
QuIP: 2-Bit Quantization of
Large Language Models With Guarantees

Jerry Chee
Cornell University

jerrychee@cs.cornell.edu

Yaohui Cai
Cornell University

yc2632@cornell.edu

Volodymyr Kuleshov
Cornell University

kuleshov@cornell.edu

Christopher De Sa
Cornell University

cdesa@cs.cornell.edu

Abstract

This work studies post-training parameter quantization in large language models
(LLMs). We introduce quantization with incoherence processing (QuIP), a new
method based on the insight that quantization benefits from incoherent weight
and Hessian matrices, i.e., from the weights being even in magnitude and the
directions in which it is important to round them accurately being unaligned with
the coordinate axes. QuIP consists of two steps: (1) an adaptive rounding procedure
minimizing a quadratic proxy objective; (2) efficient pre- and post-processing that
ensures weight and Hessian incoherence via multiplication by random orthogonal
matrices. We complement QuIP with the first theoretical analysis for an LLM-scale
quantization algorithm, and show that our theory also applies to an existing method,
OPTQ. Empirically, we find that our incoherence preprocessing improves several
existing quantization algorithms and yields the first LLM quantization methods
that produce viable results using only two bits per weight. Our code can be found
at https://github.com/Cornell-RelaxML/QuIP.

1 Introduction

Large language models (LLMs) have enabled advances in text generation, few-shot learning, reason-
ing, protein sequence modeling, and other tasks [2, 30, 35]. The massive size of these models—often
reaching into hundreds of billions of parameters—requires sophisticated deployment methods and
motivates research into efficient inference algorithms.

This work studies the post-training quantization of LLM parameters as a way to improve their runtime
efficiency [4, 8, 22, 31, 33, 34]. Our key insight is that quantization can be most effective when weight
and proxy Hessian matrices are incoherent—that the weights themselves are even in magnitude,
and the directions in which it is important to have good rounding accuracy are not too large in any
one coordinate. Intuitively, incoherence can be thought of as a principled form of outlier reduction,
which makes it easier to adaptively round the weights to a finite set of compressed values. We use
this intuition to develop theoretically sound two-bit quantization algorithms that scale to LLM-sized
models.

Specifically, we introduce quantization with incoherence processing (QuIP), a new method motivated
by the above insight. QuIP consists of two steps: (1) an adaptive rounding [20] procedure, which
minimizes a quadratic proxy objective ℓ(Ŵ) = tr((Ŵ −W)H(Ŵ −W)T) of the error between the
original weights W and the quantized weights Ŵ using an estimate of the Hessian H; (2) efficient pre-
and post- processing that ensures that the weight and Hessian matrices are incoherent by multiplying

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/Cornell-RelaxML/QuIP

them by a Kronecker product of random orthogonal matrices. We denote “incoherence processing”
as both the pre- and post- processing steps of our procedure. Incoherence processing can be viewed
as a form of outlier suppression across the weights and the activation space.

We complement our method with a theoretical analysis—the first for a quantization algorithm that
scales to LLM-sized models—which analyzes the role of incoherence and shows that our quantization
procedure is optimal within a general class of rounding methods. Interestingly, we find that QuIP
without incoherence processing yields a more efficient implementation of an earlier algorithm,
OPTQ [8]; our paper thus also provides the first theoretical analysis for that method.

Empirically, we find that incoherence processing greatly improves the quantization of large models,
especially at higher compression rates, and yields the first LLM quantization method that produces
viable results using only two bits per weight. For large LLM sizes (>2B parameters), we observe
small gaps between 2-bit and 4-bit compression that further decrease with model size, hinting at the
feasibility of accurate 2-bit inference in LLMs.

Contributions. In summary, this paper makes the following contributions: (1) we propose QuIP, a
quantization method based on the insight that model parameters should ideally be incoherent; (2) we
provide a theoretical analysis for a broad class of adaptive rounding methods that encompass QuIP
and OPTQ; (3) we demonstrate that QuIP makes two-bit LLM compression viable for the first time.

2 Related Work

Adaptive rounding. Nagel et al. [20] are the first to motivate the “adaptive rounding” proxy
objective (Eq. (1)) in a principled way. There are many quantization methods which quantize by
optimizing this proxy objective [5, 6, 9, 12, 14, 20, 32]. Many require further retraining which can
be expensive, and are not evaluated on the current largest open LLMs (OPT [35], BLOOM [30]).
Lybrand and Saab [15] propose a greedy per-neuron quantization procedure that is similar to ours,
except they do not consider arbitrary linear functions of the error correction. Their work bounds the
proxy objective, albeit on the first layer only.

Post training quantization in large models. There is a growing body of work on PTQ in LLMs
such as OPT and BLOOM. The size of these models make it difficult to apply previously developed
methods. The majority of these methods make quantization easier by somehow reducing the range
of weights or activations, but still use nearest rounding. SmoothQuant [31] rescales between acti-
vations and weights to remove outliers from the activations and make quantization overall easier.
ZeroQuant [33] proposes a per-layer knowledge distillation method. LLM.int8() [4] decompose
matrix multiplications into a majority of 8 bit and a minority of 16 bit operations. LUT-GEMM [22]
designs kernels to accelerate quantized matrix multiplications. RPTQ [34] reorders activations and
quantizes them in groups, reducing the impact of range differences between channels.

OPTQ (Formerly known as GPTQ). OPTQ [8] is based on OBQ [7], and proposes a novel rounding
method that can work on the largest OPT and BLOOM models. The method works iteratively over the
weight columns in a fixed order: (1) quantize with nearest rounding and compute the error, (2) update
the remaining weights with a scaled error, and (3) repeat.

Other quantization methods. There are other quantization procedures which do not round based on
the proxy objective of [20], or are not designed for the largest language models [10, 11, 13, 19, 28, 29].

3 Quantization With Incoherence Processing: Adaptive Rounding Step

This section introduces quantization with incoherence processing (QuIP), a new method consisting of:
(1) an adaptive rounding step; (2) efficient pre- and post-processing that ensures weight and Hessian
incoherence. We define and analyze step (1) in this section; the next section focuses on step (2).

Following existing state-of-the-art post-training quantization methods, we round weights per-layer by
minimizing the “adaptive rounding” proxy objective, as in Nagel et al. [20],

ℓ(Ŵ) = Ex

[∥∥∥(Ŵ −W)x
∥∥∥2] = tr

(
(Ŵ −W)H(Ŵ −W)T

)
. (1)

Here, W ∈ Rm×n is the original weight matrix for a given linear layer, Ŵ ∈ Rm×n are the quantized
weights, x ∈ Rn is an input vector drawn uniformly at random from a calibration set, and H is the

2

second moment matrix of these vectors, interpreted as a proxy Hessian. Crucially, this formulation
lets the quantization be run in parallel across neurons, which is tractable for large language models [8].
For simplicity, we will focus in this section on rounding to the integers; subsequent sections will
extend the analysis to finite grids.

3.1 LDLQ: An Optimal Adaptive Rounding Method

Our strategy is to define a family of adaptive rounding methods for optimizing objective (1) and then
define LDLQ, the optimal method within that class. Our defined methods iteratively perform the
following update for k = 1, 2, ..., n:

Ŵk = Q(Wk + (W1:(k−1) − Ŵ1:(k−1))ak),

where Wk denotes the k-th column, W1:(k−1) denotes the first k − 1 columns, the subroutine Q
denotes either nearest rounding or standard unbiased rounding to the integers (which rounds up or
down such that E [Q(z)] = z), and ak ∈ Rk−1 is some sequence of vectors. This scheme rounds
columns one at a time; at each step, it adds a “correction” term that is a linear function of the residual
from the rounding we have done so far. The final Ŵ satisfies the following matrix equation:

Ŵ = Q(W + (W − Ŵ)U), (2)

where U is a strictly upper-triangular matrix whose columns are the vectors ak andQ acts elementwise.
Because U is upper-triangular, Ŵk only depends on Ŵ1:(k−1).

If we let η = Q(W + (W − Ŵ)U)− (W + (W − Ŵ)U) denote the quantization error of Q, we
find that Ŵ −W = η(U + I)−1 and we can rewrite objective (1) as

tr((Ŵ −W)H(Ŵ −W)T) = tr(η(U + I)−1H(U + I)−T ηT). (3)

The LDLQ Method How should we specify U , the linear feedback from the quantization error of
preceding columns in (2)? Equation 3 provides an answer. If we choose U ← Ù such that the LDL
decomposition of H is

H = (Ù + I)D(Ù + I)T , (4)

where D is a (non-negative) diagonal matrix and Ù is upper unit triangular, then the terms (U + I)

in Eq. (3) cancel. We denote as LDLQ the rounding procedure in Eq. (2) with U ← Ù as the LDL
assignment from Eq. (4). We will now see that the LDL assignment of U is in fact optimal.

3.2 Deriving the Optimality of the LDLQ Adaptive Rounding Procedure

In order to reason about optimality, we consider weights which are worst and average-case for the
proxy loss. Let A denote a rounding method, and let A(W,H) be the resulting quantized weights.
Define the worst-case (Lworst) and average (Lavg) proxy losses with respect to the input weights as

Lworst(A, H) = sup
W∈Rm×n

E
[
tr
(
(A(W,H)−W)H(A(W,H)−W)T

)]
(5)

Lavg(A, H) = EW∼Unif[0,1]m×n

[
tr
(
(A(W,H)−W)H(A(W,H)−W)T

)]
. (6)

Theorem 1. LDLQ is worst and average-case optimal amongst rounding methods which specify the
linear feedback U as a function of H (not of W), and when rounding to the integers. That is, for all
rounding methods A in the class described by Eq. (2), for all positive semi-definite H , and for Q as
either nearest or stochastic rounding,
m
4 tr(D) = Lworst(LDLQ, H) ≤ Lworst(A, H) and m

c tr(D) = Lavg(LDLQ, H) ≤ Lavg(A, H),

where D is the matrix from the LDL decomposition of H , and c = 12 for nearest, c = 6 for stochastic.

Remarks. The number of rows being quantized is m, and each quantization method operates across
the n entries of each row. For all rounding methods described by Eq. (2), and for all positive semi-
definite H , Q as nearest rounding achieves the same worst-case proxy loss as stochastic rounding,
but achieves better average proxy loss.

3

0 500 1000 1500 2000 2500
10 5

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
ei

ge
nv

al
ue

s Block 16 k_proj
Block 20 q_proj
Block 30 fc1

Figure 1: eig(H) from OPT-2.7b.

0.1 0.2 0.3 0.4 0.5
Before incoherence max |Wij|

0.0

0.1

0.2

0.3

0.4

0.5

Af
te

r i
nc

oh
er

en
ce

 m
ax

 |W
ij|

Figure 2: Max |Wij | before
and after incoherence process-
ing on OPT-2.7b.

