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Abstract

A critical yet frequently overlooked challenge in the field of deepfake detection is
the lack of a standardized, unified, comprehensive benchmark. This issue leads to
unfair performance comparisons and potentially misleading results. Specifically,
there is a lack of uniformity in data processing pipelines, resulting in inconsistent
data inputs for detection models. Additionally, there are noticeable differences in
experimental settings, and evaluation strategies and metrics lack standardization.
To fill this gap, we present the first comprehensive benchmark for deepfake detec-
tion, called DeepfakeBench, which offers three key contributions: 1) a unified data
management system to ensure consistent input across all detectors, 2) an integrated
framework for state-of-the-art methods implementation, and 3) standardized evalu-
ation metrics and protocols to promote transparency and reproducibility. Featuring
an extensible, modular-based codebase, DeepfakeBench contains 15 state-of-the-art
detection methods, 9 deepfake datasets, a series of deepfake detection evaluation
protocols and analysis tools, as well as comprehensive evaluations. Moreover, we
provide new insights based on extensive analysis of these evaluations from various
perspectives (e.g., data augmentations, backbones). We hope that our efforts could
facilitate future research and foster innovation in this increasingly critical domain.
All codes, evaluations, and analyses of our benchmark are publicly available at
https://github.com/SCLBD/DeepfakeBench.

1 Introduction
Deepfake, widely recognized for its facial manipulation, has gained prominence as a technology
capable of fabricating videos through the seamless superimposition of images. The surging popularity
of deepfake technology in recent years can be attributed to its diverse applications, extending from
entertainment and marketing to more complex usages. However, the proliferation of deepfake is not
without risks. The same tools that enable creativity and innovation can be manipulated for malicious
intent, undermining privacy, promoting misinformation, or eroding trust in digital media, etc.

Responding to the risks posed by deepfake contents, numerous deepfake detection methods [53,
22, 33, 32, 52, 3] have been developed to distinguish deepfake contents from real contents, which
are generally categorized into three types: naive detector, spatial detector, and frequency detector.
Despite rapid advancements in deepfake detection technologies, a significant challenge remains due
to the lack of a standardized, unified, and comprehensive benchmark for a fair comparison among
different detectors. This issue causes three major obstacles to the development of the deepfake
detection field. First, there is a remarkable inconsistency in the training configurations and evaluation
standards utilized in the field. This discrepancy inevitably leads to divergent outcomes, making a fair
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Model Type Detectors Backbone Repositories Reference

Naive Detector MesoNet [1] Designed CNN https://github.com/DariusAf/MesoNet WIFS-2018
Naive Detector MesoInception [1] Designed CNN https://github.com/DariusAf/MesoNet WIFS-2018
Naive Detector CNN-Aug [48] ResNet [16] https://peterwang512.github.io/CNNDetection/ CVPR-2020
Naive Detector EfficientNet-B4 [40] EfficientNet [40] https://github.com/lukemelas/EfficientNet-PyTorch ICML-2019
Naive Detector Xception [33] Xception [5] https://github.com/ondyari/FaceForensics ICCV-2019

Spatial Detector Capsule [29] Designed Capsule [34] https://github.com/nii-yamagishilab/Capsule-Forensics-v2 ICASSP-2019
Spatial Detector DSP-FWA [22] Xception [5] https://github.com/danmohaha/CVPRW2019_Face_Artifacts CVPRW-2019
Spatial Detector Face X-ray [20] HRNet [46] Unpublished code, reproduced by us CVPR-2020
Spatial Detector FFD [6] Xception [5] cvlab.cse.msu.edu/project-ffd.html CVPR-2020
Spatial Detector CORE [30] Xception [5] https://github.com/niyunsheng/CORE CVPRW-2022
Spatial Detector RECCE [2] Designed Networks https://github.com/VISION-SJTU/RECCE CVPR-2022
Spatial Detector UCF [50] Xception [5] Unpublished code, reproduced by us ICCV-2023

Frequency Detector F3Net [32] Xception [5] Unpublished code, reproduced by us ECCV-2020
Frequency Detector SPSL [26] Xception [5] Unpublished code, reproduced by us CVPR-2021
Frequency Detector SRM [27] Xception [5] Unpublished code, reproduced by us CVPR-2021

Table 1: Summary of the compared deepfake detectors. For detectors without publicly available repositories,
we undertake careful re-implementation, adhering to the instructions specified in the original papers.

comparison difficult. Second, the source codes of many methods are not publicly released, which
could be detrimental to the reproducibility and comparability of their reported results. Third, we find
that the detection performance can be significantly influenced by several seemingly inconspicuous
factors, e.g., the number of selected frames in a video. Since the settings of these factors are not
uniform and their impacts are not thoroughly studied in most existing works, the reported results and
corresponding claims may be biased or misleading.

To bridge this gap, we build the first comprehensive benchmark, called DeepfakeBench, offering
a unified platform for deepfake detection. Our main contributions are threefold. 1) An extensible
modular-based codebase: Our codebase consists of three main modules. The data processing
module provides a unified data management module to guarantee consistency across all detection
inputs, such that alleviating the time-consuming data processing and evaluation. The training module
provides a modular framework to implement state-of-the-art detection algorithms, facilitating direct
comparisons among different detection algorithms. The evaluation and analysis module provides
several widely adopted evaluation metrics and rich analysis tools to facilitate further evaluations and
analysis. 2) Comprehensive evaluations: We evaluate 15 state-of-the-art detectors with 9 deepfake
datasets under a wide range of evaluation settings, providing a holistic performance evaluation of
each detector. Moreover, we establish a unified evaluation protocol that enhances the transparency
and reproducibility of performance evaluation. 3) Extensive analysis and new insights: We provide
extensive analysis from various perspectives, not only analyzing the effects of existing algorithms but
also uncovering new insights to inspire new technologies. In summary, we believe DeepfakeBench
could constitute a substantial step towards calibrating the current progress in the deepfake detection
field and promoting more innovative explorations in the future.

2 Related Work
Deepfake Generation Deepfake technology, which generally centers on the artificial manipulation
of facial imagery, has made considerable strides from its rudimentary roots. Starting in 2017, learning-
based manipulation techniques have made significant advancements, with two prominent methods
gaining considerable attention: Face-Swapping and Face-Reenactment. 1) Face-swapping constitutes
a significant category of deepfake generation. These techniques typically involve autoencoder-based
manipulations, which are based on two autoencoders with a shared encoder and two different decoders.
The autoencoder output is then blended with the rest of the image to create the forgery image. Notable
face-swapping datasets of this approach include UADFV [21], FF-DF [7], CelebDF [23], DFD [9],
DFDC [8], DeeperForensics-1.0 [17], and ForgeryNet [31]. 2) Face-reenactment is characterized
by graphics-based manipulation techniques that modify source faces imitating the expressions of a
different face. NeuralTextures [41] and Face2Face [42], utilized in FaceForensics++, stand out as
standard face-reenactment methods. Face2Face uses key facial points to generate varied expressions,
while NeuralTexture uses rendered images from a 3D face model to migrate expressions.

Deepfake Detection Current deepfake detection can be broadly divided into three categories: naive
detector, spatial detector, and frequency detector. 1) Naive detector employs CNNs to directly
distinguish deepfake content from authentic data. Numerous CNN-based binary classifiers have
been proposed, e.g., MesoNet [1] and Xception [33]. 2) Spatial detector delves deeper into
specific representation such as forgery region location [28], capsule network [29], disentanglement
learning [50, 24], image reconstruction [2], erasing technology [45], etc. Besides, some other
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Feature / Paper DeepfakeBench Paper [25]

Scope of Deepfake Face-swapping + Diffusion + GAN Face-swapping
Number of Detectors 15 11
Number of Datasets 9 8
Code Open Source ✓ Not yet

Modular and Extensible Codebase ✓ -
User-Friendly APIs ✓ -

Customizable Preprocessing Module ✓ -
Unified Training Framework ✓ -

Rich Analysis Tools ✓ ✓
Analysis of FLOPs - ✓
Evaluation Metrics AUC, AP, ACC, EER, Precision, Recall AUC

Table 2: Comprehensive comparison of our benchmark with existing benchmark [25].

methods specifically focus on the detection of blending artifacts [22, 20, 3], generating forged images
during training in a self-supervised manner to boost detector generalization. 3) Frequency detector
addresses this limitation by focusing on the frequency domain for forgery detection [13, 32, 26, 27].
SPSL [26] and SRM [27] are other examples of frequency detectors that utilize phase spectrum
analysis and high-frequency noises, respectively. Qian et al. [32] propose the use of learnable filters
for adaptive mining of frequency forgery clues using frequency-aware image decomposition.

Related Deepfake Surveys and Benchmarks The growing implications of deepfake technology
have sparked extensive research, resulting in the establishment of several surveys and dataset bench-
marks in the field. 1) Surveys provide a detailed examination of various facets of deepfake technology.
For instance, Westerlund et al. [49] present a thorough analysis of deepfake, emphasizing its legal
and ethical dimensions. Tolosana et al. [43] furnish a comprehensive review of face manipulation
techniques, including deepfake methods, along with approaches to detect such manipulations. 2)
Benchmarks in this field have emerged as essential tools to provide realistic forgery datasets. For
instance, FaceForensics++ (FF++) [33] serves as a prominent benchmark, offering high-quality
manipulated videos and a variety of forgery types. The Deepfake Detection Challenge Dataset
(DFDC) [10] introduces a diverse range of actors across different scenarios.

