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Abstract

We introduce MQ-Det, an efficient architecture and pre-training strategy design to
utilize both textual description with open-set generalization and visual exemplars
with rich description granularity as category queries, namely, Multi-modal Queried
object Detection, for real-world detection with both open-vocabulary categories
and various granularity. MQ-Det incorporates vision queries into existing well-
established language-queried-only detectors. A plug-and-play gated class-scalable
perceiver module upon the frozen detector is proposed to augment category text
with class-wise visual information. To address the learning inertia problem brought
by the frozen detector, a vision conditioned masked language prediction strategy is
proposed. MQ-Det’s simple yet effective architecture and training strategy design
is compatible with most language-queried object detectors, thus yielding versatile
applications. Experimental results demonstrate that multi-modal queries largely
boost open-world detection. For instance, MQ-Det significantly improves the state-
of-the-art open-set detector GLIP by +7.8% AP on the LVIS benchmark via multi-
modal queries without any downstream finetuning, and averagely +6.3% AP on 13
few-shot downstream tasks, with merely additional 3% modulating time required
by GLIP. Code is available at https://github.com/YifanXu74/MQ-Det.

1 Introduction

As the thriving of large-scale vision-language pre-training models [25, 48, 24, 29, 27, 44, 20], object
detection recently has ushered in a new fashionable paradigm, which locates the desired objects
via a queried text. Benefited from the generalization of the pre-training models on large scale
data [26, 13, 36, 43, 22, 18, 37, 31, 35], such a text queried paradigm makes steady progress on the
long road to open-set object detection.

Compared with previous fixed category sets (usually represented by finite numbers), the foregoing text
query has the merit of representing broad concepts, but also has an intrinsic limitation of insufficient
description granularity [4, 9, 32]. For example, class homonyms (e.g., “bat” can be a piece of wood
or a kind of animal) lead to ambiguous queries. Meanwhile, as exemplified in Fig. 1, for fine-grained
fish species detection, it is usually struggled to use limited text to describe the fish with specific
patterns. Empirically, one straightforward solution for the insufficient description granularity problem
is to design additional textual description, but there are three distinct obstacles: 1) it is difficult
to comprehensively describe visual details [52], and constructing textual description for a large
amount of categories is a laborious work. 2) The longer queried text increases the understanding
difficulty of the pre-training model and 3) brings more computational overhead. Experimentally, the
state-of-the-art (SoTA) text queried detector GLIP [25] merely improves average precision (AP) from

∗Work done when interning at Tencent Youtu Lab. †Equal contribution. ‡Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/YifanXu74/MQ-Det


17.7% to 18.4% on the Aquarium dataset [23] (a fine-grained fish species detection dataset), even
with extra manually designed textual description for some categories.

A picture paints a thousand word. Compared with the text, the image can provide richer clues about
the target object. But at the same time, the human-generated text has higher information density and
thereby brings stronger generalization capability [32, 8, 2]. In light of this, a natural idea springs up,
i.e., combining the text and the image to constitute a multi-modal query, which has the advantages
of both breadth of the former and rich granularity of the latter. Nevertheless, how to acquire such a
multi-modal queried detection model still faces challenges: 1) directly finetuning with limited visual
exemplars, typically in previous vision-queried few-shot detection methods [49, 39, 21, 16], leads to
the risk of catastrophic forgetting. 2) Large foundation models have good generalization but require
heavy training burden if re-organized and trained from scratch (e.g., over 30 million data storage and
almost 480 V100 GPU days for GLIP [25, 48]).

This work fills in the blank of Multi-modal Queried object Detection (MQ-Det), and introduces an
efficient plug-in training architecture. The crux of the proposed MQ-Det is to fuse description-rich
visual cues and the highly generalizable text representations, while only adding a small training
cost on the basis of existing language queried fundamental detection models. We evaluate our
models on a finetuning-free setting, where users can detect their customized objects through textual
descriptions, visual exemplars, or both without any finetuning. With only one epoch of modulating
on the Objects365 [36] dataset, accounting for a mere 3% of the total pre-training time for GLIP, our
approach impressively improves the finetuning-free performance by +7.8% on the LVIS benchmark
through providing the model with 5 visual exemplars along with textual category descriptions.

To be specific, as shown in Fig. 1, we first interleave a Gated Class-scalable Perceiver (GCP)
that bridges class-wise visual cues and textual cues in each high-level stage of the text encoder of
the detector. This module consists of class-wise cross attention layers to augment textual semantic
embeddings with visual details, and a conditional gating layer that varies based on the quality of
visual cues from the vision queries. The output of this module is incorporated to each high-level
stage of the text encoder in a residual-like manner, which conducts textual perturbation in initial
general embedding space [1]. Additionally, this simple design has no class-specific parameters and
can be extended to classes of various granularity. Second, we design a vision conditioned masked
language prediction strategy to ensure sufficient visual intervention in the modulating stage. We
observed a learning inertia problem during modulating, namely, when incorporating visual cues in a
gated residual-like manner, the learning process tends to be stuck around the initial optimum point of
the frozen pre-training detector and cannot introduce much visual knowledge. Thus, we randomly
mask the text tokens and let corresponding vision queries independently make object prediction.
Note that we freeze the initial detection foundation model and only train the GCP modules in the
modulating stage, which is quite efficient.

Contributions. In summary, the contributions of this paper are as follows: (i) As far as we know, we
are the pioneer to introduce the multi-modal query that has the characteristics of both breadth and rich
granularity, paving a new path to the object detection in the wild. (ii) We propose a plug-and-play
GCP module that dynamically fuses informative visual cues and highly generalizable text cues from
the multi-modal query, and employ a vision conditioned masked language prediction strategy to
permit sufficient multi-modal fusion upon frozen detection models. (iii) Our proposed MQ-Det
demonstrates powerful transferability on the finetuning-free and few-shot scenarios, while requiring
much less training time than previous SoTA fundamental detectors. Specifically, MQ-Det outperforms
GLIP by +7.8% AP in the finetuning-free detection on the challenging LVIS [13] and averagely
+6.3% AP on 13 downstream few-shot detection tasks [23], modulated with merely 3% of the training
time required by GLIP.