0.2 0.4 0.6 0.8 1.0
Before incoherence max |eigvec(H)ij|

0.2

0.4

0.6

0.8

1.0

Af
te

r i
nc

oh
er

en
ce

 m
ax

 |e
ig

ve
c(

H
) ij|

Figure 3: Max |Qij | before
and after incoherence process-
ing, with Q the eigenvectors of
H on OPT-2.7b.

Moving beyond a generic algorithm A within our framework, we consider the common baselines of
nearest and stochastic rounding. These methods are represented within our framework by choosing
the appropriate Q subroutine, and setting all entries of the linear feedback to zero.

For these baseline methods, their optimality gap to LDLQ is governed by tr (D) vs. tr (H). For
any non-diagonal H̃ ⪰ 0, LDLQ achieves strictly lower worst and average-case proxy loss because
tr (D) < tr(H̃). Let B = {Near,Stoch}. Then, Lworst(LDLQ, H̃) < Lworst(Stoch, H̃) and
Lavg(LDLQ, H̃) < Lavg(B, H̃). Across OPT models 125m to 2.7b, tr (D) / tr (H) ≤ 0.65—
empirically verifying that the gap is not insignificant. See Supplement C for full details.

3.3 Incoherence: Optimality with a Spectral Bound

Theorem 1 gives exact expressions for the proxy loss, albeit with tr (D), which can be difficult to
reason about. In Figure 1, we empirically observe that H is approximately low-rank: we visualize
the spectrum of several randomly chosen H from OPT-2.7b, and observe that the spectrum decays
rapidly. In fact, across all layers of OPT-125m to 2.7b models, a vast majority of H matrices have
fewer than a quarter of eigenvalues > 1% of the max eigenvalue; see Supplement C for full details.
Given this observation about the low rank of H , can we bound the behavior of LDLQ, and thus
tr (D), using the spectrum of H?

We do this building on a variant of the incoherence assumption that is specialized to our case [3, 24].
Definition 1. We say a symmetric Hessian matrix H ∈ Rn×n is µ-incoherent if it has an eigende-
composition H = QΛQT such that for all i and j, |Qij | =

∣∣eTi Qej
∣∣ ≤ µ/

√
n. By extension, we say

a weight matrix W ∈ Rm×n is µ-incoherent if all i and j, |Wij | =
∣∣eTi Wej

∣∣ ≤ µ ∥W∥F /
√
mn.

Note that “most” n × n matrices are incoherent with µ = O(
√
log n) = Õ(1) because a random

orthogonal matrix has entries with squared-magnitudes that concentrate around their mean of 1/n.
Incoherence in W can be viewed as a form of outlier reduction: a small bound on the magnitude of its
entries means that we do not need to scale it as much to make it fit in the finite range of representable
low-precision numbers. Figures 2 and 3 plot the max absolute weight and hessian eigenvector entries
before and after our incoherence processing, on all layers in OPT-2.7b. A line with slope=1 is drawn
for reference. We see that W and H are more incoherrent after our incoherence processing is applied.
Making H incoherent is less intuitive, but its utility is motivated by the following lemma.
Lemma 2. Let H ∈ Rn×n be a µ-incoherent positive semi-definite symmetric matrix and let
H = (Ù + I)D(Ù + I)T be its LDL Cholesky decomposition, where Ù is a strictly upper triangular
matrix and D is a (non-negative) diagonal matrix. Then,

tr (D) ≤ µ2

n
tr
(
H1/2

)2
.

To the best of our knowledge, this is a novel result using incoherence to obtain a bound on tr (D) that
depends only on the spectrum of H . To help interpret this result, we derive explicit proxy losses for
plain nearest and stochastic rounding, which we will then compare to what LDLQ gets via Lemma 2.

4

Algorithm 1 QuIP - Incoherence Pre-Processing
Require: b ∈ N, H ∈ Rn×n SPD, original W ∈ Rm×n, ρ ∈ R+, α ∈ [0, 1]

1: seeded sample random two-factor orthogonal matrices U ∈ Rm×m and V ∈ Rn×n

2: H = H + α ∗mean(diag(H))I ▷ from OPTQ
3: D̃ ← 4

√
diag(H)/ diag(WTW) ▷ 4

√ applies element-wise
4: W ←WD̃; H ← D̃−1HD̃−1 ▷ diagonal rescaling
5: W ← UWV T ; H ← V HV T ▷ incoherence
6: s← ρ∥W∥F /

√
mn; W ← 1

2 (
1
sW + 1) ▷ reduced quantization range due to incoherency

7: W ← clamp(W ∗ (2b − 1), 0, 2b − 1) ▷ rescale W to lie within [0, 2b − 1]

8: return W,H, s, D̃

Algorithm 2 QuIP - Incoherence Post-Processing

Require: b ∈ N, H ∈ Rn×n SPD, quantized W ∈ [0, 2b − 1]m×n, s ∈ R & D̃ ∈ Rn×n (Alg 1)
1: seeded sample random two-factor orthogonal matrices U ∈ Rm×m and V ∈ Rn×n

2: W ← s ∗
(
(W/(2b − 1)) ∗ 2− 1

)
3: W ← UTWV ; H ← V THV ▷ revert incoherence
4: return W ←WD̃−1 ▷ revert diagonal rescaling

Lemma 3. Let H be symmetric positive definite. In the worst case stochastic rounding achieves
Lworst(Stoch, H) = (m/4) tr (H). In the average case nearest and stochastic rounding achieve
Lavg({Near,Stoch}, H) = (m/c) tr (H), where c = 12 for nearest, and c = 6 for stochastic.

To interpret this result, consider H rank-k with µ2k < n. By Cauchy-Schwarz, tr(H1/2)2 ≤ k tr (H).
Combining Lemma 2 with the LDLQ proxy losses of Theorem 1 and comparing with Lemma 3,

Lworst(LDLQ, H) ≤ mµ2

4n
tr
(
H1/2

)2

≤ mµ2k

4n
tr (H) ≤ m

4
tr (H) = Lworst(Stoch, H)

Lavg(LDLQ, H) ≤ mµ2

cn
tr
(
H1/2

)2

≤ mµ2k

cn
tr (H) ≤ m

c
tr (H) = Lavg(B, H),

where B ∈ {Near,Stoch}, and c is as given in Theorem 1. This shows that for sufficiently low-rank
H , LDLQ is asymptotically better than plain nearest and stochastic rounding by a factor of µ2k/n.

Without incoherence: no improvement with a spectral bound. By assuming incoherence, we
were able to show LDLQ gets an asymptotically better bound in terms of just the spectrum of H .
We might ask: was the incoherence assumption necessary to get this result? The following theorem
answers this question in the affirmative by showing that without incoherence, the best spectral bound
for LDLQ cannot differentiate it from the nearest and stochastic rounding baselines.

Theorem 4. Consider all H̃ with the same spectrum as H . For any positive semi-definite H , the
following holds. On the worst-case loss LDLQ achieves the same error as stochastic rounding,

sup
H̃s.t. eig(H̃)=eig(H)

Lworst(LDLQ, H̃) = Lworst(Stoch, H) =
m

4
tr (H) .

On the average-case loss LDLQ achieves the same error as the corresponding rounding routine. Let
B = {Near,Stoch} and c = 12 for nearest, c = 6 for stochastic.

sup
H̃s.t. eig(H̃)=eig(H)

Lavg(LDLQ
∗, H̃) = Lavg(B, H) =

m

c
tr (H) .

Note that the worst case for comparing LDLQ against these baselines occurs when H is diagonal, see
Theorem 1 and Lemma 3. Assuming incoherence as we do is a natural way to exclude such cases.

4 Quantization With Incoherence Processing: Incoherence Processing Step

Next, we leverage the above incoherence analysis to introduce incoherence processing, the second
step of the QuIP algorithm. Our strategy will be to pre-process weight and Hessian matrices to ensure

5

the favorable incoherence properties outlined above. One straightforward way to make a symmetric
matrix incoherent is to conjugate it by a uniform random orthogonal matrix: this will result in each of
its eigenvectors being a random unit vector, whose entries will concentrate around magnitude n−1/2.

Specifically, let U ∈ Rm×m and V ∈ Rn×n be two random orthogonal matrices. (Let’s temporarily
ignore how these matrices are generated, or how we would efficiently perform inference.) We
ensure the weight and Hessian are incoherent with high probability through random orthogonal
multiplications H̃ ← V HV T and W̃ ← UWV T . Importantly, this transformation preserves the
proxy quadratic form since tr(W̃ H̃W̃T) = tr((UWV T)(V HV T)(VWTUT)) = tr(WHWT).

4.1 Incoherence via Efficient Orthogonal Multiplication

If all we wanted to do was to store or transmit the weights of the quantized neural network, the above
procedure would introduce no overhead, since we can generate a random orthogonal matrix from
a seed—making it essentially free to store. However, for running inference on a DNN, we need to
multiply by the weight matrix W , and here the need to manifest and multiply by n × n random
orthogonal matrices U, V would be prohibitive.

To handle this, we propose to instead use a distribution over random orthogonal matrices for which
multiplication is fast. Let n = pq be a factorization of n (where p ≈ q ≈

√
n), and set U = UL⊗UR

where UL is sampled uniformly from the p× p orthogonal matrices and UR is sampled uniformly
from the q × q orthogonal matrices. Multiplication of a vector x ∈ Rn by the matrix U can be
accomplished by reshaping to a p× q matrix, multiplying on the left by UL and the right by UT

R , and
then reshaping back: this takes O(n(p+ q)) = o(n2) operations. Using more than two factors in this
way is also possible, but using two suffices to make this preprocessing asymptotically non-dominant.

Lemma 5. Let H be a positive semi-definite matrix on Rn×n and W a matrix on Rm×n, and suppose
that m = p1 · p2 · · · pk and n = q1 · q2 · · · qk. Let U1, U2, . . . , Uk, V1, V2, . . . , Vk be independent
random orthogonal matrices on Rpi×pi and Rqi×qi respectively. Set U as the Kronecker product
U = U1 ⊗ U2 ⊗ · · · ⊗ Uk and V as V = V1 ⊗ V2 ⊗ · · · ⊗ Vk Then V HV T is µH -incoherent with
probability at least 1− δ, and UWV T is µW -incoherent with probability at least 1− δ, where

µH = Ak/2 log

(
Ckn2

δ

)k/2

= Õ (1) and µW = Ak log

(
2Ckmn

δ

)k

= Õ (1)

for some global constants A and C independent of n and k.

Remarks. This lemma means that multiplying by a random matrix in this family suffices to make a
matrix incoherent with parameter µ only poly-logarithmic in the matrix size. In our experiments we
use k = 2 factors to construct the orthogonal matrices U, V .