While these benchmarking methodologies have made significant contributions, they specifically
focus on their own datasets, without offering a standardized way to handle data across different
datasets, which may lead to inconsistencies and obstacles to fair comparisons. Also, the lack of a
unified framework in some benchmarks could lead to variations in training strategies, settings, and
augmentations, which may result in discrepancies in the outcomes. Furthermore, the provision of
comprehensive analytical tools is not always prominent, which might restrict the depth of analysis
on the potential impacts of different factors. One notable work [25] aims to build a benchmark
for evaluating various detectors under different datasets. Another recent work [18] introduces a
benchmark centered around detecting GAN-generated images using continual learning. However,
these two benchmarks still lack a modular, extensible, and comprehensive codebase that includes
data preprocessing, unified settings, training modules, evaluations, and a series of analytical tools.
DeepfakeBench, on the other hand, presents a concise but comprehensive benchmark. Its contributions
are threefold: introducing a unified data management system for consistency, offering an integrated
framework for implementing advanced methods, and analyzing the related factors with a series of
analysis tools. Detailed comparisons between our DeepfakeBench and [25] are shown in Tab.2.

3 Our Benchmark
3.1 Datasets and Detectors

Datasets Our benchmark currently incorporates a collection of 9 widely recognized and exten-
sively used datasets in the realm of deepfake detection: FaceForensics++ (FF++) [33], CelebDF-v1
(CDFv1) [23], CelebDF-v2 (CDFv2) [23], DeepFakeDetection (DFD) [9], DeepFake Detection
Challenge Preview (DFDC-P) [11], DeepFake Detection Challenge (DFDC) [10], UADFV [21],
FaceShifter (Fsh) [19], and DeeperForensics-1.0 (DF-1.0) [17]. Notably, FF++ contains 4 types of
manipulation methods: Deepfakes (FF-DF) [7], Face2Face (FF-F2F) [42], FaceSwap (FF-FS) [14],
NeuralTextures (FF-NT) [41]. There are three versions of FF++ in terms of compression level, i.e.,
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Figure 1: The general structure of the modular-based codebase of DeepfakeBench.

raw, lightly compressed (c23), and heavily compressed (c40). The detailed descriptions of each
dataset are presented in the Sec. A.3 of the Appendix. Typically, FF++ is employed for model
training, while the rest are frequently used as testing data. However, our benchmark allows users to
select their combinations of training and testing data, thus encouraging custom experimentation.

It is notable that, although these datasets have been widely used in the community, they are not usually
provided in a readily accessible and combined format. It often requires a substantial investment
of time and effort in data sourcing, pre-processing (e.g., frame extraction, face cropping, and face
alignment), and organization of the raw datasets, which are often organized in diverse structures.
This considerable data preparation overhead often diverts researchers’ attention away from the core
tasks like methodology design and experimental evaluations. To tackle this challenge, our benchmark
offers a collection of well-processed and systematically organized datasets, allowing researchers
to devote more time to the core tasks. Additionally, our benchmark enriches some datasets (e.g.,
FF++ [33] and DFD [9]), by including mask data (i.e., the forgery region) that is aligned with the
respective facial images in these datasets. It could facilitate more comprehensive deepfake detection
studies. In summary, our benchmark provides a unified, user-friendly, and diversified data resource
for the deepfake detection community. It eliminates the cumbersome task of data preparation and
allows researchers to concentrate more on innovating effective deepfake detection methods.

Detectors Our benchmark has implemented a total of 15 established deepfake detection algorithms,
as detailed in Tab. 1. The selection of these algorithms is guided by three criteria. First, we prioritize
methods that hold a classic status (e.g., Xception), or those considered advanced, typically published
in recent top-tier conferences or journals in computer vision or machine learning. Second, our
benchmark classifies detectors into three categories: naive detectors, spatial detectors, and frequency
detectors. Our primary emphasis is on image forgery detection, hence, temporal-based detectors have
not yet been incorporated. Moreover, we have refrained from including traditional detectors (e.g.,
Headpose [51]) due to their limited scalability to large-scale datasets, making them less suitable for
our benchmark’s objectives. Third, we aim to include methods that are straightforward to implement
and reproduce. We notice that several existing methods involve a series of steps, some of which
are reliant on third-party algorithms or heuristic strategies. These methods usually have numerous
hyper-parameters and are fraught with uncertainty, making their implementation and reproduction
challenging. Therefore, these methods without open-source codes are intentionally excluded from
our benchmark. However, it is important to note that there are also some non-open-source methods
we employed that are derived from the code directly provided by their respective authors.
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3.2 Codebase
We have built an extensible modular-based codebase as the basis of DeepfakeBench. As shown in
Fig. 1, it consists of three core modules, including Data Processing Module, Training Module, and
Evaluation and Analysis Module.

Data Processing Module The Data Processing Module includes two pivotal sub-modules that
automate the data processing sequence, namely the Data Preprocessing and Data Arrangement
sub-modules. 1) Data preprocessing sub-module presents a streamlined solution. First, Users
are provided with a YAML configuration file, enabling them to tailor the preprocessing steps to
their specific requirements. Second, we furnish a unified preprocessing script, which includes
frame extraction, face cropping, face alignment, mask cropping, and landmark generation. 2) Data
arrangement sub-module further augments the convenience of data management. This sub-module
comprises a suite of JSON files for each dataset. Users can execute a rearranged script to create a
unified JSON file for each dataset. This unified file provides access to the corresponding training,
testing, and validation sets, along with other information such as the frames, landmarks, masks, etc,
related to each dataset.

Training Module The Training Module currently accommodates 15 detectors across three cate-
gories: naive detector, spatial detector, and frequency detector, all of which are shown in Tab. 1.
1) Naive detector leverages various CNN architectures to directly detect forgeries without relying
on additional manually designed features. 2) Spatial detector builds upon the backbone of CNNs
used in the Naive Detector and further explores manual-designed algorithms to detect deepfake. 3)
Frequency detector focuses on utilizing information from the frequency domain and extracting
frequency artifacts for detection. Each detector implemented in our benchmark is managed in a
streamlined and efficient way, with a YAML config file created for each one. This allows users to
easily set their desired parameters, e.g., batch size, learning rate, etc. These detectors are trained
on a unified trainer that records the metrics and losses during the training and evaluation process.
Thus, the training and evaluation processes, logging, and visualization are handled automatically,
eliminating the need for manual specification.

Evaluation and Analysis Module For evaluation, we employ 4 widely used evaluation metrics:
accuracy (ACC), the area under the ROC curve (AUC), average precision (AP), and equal error
rate (EER) Besides, it is notable that there is an inconsistency in the usage of these evaluation
metrics in the community, some are at the frame level, while others are at the video level, leading
to unfair comparisons. Our benchmark currently adopts the frame level evaluation to build a fair
basis for comparison among detectors. In addition to the evaluation values of these metrics, we also
provide several visualizations to facilitate performance comparisons, e.g., the ROC-AUC curve, radar
chart, and histogram. For analysis, we provide various visualization tools to gain deeper insights
into the detectors’ performance. For example, Grad-CAM [36] is used to highlight the potential
forgery regions detected by the models, providing interpretability and assisting in understanding the
underlying reasoning for the model’s predictions. To explore the learned features and representations,
we employ t-SNE visualization [44]. Furthermore, we offer custom visualizations tailored to specific
detectors. For example, for Face X-ray [20], we provide visualizations of the detection boundary of
the face, as described in its original paper (see the top-right corner of Fig. 1).

4 Evaluations and Analysis
4.1 Experimental Setup
In the data processing, face detection, face cropping, and alignment are performed using DLIB [35].
The aligned faces are resized to 256× 256 for both the training and testing. In the training module,
we employ the Adam optimization algorithm with a learning rate of 0.0002. The batch size is fixed at
32 for all experiments. We sample 32 frames for each video for training and testing. We primarily
leverage pre-trained backbones from ImageNet if feasible. Otherwise, we resort to initializing the
remaining weights using a normal distribution. We also apply widely used data augmentations, i.e.,
image compression, horizontal flip, rotation, Gaussian blur, and random brightness contrast. In
terms of evaluation, we compute the average value of the top-3 metrics (e.g., average top-3 AUC)
as our evaluation metric. We also report other metrics (i.e., AP, EER, Precision, and Recall) in the
Sec. A.3 of the Appendix. Further details of dataset configuration, algorithms implementation, and
full training details can be seen in the Sec. A.1, Sec. A.2, and Sec. A.3 of the Appendix, respectively.
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Type Detector Backbone
Within Domain Evaluation Cross Domain Evaluation

FF-c23 FF-c40 FF-DF FF-F2F FF-FS FF-NT Avg. Top3 CDFv1 CDFv2 DF-1.0 DFD DFDC DFDCP Fsh UADFV Avg. Top3

Naive Meso4 [1] MesoNet 0.6077 0.5920 0.6771 0.6170 0.5946 0.5701 0.6097 0 0.7358 0.6091 0.9113 0.5481 0.5560 0.5994 0.5660 0.7150 0.6551 1

Naive MesoIncep [1] MesoNet 0.7583 0.7278 0.8542 0.8087 0.7421 0.6517 0.7571 0 0.7366 0.6966 0.9233 0.6069 0.6226 0.7561 0.6438 0.9049 0.7364 3

Naive CNN-Aug [48] ResNet 0.8493 0.7846 0.9048 0.8788 0.9026 0.7313 0.8419 0 0.7420 0.7027 0.7993 0.6464 0.6361 0.6170 0.5985 0.8739 0.7020 0

Naive Xception [33] Xception 0.9637 0.8261 0.9799 0.9785 0.9833 0.9385 0.9450 4 0.7794 0.7365 0.8341 0.8163 0.7077 0.7374 0.6249 0.9379 0.7718 2

Naive EfficientB4 [40] Efficient 0.9567 0.8150 0.9757 0.9758 0.9797 0.9308 0.9389 0 0.7909 0.7487 0.8330 0.8148 0.6955 0.7283 0.6162 0.9472 0.7718 3