2 Methodology

This section describes MQ-Det: an efficient modulation architecture with elaborately designed multi-
modal fusion strategy to let vision-language (VL) detection foundation models accept text interleaved
with images as input queries, thus leveraging the generalization capability of semantic-rich language
while enhancing detection discrimination with visual details. We first briefly review the language-
queried baseline GLIP [25] in Sec. 2.1, then introduce the plug-and-play architecture that can support
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Figure 1: Method overview. The plug-and-play Gated Class-scalable Perceivers (GCPs) are inserted
to text encoder layers, trained with our masked language prediction strategy. Class-wise attention
mask is applied to make the text query of each category only attends to corresponding vision queries.

class-scalable vision queries as input in Sec. 2.2, and finally shed light on the multi-modal fusion
strategy in Sec. 2.3.

2.1 Preliminaries

Language-queried detection model. Following CLIP [32], the paralleled formulation has been a
mainstream architecture of existing VL detection foundation models [48, 29, 42, 44, 28, 27]. Take
our baseline GLIP [48] as an example, as shown in the left part of Fig. 1, it consists of paralleled
text encoder ΦT (·) and image encoder ΦI(·) for feature extraction, and reformulates detection as a
grounding task, by grounding/aligning each visual region to class content in a text prompt. Since
the detection models like GLIP recognize objects via class content only in the language queries, we
denote them as language-queried detection models.

Specifically, the model takes image-text pairs {(I, T )} as inputs, where the text prompt T =
“t1, . . . , t|C|” contains |C| categories to be detected, e.g., “person, bicycle, ... , toothbrush”. Then, the
model extracts image and text features (I, T ) via paralleled encoders. Every linear classification layer
in traditional vision models are replaced by a vision-language matching dot-product layer, calculating
the region-word similarity logits Scls in the detection head H(·). Formally,

I = ΦI(I), T = ΦT (T ), R = H(I), Scls = R · TT, (1)

where I is the extracted image features, R ∈ RN×d denotes the object/region/box features of the
input image, and T ∈ R|C|×d is the contextual word/token features from the text encoder in which
each token represents one category. Additionally, a box regressor is applied to R for localization that
is similar to traditional detectors. The model is finally trained with a phrase grounding loss calculated
via the logits Scls and a traditional localization loss. We refer to GLIP [25] for more details.

The language-queried model GLIP is trained on massive image-text pairs, and thus scales up visual
concepts beyond traditional detection vocabularies, and finally achieves strong open-set capacity.
However, the inference process via a simple language-queried prompt limits its performance especially
for non-descriptive, ambiguous or fine-grained class names.

2.2 Architecture design

Considering the limited description granularity of text stated in Sec. 1, we propose to integrate
vision queries into the pre-trained language-queried detection models to enrich semantic cues. The
architecture of such multi-modal queried detection models is expected to follow three principles: (1)
Class-scalable: the introduced vision queries are open to arbitrary categories rather than fitting a
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closed set of categories. (2) Semantic-complementary: the vision queries are sufficiently interleaved
with coarse text queries to provide fine-grained visual details that support to distinguish various
granularity of categories. (3) Generalization-retainable: the introduction of visual queries into
foundation models accumulates rich details while still retaining the generalization capability.

We compare three possible architecture designs for enriching queries as illustrated in Fig. 2, and
show the superiority of our approach on the above-mentioned principles. First, soft prompt based
designs [53, 34, 4, 9] (e.g., CoOp [53], Fig. 2 (a)) can adapt text queries to describe diverse charac-
teristics of categories beyond intensively-tuned manual prompts. However, most previous works
only finetune task-specific prompts, which limits their generalization. Second, existing two-branch
few-shot detection architectures [16, 21, 15, 40] (e.g., FCT [16], Fig. 2 (b)) support vision queries
and detect novel objects using very few training exemplars. But their designs are incompatible
with the language-queried pre-training foundation models due to deficiency of language inputs and
model complexity (e.g., early and deep fusion in [16]). We propose a simple yet effective plug-in
architecture in Fig. 2 (c), which interleaves class-wise visual cues with textual cues, to let highly
semantic language-queried models “perceive” visual details.

Inspired by [1], we augment the semantics of each category query by conditioning the text on
corresponding visual representations produced by our proposed Gated Class-scalable Perceiver
(GCP) illustrated in Fig. 1. Specifically, we insert GCP modules between the frozen pre-trained text
encoder blocks in a residual manner and only train these modules from scratch. In a GCP module,
each category token from the text encoder block is independently cross-attended to corresponding
vision queries to acquire rich details (Principles 1,2). Then, the interleaved category tokens are gated
by the GCP module so that the frozen text encoder is kept intact at initialization for improved stability
and generalization performance (Principle 3).

Formally, given an image-text pair (I, T ) with vision queries V = {vi|vi = {v(j)i }kj=1}
|C|
i=1 extracted

from k exemplars of each category, the GCP module augments each text query features in T =

ΦT (T ) = {ti}|C|
i=1 in a residual-like way, namely,

v̄i = X-MHA(vi, I), v̂i = X-MHA(ti, v̄i), t̂i = ti+σ(gate(v̂i)) · v̂i, i = 1, 2, . . . , |C|, (2)

where X-MHA(·, ·) denotes a multi-head cross-attention layer with the former input as queries and
the later as keys and values. σ = tanh(·) is a normalization function. Concretely, the vision query
features vi = ΦI(vi) are first augmented via the target image feature I = ΦI(I) to gather content-
aware information [52]. The augmented vision queries v̄i are correlated with corresponding text token
ti to enrich it from multiple views. The conditional gating value σ(gate(v̂i)) is dynamically adjusted
according to the quality of visual cues from the exemplars of each category, which is evaluated
by a three-layer perceptron (MLP) that reduces the feature dimension gradually to a layer-specific
learnable scalar. The conditional gating value multiplies the enriched feature v̂i before adding it to the
initial text token ti from the residual connection. Since the gating value is initialized to 0, the module
output matches that of the pre-trained text encoder at initial training, improving training stability
and final performance. It is worth noting that this independent class-wise cross-attention scheme
has no class-specific parameters and can be scaled to any classes of various description granularity,
as verified in Sec. 3.2. In addition, it importantly allows the model to seamlessly generalize to any
number of vision queries in inference, regardless of the number used during training.