4.2 Additional Heuristics

We outline QuIP pre-processing and post-processing in Algorithms 1 and 2, respectively. In line 5 of
Algorithm 1, we apply the aforementioned fast orthogonal multiplication procedure to ensure W and
H are incoherent. We also randomly permute entries at the fast matrix multiplication step to prevent
any correlation between attention heads from worsening performance. We introduce a number of
additional heuristic improvements that further improve performance.

Incoherence-Based Heuristics. Line 4 diagonally rescales W and H to minimize ℓ(Ŵ) ≈
tr (H) ∥W∥2F , effectively trading off the spectrum of these matrices to find a minimum. Moti-
vated by the incoherence of W , Line 6 computes the quantization range depending on the spectrum
∥W∥F , instead of the typical maxi,j |Wij |. Our full QuIP procedure is described in Algorithm 3,
which contains calls to the pre- and post-processing sub-steps in Algorithms 1 and 2.

Greedy local search. Our basic procedure yields a good initial guess with error guarantees. We can
further lower the proxy loss by running coordinate descent after LDLQ (but before post-processing),
updating the weights in the same order as in the initial pass. See Supplement B for full details.

6

Algorithm 3 QuIP: Quantization with Incoherence Processing
Require: b ∈ N, H ∈ Rn×n SPD, W ∈ Rm×n, Q ∈ {Near,Stoch}, ρ ∈ R+, α ∈ [0, 1]

1: Ŵ ,H, s, D̃ ← Alg 1(b,H,W, ρ, α) ▷ QuIP Incoherence Pre-Procesing
2: H = (Ù + I)D(Ù + I)−1 ▷ LDL decomposition
3: for k ∈ {1, . . . , n} do Ŵk ← clamp(Q(Wk + (W − Ŵ)Ùk), 0, 2

b − 1) ▷ LDLQ
4: return Ŵ ← Alg 2(b,H, Ŵ , s, D̃) ▷ QuIP Incoherence Post-Processing

5 Extensions and Further Analyses

5.1 OPTQ is a Special Case of LDLQ

We prove a novel theoretical insight: QuIP without incoherence processing (i.e., LDLQ) is equivalent
to a more efficient version of the OPTQ algorithm. That is, OPTQ falls under our class of adaptive
rounding procedures with linear feedback, and is within-class optimal.

Theorem 6. OTPQ [8] falls within the class of adaptive rounding procedures with linear feedback
as described by Eq. (2), and is equivalent to LDLQ in Section 3.

Remarks. To the best of our knowledge, this equivalence yields the first theoretical analysis of OPTQ.
Even though the two methods are equivalent, LDLQ is more efficient. OPTQ’s implementation
requires a matrix inversion of H , and two Cholesky decompositions. Our implementation of LDLQ
performs no matrix inversion, and only one Cholesky decomposition.

Empirical Verification. The quantized outputs of the OPTQ implementation [8] are shown to be
exactly identical to the outputs of our LDLQ implementation. Synthetic random data was used, with
W ∼ Unif[0, 1]1000×1000. Full details can be found in Supplement C.

5.2 A Bound for Rounding to a Finite Grid

102 103

matrix size n

101

102

103

104

tr(
W

W
)H

(W
W

)T

LDLQ (nearest)
LDLQ (stoch)
nearest
stoch
LDLQ (nearest, no clamp)

Figure 4: LDLQ underperforms.

In Section 3, we saw that LDLQ (equivalently, OPTQ) is
optimal for minimizing the adaptive rounding objective.
However, this analysis assumed rounding to the integers.
In practice, we do not want to round W just to the integers,
but instead to scale it, shift it, and round it a finite subset
corresponding to a b-bit integer. To do this, the “real”
LDLQ algorithm uses a clamp operation to restrict the
range of quantized values. Is LDLQ still optimal when
this small change is made? It turns out that the answer is
no, as the following concrete example illustrates.

Finite Grid Counterexample. Figure 4 illustrates the behavior of LDLQ and other rounding
methods—when restricted via clamping to a finite 4-bit grid [0, 15]—on a particular example where
H is a (cleverly chosen) small perturbation of (In + 1n×n − ene

T
n)/n, and W has m = 16 and is a

small perturbation of 1m×n/2. Details of the setup appear in Supplement C. The figure shows that
clamped LDLQ with nearest rounding is asymptotically worse, and the clamping to the finite grid is
what causes it to be worse in this case.

Note that in our experiments in practice, OPTQ has been shown to soundly beat nearest rounding.
This clamping issue does not seem to arise in practice; however, since it is possible we do need to
take it into account to prove useful end-to-end bounds.

A Procedure With a Bound. In order to address the above issues in theory, here we describe a
method that acts to restrict the value of |Ŵij −Wij |, so that the rounded weights will remain inside
the grid if W is sufficiently far inside. We do this via the optimization problem with hyperparameter c

minimize: tr
(
HRTR

)
over: R unit upper triangular (7)

subject to: eTi R
TRei ≤ 1 + c, ∀i ∈ {1, . . . , n}.

7

Our “fixed” algorithm solves this convex problem (e.g. with ADMM), then runs QuIP using stochastic
rounding and U = R−1 − I in place of the LDL decomposition. Observe that for sufficiently large c,
this is exactly equivalent to base QuIP, since the solution of that optimization problem is given by the
LDL decomposition when the constraint is dropped. Doing this (the full algorithm is given in the
supplemental) yields the following theorem.
Theorem 7. Suppose that we run Algorithm 5 (Supplement) to quantize a matrix W ∈ Rm×n by
solving the objective (7). Then there exists an assignment of the algorithm’s hyperparameters c and ρ
such that with probability at least 1− δ, all the quantized weights will be in range (no overflow or
need for clipping) and

tr
(
(Ŵ −W)H(Ŵ −W)T

)
= Õ

(
1

n24b
tr
(
H1/2

)2
∥W∥2F

)
.

In practice, because clamping rarely causes issues, and because of the significant additional compute
needed to solve this program, we always just use QuIP as described in the previous sections, which is
equivalent to setting c large and using nearest rounding.

6 Experiments

Overview. We quantize the OPT [35] family of models (up to 66B parameters) and Llama 2 70B [27]
using various quantization and processing methods. QuIP is superior to OPTQ and other baselines
across all model sizes and evaluation tasks. Most interestingly, incoherence processing yields
excellent performance using as little as two bits per weight when paired with any of the quantization
methods we consider (including nearest rounding). Two-bit quantization with QuIP is viable at even
moderate model sizes (1B parameters), a regime where other two-bit quantization methods fail. At
the largest model sizes, the difference between 2-bit and 16-bit weight performance becomes small.
We compare the throughput of QuIP with OPTQ’s efficient implementation on language generation
and show that it is not much slower. Additional results on the effectiveness of the proxy loss, unbiased
rounding, and Algorithm 5 are presented in the Supplement C.

Setup. The experimental infrastructure is built on top of OPTQ’s [8] repository which is implemented
in PyTorch [23]. We quantize the HuggingFace implementations of the OPT and Llama 2 model
families. All models are quantized on a single GPU, with up to 48GB of memory. Our calibration
set is the same as OPTQ; 128 random 2048 token segments from the C4 dataset [25] consisting of
generic text data from crawled websites. Therefore, no task-specific data is viewed when quantizing.
Following OPTQ, quantization is performed one Transformer block at a time: loaded into GPU mem-
ory, the Hessian computed, and then the weights quantized. The current block’s inputs are then passed
through the quantized block to produce inputs for the following block. The Hessian is computed from
the quantized Transformer up to that point rather than from the full precision model; like OPTQ, we
find this improves quantization. Further details on the setup can be found in Supplement C, including
a description of the computational resources used to perform the experiments.

Methods. We evaluate compositions of several quantization and pre/post processing methods. For
quantization methods, we evaluate nearest rounding, LDLQ (or OPTQ), and two variations. LDLQ-
RG re-orders the weights based on diag(H) to modify the quantization order and adds further
greedy updates to the proxy. “Greedy” performs the greedy updates only. We evaluate the baseline
preprocessing from OPTQ which adds H ← H + α ∗mean(diag(H))I for numerical stability. We
also evaluate our incoherence processing in Algorithms 1 and 2, denoted as “IncP”. With this notation
QuIP = LDLQ + IncP, and QuIP-RG = LDLQ-RG + IncP.

Datasets. We evaluate on the following language generation tasks: WikiText2 [17], Penn Treebank
(PTB) [16], and C4. We also evaluate on zero-shot tasks, including LAMBADA (LAMB) [21], ARC
Easy (ArcE) [1], PiQA [26], and StoryCloze (SC) [18]. See Supplement C for the full set of results.

Main Results. QuIP is the first PTQ procedure to achieve good quantization at two bits per weight,
across a variety of LLM sizes and evaluation tasks. In Figure 5 we compare QuIP and OPTQ when
quantizing to 2 and 3 bits per weight (4-bit quantization works equally well for both methods); we
evaluate OPT models (up to 66B) on PTB, C4, ARC Easy, and LAMBADA. QuIP is superior to
OPTQ across the model sizes and evaluation tasks. At three bits, QuIP matches the full precision
model reasonably well. At two bits and for larger LLMs (>2B parameters), QuIP begins to approach
the performance of the full precision model. As model size increases, so does the quality of QuIP’s

8

101

102

103

104

Pe
rp

le
xi

ty
 o

n
PT

B

101

102

103

104

Pe
rp

le
xi

ty
 o

n
C4

10 1 100 101

params in billions

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

 o
n

Ar
cE

10 1 100 101

params in billions

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

 o
n

LA
M

B

FP16 OPTQ-W3 OPTQ-W2 QuIP-W3 QuIP-W2

Figure 5: Quantizing OPT models up to 66B parameters. Our method QuIP is the first PTQ procedure
to achieve good quantization at 2 bits per weight, across a variety of model sizes and evaluation tasks.

OPTQ QuIP (Ours)

WBits Wiki↓ C4↓ ArcE↑ PiQA↑ SC↑ Wiki↓ C4↓ ArcE↑ PiQA↑ SC↑
16 3.319 5.709 59.72 80.90 79.95 3.319 5.709 59.72 80.90 79.95

4 3.596 5.905 58.96 80.52 79.12 3.531 5.869 59.81 80.47 79.63
3 4.907 7.099 54.38 78.56 77.72 3.853 6.135 59.81 80.25 79.31
2 123.908 70.541 25.34 50.54 51.75 6.326 8.937 54.38 75.08 75.37

Table 1: Quantizing Llama 2 70B with QuIP and OPTQ, and evaluating on language generation and
zeroshot tasks. Our incoherence processing enables a step function change in quantization at 2 bits.