Spatial Capsule [29] Capsule 0.8421 0.7040 0.8669 0.8634 0.8734 0.7804 0.8217 0 0.7909 0.7472 0.9107 0.6841 0.6465 0.6568 0.6465 0.9078 0.7488 2

Spatial FWA [22] Xception 0.8765 0.7357 0.9210 0.9000 0.8843 0.8120 0.8549 0 0.7897 0.6680 0.9334 0.7403 0.6132 0.6375 0.5551 0.8539 0.7239 1

Spatial X-ray [20] HRNet 0.9592 0.7925 0.9794 0.9872 0.9871 0.9290 0.9391 3 0.7093 0.6786 0.5531 0.7655 0.6326 0.6942 0.6553 0.8989 0.6985 0

Spatial FFD [6] Xception 0.9624 0.8237 0.9803 0.9784 0.9853 0.9306 0.9434 1 0.7840 0.7435 0.8609 0.8024 0.7029 0.7426 0.6056 0.9450 0.7733 1

Spatial CORE [30] Xception 0.9638 0.8194 0.9787 0.9803 0.9823 0.9339 0.9431 2 0.7798 0.7428 0.8475 0.8018 0.7049 0.7341 0.6032 0.9412 0.7694 0

Spatial Recce [2] Designed 0.9621 0.8190 0.9797 0.9779 0.9785 0.9357 0.9422 1 0.7677 0.7319 0.7985 0.8119 0.7133 0.7419 0.6095 0.9446 0.7649 2

Spatial UCF [50] Xception 0.9705 0.8399 0.9883 0.9840 0.9896 0.9441 0.9527 6 0.7793 0.7527 0.8241 0.8074 0.7191 0.7594 0.6462 0.9528 0.7801 5

Frequency F3Net [32] Xception 0.9635 0.8271 0.9793 0.9796 0.9844 0.9354 0.9449 1 0.7769 0.7352 0.8431 0.7975 0.7021 0.7354 0.5914 0.9347 0.7645 0

Frequency SPSL [26] Xception 0.9610 0.8174 0.9781 0.9754 0.9829 0.9299 0.9408 0 0.8150 0.7650 0.8767 0.8122 0.7040 0.7408 0.6437 0.9424 0.7875 3

Frequency SRM [27] Xception 0.9576 0.8114 0.9733 0.9696 0.9740 0.9295 0.9359 0 0.7926 0.7552 0.8638 0.8120 0.6995 0.7408 0.6014 0.9427 0.7760 2

Table 3: Within-domain and cross-domain evaluations using the AUC metric. All detectors are trained on
FF-c23 and evaluated on other data. “Avg." donates the average AUC for within-domain and cross-domain
evaluation, and the overall results. “Top3" represents the count of each method ranks within the top-3 across all
testing datasets. The best-performing method for each column is highlighted in red.

Figure 2: Visualization of heat maps showing the cross-manipulation evaluation results. The color represents
the AUC performance index of the corresponding detector under specific test data, and the darker the color, the
better the performance. All heat maps use a uniform color scale for performance comparison.

4.2 Evaluations

In this section, we focus on performing two types of evaluations: 1) within-domain and cross-
domain evaluation, and 2) cross-manipulation evaluation. The purpose of the within-domain
evaluation is to assess the performance of the model within the same dataset, while cross-domain
evaluation involves testing the model on different datasets. We also perform cross-manipulation
evaluation to evaluate the model’s performance on different forgeries under the same dataset.

Within-Domain and Cross-Domain Evaluations In this evaluation, we specifically train the model
using FF++ (c23) as the default training dataset. Subsequently, we evaluate the model on a total of 14
different testing datasets, with 6 datasets for within-domain evaluation and 8 datasets for cross-domain
evaluation. Tab. 3 provides an extensive evaluation of various detectors, divided into Naive, Spatial,
and Frequency types, based on both within-domain and cross-domain tests. Regarding the results
in Tab. 3, we observe that, for the within-domain evaluations, a majority of the detectors performed
commendably, evidenced by high within-domain AUC. Remarkably, detectors such as UCF, Xception,
EfficientB4, and F3Net registered significant average scores, specifically 95.37%, 94.50%, 93.89%,
and 94.49% respectively. Furthermore, an unexpected revelation comes from the performance of
Naive Detectors. Astonishingly, Naive Detectors (e.g., Xception and EfficientB4), which essentially
rely on a straightforward CNN classifier, register high AUC values that are comparable to more
sophisticated algorithms. This could potentially suggest that the performance leap from advanced
state-of-the-art methods to Naive Detectors might not be as substantial as perceived, particularly in
consistent settings (e.g., pre-training or data augmentation). In other words, the performance gap
could be a product of these additional factors rather than the intrinsic superiority of the method. To
delve deeper into this phenomenon, we will investigate the impact of data augmentation, backbone
architecture, pre-training, and the number of training frames in the following section (see Sec. 4.3).
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Figure 3: Visualization of different augmentation methods. We apply two detectors, one in the spatial domain
(Xception) and one in the frequency domain (SPSL), and then use 8 different augmentation strategies to measure
the effect on 5 test datasets.

Figure 4: Visualization of the performance of 3 different backbones, ResNet, EfficientNet-B4, and Xception,
across 4 different detectors, CORE, SPSL, UCF, and Face X-ray. The evaluation is conducted using the AUC
metric, following the settings described in the previous section.

Cross-Manipulation Evaluations We also conduct a cross-manipulation evaluation to assess the
model’s performance on various manipulation forgeries within the same dataset (FF++ [33]). In
this evaluation, only the forgery algorithm is altered. Other factors such as background and identity
remain consistent across all the different forgeries. Fig. 2 compares the cross-manipulation detection
performance of 10 detectors. Upon examining the figure, it becomes evident that the issue of
generalization is prominent. While detectors such as CORE, EfficientB4, SPSL, SRM, and Xception
exhibit excellent performance on the FF-DF test data when trained on FF-DF, their performance
significantly deteriorates when faced with FF-FS forgeries. Furthermore, the “FT-NT" test data
poses challenges for almost all detectors, as reflected by the diminished AUC values in this category
throughout the heatmaps. In contrast, the “FT-DF" test data emerged as a comparatively facile
challenge for the detectors. In summary, the varying nature of forgeries highlights a significant
generalization gap. Models trained on specific forgeries often struggle to adapt to other unseen
forgeries. This underscores the importance of training models to recognize generic forgery artifacts
to better combat unseen forgery types.

4.3 Analysis

Effect of Data Augmentation We assess the influence of various augmentation techniques on the
performance of forgery detectors in this section. Specifically, we investigate the impact of rotations,
horizontal flips, image compression, isotropic scaling, color jitter, and Gaussian blur on two prototyp-
ical detectors: one from the spatial domain (Xception) and one from the frequency domain (SPSL).
Fig. 3 compares the performance when training these detectors with all data augmentations (denoted
as “w_All"), without any data augmentations (“wo_All"), and without a specific augmentation.

Our findings can be summarized into three main observations: First, in the case of within-domain
evaluation (as seen in the FF++_c23 dataset), removing all augmentations appears to improve detector
performance by approximately 2% for both Xception and SPSL, suggesting that most augmentations
may have a negative impact within this context. Second, for evaluations involving compressed
data (FF++_c40), certain augmentations such as Gaussian blur demonstrate effectiveness in both
Xception and SPSL detectors, as they simulate the effects of compression on the data during training.
Third, in the context of cross-domain evaluations (CelebDF-v2, DFD, and DFDCP), operations like
compression and blur may significantly degrade the performance of SPSL in the DFD and DFDCP
datasets, possibly due to their tendency to obscure high-frequency details. Similar negative effects of
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Figure 5: Visualization of the effect of pre-trained weights on three different architectures. The evaluation is
conducted using the AUC metric, following the settings described in the previous section.

the blur operation are observed for Xception, likely as it diminishes the visibility of visual artifacts.
These findings underscore the need for further exploration into identifying a universally beneficial
augmentation that can be effectively utilized across a wide range of detectors in generalization
scenarios, irrespective of their specific attributes or datasets.

Model FF++_c23 FF++_c40 CDF-v2 DFD DFDCP UADFV Average

ResNet 0.8493 0.7846 0.7027 0.6464 0.6170 0.8739 0.7456

ResNet-DSC 0.8968 0.8048 0.7582 0.7006 0.6766 0.8895 0.7877

Improvement (%) +5.60% +2.57% +7.90% +8.39% +9.64% +1.78% +5.64%

Table 4: Ablation study regarding the effectiveness of the depthwise separable convolution module (DSC) for
ResNet. The models are trained on FF++_c23 and tested on other datasets. The metric is the frame-level AUC.

Effect of Backbone Architecture We here investigate the impact of different backbone architec-
tures on the performance of forgery detection models. Specifically, we compare the performance of
three popular backbones: Xception, EfficientNet-B4, and ResNet34. Each backbone is integrated
into the detection model, and its performance is evaluated on both within-domain and cross-domain
datasets (see Fig. 4). Our findings reveal that Xception and EfficientNet-B4 consistently outper-
form ResNet34, despite having a similar number of parameters. This indicates that the choice of
backbone architecture plays a crucial role in detector performance, especially when evaluating the
DeepfakeDetection dataset using CORE. In summary, these results highlight the critical role of
carefully selecting a suitable backbone architecture in the design of deepfake detection models.
Further research in this direction holds the potential for advancing the field in the future.