2.3 Modulated pre-training

Equipped with the plug-in architecture design described in Sec. 2.2, we propose an efficient pre-
training strategy that permits sufficient multi-modal fusion and rapid learning upon frozen detection
foundation models using only a small subset of pre-training data. We denote this process as modulated
pre-training in comparison to the massive pre-training of foundation models.

Vision query extraction. We provide vision queries for |C| categories from a bank D built from
pre-training data:

D = {vi| |vi| = K}|C|
i=1, v

(j)
i = RoIPool(Φ(I), γb), j = 1, 2, . . . ,K, (3)

where each vi ∈ RK×d contains K vision queries modeled by the image encoder ΦI . Specifically,
given a query instance of the i-th category with box b ∈ R4 in an image I , an RoI pooler [33] is
employed to extract the corresponding region feature v(j)i ∈ Rd. The parameter γ = 1.52 enlarges the
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Figure 2: Architecture designs for query enriching, with only classification branches presented for
clarity. (a) Prompt-based designs [53, 52] only tune upon language instruction while (b) two-branch
few-shot detection architectures [16, 21] employ heavily coupled parallel encoders and merely take
vision inputs. (c) MQ-Det elegantly combines both language and vision queries in an efficient way.

region area for contextual clues. During modulated pre-training, we randomly select k ≪ K vision
queries from D for each category at each forward process, simulating the downstream scenarios
where only low-shot vision queries are provided. In practical implementation, we set K = 5000 and
k = 5. After modulating, our model can generalize to arbitrary categories and vision queries during
downstream inference.

Training upon frozen pre-trained language-queried detectors. Given the inherently general
semantic representations in the pre-trained detector, we argue that the textual features only require
minor modulation from the visual details rather than significant alteration. This viewpoint has been
previously discussed in [52, 53, 1], and we have observed in Tab. 3 (c) that the full-model training on
a limited number of categories faces the risk of catastrophic forgetting. Consequently, for efficiency
purpose, we freeze the entire pre-trained detector and only train the newly-added gated class-scalable
perceiver modules, significantly accelerating the training process.

Vision conditioned masked language prediction. Since the fundamental VL models highly rely
on text description, the learning process of the residual-like gated architecture will rapidly converge
around the initial optimum point with frozen text features, causing failure of vision queries. That is,
models still learn how to align region with text features not visual cues. We represent such an issue
as a learning inertia problem. As shown in the first row of Tab. 3 (a), the AP merely improves +0.9%
over GLIP-T [25] on LVIS. To address this issue, we propose a simple yet effective masking strategy:

T = {t1, t2, . . . , [MASK], . . . , t|C|}. (4)

Namely, given an image-text pair (I, T ), a ground-truth text token in T corresponding to instances
occurring in I is randomly masked by a [MASK] token with probability 40%. The [MASK] token is
forced to extract visual cues from vision queries in the GCP modules to provide accurate predictions,
thus bridging the model’s dependence upon vision queries. As shown in Tab. 1, our language masking
strategy ensures sufficient visual intervention in the modulated pre-training stage and significantly
boosts the performance, e.g., +4.4% AP over GLIP-T on finetuning-free LVIS.

3 Experiments

3.1 Setup

3.1.1 Datasets and benchmarks

Objects365 dataset [36] is a large-scale, high-quality dataset for object detection. We use this dataset
to conduct the modulated pre-training of our MQ-Det models. It contains 0.66 million images of 365
object categories, with 30 million bounding boxes, which are more diverse and fine-grained than
those in other popular datasets such as COCO [26] and Pascal VOC [10]. Objects365 is a widely-used
pre-training dataset in previous foundamental detection models [25, 48, 27, 50, 44, 42].

LVIS benchmark [13] is a challenging dataset for long-tail objects. It contains 1,203 categories for
evaluation, with many rare categories that scarcely exist in the pre-training datasets. Therefore, we
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Table 1: Finetuning-free detection on the LVIS benchmark. ∗ denotes supervised approaches. The
training time is tested on one V100 GPU. We present the number of vision queries during evaluation.

Model Backbone Pre-Train Data Data Training Time #Vision MiniVal (%) Val v1.0 (%)
Size (V100 days) Query AP APr APc APf AP APr APc APf

MDETR [20]∗ RN101 GoldG,RefC 0.9M 400 0 24.2 20.9 24.9 24.3 22.5 7.4 22.7 25.0
Mask R-CNN [17]∗ RN101 - - - 0 33.3 26.3 34.0 33.9 - - - -
Supervised-RFS [13]∗ RN50 - - - 0 - - - - 25.4 12.3 24.3 32.4

GLIP-T (B) [25] Swin-T O365 0.66M 300 0 17.8 13.5 12.8 22.2 11.3 4.2 7.6 18.6
GLIP-T [25] Swin-T O365,GoldG,CC4M 5.5M 480 0 26.0 20.8 21.4 31.0 17.2 10.1 12.5 25.5
GLIPv2-T [48] Swin-T O365,GoldG,CC4M 5.5M - 0 29.0 - - - - - - -
GroundingDINO-T [27] Swin-T O365,GoldG,Cap4M 5.5M - 0 25.7 15.2 21.9 30.9 - - - -
GLIP-L [25] Swin-L FourODs,GoldG,Cap24M 27.5M 600 0 37.3 28.2 34.3 41.5 26.9 17.1 23.3 35.4
GroundingDINO-L [27] Swin-L O365,OI,GoldG,Cap4M,COCO,RefC 15.8M - 0 33.9 22.2 30.7 38.8 - - - -