Baseline Processing Incoherence Processing (Ours)

WBits Wiki↓ PTB↓ C4↓ ArcE↑ LAMB↑ Wiki↓ PTB↓ C4↓ ArcE↑ LAMB↑
16 9.56 14.04 11.45 65.40 72.40 9.56 14.04 11.45 65.40 72.40

OPTQ QuIP
4 9.59 14.22 11.56 64.77 72.39 9.60 14.18 11.50 65.32 73.20
3 10.32 15.36 12.23 60.19 68.89 9.79 14.37 11.66 65.28 72.68
2 71.70 88.19 29.59 42.47 25.77 11.48 17.40 13.55 57.87 65.24

LDLQ-RG QuIP-RG
4 9.64 14.20 11.56 63.76 71.94 9.66 14.11 11.51 64.86 71.86
3 10.31 15.15 12.15 63.43 69.78 9.75 14.44 11.68 63.51 71.53
2 49.40 73.45 29.12 41.20 26.35 11.68 16.94 13.44 59.51 62.31

Greedy Greedy + IncP
4 9.69 14.33 11.59 63.09 72.37 9.72 14.23 11.52 65.99 71.71
3 13.63 23.05 16.30 50.51 56.76 9.92 14.45 11.71 63.80 71.38
2 4816.6 3473.81 3183.2 26.30 0.00 11.59 17.39 13.30 58.80 64.47

Near Near + IncP
4 10.77 15.41 13.52 61.28 70.42 9.77 14.16 11.53 64.06 71.41
3 1564.9 1526.2 1808.2 34.47 1.73 9.89 14.49 11.74 64.06 71.41
2 41547.8 34348.6 24815.7 25.80 0.00 12.04 18.12 14.11 56.36 60.64

Table 2: Quantizing OPT-30b with various quantization and processing methods, and evaluating on
language generation and zeroshot tasks. Our incoherence processing enables a step function change
in quantization at 2 bits, across all rounding methods.

9

Wbits Rescale Incoherence Rescale+Incoherence Rescale+Incoherence+Quant Range

4 24.30 24.32 24.05 23.89
3 32.62 42.28 31.32 26.36

Table 3: Ablating sub-steps of QuIP’s incoherence processing, see Algorithm 1. Perplexities are
averaged over WikiText2, PTB, and C4 for OPT-350m.

2-bit quantization. We provide plots on the remaining datasets in Supplement C. Note that the dip in
OPTQ on OPT-66B is documented in their paper.

Table 1 shows the results of quantizing Llama 2 70B using QuIP and OPTQ. Again, QuIP achieves
good quantization at two bits while OPTQ does not.

Method Throughput

QuIP 81ms
OPTQ 53ms

Table 4: Average per-token
throughput (batch size 1) when gen-
erating sequences of length 128
with OPT-66B on an A6000 GPU.

Incoherence Processing Ablation. Table 2 shows all combi-
nations of quantization and processing methods evaluated on
OPT-30B. At lower weight bits, QuIP’s incoherence processing
dramatically improves the performance of all quantization meth-
ods, across all evaluation tasks. Remarkably, all quantization
methods—even nearest—are viable at two bits with our inco-
herence processing. Our modifications in QuIP-RG sometimes
give an improvement over QuIP, but further study is required
to evaluate these modifications. Figures for OPT-125M to 13B
are in Supplement C.

Throughput Comparison. We evaluate the additional overhead of our incoherence processing during
model inference by modifying OPTQ’s efficient forward pass. OPTQ’s implementation contains a
quantized-matrix full-precision-vector product kernel and was shown to offer speedups over a FP16
baseline. Our incoherence processing additions are performed in PyTorch. Table 4 shows that our
QuIP implementation is about 1.5× slower than OPTQ.

Further Ablation. QuIP’s incoherence processing contains several sub-steps. Table 3 shows their
relative contributions; all are necessary for the full improvement. Table 5 shows that the random
permutation step within the fast orthogonal multiplication also significantly reduces perplexity.

7 Conclusion

Wbits ∆Perplexity from
random permute↓

4 -0.22
3 -9.96
2 -74.2

Table 5: Ablating random permu-
tation within fast orthogonal multi-
plication. Differences in perplexity
are averaged over WikiText2, PTB,
and C4 for OPT-125m.

This paper introduced quantization with incoherence process-
ing (QuIP), an algorithm consisting of (1) an optimal adaptive
rounding procedure which minimizes a quadratic proxy of the
weight error, and (2) efficient pre- and post-processing to ensure
the incoherence of the weight and Hessian matrices by mul-
tiplying them by a Kronecker product of random orthogonal
matrices. We showed that QuIP quantization is optimal in a
general class of adaptive rounding methods with linear feed-
back; this theoretical analysis is the first for any quantization
algorithm that scales to LLM-sized models.

Empirically, QuIP achieves the first viable two-bit quantization
results for LLMs, especially at large model sizes, hinting at the
feasibility of accurate 2-bit inference in LLMs.

Acknowledgements and Disclosure of Funding

This work was partially funded by the National Science Foundation under awards DGE-1922551,
CAREER awards 2046760 and 2145577, by the National Institute of Health under award MIRA
R35GM151243, and a gift from CISCO.

10

References

[1] Michael Boratko, Harshit Padigela, Divyendra Mikkilineni, Pritish Yuvraj, Rajarshi Das,
Andrew McCallum, Maria Chang, Achille Fokoue-Nkoutche, Pavan Kapanipathi, Nicholas
Mattei, Ryan Musa, Kartik Talamadupula, and Michael Witbrock. A systematic classifica-
tion of knowledge, reasoning, and context within the ARC dataset. In Proceedings of the
Workshop on Machine Reading for Question Answering, pages 60–70, Melbourne, Australia,
July 2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-2607. URL
https://aclanthology.org/W18-2607.

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, and et. al. Language models
are few-shot learners. In Conference on Neural Information Processing Systems, 2020.

[3] Christopher De Sa, Kunle Olukotun, and Christopher Ré. Global convergence of stochastic
gradient descent for some non-convex matrix problems. In International Conference on Machine
Learning. PMLR, 2015.

[4] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix
multiplication for transformers at scale. In Conference on Neural Information Processing
Systems, 2022.

[5] Zhen Dong, Zhewei Yao, Amir Gholami, Michael W. Mahoney, and Kurt Keutzer. Hawq: Hes-
sian aware quantization of neural networks with mixed-precision. In International Conference
on Computer Vision, 2019.

[6] Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami, Michael W. Mahoney, and Kurt
Keutzer. Hawq-v2: Hessian aware trace-weighted quantization of neural networks. In Confer-
ence on Neural Information Processing Systems, 2020.

[7] Elias Frantar, Sidak Pal Sing, and Dan Alistarh. Optimal brain compression: A framework
for accurate post-training quantization and pruning. In Conference on Neural Information
Processing Systems, 2022.

[8] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Optq: Accurate quan-
tization for generative pre-trained transformers. In International Conference on Learning
Representations, 2023.

[9] Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. Accurate post
training quantization with small calibration sets. In International Conference on Machine
Learning. PMLR, 2021.

[10] Yongkweon Jeon, Chungman Lee, Eulrang Cho, and Yeonju Ro. Mr.biq: Post-training non-
uniform quantization based on minimizing the reconstruction error. In Conference on Computer
Vision and Pattern Recognition, 2022.

[11] Yanjing Li, Sheng Xu, Baochang Zhang, Xianbin Cao, Peng Gao, and Guodong Guo. Q-vit:
Accurate and fully quantized low-bit vision transformer. In Conference on Neural Information
Processing Systems, 2022.

[12] Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang,
and Shi Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction. In
International Conference on Learning Representations, 2021.

[13] Yijian Liu, Huanrui Yang, Zhen Dong, Kurt Keutzer, Li Du, and Shanghang Zhang. Noisyquant:
Noisy bias-enhanced post-training activation quantization for vision transformers. In Conference
on Computer Vision and Pattern Recognition, 2023.

[14] Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei Ma, and Wen Gao. Post-training
quantization for vision transformer. In Conference on Neural Information Processing Systems,
2021.

[15] Eric Lybrand and Rayan Saab. A greedy algorithm for quantizing neural networks. In Journal
of Machine Learning Research, 2021.

11

https://aclanthology.org/W18-2607

[16] Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann Bies, Mark
Ferguson, Karen Katz, and Britta Schasberger. The Penn Treebank: Annotating predicate argu-
ment structure. In Human Language Technology: Proceedings of a Workshop held at Plainsboro,
New Jersey, March 8-11, 1994, 1994. URL https://aclanthology.org/H94-1020.

[17] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

[18] Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy
Vanderwende, Pushmeet Kohli, and James Allen. A corpus and cloze evaluation for deeper
understanding of commonsense stories. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, pages 839–849, San Diego, California, June 2016. Association for Computational
Linguistics. doi: 10.18653/v1/N16-1098. URL https://aclanthology.org/N16-1098.

[19] Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. Data-free quantization
through weight equalization and bias correction. In International Conference on Computer
Vision, 2019.

[20] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort.
Up or down? adaptive rounding for post-training quantization. In International Conference on
Machine Learning, pages 7197–7206. PMLR, 2020.

[21] Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The LAMBADA
dataset: Word prediction requiring a broad discourse context. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
1525–1534, Berlin, Germany, August 2016. Association for Computational Linguistics. doi:
10.18653/v1/P16-1144. URL https://aclanthology.org/P16-1144.

[22] Gunho Park, Baeseong Park, Minsub Kim, Sungjae Lee, Jeonghoon Kim, Beomseok Kwon,
Se Jung Kwon, Byeongwook Kim, Youngjoo Lee, and Dongsoo Lee. Lut-gemm: Quantized
matrix multiplication based on luts for efficient inference in large-scale generative language
models. arXiv preprint arXiv:2206.09557, 2023.

[23] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Conference on Neural Information Processing
Systems, 2019.

[24] Jain Prateek, Netrapalli Praneeth, and Sanghavi Sujay. Low-rank matrix completion using
alternating minimization. In Proceedings of the Forty-fifth Annual ACM STOC, 2013.

[25] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL
http://jmlr.org/papers/v21/20-074.html.

[26] Sandeep Tata and Jignesh M Patel. Piqa: An algebra for querying protein data sets. In
International Conference on Scientific and Statistical Database Management, 2003.

[27] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng

12

https://aclanthology.org/H94-1020
https://aclanthology.org/N16-1098
https://aclanthology.org/P16-1144
http://jmlr.org/papers/v21/20-074.html

Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models, 2023.

[28] Peisong Wang, Qiang Chen, Xiangyu He, and Jian Cheng. Towards accurate post-training
network quantization via bit-split and stitching. In International Conference on Machine
Learning. PMLR, 2020.

[29] Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang,
Fengwei Yu, and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer
language models. In Conference on Neural Information Processing Systems, 2022.