Additional In-depth Analysis towards the Effect of Backbone Architecture When analyzing
the effect of backbone architecture, our analysis in Sec. 4.3 shows that Xception and EfficientNet-B4
work better than ResNet-34. Given the three architectures have similar numbers of parameters, we
are curious about why there exists an obvious performance gap among the three architectures. Here,
we dive deeper to explore the possible reasons.

After our preliminary investigation, we found that the reasons are related to two factors, namely
architecture and models’ scale. First, we identify a common module in EfficientNet and Xception
that is not present in ResNet, namely the depthwise separable convolution module. We hypothesize
that this module might be contributing to the performance advantage. To evaluate this, we insert this
module into ResNet, replacing only the first convolutional layer. Experiments demonstrate significant
improvements on many test datasets (as shown in Tab. 4). Second, upon closer scrutiny, additional
factors that might exert an impact on the ultimate performance come to light. These encompass
the number of layers within the model architecture as well as the number of parameters associated
with it. Referring to Tab. 8 in the Appendix, it becomes evident that the parameter numbers remain
comparable among the three models. Subsequently, a comprehensive exploration is conducted to
assess the impact of layer numbers. This assessment involves a diverse range of ResNet variants,
including ResNet 50 and ResNet 152. Results in Tab. 9 in our Appendix uncover that ResNet
50, characterized by a greater number of layers in comparison to ResNet 34, yields a substantial
enhancement in performance. However, when confronted with a higher layer count, as exemplified
by ResNet 152, the extent of improvement becomes restricted.
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Figure 6: t-SNE visualization for each detector. These detectors are trained and tested on FF++ (c23).

Effect of Pre-training of the Backbone This analysis focuses on the impact of pre-training on
forgery detection models. Following the previous section, we analyze three typical architectures:
Xception, EfficientNetB4, and ResNet34. Fig. 5 reveals that the pre-trained models can largely
outperform their non-pre-trained counterparts, especially in the case of Xception (about 10% in
DFDCP) and EfficientB4 (about 10% in DeepFakeDetection). This can be attributed to the ability of
pre-trained models to capture and leverage meaningful low-level features. However, the benefits of
pre-training are less pronounced for ResNet34, mainly due to its architectural design, which may
not fully exploit the advantages offered by pre-trained weights. Overall, our findings underscore
the importance of both architectural choices and the utilization of pre-trained weights in achieving
optimal forgery detection performance.

Visualizing Representations Deepfake detection can be considered a representation learning prob-
lem, where detectors learn representations through their backbones and employ various classification
algorithms. It is crucial to assess whether the learned representations align with the expectations. To
accomplish this, we utilize t-SNE [44] for analysis, which allows us to visualize the representation.

We examine t-SNE visualization from two perspectives. First, we assess whether the detectors can
accurately differentiate between real and fake samples. This is achieved by assigning labels to the
points in the t-SNE plot based on their corresponding ground truth. Second, we delve deeper into the
fake category and investigate whether the models capture common features across different forgery
types rather than being overfitted to specific forgeries. To conduct this analysis, we train and test
each detector on the FF++ (c23) dataset and visualize the t-SNE representation using the test data.
Also, we visualize all the samples with their corresponding labels, where the Deepfakes, Face2Face,
FaceSwap, and NeuralTextures represent different forgery types in FF++. For visualization purposes,
we randomly select 5000 samples, with an equal distribution of 2500 real and 2500 fake samples.
Default parameters are used for t-SNE.

From the t-SNE results shown in Fig. 6, we observe that different detectors learn distinct feature rep-
resentations in the visualized space. Notably, the results indicate that Meso4 struggles to differentiate
between real and fake samples, as the two categories overlap and cannot be clearly distinguished.

5 Conclusions, Future Plans, and Societal Impacts

Conclusions We have developed DeepfakeBench, a groundbreaking and comprehensive framework,
emphasizing the benefits of a modular architecture, including extensibility, maintainability, fairness,
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and analytical capability. We hope that DeepfakeBench could contribute to the deepfake detection
community in various ways. First, it provides a concise yet comprehensive platform that incorporates
a tailored data processing pipeline, and accommodates a wide range of detectors, while also facilitating
a fair and standardized comparison among various models. Second, it assists researchers in swiftly
comparing their new methods with existing ones, thereby facilitating faster development and iterations.
Last, the in-depth analysis and comprehensive evaluations performed through our benchmark have
the potential to inspire novel research problems and drive future advancements in the field.

Limitations and Future Plans To date, DeepfakeBench primarily focuses on providing algorithms
and evaluations at the frame level. We will further enhance the benchmark by incorporating video-
level detectors and evaluation metrics. This expansion will enable a more comprehensive assessment
of forgery detection performance, considering the temporal dynamics and context within videos.
Besides, we also plan to carry out more evaluations for detecting images directly produced by diffusion
or GANs, using the existing benchmark. In the current version, we have provided the visualizations
and analysis for GAN-generated and diffusion-generated data in the frequency domain (see Sec. A.4
in the Appendix). Furthermore, we aim to include a wider range of typical detectors and datasets to
offer a more comprehensive platform for evaluating the performance of detectors. DeepfakeBench
will continue to evolve as a valuable resource for researchers, facilitating the development of advanced
deepfake detection technologies.

Societal Impact and Ethical Issue The potential ethical issue lies in the risk that malicious actors
might exploit DeepfakeBench to refine deepfakes to evade detection. 1) Inherent challenge with
benchmarking: DeepfakeBench, like any benchmark created for positive intent, could inadvertently
provide a blueprint for these actors due to its transparent nature. 2) Potential solutions and forward
path: As solutions, we are contemplating controlled access for users and are committed to the
dynamic evolution of DeepfakeBench to ensure it remains robust against emerging threats.

6 Contents in Appendix

The Appendix accompanying this paper provides additional details. The Appendix is organized
as follows: 1) Details of data processing This section provides further elaboration on the data
processing steps, including face detection, face cropping, alignment, and etc. 2) Details of algo-
rithms implementation and visualizations This section dives into the implementation details of the
algorithms used in the study. It also includes additional visualizations to help readers gain a deeper
understanding of the experimental results. 3) Training details and full experimental results: This
section presents comprehensive details of the training process, including additional evaluation metrics
beyond those reported in the main paper. 4) Other analysis results: This section conducts analysis
on some parts that are not analyzed in detail in the main text, such as analyzing and visualizing the
frequency domain analysis of images generated by GAN and diffusion, etc.
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A Appendix

A.1 Details of Data Processing
This section introduces a data preprocessing script tailored for deepfake datasets. This script incorpo-
rates a series of fundamental steps, including face detection, face cropping, face alignment, and
various other preprocessing operations. These steps are of utmost importance as they facilitate the
acquisition of consistent face images, thereby ensuring the effectiveness and reliability of subsequent
analysis and model training. The following subsections describe each step in detail.

Overall Workflow The preprocessing script follows a sequential workflow. It starts by detecting
faces in each video frame using the Dlib [35] face detection algorithm. Once the faces are detected,
the script proceeds to align and crop the faces based on the detected facial landmarks. If a mask
video file is provided, the script also extracts and saves the masks for each aligned face. The face
images, landmarks, and masks are saved in separate folders but in the same directory for further
analysis. The preprocessing script also supports parallel processing, which enables multiple videos
to be processed simultaneously, improving the overall processing speed. Each video is processed
independently, and the results are saved separately to ensure data integrity and prevent conflicts.
Throughout the preprocessing process, logging is used to track the progress and any errors that occur.
The log file provides a detailed record of the preprocessing steps, allowing for easy troubleshooting
and analysis of the preprocessing pipeline.

Face Detection The first step in the preprocessing pipeline is face detection. We employ the Dlib
library, which provides an efficient face detection algorithm. The face detector scans each video
frame and identifies the bounding boxes that enclose the faces.

Face Alignment Once the faces are detected, the next step is face alignment. Face alignment refers
to the process of transforming the faces in the images to a standardized pose. In our preprocessing
script, we use facial landmarks to perform face alignment. We utilize the Dlib library, which provides
a pre-trained shape predictor model that can effectively detect facial landmarks. Using the shape
predictor model, we extract the facial landmarks for each detected face in the image. Specifically, we
extract the landmarks for the eyes, nose, and mouth. These landmarks serve as reference points for
aligning and cropping the face. To align the faces, we use an affine transformation, which is a linear
mapping that preserves the shape of the face. The transformation is estimated based on the detected
landmarks and a set of target landmarks, which define the desired position and size of the face. We
apply the transformation to the original image to obtain the aligned face.

Face Cropping After aligning the faces, the next step in the preprocessing pipeline is face cropping.
To perform face cropping, we utilize the aligned faces obtained from the alignment step. To account
for variations in face size and position, we introduce one parameter: margin. The margin parameter
determines the amount of space around the aligned face that is included in the cropped image. Too
large of a margin in the face cropping process can lead to the overfitting of the detection models to the
contextual information surrounding the face, rather than focusing on the facial features themselves.
This may result in the model relying more on irrelevant background details and thus reducing its
generalization performance on unseen data. On the other hand, using too small of a margin in the face
cropping process can lead to incomplete facial information being captured in the cropped face images.
This occurs because a small margin restricts the region of interest to only the immediate vicinity of
the aligned face. As a result, important facial features or parts of the face that extend beyond this
limited region may be excluded from the cropped images. Therefore, there may exist a trade-off
when choosing the margin parameter in the face-cropping process. In this paper, we fix the margin
to be 1.3 for all datasets following the previous work [3]. For the overall face cropping process,
we first calculate the bounding box of the aligned face region. The bounding box is then expanded by
applying the margin parameter, which increases the size of the region of interest. Finally, we resize
the expanded bounding box to the desired scale, resulting in a cropped face image with consistent
dimensions (fixed with 256×256 in this paper).