MQ-GLIP-T-Img Swin-T O365† 0.66M 10 5 17.6 12.0 14.5 21.2 12.4 8.9 9.2 18.3
MQ-GLIP-T-Txt Swin-T O365† 0.66M 10 0 26.0 20.8 21.4 31.0 17.2 10.1 12.5 25.5

MQ-GroundingDINO-T Swin-T O365† 0.66M 10 5 30.2 21.7 26.2 35.2 22.1 12.9 17.4 31.4
MQ-GLIP-T Swin-T O365† 0.66M 10 5 30.4 21.0 27.5 34.6 22.6 15.4 18.4 30.4
MQ-GLIP-L Swin-L O365† 0.66M 22 5 43.4 34.5 41.2 46.9 34.7 26.9 32.0 41.3

use LVIS in the downstream task to evaluate the finetuning-free transferability. We report on MiniVal
containing 5,000 images introduced in MDETR [20] as well as the full validation set v1.0.

ODinW benchmark [23] (Object Detection in the Wild) is a more challenging benchmark for
evaluating model performance under real-world scenarios. For example, Aquarium requires locating
fine-grained fish species, and Pothole concerns detecting holes on the road. It collects more than
35 datasets for evaluation. There are two commonly used versions of the ODinW benchmark, i.e.,
ODinW-13 and ODinW-35, where ODinW-13 is a subset of ODinW-35 and contains much less noisy
data. The results on both benchmarks are reported for comprehensive comparison. We demonstrate
that the fine-grained visual details in MQ-Det facilitate transfer to such diverse and challenging tasks.

3.1.2 Implementation details

We conduct extensive experiments on three settings: an open-set setting on finetuning-free LVIS [13]
and ODinW [23] benchmarks, a few-shot setting and a close-set full-shot setting on ODinW. To
demonstrate the plug-and-play versatility of our approach, we apply MQ-Det on two typical SoTA
language-queried object detectors, GLIP [25] and GroundingDINO [27], and obtain our multi-modal
queried models MQ-GLIP and MQ-GroundingDINO, respectively. We incorporate our GCP
modules into the last 6 layers of the frozen text encoder. We conduct modulated pre-training of
our models on the Objects365 dataset [36] for only one epoch using 8 NVIDIA V100 GPUs. The
finetuning process under few/full-shot settings completely follows the baseline method GLIP, where
vision queries are extracted from the few/full-shot training set. We also evaluate our method in a
finetuning-free setting, namely, users can detect their customized objects through textual descriptions,
visual exemplars, or both without any fine-tuning. During finetuning-free evaluation, we extract 5
instances as vision queries for each category from the downstream training set without any finetuning.

3.2 MQ-Det helps low-shot object detection

3.2.1 Multi-modal queried detection without finetuning

We evaluate the model’s ability to recognize rare and diverse objects on both LVIS and ODinW in a
finetuning-free setting, where users can detect their customized objects through textual descriptions,
visual exemplars, or both without any fine-tuning. Each category is provided with both language and
vision queries. Tab. 1 shows the results on LVIS. Overall, MQ-Det demonstrates strong finetuning-
free transferability with impressive efficiency on both data usage and training time. MQ-GLIP-L
surpasses the current SoTA by a large margin with simply 5 visual exemplars provided, reaching
34.7% AP on Val v1.0 (+7.8% over GLIP-L), which verifies the superiority of multi-modal queries
over single-modal queries. Meanwhile, MQ-Det demonstrates good training efficiency, e.g., MQ-
GLIP-T only requires additional 2% training time and 12% data usage when modulated upon GLIP-T.

Additionally, we find three contributing factors: (i) Strong generalization comes from combination
of textual breadth and visual granularity. In Tab. 1, MQ-GLIP-T-Img replaces all text queries
with [MASK] tokens and solely utilizes vision queries to predict objects, achieving 17.6% AP.

†Modulating upon pretrained models indirectly utilizes their pre-training data.
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Table 2: Results on the ODinW benchmark. The few-shot performance is evaluated by 3-shot [27, 25].

Model Language Query Vision Query Backbone Pre-train Data Data ODinW-35 ODinW-13
Size APavg APavg

Finetuning-free Setting

MDETR [20] ! % ENB5 [38] GoldG,RefC 0.9M 10.7 25.1
OWL-ViT [30] ! ! ViT L/14(CLIP) O365, VG 0.8M 18.8 40.9
GLIP-T [25] ! % Swin-T O365,GoldG,Cap4M 5.5M 18.7 41.9
GLIP-L [25] ! % Swin-L FourODs,GoldG,Cap24M 27.5M 22.6 51.0
OmDet [50] ! % ConvNeXt-B COCO,O365,LVIS,PhraseCut 1.8M 16.0 43.6
GLIPv2-T [48] ! % Swin-T O365,GoldG,Cap4M 5.5M 22.3 50.7
DetCLIP [42] ! % Swin-T O365,GoldG,YFCC1M 2.4M - 43.3
GroundingDINO-T [27] ! % Swin-T O365,GoldG,Cap4M 5.5M 21.7 49.8

MQ-GroundingDINO-T ! ! Swin-T O365† 0.66M 22.5 50.9
MQ-GLIP-T ! ! Swin-T O365† 0.66M 20.8 45.6
MQ-GLIP-L ! ! Swin-L O365† 0.66M 23.9 54.1

Few-Shot Setting

DyHead-T [6] % % Swin-T O365 0.66M 37.5 43.1
GLIP-T [25] ! % Swin-T O365,GoldG,Cap4M 5.5M 38.9 50.7
DINO-Swin-T [47] % % Swin-T O365 0.66M 41.2 49.0
OmDet [50] ! % ConvNeXt-B COCO,O365,LVIS,PhraseCut 1.8M 42.4 48.5