[30] BigScience Workshop, :, Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana
Ilić, Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, and François Yvon et. al.
Bloom: A 176b-parameter open-access multilingual language model, 2023.

[31] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han.
Smoothquant: Accurate and efficient post-training quantization for large language models.
arXiv preprint arXiv:2211.10438, 2023.

[32] Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric Tan, Leyuan Wang,
Qijing Huang, Yida Wang, Michael W. Mahoney, and Kurt Keutzer. Hawq-v3: Dyadic neural
network quantization. In International Conference on Machine Learning. PMLR, 2021.

[33] Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.
In Conference on Neural Information Processing Systems, 2022.

[34] Zhihang Yuan, Lin Niu, Jiawei Liu, Wenyu Liu, Xinggang Wang, Luzhang Shang, Guangyu
Sun, Qiang Wu, Jiaxiang Wu, and Bingzhe Wu. Rptq: Reorder-based post-training quantization
for large language models. arXiv preprint arXiv:2304.01089, 2023.

[35] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam
Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke
Zettlemoyer. Opt: Open pre-trained transformer language models, 2022.

13

A Checklist

A.1 Broader Impacts

Our work pushes the quantization of large language models into the 2 bits per weight regime. Our aim
is to drive foundational research on theoretical and empirical aspects of quantization. The ultimate
goal is to enable more powerful LLMs to run more efficiently. However our work is unaware to what
ends those LLMs are used.

A.2 Limitations

The adaptive rounding [3] proxy objective considers each layer in isolation; it remains to be seen
what other computationally tractable proxies could improve quantization. For example quantization
methods do exist which consider interactions between layers, but so far have been too computationally
expensive to be applied to the largest open LLMS.

A.3 Experiments, Reproducibility

Our code is included in the Supplement. See the included README for instructions on how to
reproduce the various experiments, including random seeds. The code also downloads all datasets
used to quantize or evaluate the models.

B Additional Method Clarifications

B.1 Subsection 4.2 (Incoherence-Based Heuristics)

Line 4 diagonally rescales W and H to minimize ℓ(Ŵ) ≈ tr (H) ∥W∥2F , effectively trading off
the spectrum of these matrices to find a minimum. Note to minimize tr

(
D−1HD−1

)
∥WD∥2F =

(
∑n

i=1 Hii/D
2
i)(
∑n

i=1 D
2
i ∥Wi∥2) implies that Di =

√
Hii/∥Wi∥. Motivated by the incoherence of

W , Line 6 computes the quantization range depending on the spectrum ∥W∥F , instead of the typical
maxi,j |Wij |. The parameter ρ controls the quantization range; we tune it and find that a value of 2.4
works well across all our experiments. We use ρ = 2.4 consistently across all experiments. Our full
QuIP procedure is described in Algorithm 3, which contains calls to the pre- and post-processing
sub-steps in Algorithms 1 and 2.

B.2 Subsection 4.2 (Greedy Updates)

In this subsection, we describe the “greedy local search” method mentioned in the main body of
the paper in more detail. The basic idea is to iterate over coordinates of the weights in the same
order as the initial quantization method, modifying each weight in turn—but still restricting it to be a
representable quantized value—so as to minimize the proxy loss while keeping the other weights
fixed. These greedy updates amount to coordinate descent on the proxy loss, but restricted to the
quantization grid. Greedy updates can be performed after any initial quantization method, or as a
standalone method. When performed after an initial quantization method, greedy local search is a
descent method because the individual weight updates cannot increase the loss, but when performed
alone, these greedy updates are not a descent method because the initial point (Ŵ = W) is not
feasible because it contains unquantized values that are off the representable quantization grid.
Concretely, a greedy update of weight (i, j) to the grid {0, 1, . . . , 2b − 1} does the following, where
ℓ is the proxy loss:

Ŵij ← arg min
z∈{0,1,...,2b−1}

ℓ(Ŵ − eie
T
j Ŵij + eie

T
j z).

(Note that Ŵ − eie
T
j Ŵij + eie

T
j z is the result of setting the (i, j)th entry of Ŵ to z.) A full pass

of greedy updates constitutes mn of these updates performed in the same order as LDLQ. This
algorithm is very simple, since it is just greedy coordinate descent. In the rest of this subsection, we
will give a bit more intuition about this method by showing how this greedy algorithm falls within
our framework of adaptive rounding with linear feedback.

14

Algorithm 4 Greedy Updates: A Single Pass

Require: b ∈ N, H ∈ Rn×n SPD, weights W ∈ Rm×n, initial guess W̃
1: Ŵ ← W̃
2: U ← (H ⊙M) diag(H)−1 ▷ M is the strictly upper triangular mask
3: V ←W − (W̃ −W)(H ⊙MT) diag(H)−1 ▷ can skip if W̃ = W by setting V ←W

4: for k ∈ {1, . . . , n} do Ŵk ← clamp(Qnear(Vk + (W − Ŵ)Uk), 0, 2
b − 1)

5: return Ŵ

An application of greedy local search as a single-pass stand-alone method falls under our Adaptive
Rounding with Linear Feedback framework, with the linear feedback set to U = (H⊙M) diag(H)−1,
where M is the strictly upper triangular mask and ⊙ denotes the Hadamard (entrywise) product,
as we will derive below. For ease of explanation consider a single (row) weight vector w ∈ R1×n.
When looking only at column j, the proxy loss from setting ŵj to z is

ℓ(ŵ − ŵeje
T
j + zeTj) = (ŵ − w)H(ŵ − w)T + 2(zeTj − ŵeje

T
j)H(ŵ − w)T

+ (zeTj − ŵeje
T
j)H(zeTj − ŵeje

T
j)

T .

This is just a quadratic function in z, and so its minimum value on the grid {0, 1, . . . , 2b − 1} will
just be its minimum value on R rounded to that grid. To find this minimum over R, we differentiate
to minimize, yielding

0 = 2eTj H(ŵ − w)T + 2eTj H(zeTj − ŵeje
T
j)

T ,

and solving for z,

z = −
(ŵ − ŵeje

T
j − w)Hej

eTj Hej
= ŵej −

(ŵ − w)Hej
eTj Hej

. (8)

Since when we use greedy local search as a stand-alone method, we have not updated ŵj yet, at this
point ŵej = wej , and so this means that a single step of greedy updates looks like

ŵej ← Q

(
wej − (ŵ − w)

Hej
eTj Hej

)
for Q referring to nearest rounding with the necessary clamping. Since ŵ − w is zero for all entries
following the jth one, this is equivalent to

ŵej ← Q(wej − (ŵ − w)Uej)

where U is set as U = (H ⊙M) diag(H)−1 as above. This shows how this single-pass version of
greedy updates fits into our adaptive rounding with linear feedback framework.

Analyzing greedy local search as a post-processing pass is a bit more difficult, but we will see that it
can also be written as something like adaptive rounding with linear feedback. Suppose that we do a
pass of greedy updates, but our quantized weights start at an initial value ŵ = w̃ already quantized
from some previous method (e.g. LDLQ). Returning to (8), since we haven’t updated ŵj yet, we’ll
have

z = w̃ej −
(ŵ − w)Hej

eTj Hej
.

Now, all the entries of ŵ which come after j are still the ones from w̃. This means that we can split
this up as

z = wej −
(ŵ − w):,1:(j−1)H1:(j−1),j + (w̃ − w):,(j+1):nH(j+1):n,j

eTj Hej

where the first part of this sum comes from the entries which we may have already updated during
this pass, the second comes from the entries which are still equal to their initial values in w̃, and the
case of wj is handled specially, cancelling it with the w̃ej term. We can write this more compactly in
matrix form as

z = wej −
(ŵ − w)(H ⊙M)ej + (w̃ − w)(H ⊙MT)ej

eTj Hej
,

15

Model Processing Absolute Approximate
tr (D) / tr (H)

Fractional Rank Fractional Rank

OPT-125m Baseline 0.926 (±0.172) 0.112 (±0.127) 0.540 (±0.093)
Incoherent 0.910 (±0.196) 0.124 (±0.141) 0.534 (±0.094)

OPT-350m Baseline 0.916 (±0.180) 0.047 (±0.032) 0.445 (±0.100)
Incoherent 0.908 (±0.183) 0.059 (±0.062) 0.440 (±0.106)

OPT-1.3b Baseline 0.541 (±0.404) 0.020 (±0.023) 0.399 (±0.187)
Incoherent 0.543 (±0.405) 0.028 (±0.023) 0.393 (±0.189)

OPT-2.7b Baseline 0.426 (±0.413) 0.019 (±0.015) 0.384 (±0.206)
Incoherent 0.427 (±0.415) 0.018 (±0.025) 0.375 (±0.205)

Table 6: We compute H in each layer of a given model, and compute the following summary
statistics. tr (D) / tr (H) decreases as the mode size increases, though the variance also increases.
We compute the fraction of nonzero eigenvalues (i.e. absolute), and the fraction of eigenvalues
> 0.01 ·max(eig(H)) (i.e. approximate). The fractional rank is k/n for a rank-k matrix H with
dimension n. Mean and standard deviations are computed across layers in a model.

where M is the strictly upper triangular mask and ⊙ is elementwise multiplication. This yields a final
quantization step of

ŵej ← Q

(
wej − (w̃ − w)

(H ⊙MT)ej
eTj Hej

− (ŵ − w)
Hej

eTj Hej

)
.

So, more generally, if we define U as above, and set

V = W − (W̃ −W)(H ⊙MT) diag(H)−1,

we can write a single pass of greedy updates in matrix form as

W̃ ← Q(V + (W − Ŵ)U),

which is very close to our rounding with linear feedback form, albeit with the difference that here V
is in place of W . This is made explicit in the included Greedy Updates Algorithm.

We can use this algorithm both as a whole quantization method (by setting W̃ = W) or as a post-
processing step (by setting W̃ to the output of some other initial quantization algorithm, such as
LDLQ). When we do use it as a post-processing step, we typically run multiple passes of greedy
updates (e.g. 10 passes): this involves passing the output of the greedy updates algorithm back in as
the input guess W̃ to another run of the greedy updates algorithm, and repeating this multiple times.

C Additional Experimental Descriptions and Results

C.1 Subsections 3.2 and 3.3 (Empirical Properties of H Across OPT-125m to 2.7b)

Interpreting the exact proxy loss of LDLQ and nearest rounding by empirically comparing
tr (D) vs tr (H). Theorem 1 gives the average-case proxy loss for LDLQ in terms of tr (D), where
D is from the LDL decomposition of H . Lemma 3 gives the average-case proxy loss for standard
nearest rounding in terms of tr (H). We know that LDLQ is better in practice, but comparing these
equations is difficult because we need to reason about tr (D) vs tr (H). Our paper resolves this
difficulty by deriving bounds on the proxy loss for LDLQ in terms of the spectrum of H (with
and without incoherence). However we also perform a quick empirical check: if tr (D)≪ tr (H),
then our theory explains the empirical superiority of LDLQ over nearest rounding (at least on these
models). Table 6 gives the ratio tr (D) / tr (H) across all layers for OPTQ models 125m to 2.7b; the
mean value is always less than 0.55, and it falls as the model gets larger.