Landmark Extraction Extracting landmarks is an essential step in the preprocessing pipeline as it
provides valuable information about facial structure and geometry. Landmarks are specific points on
the face, such as the corners of the eyes, nose, and mouth, that serve as reference points for various
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Figure 7: Illustration and visualization of the preprocessing procedure. We perform face detection
and aligned cropping to the frame and its corresponding mask.

facial analysis algorithms. Several algorithms, such as Face X-ray [20], FWA [22], SLADD [3], etc,
rely on landmarks to perform operations and analysis on facial images. By extracting landmarks
during the preprocessing step, we aim to provide a comprehensive dataset that includes both the
aligned face images and the corresponding landmark coordinates. Users can leverage landmarks to
develop and train models without the need for additional face-detection steps during training, thereby
reducing computational overhead and improving training speed.

Mask Extraction (Optional) In some deepfake datasets (i.e., FaceForensics++ [33] and DFD [9]),
an additional mask is provided, indicating the regions of the face that are manipulated or modified.
Also, we see that there are several works that rely on mask data for the detection, e.g., Multi-task [28],
Face X-ray [20], M2TR [47], etc. Thus, if the dataset includes masks, our script also extracts and
saves these masks. Since we have performed the face alignment and cropping operations in the
previous steps, we need to do the same operations for the mask data. To extract masks, we utilize the
additional video files provided by the authors that contain the mask information for each frame. Note
these mask video files have the same frame count and frame rate as the original video. During the
face cropping step, if a mask video file is provided, we extract the corresponding frames and masks
for each video. The mask data is saved as a separate folder but with the same dictionary as the videos
and frames. The masks can be used to identify specific areas of interest for further analysis or to train
models that specifically focus on detecting manipulated regions.

Frame Sampling In the preprocessing pipeline, we incorporate frame sampling techniques to strike
a balance between computational requirements and maintaining a diverse set of examples. This
step aims to extract a subset of frames from each video in the dataset. The frame sampling process
depends on the specified mode, which can be either “fixed_num_frames" or “fixed_stride". In the
“fixed_num_frames" mode, we extract a fixed number of frames from each video. This approach
ensures that the resulting dataset contains a consistent number of frames for each video, regardless
of the video’s duration. By selecting a predetermined number of frames, we obtain a manageable
dataset size that is suitable for subsequent analysis or model training. In the “fixed_stride" mode,
we sample frames with a fixed stride. This means that we skip a certain number of frames between
each frame that is selected. This approach allows us to capture frames at regular intervals throughout
the video, providing a representative sampling of the temporal dynamics. By choosing an appropriate
stride, we can control the density of the selected frames and adjust the amount of temporal information
included in the dataset. Frame sampling serves two primary purposes. Firstly, it reduces the
computational requirements for subsequent steps in the pipeline, such as face detection and alignment,
by operating on a subset of frames rather than the entire video. This improves the overall efficiency
of the preprocessing process, particularly when dealing with large-scale datasets. Secondly, frame
sampling ensures that the resulting dataset maintains a diverse set of examples. By selecting frames
at regular intervals or a fixed number of frames per video, we capture different facial expressions,
poses, and actions exhibited by individuals. This diversity enhances the generalizability of models
trained on the dataset, enabling them to handle a wide range of scenarios and variations encountered
in real-world applications. Note in this paper we only choose the “fixed_num_frames" mode.
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Parallel Processing To improve the processing speed, we use parallel processing techniques. We
leverage the concurrent.futures library, which provides a high-level interface for asynchronously
executing callables. By using multiple processes, we can process multiple videos simultaneously,
significantly reducing the overall processing time. The number of processes used is determined
based on the CPU capabilities of the system. We assign one process per CPU core to maximize the
utilization of available resources.

Saving Processed Data After completing the preprocessing steps, we save the processed data
for future use. The cropped face images, extracted landmarks, and masks (if available) are saved
in a structured directory format. Each video is associated with a separate directory, containing the
processed frames, landmarks, and masks (if applicable). This organization allows for efficient data
retrieval and analysis during subsequent stages.

Arrangement The process of rearranging the dataset structure is motivated by the need for a unified
and convenient way to load different datasets. Each dataset typically has its own distinct structure
and organization, making it hard and troublesome to handle them uniformly. This could involve
writing separate input/output (I/O) code for each dataset, leading to duplication of effort and potential
difficulties in managing the data.

To this end, we adopt a unified approach by organizing and managing the dataset information using
a JSON file. This enables a standardized structure that subsequent algorithms and models can
easily process. By leveraging the JSON file format, we provide a comprehensive and adaptable
representation of the dataset, accommodating the specific requirements and characteristics of each
dataset. The rearranged structure organizes the data in a hierarchical manner, grouping videos based
on their labels and data splits (i.e., train, test, validation). Each video is represented as a dictionary
entry containing relevant metadata, including file paths, labels, compression levels (if applicable),
etc. This unified representation facilitates streamlined dataset loading and handling, eliminating the
need for dataset-specific I/O code.

The JSON file serves as a centralized repository of dataset information, providing a consistent and
easily accessible format. Users can leverage existing code and tools to parse and analyze the JSON
file, promoting reproducibility and facilitating collaborations across different datasets. Additionally,
the JSON file simplifies the data preprocessing pipeline, reducing duplication of effort and enhancing
the efficiency of subsequent data analysis and model training processes.

The whole process of data preprocessing and arrangement can be summarized in the following
Algorithm. 1.

Algorithm 1 Data Preprocessing and Arrangement
1: Input: Video dataset
2: Output: Preprocessed dataset with rearranged structure
3: Procedure:
4: Perform the following preprocessing steps for each video in the dataset:
5: Extract a subset of frames from each video using frame sampling techniques.
6: Detect faces in each video frame using the Dlib face detection algorithm.
7: Align and crop the faces based on the detected facial landmarks using Dlib shape predictor model.
8: (Optional) Extract and save masks for each aligned face if provided.
9: Extract landmarks for each detected face using Dlib shape predictor model.

10: Save the processed face images, landmarks, and masks (if applicable) in separate folders.
11: Use parallel processing to speed up the overall processing time by processing multiple videos simultaneously.

12: Save the processed data in a structured directory format with a JSON file containing metadata.
13: Return the rearranged dataset structure with metadata stored in the JSON file.

Configuration The provided config file contains settings for two different preprocessing tasks:
“preprocess" and “rearrange". We will go through each section and explain the available settings and
their advantages in this section.
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For the Preprocess:

• dataset_name: This setting allows the user to specify the name of the dataset. Users can choose
from a list of supported dataset names such as FaceForensics++ [33], Celeb-DF-v1 [23], Celeb-
DF-v2 [23], DFDCP [11], DFDC [10], DeeperForensics-1.0 [17], and UADFV [21]. Each dataset
has its own characteristics and purpose.

• dataset_root_path: This setting defines the root path where the dataset is located. Users need to
provide the path to the dataset directory.

• comp: This setting is specific to the FaceForensics++ dataset and determines the compression level
of the videos. Users can choose from “raw", “c23", or “c40". Different compression levels have
different trade-offs between video quality and file size.

• mode: This setting determines the mode of preprocessing, either “fixed_num_frames" or
“fixed_stride". In “fixed_num_frames" mode, users can specify the number of frames to ex-
tract from each video using the “num_frames" setting. In “fixed_stride" mode, users can specify
the number of frames to skip between each frame extracted using the “stride" setting.

• stride: This setting is used when the mode is set to “fixed_stride". It determines the number of
frames to skip between each frame extracted. A higher stride value will result in fewer extracted
frames.

• num_frames: This setting is used when the mode is set to “fixed_num_frames". It specifies the
number of frames to extract from each video. Extracting a fixed number of frames allows for
consistent and manageable data sizes.

For the Arrangement:

• dataset_name: This setting allows users to specify the name of the dataset users want to rearrange.

• dataset_root_path: This setting defines the root path where the dataset is located.

• output_file_path: This setting specifies the path where the output JSON file will be saved. The
JSON file contains information about the rearranged dataset.

• comp: This setting is specific to the FaceForensics++ dataset and determines the compression level
of the videos. Users can choose from “raw", “c23", or “c40".

• perturbation: This setting is specific to the DeeperForensics-1.0 dataset and allows users to select
different levels of perturbations to apply to the dataset. There are options such as “end_to_end",
“end_to_end_level_1", “end_to_end_mix_2_distortions", etc.

Dataset rearrangement is specifically designed for rearranging datasets. It provides the flexibility to
modify and rearrange the dataset according to specific needs. The script generates a JSON file that
contains information about the rearranged dataset. This file can be used for further analysis or as input
to other scripts or models. By using this config file, users can easily customize the preprocessing and
rearrangement tasks to suit their specific dataset and requirements. The flexibility offered by this file
enables efficient and consistent preprocessing of various deepfake datasets.

A.2 Details of Algorithms Implementation and Visualizations

Algorithms Implementation In addition to the basic information in Tab. 2 of the main manuscript,
here we describe the general idea of the 15 implemented detection algorithms in the DeepfakeBench,
as follows.

1) Meso4 [1]: is a CNN-based deepfake detection method targeting the mesoscopic properties of
images. The model is trained on unpublished deepfake datasets collected by the authors. We
evaluate two variants of MesoNet, namely, Meso4 and MesoIncep. Meso4 uses conventional
convolutional layers.

2) MesoIncep [1]: this detector, similar to Meso4, utilizes a designed CNN architecture and is also
implemented in the MesoNet repository. Note that MesoIncep is based on the more sophisticated
Inception modules [39].

