadic decomposition of the interval (0, t] (Definition 2.3) and let Z[t] be the sum of the random
variables corresponding to the intervals in this dyadic decomposition.

The proof of Theorem 2.2 can be found in Section B.

2.2 Adaptively estimating a good flippancy bound w

In this section, we leverage the privacy and accuracy guarantees of Algorithm 1 to construct a
new mechanism (Algorithm 3) for estimating CountDistinct. It achieves the privacy and accuracy
guarantees of Theorem 2.1, when the maximum flippancy is not known upfront. Algorithm 3 instan-
tiates log T + 1 different copies B0, . . .Blog T of Algorithm 1 with flippancy bounds 20, . . . , 2log T ,
respectively (the maximum flippancy of a stream is at most T ). To obtain an accurate estimate of the
distinct elements count, at each time t 2 [T ], we privately select i 2 [0, log T ] such that the output of
Bi satisfies the desired accuracy guarantee for the stream entries x[1 : t] received so far. Selecting
such i amounts to selecting a good bound on the maximum flippancy of the stream x[1 : t]. Next, we
describe how to obtain this bound using the sparse vector technique (Algorithm 2).

The maximum flippancy has high sensitivity; changing one stream entry can change the maximum
flippancy drastically. However, the number of items with flippancy greater than any particular
threshold is a function of sensitivity one. Furthermore, since Algorithm 1 when run with flippancy
bound w already has error about

p
w/⇢, its accuracy guarantee remains asymptotically the same

even if it simply ignores that many elements with flippancy greater than w. Thus, Algorithm 3 uses
the sparse vector technique to maintain an upper bound on the flippancy of x[1 : t] such that not too
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many elements in x[1 : t] violate that bound. This bound, in combination with the error guarantee of
Algorithm 1, suffices to provide the desired low error guarantee. Since the sparse vector algorithm
remains differentially private even when its queries are chosen adaptively, the privacy guarantees of
Algorithm 3 follow from the privacy of Algorithms 1 and 2.

Algorithm 2 SVT: Answering Threshold Queries with Sparse Vector Technique
Input: Stream x, queries q1, q2, . . . of sensitivity 1, cutoff c > 0, privacy parameter ⇢
Output: Stream of Above or Below answers

1: Let " =
p
2⇢ and set count = 0

2: Let Z ⇠ Lap(2/")

3: for each query qt do

4: Let Zt ⇠ Lap(4c/")

5: if qt(x) + Zt � Z and count < c then

6: Return Above
7: count = count+ 1

8: else

9: Return Below

Algorithm 3 Mechanism M for CountDistinct

Input: Time horizon T 2 N, privacy parameter ⇢ > 0, stream x 2 UT
±

Output: Vector s of distinct count estimates
1: Initialize vector wmax = 1 � 0T�1

2: for all i 2 [0, log T ] do

3: Initialize Bi as Algorithm 1 with horizon T , privacy parameter ⇢
2(log T+1) , flippancy 2

i

4: Initialize SVT with privacy parameter ⇢/2 and cutoff log T . See Algorithm 2
5: for all t 2 [T ] do

6: Obtain entry x[t]

7: If t � 2, set wmax[t] = wmax[t� 1]

8: for all i 2 [log T ] do

9: Send x[t] to mechanism Bi and get output si,t
10: while True do

11: Consider query qt = |{u 2 U : flip(u, x[1 : t]) � wmax[t]}|�
q

wmax[t]
⇢

12: Send query qt to SVT and if the output is “Below”, break
13: Update wmax[t] = 2 · wmax[t]

14: Return sj,t for j = log(wmax[t]) . Note that j 2 [0, log T ]

The proof of Theorem 2.1 can be found in Section C.
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