H is approximately low-rank. Subsection 3.3 plotted the normalized eigenvalues of H from 3
randomly chosen layers in OPT-2.7b. Table 6 gives much more evidence that H is consistently ap-
proximately low-rank. Across each model, we calculate the absolute and approximate fractional rank

16

of H across all layers in OPT models 125m to 2.7b (explanations in the caption). The approximate
fractional rank decreases as model size increases; for OPT-2.7b the fractional rank is ≈ 0.02(±0.02).

C.2 Subsection 5.1 (Empirical Verification of OPTQ Equivalence)

We share a python script in the supplementary code which empirically verifies that our implementation
of LDLQ produces quantized values exactly matching OPTQ’s [1] implementation. While we prove
the equivalence between LDLQ and OPTQ’s respective algorithm statements, empirically comparing
ours and Frantar et al. [1]’s code ensures that the respective implementations are sufficiently close to
their algorithmic statements. Therefore we can be sure that LDLQ and OPTQ are equivalent in their
implementation.

C.3 Subsection 5.2 (Empirical Verification of LDLQ/OPTQ Finite Grid Counterexample)

The following code constructs a weight matrix W and Hessian matrix H where OPTQ performs
worse than nearest when rounding to a finite grid.

1 import torch
2 def make_counterexample(n, d, c=0.01):
3 H = torch.ones(n,n) + torch.eye(n)
4 H[n-1,n-1] = 1.0
5 H[0,1:(n-1)] += 2 * c
6 H[1:(n-1) ,0] += 2 * c
7 H[0,n-1] += c
8 H[n-1,0] += c
9 H[0,0] += 4 * c + n * (c**2)

10 W = 0.499 * torch.ones(d,n) + 0.002 * (torch.arange(n) % 2)
11 return W, H

The intuition behind this counterexample is as follows: we want to quantize many coordinates in
W in such a way that OPTQ excepts there to be a very large error correction to quantize the last
entry. However, the finite grid restricts this large error correction. Note that we can achieve this poor
OPTQ behavior with c=0, but here nearest rounding also does poorly. We make a small perturbation
(c=0.01) to make OPTQ round in the wrong direction, but not nearest.

C.4 Additional Details on the Experimental Setup and Computational Resources

We run experiments on a university cluster managed by a Slurm workload manager which has GPUs
with up to 48GB of memory, though larger GPUs are only required for some methods on larger model
sizes. Note we use the LAMBADA OpenAI version. When Greedy updates are used, we perform
10 passes over the weights in the same order as LDLQ and OPTQ, except for 5 passes on OPT-30b
and OPT-66b. For the incoherence-based quantization range, we tune the parameter ρ and find that a
value of 2.4 works well across all model sizes and quantization methods. We use this value for all our
experiments.

C.5 Section 6 (Main Results on Additional Evaluations)

Figure 6 shows additional results for QuIP and OPTQ on WikiText2, PiQA, and StoryCloze when
quantizing to 2 and 3 bits per weight. The insights about our method QuIP remain the same after
viewing these additional results: QuIP is the first PTQ procedure to achieve good quantization at two
bits per weight, across a variety of LLM sizes and evaluation tasks. We evaluate on OPT models (up
to 30B); 4-bit quantization works equally well for both methods. QuIP is superior to OPTQ across
model sizes and evaluation tasks here.

On WikiText2 2-bit quantization, note that the trend in perplexity for QuIP mirrors the trend in
perplexity for OPTQ. We run OPTQ’s [1] implementation, though they did not report 2-bit results
at this model size. Because OPTQ is equivalent to QuIP’s quantization sub-procedure, it thus
makes sense that worse performance in the quantization sub-procedure could result in worse overall
performance. OPTQ increases perplexity when going from OPT-1.3b to OPT-2.7b. QuIP’s perplexity
also increases from OPT-1.3b to OPT-2.7b, and is unusually higher than the adjacent OPT-1.3b and

17

10 1 100 101

params in billions

101

102

103

104

Pe
rp

le
xi

ty
 o

n
W

ik
iTe

xt
2

10 1 100 101

params in billions

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

 o
n

Pi
QA

10 1 100 101

params in billions

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

 o
n

St
or

yC
lo

ze

FP16 OPTQ-W3 OPTQ-W2 QuIP-W3 QuIP-W2

Figure 6: Quantizing OPT models up to 66B parameters. Additional evaluation tasks shown here in
the Supplement. Our method QuIP is the first PTQ procedure to achieve good quantization at 2 bits
per weight, across a variety of model sizes and evaluation tasks. Note the drop in performance for
OPTQ on OPT-66B is documented in their paper.

OPT-6.7b models. However QuIP still beats OPTQ in this setting. Our observations about OPTQ and
QuIP on WikiText2 and OPT-2.7b were consistent across multiple independent runs.

C.6 Section 6 (All Methods, All Model Sizes, All Bit Weights, All Evaluation Tasks)

Tables 7-13 provide results on all combinations of the following: methods, model sizes (OPT 125m-
30b), bit weights(4,3,2), and evaluation tasks. Across our extensive array of experiments, we see that
incoherence processing always enables a step function change in quantization at 2 bits.

Incoherence Processing — OPT-30b
Full QuIP QuIP-RG Greedy+IncP Near+IncP

W16 W4 W3 W2 W4 W3 W2 W4 W3 W2 W4 W3 W2

Wiki↓ 9.56 9.60 9.79 11.48 9.66 9.75 11.68 9.72 9.92 11.59 9.77 9.89 12.04
PTB↓ 14.04 14.18 14.37 17.40 14.11 14.44 16.94 14.23 14.45 17.39 14.16 14.49 18.12
C4↓ 11.45 11.50 11.66 13.55 11.51 11.68 13.44 11.52 11.71 13.30 11.53 11.74 14.11
ArcE↑ 65.40 65.32 65.28 57.87 64.86 63.51 59.51 65.99 63.80 58.80 64.06 64.06 56.36
LAMB↑ 72.40 73.20 72.68 65.24 71.86 71.53 62.31 71.71 71.38 64.47 71.41 71.41 60.64
PiQA↑ 78.13 78.45 78.73 75.24 78.51 78.73 76.17 77.86 77.58 75.95 78.24 77.53 75.46
SC↑ 77.28 76.96 76.51 73.39 77.02 77.08 73.01 76.70 76.64 73.33 76.77 75.94 71.93

Baseline Processing — OPT-30b
Full OPTQ LDLQ-RG Greedy Near

W16 W4 W3 W2 W4 W3 W2 W4 W3 W2 W4 W3 W2

Wiki↓ 9.56 9.59 10.32 71.70 9.64 10.31 49.40 9.69 13.63 4,817 10.77 1,565 41,548
PTB↓ 14.04 14.22 15.36 88.19 14.20 15.15 73.45 14.33 23.05 3,474 15.41 1,526 34,349
C4↓ 11.45 11.56 12.23 29.59 11.56 12.15 29.12 11.59 16.30 3,183 13.52 1,808 24,816
ArcE↑ 65.40 64.77 60.19 42.47 63.76 63.43 41.20 63.09 50.51 26.30 61.28 34.47 25.80
LAMB↑ 72.40 72.39 68.89 25.77 71.94 69.78 26.35 72.37 56.76 00.00 70.42 01.73 00.00
PiQA↑ 78.13 78.56 78.02 66.05 78.56 77.80 64.58 78.35 70.46 49.89 77.02 56.37 49.56
SC↑ 77.28 77.53 75.62 63.59 76.89 75.56 63.53 76.45 68.43 48.31 75.24 49.59 48.57

Table 7: Quantizing OPT-30b with all combinations of quantization and pre-post processing methods,
evaluating on language generation and zeroshot tasks. Our incoherence processing enables a step
function change in quantization at 2 bits, across all rounding methods.

18

Incoherence Processing — OPT-13b
Full QuIP QuIP-RG Greedy+IncP Near+IncP

W16 W4 W3 W2 W4 W3 W2 W4 W3 W2 W4 W3 W2

Wiki↓ 10.13 10.21 10.5 16.02 10.35 10.69 13.81 10.25 10.61 13.91 10.34 10.59 16.12
PTB↓ 14.52 14.69 15.05 21.64 14.73 15.20 22.23 14.85 15.11 20.20 14.93 15.27 23.18
C4↓ 12.06 12.16 12.39 16.60 12.18 12.43 15.62 12.21 12.42 15.19 12.26 12.56 17.37
ArcE↑ 61.78 61.41 59.47 53.91 60.35 61.78 52.86 60.10 59.43 53.79 60.56 59.30 50.00
LAMB↑ 70.25 72.09 71.10 56.24 69.47 69.07 55.70 70.83 68.43 56.98 68.37 67.86 46.48
PiQA↑ 76.82 76.61 76.17 72.52 76.55 76.22 72.74 76.33 76.17 71.87 75.08 76.66 70.73
SC↑ 76.58 75.62 74.92 70.21 75.88 75.75 70.53 75.43 75.62 72.50 74.47 75.43 68.43

Baseline Processing — OPT-13b
Full OPTQ LDLQ-RG Greedy Near

W16 W4 W3 W2 W4 W3 W2 W4 W3 W2 W4 W3 W2

Wiki↓ 10.13 10.31 11.60 372.68 10.28 11.54 213.75 10.73 13.67 8,370 11.33 3,333 186,069
PTB↓ 14.52 14.91 16.59 344.44 14.85 16.43 220.38 15.25 18.62 7,053 16.40 2,708 121,291
C4↓ 12.06 12.26 13.34 135.48 12.24 13.17 67.48 12.55 14.30 4,316 13.32 2,711 93,834
ArcE↑ 61.78 64.77 60.19 42.47 60.77 58.54 32.07 56.61 51.22 25.38 61.32 31.10 25.42
LAMB↑ 70.25 72.39 68.89 25.77 68.72 65.30 6.58 68.12 59.36 00.02 67.22 00.06 00.00
PiQA↑ 76.82 78.56 78.02 66.05 76.28 75.08 59.09 76.50 73.45 50.98 76.06 53.10 49.62
SC↑ 76.58 77.53 75.62 63.59 76.32 73.52 56.33 75.68 72.44 49.40 74.41 49.71 48.70

Table 8: Quantizing OPT-13b with all combinations of quantization and pre-post processing methods,
evaluating on language generation and zeroshot tasks. Our incoherence processing enables a step
function change in quantization at 2 bits, across all rounding methods.