3) CNN-Aug [48]: detects GAN-generated images using a ResNet [16] with widely-used augmenta-
tions. In the DeepfakeBench, we employ a ResNet-34 [16] with JPEG compression and Gaussian
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blurring augmentations, etc. The effect of augmentations we used in this work has been explored in
Sec. 4 in the main paper. The specific settings of the augmentations can be found in the following
section in Sec. A.3.

4) EfficientNet-B4 [40]: is Based on the EfficientNet architecture [40]. We find that many detectors
utilize this architecture as their basic backbone for feature extraction (e.g., SBIs [37], multi-
attention [52], etc). Also, as we implement this framework in our benchmark, we can compare
the performance of different basic architectures and find the improvement bring by only the
architecture.

5) Xception [33]: corresponds to a deepfake detection method based on the XceptionNet model [5]
trained on the FaceForensics++ dataset [33]. There are three variants of Xception, namely,
Xception-raw, Xceptionc23, and Xception-c40: Xception-raw is trained on raw videos, while
Xception-c23 and Xception-c40 are trained on H.264 videos with medium (23) and high degrees
(40) of compression, respectively.

6) Capsule [29]: uses capsule structures [34] based on a VGG19 [38] network as the backbone
architecture for deepfake classification. This model is originally trained on the FaceForensics++
dataset [33].

7) DSP-FWA [22]: detects deepfake videos using a ResNet-50 [16] to expose the face-warping
artifacts introduced by the resizing and interpolation operations in the basic deepfake maker
algorithm. This model is trained on self-collected face images. In the original paper, DSP-FWA
further improves the FWA algorithm by including a spatial pyramid pooling (SPP) module [15]
to better handle the variations in the resolutions of the original target faces. Note that in the
DeepfakeBench, we do not adopt the SPP module since we try to use the same architecture
(backbone) for each detector so that we can find the actually effective technologies toward deepfake
detection. Instead, we use the standard Xception for this detection as other detectors. However, we
utilize the multi-scale strategy in the dynamic forgery data generation process to obtain different
scale faces blending (the scale parameters we set are [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]). Following
its paper, we first align the face image to multiple scales and randomly select an aligned image. We
visualize blending examples to show that our implementation can achieve similar forgery samples
as the original paper (see Sec. A.2).

8) Face X-ray [20]: uses blended artifacts in forgeries to improve generalization ability to detect
unseen forgeries. In this work, following the original paper, we train an HRNet [46] both with
constructed blended images and fake samples from the considered datasets (FaceForensics++ [33]
in our main experiments). Note that the code for this detector is not publicly available, we re-
implement it carefully following the instructions and settings in the original paper. We visualize
blending examples to show that our implementation can achieve similar forgery samples as the
original paper (see Sec. A.2).

9) FFD [6]: applies an attention mechanism to detect and localize manipulation regions. The author
proposes two types of attention-based layers, named manipulation appearance model and direct
regression, to guide the network to focus on discriminative regions. Meanwhile, three types of loss
functions are proposed to supervise the learning progress. In our implementation, we adopt the
Xception [5] as the backbone and direct regression as the attention-based layer to train the model.

10) CORE [30]: explicitly constrains the consistency of different representations. Different repre-
sentations are first captured with different augmentations, and then the cosine distance of the
representations is regularized to enhance consistency. This detector utilizes the Xception back-
bone [5].

11) RECCE [2]: constructs a graph over encoder and decoder features in a multi-scale manner. It
further utilizes the reconstruction differences as the forgery traces on the graph output as a guide to
the final representation, which is fed into a classifier for forgery detection. End-to-end optimization
for reconstruction and classification learning.

12) UCF [50]: introduces a multi-task disentanglement framework to address two main challenges that
contribute to the generalization problem in deepfake detection: overfitting to irrelevant features
and overfitting to method-specific textures. By uncovering common features, the framework aims
to enhance the generalization ability of the model. This detector utilizes the Xception backbone [5].
The code for this detector is not publicly available, we re-implement it carefully following the
instructions and settings in the original paper.
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Figure 8: Illustration and visualization of the DSP-FWA algorithm. We use the data from FaceForen-
sics++ [33] and apply some augmentations to the source image, as well as the blending image.

13) F3Net [32]: uses cross-attention two-stream networks to collaboratively learn frequency-aware
clues from two branches: FAD and LFS, where the FAD module partitions the input image in the
frequency domain based on learnable frequency bands and represents the image with frequency-
aware components to learn forgery patterns through frequency-aware image decomposition, and
the LFS module extracts localized frequency statistics to describe statistical discrepancies between
real and fake faces, allowing for effective mining through CNNs and revealing unusual statistics
of forgery images at each frequency band while sharing the structure of natural images. This
detector utilizes the Xception backbone [5]. The code for this detector is not publicly available, we
re-implement it carefully following the instructions and settings in the original paper.

14) SPSL [26]: combines spatial image and phase spectrum to capture the up-sampling artifacts of
face forgery to improve the transferability (generalization ability), for face forgery detection. This
paper theoretically analyzes the validity of utilizing the phase spectrum. Moreover, this paper
notices that local texture information is more crucial than high-level semantic information for face
forgery detection. This detector utilizes the Xception backbone [5]. The code for this detector is
not publicly available, we re-implement it carefully following the instructions and settings in the
original paper.

15) SRM [27]: extracts high-frequency noise features and fuses two different representations from
RGB and frequency domains to improve the generalization ability. This detector utilizes the
Xception architecture [6]. This detector utilizes the Xception backbone [5]. The code for this
detector is not publicly available, we re-implement it carefully following the instructions and
settings in the original paper.

Visualizations We implement all 15 detectors mentioned above. However, not all of them have
publicly available code, so we implement some of them ourselves following the settings and instruc-
tions provided in the original papers. This allowed us to verify the correctness of our implementation
and gain a better understanding of these detectors. To further assess the performance and behavior of
the detectors, we conduct visualizations of the results for 2 specific detectors: DSP-FWA [22] and
Face X-ray [20].

1) DSP-FWA: Note that the official code for DSP-FWA does not include the training code or the code
for dynamically generating forgery data using self-blending in each iteration during training. To
this end, we make use of certain parts of the code provided in the official repository and implement
the training process and forgery data generation ourselves. In our implementation of DSP-FWA,
we use the Xception network [5] as the backbone. This choice is to ensure consistency in the
benchmark by using the same backbone network across different detectors. By doing so, we could
focus solely on evaluating the algorithmic performance of DSP-FWA itself. By incorporating our
own implementation of the training process and forgery data generation, we are able to overcome
the absence of these components in the official code. This allows us to thoroughly evaluate
DSP-FWA and ensure a fair comparison with other detectors in our benchmark. We visualize the
original images, blending masks, and blending images in Fig. 8.

2) Face X-ray: Note that the official code for Face X-ray is not available. So we re-implement the
data manipulation and training process carefully following the instructions of the original paper.
The visualizations can be seen in Fig. 10.
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Figure 9: t-SNE visualization of FWA-generated data. By assigning distinct labels to various forgeries,
we enhance the clarity of their representation within the feature space.

Figure 10: Illustration and visualization of the Face X-ray algorithm. We use the data from Face-
Forensics++ [33] and apply some augmentations to the source image, as well as the blending image.

Furthermore, we conduct a t-SNE analysis for FWA, visualizing labels in the feature space. Our find-
ings suggest that images generated through blending technology (new data generated by FWA) exhibit
distinctiveness, distancing them from images generated by alternative manipulation methodologies.
This characteristic enlarges the forgery space, culminating in enhanced generalization capabilities.

A.3 Training Details and Full Experimental Results

Datasets Our benchmark currently incorporates a collection of 9 widely recognized and exten-
sively used datasets in the realm of deepfake forensics: FaceForensics++ (FF++) [33], CelebDF-
v1 [23], CelebDF-v2 [23], DeepFakeDetection (DFD) [9], DeepFake Detection Challenge Preview
(DFDC-P) [11], DeepFake Detection Challenge (DFDC) [10], UADFV [21], FaceShifter [19], and
DeeperForensics-1.0 (DF-1.0) [17]. The detailed descriptions of each dataset are presented in Tab. 5.

The dataset splitting for different datasets used in deepfake detection is described as follows:

1) FaceForensics++ (FF++): The FF++ dataset is divided into several subsets, including FF-DF,
FF-F2F, FF-FS, FF-NT, and FF-all. Each subset corresponds to a combination of deepfake and real
videos from YouTube. In the real dataset, the data is duplicated and split into three sets: train, test,
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Dataset Real Videos Fake Videos Total Videos Rights Cleared Total Subjects Synthesis Methods Perturbations Download Link

FF++ [33] 1000 4000 5000 NO N/A 4 2 Hyper-link
FaceShifter [19] 1000 1000 2000 NO N/A 1 - Hyper-link

DFD [9] 363 3000 3363 YES 28 5 - Hyper-link
DFDC-P [11] 1131 4119 5250 YES 66 2 3 Hyper-link
DFDC [10] 23,654 104,500 128,154 YES 960 8 19 Hyper-link

CelebDF-v1 [23] 408 795 1203 NO N/A 1 - Hyper-link
CelebDF-v2 [23] 590 5639 6229 NO 59 1 - Hyper-link

DF-1.0 [17] 50,000 10,000 60,000 YES 100 1 7 Hyper-link
UADFV [21] 49 49 98 NO 49 1 - Hyper-link

Table 5: Summary of the datasets used for deepfake detection. The table provides information on the number
of real and fake videos, the total number of videos, whether rights have been cleared, the number of agreeing
subjects, the total number of subjects, the number of synthesis methods, and the number of perturbations.

and validation. For the fake dataset, the train, test, and validation splits are determined based on
the information provided in the corresponding JSON files used in the arrangement process (see
Sec. A.1). Masks are also included in the dataset.