MQ-GLIP-T ! ! Swin-T O365† 0.66M 43.0 57.0
Full-Shot Setting

GLIP-T [25] ! % Swin-T O365,GoldG,Cap4M 5.5M 62.6 61.9
DyHead-T [6] % % Swin-T O365 0.66M 63.2 58.7
DINO-Swin-T [47] % % Swin-T O365 0.66M 66.7 -
OmDet [50] ! % ConvNeXt-B COCO,O365,LVIS,PhraseCut 1.8M 67.1 65.3
DINO-Swin-L [47] % % Swin-L O365 0.66M 68.8 67.3

MQ-GLIP-T ! ! Swin-T O365† 0.66M 64.8 62.5

Table 3: Ablation results. We evaluate finetuning-free performance on LVIS and ODinW. Both
average and median values on 13 datasets of ODinW are reported. Each row in this ablation study
table should be compared to the baseline MQ-GLIP-T reported at the top of the table.

Ablated Ablated MQ-GLIP-T → Changed LVIS MiniVal (%) ODinW-13 (%)
Setting Details Original Value Value AP APr APc APf APavg APmid

Original GLIP-T model 26.0 20.8 21.4 31.0 41.9 39.3

MQ-GLIP-T model 30.4 21.0 27.5 34.6 45.6 48.8

(a) Mask Strategy Mask Rate 40% 0% 26.9 20.1 23.4 31.2 42.8 46.8
40% 80% 28.9 20.4 24.2 34.6 45.0 48.3

(b) Gate

Enable ! % 27.1 19.4 24.4 31.1 44.1 47.1

Architecture MLP Scaler 29.3 18.3 26.3 34.0 43.4 46.0
MLP Linear 30.0 19.7 26.9 34.5 44.4 47.3

Input v̂ cat(v̂, t) 29.2 17.8 26.0 34.2 44.8 48.2

(c) Freezing Full Model ! % 24.4 28.6 21.1 17.2 38.6 45.4

Detector Text Encoder ! % 26.6 17.3 23.0 31.5 42.7 46.6

This confirms that our low-cost modulated pre-training strategy introduces sufficient visual cues.
Augmenting generalizable language with visual details, MQ-GLIP-T outperforms the text-only model
MQ-GLIP-T-Txt by a large margin. (ii) Efficiency on data usage and training time benefits from
frozen pre-trained detection models. Our approach preserves the generalizable knowledge in the
frozen pre-trained models and thus only needs little additional cost for further modulation. This
is also verified in Tab. 3 (c). (iii) Our simple plug-and-play architecture design enables wide-range
applications, since most language-queried detectors share the similar parallel architecture design as
GLIP and GroundingDINO, e.g., MDETR [20], OWL-ViT [30], and DetCLIP [42] in Tab. 2.
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ODinW-13, from finetuning-free to
full-shot data. MQ-Det clearly im-
proves GLIP on data efficiency.
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Figure 4: Finetuning-free detection with different vision
queries. The language queries of 1,203 LVIS categories
are always provided. Similar boxes are located while vision
queries with better quality provide more accurate predictions.

3.2.2 MQ-Det as a strong few-shot learner

The experiments on ODinW with respect to finetuning-free, few-shot and full-shot settings are listed
in Tab. 2, where MQ-Det shows robust performance on this challenging benchmark. We observe
that most large-scale fundamental detection models only support language as category queries. With
additional vision queries, MQ-GLIP-T averagely improves GLIP-T by +3.7% AP and +6.3% AP in
the finetuning-free and few-shot settings respectively on ODinW-13, thus exhibiting the superiority of
the rich description granularity of vision queries in our approach. Meanwhile, MQ-GLIP-T sets a new
record on the ODinW-35 few-shot setting with 43.0% AP. Fig. 3 demonstrates few-shot performance
with respect to different amounts of training data. We also notice that MQ-GLIP-T makes limited
gains over GLIP-T with sufficient training data in the full-shot setting (e.g., +0.6% AP on ODinW-13).
The reason is that the learning procedure, with sufficient training data, degenerates to a traditional
close-set detection problem, where the model just represents categories as index regardless of textual
or visual descriptions.

3.3 Ablation studies

Importance of the masked language prediction strategy. We propose our masked language
prediction strategy to address the learning inertia problem described in Sec. 2.3. Tab. 3 (a) verifies
the effect of our pre-training strategy. We observe that our approach holds a great performance
degradation (-3.5% AP) on LVIS with the mask rate of 0. MQ-GLIP-T with the mask rate of 0 only
improves GLIP-T by +0.9% AP on LVIS. This indicates that our multi-modal queried MQ-GLIP
may lose its effect and degenerate to language-queried GLIP without the masked language prediction
strategy. Meanwhile, a too large mask rate (e.g., 80%) may lead to overfitting on the vision queries
and losing attention to semantic-rich language queries, thus impairing performance.

The role of vision queries. MQ-Det provides users a flexible way to construct customized vision
queries. We use one vision query for each category of LVIS in MQ-GLIP-T, and investigate the
effect of different query qualities as shown in Fig. 4. The vision queries are selected based on the
following criteria: (i) Positive queries (in red) contain complete information about the target objects,
which significantly improve detection. (ii) Hard positive queries (in brown) only provide partial
object information and sometimes include additional noise, such as the example of the boy and car.
Despite the additional noise, MQ-Det can filter it out and still help improve the detection accuracy to
some extent, identifying at least one object correctly. (iii) Negative queries (in green) contain too
much noise and do not benefit detection, while (iv) “no vision queries” (in blue) is used as a baseline.
Finally, we also use (v) mixed queries (in purple) that combine the three types of vision queries. The
results show the robustness of MQ-Det, namely, our approach can select relevant information from
miscellaneous vision queries to boost detection.