Incoherence Processing — OPT-6.7b
Full QuIP QuIP-RG Greedy+IncP Near+IncP

W16 W4 W3 W2 W4 W3 W2 W4 W3 W2 W4 W3 W2

Wiki↓ 10.86 10.98 11.51 22.33 11.20 11.61 23.75 11.13 11.62 19.06 11.18 11.73 18.57
PTB↓ 15.77 15.93 16.52 31.73 15.99 16.43 45.53 15.88 16.50 35.94 16.06 16.47 27.04
C4↓ 12.71 12.86 13.30 21.62 12.88 13.39 24.98 12.89 13.27 19.62 12.96 13.37 19.15
ArcE↑ 60.06 59.89 59.60 52.61 59.30 58.21 53.32 59.18 58.25 51.43 59.85 57.62 50.59
LAMB↑ 68.72 70.00 68.74 53.97 67.38 65.77 49.91 67.65 67.18 54.80 67.26 65.86 49.49
PiQA↑ 76.55 76.77 76.33 72.47 76.71 76.33 72.91 76.39 75.46 72.20 76.55 76.71 71.22
SC↑ 74.47 75.18 73.65 68.43 75.05 73.33 69.51 74.35 73.77 68.94 74.22 74.09 68.75

Baseline Processing — OPT-6.7b
Full OPTQ LDLQ-RG Greedy Near

W16 W4 W3 W2 W4 W3 W2 W4 W3 W2 W4 W3 W2

Wiki↓ 10.86 11.49 14.87 2,958 11.23 12.56 739.9 11.75 39.09 16,298 12.15 6,011 20,780
PTB↓ 15.77 16.54 22.05 2,521 16.28 18.58 1,109 16.93 66.57 10,708 18.92 5,440 14,217
C4↓ 12.71 13.16 17.13 500.7 12.98 14.34 154.0 13.27 37.13 9,968 14.40 5,225 12,419
ArcE↑ 60.06 58.84 53.41 31.86 59.18 55.26 33.00 54.63 32.49 26.09 58.75 25.42 25.80
LAMB↑ 68.72 66.18 52.36 01.07 67.46 61.89 01.79 66.19 02.56 00.00 64.53 00.00 00.00
PiQA↑ 76.55 76.01 73.23 55.11 76.77 74.48 54.46 74.48 53.59 51.90 76.28 50.71 49.78
SC↑ 74.47 73.71 71.42 52.07 74.09 72.37 52.45 72.82 50.99 49.40 73.58 47.87 47.80

Table 9: Quantizing OPT-6.7b with all combinations of quantization and pre-post processing
methods, evaluating on language generation and zeroshot tasks. Our incoherence processing enables
a step function change in quantization at 2 bits, across all rounding methods.

19

Incoherence Processing — OPT-2.7b
Full QuIP QuIP-RG Greedy+IncP Near+IncP

W16 W4 W3 W2 W4 W3 W2 W4 W3 W2 W4 W3 W2

Wiki↓ 12.47 12.39 17.44 2,998 12.58 15.07 1,676 12.68 12.96 155.6 12.79 13.79 28.98
PTB↓ 17.97 18.42 20.79 63.59 18.43 20.49 42.05 18.34 20.03 46.28 18.43 19.51 39.23
C4↓ 14.34 14.55 15.63 38.07 14.65 15.97 27.89 14.64 15.22 26.84 14.67 15.52 27.34
ArcE↑ 54.34 53.28 52.99 46.93 52.02 52.36 46.93 52.90 51.73 43.14 52.61 50.93 44.11
LAMB↑ 64.82 66.04 64.99 36.06 64.64 63.46 43.39 64.68 62.95 45.53 65.40 61.05 35.65
PiQA↑ 74.76 74.54 73.94 68.06 73.88 73.45 68.28 74.54 73.83 68.28 73.61 73.56 67.85
SC↑ 71.74 71.80 70.21 66.14 71.55 70.15 64.67 70.85 71.10 65.82 71.16 70.02 63.27

Baseline Processing — OPT-2.7b
Full OPTQ LDLQ-RG Greedy Near

W16 W4 W3 W2 W4 W3 W2 W4 W3 W2 W4 W3 W2

Wiki↓ 12.47 12.93 17.09 8,949 12.77 16.47 7,718 12.95 18.92 9,665 16.69 15,685 10,641
PTB↓ 17.97 19.10 25.36 8,281 19.05 23.94 7,389 19.06 28.75 8,254 32.22 14,532 10,516
C4↓ 14.34 14.99 18.14 4,388 14.85 17.37 2,113 15.01 20.87 5,139 18.75 11,257 9,356
ArcE↑ 54.34 52.57 50.04 26.94 52.02 48.95 25.76 52.02 43.39 25.46 52.74 26.56 27.19
LAMB↑ 64.82 62.00 51.43 00.00 64.04 53.25 00.00 63.50 40.75 00.00 59.15 00.00 00.00
PiQA↑ 74.76 73.88 70.73 48.42 74.54 69.91 49.95 73.61 66.05 50.65 73.83 51.41 50.22
SC↑ 71.74 70.91 68.56 48.50 71.42 67.79 47.17 70.66 60.53 48.44 70.59 47.42 47.55

Table 10: Quantizing OPT-2.7b with all combinations of quantization and pre-post processing
methods, evaluating on language generation and zeroshot tasks. Our incoherence processing enables
a step function change in quantization at 2 bits, across all rounding methods.

Incoherence Processing — OPT-1.3b
Full QuIP QuIP-RG Greedy+IncP Near+IncP

W16 W4 W3 W2 W4 W3 W2 W4 W3 W2 W4 W3 W2

Wiki↓ 14.62 14.88 16.21 41.64 16.49 17.76 42.37 16.75 17.11 48.69 16.43 17.83 56.56
PTB↓ 20.29 20.87 22.76 47.72 21.93 23.25 50.17 22.11 23.76 54.46 22.19 24.82 80.40
C4↓ 16.07 16.38 17.12 29.78 17.53 18.44 31.49 17.60 18.54 34.10 17.74 19.03 45.56
ArcE↑ 50.84 50.72 49.12 41.88 49.54 48.82 41.20 49.66 48.74 41.08 48.61 46.59 38.64
LAMB↑ 58.92 56.36 52.47 27.81 51.62 48.36 27.27 49.95 48.38 19.21 49.76 51.12 20.20
PiQA↑ 72.31 71.22 71.11 64.85 71.06 70.24 63.33 71.00 70.35 63.66 71.16 69.80 62.51
SC↑ 70.78 70.08 68.81 63.02 69.00 68.05 63.14 68.49 67.92 62.64 69.13 67.79 58.43

Baseline Processing — OPT-1.3b
Full OPTQ LDLQ-RG Greedy Near

W16 W4 W3 W2 W4 W3 W2 W4 W3 W2 W4 W3 W2

Wiki↓ 14.62 15.59 21.35 7,856 15.36 20.22 7,739 15.58 22.68 9,786 47.62 12,658 11,690
PTB↓ 20.29 22.03 30.74 6,858 21.85 30.10 5,368 22.00 35.18 8,441 73.51 14,705 11,690
C4↓ 16.07 16.96 21.59 4,028 16.70 20.21 2,123 16.96 22.11 5,129 27.20 6,415 8,360
ArcE↑ 50.84 49.33 45.58 25.46 48.95 45.41 26.68 48.19 42.42 26.01 42.80 27.82 25.13
LAMB↑ 58.92 57.03 37.32 00.00 58.45 41.08 00.02 59.15 40.97 00.00 36.91 00.00 00.00
PiQA↑ 72.31 70.73 68.66 49.73 70.40 67.95 52.18 70.67 66.43 50.87 67.74 51.41 49.78
SC↑ 70.78 70.15 65.18 48.38 70.34 66.45 49.27 70.40 64.48 48.76 59.13 47.87 48.25

Table 11: Quantizing OPT-1.3b with all combinations of quantization and pre-post processing
methods, evaluating on language generation and zeroshot tasks. Our incoherence processing enables
a step function change in quantization at 2 bits, across all rounding methods.

20

Incoherence Processing — OPT-350m
Full QuIP QuIP-RG Greedy+IncP Near+IncP

W16 W4 W3 W2 W4 W3 W2 W4 W3 W2 W4 W3 W2

Wiki↓ 22.00 22.5 25.19 672.3 23.57 25.54 418.0 23.14 25.38 239.9 23.41 27.86 1,444
PTB↓ 31.07 32.57 35.65 744.2 32.46 37.00 587.4 33.10 37.07 301.0 33.32 39.49 1,354
C4↓ 22.59 23.23 25.48 320.0 23.45 25.50 215.4 23.43 25.48 124.1 23.81 27.41 880.2
ArcE↑ 40.36 39.44 38.13 27.44 39.31 38.47 29.67 39.77 40.24 30.64 38.89 38.76 28.41
LAMB↑ 46.67 46.89 42.03 01.03 43.04 39.80 04.99 42.44 40.62 06.38 41.47 34.45 00.08
PiQA↑ 64.80 64.47 63.28 50.87 64.25 63.17 54.79 64.42 64.25 55.01 64.15 63.00 52.23
SC↑ 63.14 62.13 61.55 53.15 61.74 61.23 51.43 62.83 61.62 53.28 62.38 61.49 50.22

Baseline Processing — OPT-350m
Full OPTQ LDLQ-RG Greedy Near

W16 W4 W3 W2 W4 W3 W2 W4 W3 W2 W4 W3 W2

Wiki↓ 22.00 24.16 33.51 18,687 23.77 31.87 10,446 27.01 137.3 23,952 25.94 64.56 23,668
PTB↓ 31.07 34.17 47.69 18,161 33.35 44.38 8,508 40.39 153.5 15,176 36.78 87.22 28,881
C4↓ 22.59 24.71 31.26 8,418 24.10 29.86 3,064 27.84 73.59 9,099 26.21 55.15 17,094
ArcE↑ 40.36 38.43 38.38 26.30 39.06 37.42 25.46 38.34 31.06 24.33 38.68 36.11 25.88
LAMB↑ 46.67 45.60 39.20 00.00 45.26 32.54 00.02 51.45 16.63 00.00 40.66 27.46 00.00
PiQA↑ 64.80 64.04 63.44 51.25 65.13 61.97 49.67 63.49 55.44 50.60 63.38 60.55 51.58
SC↑ 63.14 63.78 61.04 47.55 62.57 60.53 48.95 61.36 54.87 48.44 63.02 56.84 48.95

Table 12: Quantizing OPT-350m with all combinations of quantization and pre-post processing
methods, evaluating on language generation and zeroshot tasks. Our incoherence processing enables
a step function change in quantization at 2 bits, across all rounding methods.