2) DeepFakeDetection: Since the dataset does not have the official splitting, the fake and real data are
duplicated and split into the train, test, and validation sets in our benchmark. Masks are included
in this dataset as well.

3) FaceShifter: The real data is duplicated and split into the train, test, and validation sets, similar to
the FF++ dataset. The train, test, and validation splits for the fake dataset are determined using the
FF++ JSON files used in the arrangement process.

4) Celeb-DF-v1/v2: All the real and fake videos are used as the training dataset, and a subset of
real and fake videos is selected as the test dataset based on a text file provided by the author. The
validation set is set to be the same as the test set.

5) DFDCP: The dataset contains real videos and fake videos generated by two different methods:
method A and method B. The train and test splits are determined based on the given method. The
validation set is set to be the same as the test set.

6) DFDC: The train and test splits are determined based on the given method, similar to DFDCP. The
validation set is set to be the same as the test set.

7) DeeperForensics-1.0: The dataset includes various perturbation methods in the fake data subset.
One perturbation method is considered a separate category of fake videos. In the fake dataset, the
train, test, and validation splits are determined based on the provided text file. The real dataset is
duplicated and split into train, test, and validation sets.

8) UADFV: The strategy used for the UADFV dataset involves duplicating the real and fake parts of
the dataset three times to create the train, test, and validation sets.

Experimental Setup In the training module, we utilize the Adam optimization algorithm with a
learning rate of 0.0002. The batch size is set to 32 for most experiments. However, for the DSP-
FWA [22] and Face X-ray [20] detectors, the batch size is adjusted to 16 due to the input data being
pairs. Specifically, for DSP-FWA and Face X-ray, which generate forgery images dynamically during
training, the input size is doubled.

For the naive detectors (e.g., ResNet, Xception, and EfficientNet), we employ their official models,
initializing the parameters through pre-training on the ImageNet. The pre-trained backbones from
ImageNet are used to initialize the remaining weights. However, Meso4 [1] and MesoIncep [1] do
not have pre-training weights in ImageNet, so pre-training is not utilized for them. The effect of
pre-training is evaluated in Sec. 4.3 of the main paper.

Regarding evaluation, we compute the average value of the top-3 metrics, such as the average top-3
Area Under the Curve (AUC), as our primary evaluation metric. Additionally, we report the top-1
results. Other widely used metrics, including Average Precision (AP) and Equal Error Rate (EER),
are also computed and presented in the following sections. Furthermore, it is important to note that
the validation set is not utilized in our experiments. Following previous works [3, 4], we adopt the
practice of selecting the model that achieves the highest performance on the test set rather than the
validation set for final evaluation.
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To ensure fair and consistent evaluation, all experiments are conducted in a standardized environment
using the NVIDIA A100 GPU. More software library dependencies can be seen on our GitHub
website (https://github.com/SCLBD/DeepfakeBench).

Data Augmentation Our benchmark utilizes a series of widely used data augmentation methods
for image processing. We describe each augmentation method as follows:

1) Horizontal Flip: This augmentation randomly flips the image horizontally with a probability of
0.5, simulating mirror images.

2) Rotation: This augmentation randomly rotates the image within a range of -10 to 10 degrees with
a probability of 0.5. By applying random rotations, it introduces diversity in object orientations,
making the model more robust to different angles and orientations.

3) Isotropic Resize: This augmentation resizes the image while maintaining isotropy, ensuring
that the aspect ratio of the image is preserved. It randomly selects one interpolation method
(INTER_AREA, INTER_CUBIC, or INTER_LINEAR) for resizing. The maximum side length is
determined by the configured value. Isotropic resizing is particularly useful when dealing with
objects that have varying scales and proportions, allowing the model to learn from different object
sizes and maintain the aspect ratio of the objects.

4) Random Brightness and Contrast: This augmentation randomly adjusts the brightness and
contrast of the image with a probability of 0.5. By applying random brightness and contrast
variations, it introduces changes in the illumination and contrast levels of the images. This helps
the model generalize better to different lighting conditions and improves its robustness to variations
in brightness and contrast.

5) FancyPCA: This augmentation applies the FancyPCA algorithm with a probability of 0.5. Fan-
cyPCA performs Principal Component Analysis (PCA) on the pixel values of the image and
perturbs the components to introduce color variations. By altering the principal components of the
image, it can change the color distribution, leading to more diverse training samples.

6) Hue Saturation Value (HSV) Adjustment: This augmentation randomly adjusts the hue, satura-
tion, and value of the image. While the probability is not specified in the code snippet, it allows for
variations in the color representation of the images. Adjusting the hue changes the overall color
tone, saturation controls the intensity of colors, and value adjusts the brightness.

7) Image Compression: This augmentation applies image compression with a probability of 0.5.
It reduces the quality of the image by compressing it. The lower and upper limits, set to 40 and
100 respectively, control the compression quality. Image compression introduces artifacts and
reduces the image quality, simulating real-world scenarios where images may be of lower quality
or have compression artifacts. This augmentation helps the model learn to handle such variations
and improves its robustness in practical applications.

Full Experimental Results

Overview In the main paper, our focus is on presenting the experimental results obtained from
selecting the models that achieve the highest performance on each individual testing dataset. The
primary metric utilized for evaluation in the main paper is the Area Under the Curve (AUC). In
order to provide a more comprehensive view of our experimental results, we present the complete
set of results here. We have incorporated three different widely utilized metrics for assessment:
AUC, Average Precision (AP), and Equal Error Rate (EER). These metrics are dynamically recorded
throughout the training process as part of our benchmark. Additionally, we have stored the prediction
results along with their corresponding labels, which facilitates the computation of additional metrics.
In this paper, we compare the 3 aforementioned metrics as a means to compare the performance of
the 15 detectors across the 14 testing datasets.

Comprehensive Metrics In addition to saving the best-performing model throughout the training
process, we also save the last model to evaluate its performance at the completion of all training
epochs. This allows us to assess the models’ effectiveness after undergoing the entire training
duration. Furthermore, by recording the predictions and corresponding labels, we are able to calculate
additional metrics such as Precision and Recall, in addition to the previously mentioned metrics.
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Figure 11: Illustration and visualization of within-dataset evaluation. We draw the ROC-AUC curve
using the models at the last trained epoch.

Figure 12: Illustration and visualization of cross-dataset evaluation. We draw the ROC-AUC curve
using the models at the last trained epoch.

Here, we present the ROC-AUC curve and Precision-Recall curve for all detectors. These detectors
are trained on the FF++ (c23) dataset and evaluated on a total of 14 testing datasets, encompassing
both within-dataset and cross-dataset evaluations (see Fig. 11, Fig. 13, Fig. 12, Fig. 14). These
visualizations provide a more comprehensive understanding of the experimental outcomes, allowing
for a more detailed analysis of the detectors’ performance. Moreover, as a benchmark, our proposed
approach facilitates the computation of additional evaluation metrics based on user requirements,
thereby demonstrating the convenience and versatility of our benchmarking framework.

Full Testing Results During the Training Process To facilitate the monitoring of model perfor-
mance during the training process, we utilize TensorBoard to record various metrics. These metrics
include training loss, training accuracy, AUC, AP, and EER, as well as testing loss and testing metrics
(AUC, AP, EER). By visualizing these metrics, users gain insight into the performance trends during
training, enabling them to debug issues and optimize parameters as needed.

In this section, we present visualizations of testing metrics plotted against the training steps. The
metrics of interest include AUC, AP, and EER, which provide a comprehensive assessment of the
detectors’ performance across different datasets (see Fig. 16, Fig. 19, Fig. 15, Fig. 18, Fig. 17, Fig. 20).
By comparing the curves, we can analyze the relative performance of the detectors using different
evaluation metrics.

Furthermore, we can observe the stability of the testing results. Some detectors may exhibit volatility
and lack stability in their metrics, which introduces uncertainty. In such cases, while the overall
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Figure 13: Illustration and visualization of within-dataset evaluation. We draw the Precision-Recall
curve using the models at the last trained epoch.

Figure 14: Illustration and visualization of cross-dataset evaluation. We draw the Precision-Recall
curve using the models at the last trained epoch.

results may not be consistently good, there may be instances where individual metrics perform well.
To address this, we adopt an average-based approach, computing the average values for each testing
metric to determine the final results (Top-3). By examining the provided figures, we can also discern
the stability of each detector’s performance.

Note that due to the differing training batch sizes of DSP-FWA and Face X-ray detectors compared
to the other 13 detectors, we visualize them separately. This distinction allows for a more clear
comparison within their respective groups.

A.4 Other Analysis Results

Artifacts of deepfake forgeries in Frequency Inspired by [48], we adopt a similar approach to
visualize the average frequency spectra of each dataset. The purpose is to examine the artifacts
generated by deepfake forgeries. Our methodology involves computing the average frequency
spectrum of a selected set of images, specifically 2000 randomly sampled images. To mitigate
computational complexity, a random subset of both real and fake images is chosen for analysis. The
process begins by converting the images to grayscale and applying a high-pass filter. Subsequently,
a Fourier transform is performed, with the zero frequency component shifted to the center of the
spectrum. Finally, the spectra are summed and averaged to obtain the final result.

The resulting visualization comprises three subplots for each deepfake forgery. The first subplot
illustrates the average spectrum of the real image, the second subplot represents the average spectrum

24



Figure 15: Illustration and visualization of all testing results during the training process. The metric
is AUC. We compare 13 detectors (except for the Face X-ray and DSP-FWA) on different datasets
using the AUC metric.

of the fake image, and the third subplot showcases the difference between the spectra of the real and
fake images.