Architecture design. We design a plug-and-play GCP module so that visual details can be smoothly
interleaved with highly-semantic textual cues. Particularly, in GCP, the conditional gating mechanism
on each interleaved category token in Eqn. (2) ensures smooth model initialization from the frozen
model and stable modulating according to different quality of visual cues. As shown in the first two
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rows of Tab. 3 (b), roughly adding visual cues to each text token, or equally scaling them using the
same learnable gating scalar for all vision queries, can result in sub-optimal performance (-3.3% AP
and -1.1% AP on LVIS, respectively). When using a simple gating design consisting of one linear
layer over different vision queries, we obtain a slight performance drop compared to the non-linear
MLP design, indicating content-aware gating mechanism is necessary and more parametric design
helps analyze the quality of vision queries. In order to encourage the gate to balance the vision query
v̂ and the text query t in Eqn. (2), we combine the two query types as a joint input (the last row of
Tab. 3 (b)). However, we discover that this task rises the learning difficulty for a simple gate design.

Freezing pre-trained detectors. Tab. 3 (c) shows the necessity of modulating on the frozen models to
introduce vision queries into the language-queried detectors. Either modulating the whole pre-trained
detector or only modulating the text encoder with the limited detection data inevitably lose the
generalization capability of the initial language-queried model, leading to a significant performance
decrease (-6.0% AP and -3.8% AP on LVIS respectively). Moreover, training without freezing the
detector requires almost twice the time consumption, not to mention the additional memory cost.

4 Related work

Language-queried object detection. Recently, vision-and-language approaches have gained popu-
larity in visual recognition, where language is used to query visual objects and enable open-set ability.
CLIP [32] and ALIGN [19] are pioneers in cross-modal image-level contrastive learning [5], where
they train on millions of image-text pairs to perform open-vocabulary image classification. Inspired
by these works, object detection has pursued cross-modal region-level contrastive learning in two
main pipelines. One pipeline is open-vocabulary object detection (OVD) [46, 12, 54, 51, 30, 45],
where the detection data is rigorously split into base classes for training and novel classes for evalu-
ation. For instance, Zareian et al. [46] propose OVR-CNN that first pre-trains a visual encoder on
image-caption pairs to learn rich vocabulary and then finetunes on detection data with only base
classes. Detic [54] learns object localization and fine-grained vision-language matching simultane-
ously using max-size proposals to assign image-level labels. However, this pipeline utilizes limited
detection data and only generalizes to specific datasets, e.g., from COCO [26] base classes to COCO
novel classes. In contrast, our approach follows the second pipeline of large-scale fundamental
detection models [42, 25, 48, 20, 50], which aims to generalize to arbitrary categories with extensive
region-level image-text data. MDETR [20] trains an end-to-end DETR [3] model via phrase-region
matching on existing multi-modal datasets, providing a strong baseline for few-shot object detection.
GLIP [25, 48] formulates object detection as a grounding problem and leverages additional grounding
data for aligned semantics at phrase and region levels, achieving even stronger performance on
fully-supervised detection benchmarks without finetuning. GroundingDINO [27] applies GLIP’s
grounded training strategy to a stronger detection backbone DINO [47], achieving state-of-the-art
open-set detection performance. Since these models all use a text encoder like BERT [8] to model the
language queries, our approach can seamlessly integrate vision queries with these language-queried
models to enable rich visual granularity.

Vision-queried methods commonly exist in current two-branch based few-shot object detection
pipelines [16, 11, 14, 15, 21]. These methods are based on a siamese network to process the target
images and vision queries in parallel, and calculate the similarity between image regions (usually
proposals) and few-shot examples for detection. Kang et al. [21] propose a feature reweighting
module to aggregate the target image features via few-shot vision queries. Meta Faster R-CNN [15]
performs feature alignment between the two inputs and focus on foreground regions using attention.
FCT [16] proposes an early fusion transformer architecture to fuse target images and vision queries.
However, the two-branch pipeline in few-shot detection lacks instruction of language, and is far
from practical implementation, e.g., no more than 10% AP in 3-shot COCO [26] for current SoTA
methods [16, 15], not to mention more challenging LVIS [13] and ODinW [23] benchmarks. In
addition, only a very few open-vocabulary object detection approaches support both language and
vision queries. OV-DETR [45] proposes to utilize CLIP [32] embeddings from both image and
text encoders as the object queries of the DETR [3] decoder. OWL-ViT [30] uses detection data to
finetune upon CLIP. Thanks to the parallel structure of CLIP, OWL-ViT can conduct both region-
text and region-image similarity. However, these two methods do not support language and vision
queries as joint inputs, and show low performance with vision queries. Our MQ-Det considers the

9



complementary nature of vision and language queries, thus achieving both open-set generalization
and fine-grained recognition.

5 Conclusion

MQ-Det is an efficient pre-training architecture and strategy design to let vision-language (VL)
detection foundation models accept text interleaved with images as the input queries. After modu-
lated pre-training, MQ-Det shows promising gains on the finetuning-free and few-shot settings on
well-established benchmarks and 35 downstream tasks. Our results suggest that utilizing the comple-
mentary nature of language and vision is an important step towards open-world object detection.
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Appendix

We provide an overview of the Appendix below.

Transfer to downstream (Sec. A). We elaborate on the additional details to transfer our MQ-Det
to downstream tasks, including finetuning-free, few-shot, and full-shot settings. The introduction is
organized as followed.

• Different ways to acquire the vision queries in Sec. A.1. This is an elaborative description of
Sec. 3.1.2 in the main text.

• A customized tuning approach of MQ-Det in Sec. A.3, which achieves similar performance
as full-model tuning while only fine-tuning very few parameters.

Experiments (Sec. B). We provide additional training and evaluation details, including:

• Detailed results on 35 downstream tasks in ODinW are provided in Tab. III and Tab. VII,
described in Sec. B.1.

• An explicit evaluation on an open-vocabulary detection setting is conducted to further
investigate the generalization of our multi-modal queries, as presented in Sec. B.2.

• Some visualization results of MQ-Det in Sec. B.1 and Fig. I.
• The training hyper-parameters are illustrated in Sec B.3 and Tab. VI.

Further discussion (Sec. C). We provide a comprehensive discussion on our work, including limita-
tions and broader impacts in Sec C.

A Transfer to downstream

A.1 Different ways to acquire vision queries

During finetuning-free evaluation, we extract 5 instances as vision queries for each category from
the downstream training set without any finetuning. We also provide two alternative strategies and
observe similar performance, i.e., retrieval and test-time online update, where the former obtains
vision queries from heterogeneous external data like ImageNet [7], and the latter dynamically stores
high-confidence instances as vision queries during evaluation. These two additional approaches are
proposed to simulate realistic scenarios:

• Retrieval (user-provided exemplars): a small number of exemplars are provided by the
users without any fine-tuning. We retrieve 5 exemplars as vision queries for each category
from ImageNet-21K [7] to simulate the user-provided exemplars. These samples are
heterogeneous from the downstream test data, e.g., domains. The results are provided in
MQ-GLIP-T-Retrival of Tab. I.

• Online updating: the model dynamically stores high-confidence instances as vision queries
during evaluation. No vision queries are provided at the initial stage of evaluation. The
results are illustrated in MQ-GLIP-T-Online of Tab. I. We provide detailed description in
Sec. A.2.

The results are illustrated in Tab. I. We select 3 downstream datasets from ODinW [23] to verify the
effectiveness of each approach. Generally, all three approaches to acquire vision queries demonstrate
similar performance. We observe that vision queries from online updating hold relatively lower quality,
thus leading to slight performance drop, since no manual annotations are provided. Meanwhile,
exemplars retrieved from ImageNet are object-centric and contain little noise (e.g., other irrelevant
objects), thus improving the performance.

A.2 Test-time online update

Our test-time online update strategy is conducted via the following steps: 1) only utilize language
queries to conduct detection at the initial stage of evaluation. 2) Store detected instances with high
confidence as the vision queries of corresponding categories. 3) Use both language queries and stored
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vision queries for evaluation and seek for more vision queries. Tab. I verifies the effectiveness of our
approach.

A.3 Partial tuning rivals full-model tuning

Since the GCP modules are interleaved into the frozen detector, we provide a customized fine-tuning
strategy, partial tuning, namely, only tuning the newly added GCP modules and freezing all other
parameters. The results in Tab. II indicate that our partial tuning strategy achieves comparable
performance with traditional full-model tuning (i.e., only -0.4 % AP on ODinW-13). Partial tuning
accounts for much fewer learnable parameters, thus friendly to training time and memory costs. The
experimental results in the main text are all based on the partial tuning.

Table I: Different ways to acquire vision query. We
report the finetuning-free performance. All models
should be compared with the MQ-GLIP-T model
at the top of the table.

Model AerialDrone Aquarium Rabbits

GLIP-T 12.5 18.4 70.2
MQ-GLIP-T 15.8 23.5 75.4
MQ-GLIP-T-Online 15.5 23.2 74.8
MQ-GLIP-T-Retrieval 16.0 23.6 75.1

Table II: Different fine-tuning strate-
gies of MQ-Det under the 5-shot set-
ting. The implementation used in our
evaluation is highlighted in color.

Strategy ODinW-13 (%)
APavg APmid

Partial tuning 59.1 62.4
Full-model tuning 59.5 64.5

B Experiments

B.1 All results

We report the per-dataset performance under various settings in ODinW-13 and ODinW-35, shown in
Tab. III and Tab. VII, respectively. We also provide some visualized results in Fig. I.

Table III: Per-dataset AP performance (%) on ODinW-13. We report results on 0, 1, 3, 5, 10-shot
detection. MQ-GD-T denotes MQ-GroundingDINO-T. Specifically, the “zero-shot” here actuall
stands for the finetuning-free setting with 5 vision queries.

Dataset MQ-GLIP-T MQ-GLIP-L MQ-GD-T
0 1 3 5 10 0 1 3 5 10 0

PascalVOC 59.8 52.9 58.9 59.3 59.6 64.7 64.7 67.4 68.1 68.8 57.5
AerialDrone 15.8 22.1 29.8 31.0 31.6 17.4 30.7 36.1 37.0 36.1 13.6
Aquarium 23.5 31.7 36.1 40.1 42.4 30.3 39.2 45.8 47.0 49.7 18.5
Rabbits 75.4 76.2 77.4 75.6 75.5 71.8 76.0 75.0 74.3 75.3 79.9
EgoHands 41.2 64.3 66.0 66.7 68.2 57.2 68.8 68.1 71.6 72.6 65.4
Mushrooms 61.0 89.7 89.0 91.8 89.0 63.9 87.4 91.6 90.7 92.2 68.2
Packages 68.5 71.9 72.8 73.7 74.4 53.0 70.6 71.2 72.0 73.5 64.1
Raccoon 41.6 61.2 64.8 65.5 61.9 58.1 70.9 73.3 72.0 76.7 49.2
Shellfish 26.6 27.9 34.2 41.9 40.0 63.0 61.1 60.1 62.8 60.7 29.2
Vehicles 57.2 60.6 59.5 65.7 65.6 63.2 68.3 70.2 71.2 72.4 56.7
Pistols 59.6 56.5 60.3 61.4 61.7 74.4 73.6 72.7 74.3 74.8 69.2
Pothole 14.7 26.7 28.0 33.7 36.4 27.0 30.9 30.8 36.9 38.7 25.2
Thermal 48.0 59.4 64.2 62.4 72.7 58.7 68.5 72.2 72.5 74.5 64.9

Average 45.6 53.9 57.0 59.1 59.9 54.1 62.4 64.2 65.4 66.6 50.9

B.2 Explicit evaluation on an open-vocabulary detection setting

To further investigate the transferability of MQ-Det, we evaluation our models on a clear separation
of base and novel classes, which is similar to previous open-vocabulary object detection [54, 41]. We
first construct a novel category set from 1,203 LVIS categories. Specifically, we remove the LVIS
categories that exist in the 365 classes of Objects365 and finally obtain 986 novel categories that
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did not appear during our modulated pre-training. The remaining 217 categories are represented as
base categories. Then, we conduct finetuning-free inference with 5 vision queries on the separated
categories to verify the generalization of multi-modal query learning. Tab. IV shows the results.
The results indicate that multi-modal queries generalize well to novel classes that do not exist
in the modulated pre-training. Specifically, +4.1%, +5.7%, and +6.3% AP on novel classes of
MQ-GroundingDINO-T, MQ-GLIP-T, and MQ-GLIP-L over their baselines, respectively.