Our findings align with those reported in [48]. We observe that deepfake forgeries do not exhibit
obvious artifacts, as observed in other images generated by GANs. This consistency with the findings
in [48] can be attributed to the various pre-processing and post-processing steps involved in the
creation of deepfake images. These steps, which include resizing, blending, and MPEG compression
of the synthesized face region, introduce perturbations in the low-level image statistics. As a result,
the frequency patterns may not emerge distinctly in our visualization method.

Visualizations of GAN-generated and diffusion-generated artifacts in Frequency Following
the similar process in Sec. A.4, we also visualize the artifacts generated by GANs and diffusion
models. Specifically, we utilize the GenImage dataset [54] and apply the frequency analysis tool in
our benchmark for analysis. The visualizations are shown in Fig. 22. This analysis has unearthed
intriguing observations specific to diffusion-generated images when contrasted with GAN-generated
images. Particularly, diffusion-generated images exhibit fewer artifacts, while GAN-generated images
display a noticeable checkerboard pattern of artifacts.
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Figure 16: Illustration and visualization of all testing results during the training process. The metric
is AP. We compare 13 detectors (except for the Face X-ray and DSP-FWA) on different datasets using
the AP metric.

Cross-data evaluation and the importance of phase spectrum In Tab. 3 of the manuscript, we
highlight the SPSL detector, which achieves an impressive average score of 78.75% in cross-domain
evaluation. A distinctive feature of SPSL compared to Xception is the incorporation of the phase
spectrum, which is concatenated with the spatial image in the channel dimension. As mentioned in the
original SPSL paper, the phase spectrum can capture up-sampling artifacts present in many forgery
processes. Motivated by this finding, we explore the potential benefits of incorporating the phase
spectrum feature into blending-based detectors. We hypothesize this would enhance performance in
both cross-data and cross-manipulation evaluations.

• Cross-data evaluation: To validate our hypothesis, we first conduct an experiment in which
we integrate the spectrum feature into the FWA detector, resulting in an improved FWA
(iFWA). The experimental results, summarized in Tab 6, show a significant improvement
achieved by iFWA (from 73.16% to 80.35% in average AUC).

• Cross-manipulation evaluation: Second, we conduct experiments and show the cross-
manipulation outcomes achieved by iFWA in Tab. 7. These visualizations serve to strengthen
our argument about the consistent performance of iFWA.
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Figure 17: Illustration and visualization of all testing results during the training process. The metric
is EER. We compare 13 detectors (except for the Face X-ray and DSP-FWA) on different datasets
using the EER metric.

These two analyses and experimental validations aim to explain the phenomena observed in our
evaluations, ensuring our experimental evaluations are not only fair and comprehensive, but also
insightful.

Model FF++_c23 FF++_c40 CDF-v2 DFDCP DFD Average

FWA 0.8765 0.7357 0.6680 0.6375 0.7403 0.7316
iFWA 0.9557 0.7496 0.7612 0.7104 0.8408 0.8035

Improvement +7.92% +1.39% +9.32% +7.29% +10.05% +7.19%
Table 6: Cross-data evaluation between iFWA (with the spectrum feature) and FWA (without the spectrum
feature). The models are trained on FF++_c23 and tested on other datasets. The metric is the frame-level AUC.

Why do Naive detectors work can perform as well as more advanced in certain settings? From
results in Tab. 3, we have observed that some Naive detectors (i.e., Xception and EfficientNetB4) can
exhibit competitive performance compared to more complex methods, which might be surprising
given the advancements in the field. We then explain this phenomenon from the following aspects.
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Figure 18: Illustration and visualization of all testing results during the training process. The metric
is AUC. We compare Face X-ray and DSP-FWA on different datasets using the AUC metric.

Model Training FF-DF FF-F2F FF-FS FF-NT Average

FWA FF-DF 0.90 0.91 0.92 0.90 0.91
iFWA FF-DF 0.97 0.97 0.98 0.90 0.96

Improvement - +7% +6% +6% +0% +5%
Table 7: Cross-manipulation evaluation between iFWA (with the spectrum feature) and FWA (without the
spectrum feature). The models are trained on FF-DF and tested on other forgeries in FF++_c23. The metric is
the frame-level AUC.

First, Naive detectors, despite their simplicity, may have inherent strengths that are yet to be fully
understood and harnessed. However, few previous studies have deeply explored the capabilities of
these baseline methods or identified the conditions under which they can be particularly effective.
Second, previous works have shown that some strategies or tricks could bolster the performance of
Naive detectors, e.g., pre-training or data augmentation. To this end, we conduct an experiment to
compare the performance of the Naive detector and the complex one under the conditions with or
without tricks. By adding the tricks, we find the gap between the Naive detector and complex detector
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Figure 19: Illustration and visualization of all testing results during the training process. The metric
is AP. We compare Face X-ray and DSP-FWA on different datasets using the AP metric.

Model Number of Layers Number of Parameters

Xception 71 22.9M
ResNet 34 34 21.8M

EfficientNet-B4 ∼75 19M
Table 8: Summary of the statistics for Xception, ResNet 34, and EfficientNet-B4.

is reduced (see Tab. 10). Showing that the performance of the Naive detector is effectively mined by
using these tricks.

Apart from these two aspects, we also find that the problem of consistency in experimental procedures
and evaluation metrics is also notable. It is worth noting that comparison methodologies can vary
across studies, and directly adopting results from prior papers could sometimes lead to discrepancies
due to differences in experimental conditions and evaluation metrics. For instance, current studies
often directly cite the results of Xception from the original paper [33], but different training settings
used in different works can inevitably result in disparities.
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Figure 20: Illustration and visualization of all testing results during the training process. The metric
is EER. We compare Face X-ray and DSP-FWA on different datasets using the EER metric.

Figure 21: Frequency analysis on each dataset. We present the average spectra of high-pass filtered
images, focusing on both real and fake images. Our findings align with those reported in work [48].
We observe that the shown deepfake forgeries do not display obvious artifacts in the average spectra.
This underscores the similarity of our results with [48].

Is it standard practice to use Adam optimizer for deepfake detection algorithms? In our
experiments, we want to clarify it as follows:
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Figure 22: Frequency analysis on each dataset using the frequency analysis tool within our benchmark.
We present the average spectra of high-pass filtered images, focusing on both real and fake images.

Dataset ResNet 34 ResNet 50 ResNet 152

CDF-v2 0.7027 0.7491 0.7514
DFDCP 0.6170 0.6658 0.7078

DFD 0.6464 0.7002 0.7005
FF++_c23 0.8493 0.8928 0.9119
FF++_c40 0.7846 0.7933 0.8167
Average 0.7199 0.7602 0.7776

Table 9: Comparing the performance of different variants of ResNet. The models are trained on FF++_c23 and
tested on other datasets. The metric is the frame-level AUC.

• Using Adam as the optimizer can be considered a common setting, and a substantial
number of deepfake detection methods in existing literature have adopted this configuration
(paper [20, 27, 26, 3, 12]).

• It is important to note that our benchmark is versatile and supports various optimizers, includ-
ing three mainstream ones: Adam, SGD, and AdamW. In deepfakebench, to ensure fairness
and consistency across evaluations, all detectors are trained using the Adam optimizer. Other
hyperparameters, such as learning rate, are also unified as much as possible.

Overall, employing the Adam optimizer aligns with common practices in deepfake detection and
serves to facilitate a consistent and equitable comparison of different algorithms.
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Detector Condition FF++_c23 CDF-v2 DFD DFDCP FF++_c40 Average

RECCE Before Tricks 0.9881 0.6083 0.5894 0.5128 0.5792 0.6556
RECCE After Tricks 0.9621 0.7319 0.8119 0.7419 0.8190 0.8134
RECCE Improvement (%) -2.63% 20.34% 37.84% 44.72% 41.37% 24.08%

Xception Before Tricks 0.9893 0.5175 0.5870 0.4894 0.5420 0.6250
Xception After Tricks 0.9637 0.7365 0.8163 0.7374 0.8261 0.8160
Xception Improvement (%) -2.59% 42.31% 39.08% 50.67% 52.40% 30.56%

SRM Before Tricks 0.9882 0.5993 0.6029 0.5995 0.5754 0.6731
SRM After Tricks 0.9576 0.7552 0.8120 0.7408 0.8114 0.8154
SRM Improvement (%) -3.10% 26.00% 34.74% 23.56% 40.99% 21.13%

Table 10: Comparison of performance among three detectors: Naive detector (Xception), frequency detector
(SRM), and spatial detector (RECCE) under the conditions of without vs. with tricks. We demonstrate that the
performance of the Naive detector can be effectively enhanced through the use of tricks: data augmentation and
pre-training. The models are trained on FF++_c23. The metric is the frame-level AUC.

Training Config Face X-ray & FWA Other Detectors

Image Size 256, 256 256, 256
Weight Initialization ImageNet Pre-trained ImageNet Pre-trained

Optimizer Adam Adam
Base Learning Rate 2e-4 2e-4

Weight Decay 5e-4 5e-4
Optimizer Momentum B1, B2=0.9, 0.999 B1, B2=0.9, 0.999

Batch Size 16 32
Training Epochs 10 10

Learning Rate Schedule None, Constant None, Constant
Flip Probability 0.5 0.5

Rotate Probability 0.5 0.5
Rotate Limit [-10, 10] [-10, 10]

Blur Probability 0.5 0.5
Blur Limit [3, 7] [3, 7]

Brightness Probability 0.5 0.5
Brightness Limit [-0.1, 0.1] [-0.1, 0.1]
Contrast Limit [-0.1, 0.1] [-0.1, 0.1]
Quality Lower 40 40
Quality Upper 100 100

Table 11: The results of our main experiments (shown in Table. 2 and Figure. 2 of the manuscript) are generated
using the following settings.
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