Table IV: Finetuning-free detection with explicit open-vocabulary category separation on LVIS.

Model APnovel APbase APall

GroundingDINO-T 22.1 36.7 25.6
GLIP-T 20.8 42.0 26.0
GLIP-L 35.4 45.5 37.9

MQ-GroundingDINO-T 26.2 43.0 30.2
MQ-GLIP-T 26.5 42.8 30.4
MQ-GLIP-L 41.7 51.3 44.0

It is worth noting that the separation of base and novel classes differs from previous works on open-
vocabulary detection (OVD) [46]. The reason is that the testing categories of previous separation are
partially included in our pre-training dataset Objects365 [36]. Therefore, we represent the classes
in LVIS that do not exist in our modulated pre-training dataset Objects365 as novel classes. The
frequency distribution of the separated LVIS dataset is shown in Tab. V:

Table V: Frequency distribution of the separated LVIS for open-vocabulary evaluation.

Class #Rare #Common #Frequent

Novel 326 404 256
Base 11 57 149
All 337 461 405

B.3 Training hyper-parameters

We report the hyper-parameter settings of the modulated pre-training of MQ-Det in Tab. VI. Other
settings are the same with corresponding language-queried detectors.

Table VI: Hyper-parameters of modulated pre-training.

Item Value Item Value

optimizer AdamW max vision query num (K) 5000
lr of GCP 1e-5 vision query num (k) 5
lr of gate 5e-3 mask rate 40%
weight decay 1e-4 layer with GCP 6∼12

C Further discussion

Limitations. First, multi-modal queries make limited contribution with sufficient training data
for each category. This may because the foundation models learn enough accurate classification
boundaries, thus reducing the effectiveness of language and vision queries. Second, the applications
of MQ-Det on other dense prediction tasks such as segmentation remain unexplored.

Broader impacts. MQ-Det shows strong downstream transfer ability with highly flexible category
vocabularies. This allows inexperienced users to easily use MQ-Det models (e.g., MQ-GLIP) for
their own needs by simply providing some visual examples and corresponding text descriptions.
However, this also raises concerns about how our MQ-Det models with a large vocabulary could
be used inappropriately in the community, such as for large-scale illegal video surveillance. The
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open-set detection capabilities could be manipulated through specialized visual or textual cues to
facilitate targeted detections instead of generic ones. This manipulation could introduce biases in the
detector and result in unfair predictions.

Table VII: Per-dataset AP performance (%) on ODinW-35. We report results on 0, 3-shot detection.
MQ-GD-T denotes MQ-GroundingDINO-T. Specifically, the “zero-shot” here actuall stands for the
finetuning-free setting with 5 vision queries.

Dataset MQ-GLIP-T MQ-GLIP-L MQ-GD-T
0 3 0 0

AerialMaritimeDrone_large 15.8 29.8 17.4 13.6
AerialMaritimeDrone_tiled 18.3 27.1 20.8 21.9
AmericanSignLanguageLetters 1.8 19.9 3.0 0.1
Aquarium 23.5 36.1 30.3 18.5
BCCD_BCCD 4.3 57.3 12.4 12.3
ChessPiece 10.7 64.8 2.8 14.9
CottontailRabbits 75.4 77.4 71.8 79.9
DroneControl_Drone_Control 6.4 40.9 9.3 1.2
EgoHands_generic 41.2 66.0 57.2 65.4
EgoHands_specific 3.6 32.1 6.7 0.1
HardHatWorkers 5.4 37.4 5.5 4.8
MaskWearing 0.3 46.3 1.0 0.0
MountainDewCommercial 49.2 46.4 17.7 39.9
NorthAmericaMushrooms 61.0 89.0 63.9 68.2
OxfordPets_by-breed 0.4 31.5 0.5 0.4
OxfordPets_by-species 1.6 68.1 0.4 0.5
PKLot_640 0.9 30.3 2.6 0.0
Packages 68.5 72.8 53.0 64.1
Raccoon_Raccoon 41.6 64.8 58.1 49.2
ShellfishOpenImages 26.6 34.2 63.0 29.2
ThermalCheetah 2.3 41.1 11.1 7.1
UnoCards 0.2 35.4 0.8 0.0
VehiclesOpenImages 57.2 59.5 63.2 56.7
WildFireSmoke 13.2 22.5 20.5 14.6
boggleBoards 0.1 76.5 0.1 0.0
brackishUnderwater 4.5 31.3 5.3 3.3
dice_mediumColor 0.4 14.6 0.6 0.1
openPoetryVision 0.0 3.1 0.0 0.1
pistols 59.6 60.3 74.4 69.2
plantdoc 1.7 12.5 1.5 0.2
pothole 14.7 28.0 27.0 25.2
selfdrivingCar 8.2 17.5 9.0 6.9
thermalDogsAndPeople 48.0 64.2 58.7 64.9
websiteScreenshots 1.0 6.6 1.7 1.0
PascalVOC 59.8 58.9 64.7 57.5

Average 20.8 43.0 23.9 22.5
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Figure I: Visualized results of MQ-GLIP-T on the LVIS benchmark.
Prediction Annotation Predic,on Annotation
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