Incoherence Processing — OPT-125m
Full QuIP QuIP-RG Greedy+IncP Near+IncP

W16 W4 W3 W2 W4 W3 W2 W4 W3 W2 W4 W3 W2

Wiki↓ 27.66 33.35 34.22 347.4 31.51 42.94 361.8 30.65 55.54 230.8 31.93 37.57 397.5
PTB↓ 38.99 40.80 47.34 430.3 43.28 51.69 414.1 41.96 48.79 250.6 43.08 52.20 441.9
C4↓ 26.56 27.63 30.92 177.4 28.74 33.54 159.0 28.82 31.41 99.01 29.28 33.88 224.0
ArcE↑ 40.03 38.89 37.92 31.99 39.27 38.26 31.36 38.80 37.67 33.21 38.55 37.42 32.91
LAMB↑ 39.16 33.03 26.37 01.05 33.75 16.96 02.17 37.78 25.34 04.66 35.65 25.21 01.82
PiQA↑ 61.92 61.64 61.64 54.24 61.64 61.92 55.44 61.10 60.83 56.47 61.43 61.10 53.48
SC↑ 59.96 60.03 59.20 52.13 59.07 59.26 51.94 60.15 59.52 54.04 59.13 58.88 53.41

Baseline Processing — OPT-125m
Full OPTQ LDLQ-RG Greedy Near

W16 W4 W3 W2 W4 W3 W2 W4 W3 W2 W4 W3 W2

Wiki↓ 27.66 31.44 53.26 4,563 32.29 53.25 3,704 77.80 1,791 3,707 37.14 1,293 5,375
PTB↓ 38.99 45.31 74.79 4,410 45.56 75.85 3,596 101.1 1,403 4,622 53.93 1,418 4,267
C4↓ 26.56 29.13 42.55 2,260 29.40 41.77 1,820 65.54 809.5 1,897 33.90 836.5 3,665
ArcE↑ 40.03 38.51 35.73 28.62 39.02 36.36 27.19 34.05 26.43 27.15 36.66 30.39 26.01
LAMB↑ 39.16 33.69 12.36 00.00 33.26 15.00 00.00 12.25 00.00 00.00 18.22 00.08 00.00
PiQA↑ 61.92 60.83 59.47 52.23 61.70 59.58 50.05 57.62 49.29 50.49 61.43 55.88 51.20
SC↑ 59.96 58.88 56.97 49.78 59.20 57.03 48.95 50.99 47.55 48.82 59.96 50.03 47.93

Table 13: Quantizing OPT-125m with all combinations of quantization and pre-post processing
methods, evaluating on language generation and zeroshot tasks. Our incoherence processing enables
a step function change in quantization at 2 bits, across all rounding methods.

C.7 Section 6 (Evaluating the Effectiveness of the Proxy Objective)

In Table 14 we show the proxy loss of the four quantization methods we evaluate, evaluated over
OPT models 125m to 2.7b. The proxy is averaged over models proxy losses normalized by their
model dimension; we use H matrices computed as a result of OPTQ and nearest rounding. We do not
conduct any processing in the proxy evaluation; this is an evaluation of the rounding methods only.
Trends in the proxy reflect end-to-end results. OPTQ/LDLQ, LDLQ-RG, and Greedy are roughly
equivalent at 2 bits, and do better than Nearest.

C.8 Section 6 (Evaluating Unbiased Rounding in LDLQ/OPTQ)

Note in our formulation for Adaptive Rounding with Linear feedback, the Q subroutine could be
biased, or unbiased. It is typical to perform biased rounding in practice; here we investigate if there is

21

WBits LDLQ/OPTQ LDLQ-RG Greedy Near

4 104.09 105.23 120.74 301.18
3 529.53 475.25 537.98 1,308.05
2 2,554.89 2,291.02 2,587.17 5,971.69

Table 14: Weighted average of proxy Loss tr
(
(Ŵ −W)H(Ŵ −W)T

)
over OPT models 125m to

2.7b. Proxy is averaged over models normalized by their model dimension (768, 1024, 2048, 2560)
respectively, to ensure proxy loss is comparable across models of different size. We do not conduct
any processing in the proxy evaluation. Trends in the proxy largely reflect end-to-end results: at 2
bits OPTQ, LDLQ-RG, and Greedy are roughly equivalent, and all do better than nearest.

AVERAGE(Perplexity Unbiased - Perplexity Biased) on Wiki, PTB, C4 (↓)
Incoherence Processing Baseline Processing

WBits 125m 350m 1.3b 2.7b 125m 350m 1.3b 2.7b

4 1.23 0.73 0.79 0.19 27.81 5.58 1.62 0.87
3 13.26 7.79 2.14 4.66 880.4 499.4 28.63 16.23
2 2,501 18,732 544.8 2,251 241.3 17,945 4,831 3,798

Table 15: Average perplexity difference (i.e. unbiased - biased) for LDLQ/OPTQ on WikiText2,
PTB, and C4. That is, we can run LDLQ with the Q subroutine as stochastic rounding, instead of
nearest. The average difference is positive, meaning that unbiased rounding performs worse than
biased (i.e. nearest) across OPT models 125m to 2.7b. Note the magnitude of the gap increases at
lower bits.

any benefit to switching to unbiased rounding schemes. Table 15 computes the average perplexity
difference (i.e. unbiased−biased) for LDLQ/OPTQ on WikiText2, PTB, and C4. That is, we run
LDLQ with the Q subroutine as stochastic rounding, instead of nearest. The average difference is
positive (and large for 2 and 3 bits), meaning that unbiased rounding performs worse than biased (i.e.
nearest) across OPT models 125m to 2.7b. These results indicate that in practice, we want to stick
with biased rounding schemes.

C.9 Section 6 (Evaluating Algorithm 5 Which Accounts for Clamping)

Incoherence Processing (ours) Baseline Processing

Model WBits Wiki PTB C4 Wiki PTB C4

OPT-1.3b
4 16.54 22.12 17.58 15.43 21.92 16.80
3 18.27 23.96 18.66 20.45 28.86 20.68
2 38.13 51.78 31.09 6,438.75 6,099.27 2,057.71

OPT-350m
4 23.19 32.55 23.48 23.71 33.73 24.29
3 25.54 36.74 25.52 33.01 45.15 30.09
2 286.71 367.26 144.08 8,006.22 7,445.70 2,317.18

OPT-125m
4 32.04 44.56 29.08 32.59 41.95 28.67
3 40.66 51.90 32.91 50.73 74.14 41.04
2 1,649.83 240.86 136.55 3,714.11 4,703.76 1,848.72

Table 16: Quantizing OPT models using Algorithm 5 evaluated on WikiText2, PTB, and C4. At 2
bits and incoherence processing, we see improvements over LDLQ and LDLQ-RG on OPT-125m and
OPT-350m, but diminishing improvements on OPT-1.3b. Due to Algorithm 5’s relatively equivalent
performance relative to QuIP at OPT-1.3b, and due to this algorithm’s increased computational cost,
we decide not to user it.

Table 16 shows results from using Algorithm 5 to quantize OPT models 125m to 1.3b, with incoher-
ence processing and baseline processing. At 2 bits and incoherence processing, we observe modest
improvements over QuIP in terms of perplexity on OPT models 125m and 350m. However, at the

22

larger OPT-1.3b QuIP beats Algorithm 5 on 2/3 language generation tasks. In addition, Algorithm 5
is computationally more work to run. Therefore we decide not to use it.

Another observation: in practice, we don’t seem to encounter constructions of W and H that are bad
for LDLQ/OPTQ. Therefore this “clamping” issue seems to not be an issue in practice, especially as
model size increases.

D Proofs for Section 3 (Quantization With Incoherence Processing: Adaptive
Rounding Step)

Subsection 3.2 (Deriving the Optimality of the LDLQ Adaptive Rounding Procedure)

Theorem 1. LDLQ is worst and average-case optimal amongst rounding methods which specify the
linear feedback U as a function of H (not of W), and when rounding to the integers. That is, for all
rounding methods A in the class described by Eq. (2), for all positive semi-definite H , and for Q as
either nearest or stochastic rounding,
m
4 tr(D) = Lworst(LDLQ, H) ≤ Lworst(A, H) and m

c tr(D) = Lavg(LDLQ, H) ≤ Lavg(A, H),

where D is the matrix from the LDL decomposition of H , and c = 12 for nearest, c = 6 for stochastic.

Proof. Let X be the strictly upper triangular matrix associated with the rounding procedure A such
that U ← X in Eq. (2). Let B ≡ (X + I)−1(Ù + I) where Ù is from the LDL decomposition of H
in Eq. (4). The proxy loss is then,

tr
(
(A(W,H)−W)H(A(W,H))T

) (3),(4)
= tr

(
η(X + I)−1(Ù + I)D(Ù + I)T (X + I)−T ηT

)
= tr

(
ηBDBT ηT

)
. (9)

With the LDL assignment of U , we further have that,

tr
(
ηBDBT ηT

)
= tr

(
ηDηT

)
. (10)

First, consider the worst-case loss, Lworst. The goal is to construct a particularly bad case where
the entries of W̃ are 1/2± ϵ, and thus when rounding to the integers we will always have error 1/2.
Construct a weight matrix W̃ ∈ Rm×n such that each entry satisfies,

W̃ij =

{
0.5− ϵ w.p. 1/2

0.5 + ϵ w.p. 1/2
⇒ ηij =

{
+0.5 w.p. 1/2

−0.5 w.p. 1/2
,

and the quantization errors η ∈ Rm×n are for each entry {+1/2,−1/2} with equal probability. For

this particular W̃ , A achieves proxy loss Lworst(A, H)
(9)
= E

[
tr
(
ηBDBT ηT

)]
= m

4 tr
(
BDBT

)
,

with Q as either nearest or stochastic rounding. It follows from the supremum in the definition of
Lworst in Eq. (5) that, Lworst(A, H) ≥ m

4 tr
(
BDBT

)
. For the LDL assignment of U , the worst

case expected quantization error rounding to the integers is 1/2. Therefore, Lworst(LDLQ, H)
(10)
=

m
4 tr (D), again for Q as either nearest or stochastic rounding. B must be a unit triangular matrix

since it is the product of unit triangular matrices. Therefore tr
(
BDBT

)
is minimized when B = I ,

and
Lworst(LDLQ, H) ≤ Lworst(A, H).

Next, consider the average loss, Lavg, where W ∼ Unif [0, 1]m×n. For Q as nearest rounding, the
entries of the quantization error η are Unif [− 1

2 ,
1
2], because each entry is independent and uniformly

distributed. It follows that for any entry of η, E
[
η2ij
]
=
∫ 1/2

−1/2
x2dx = 1

12 . Therefore, Lavg(A, H)
(9)
=

EW∼Unif [0,1]m×n

[
tr
(
ηBDBT ηT

)]
= m

12 tr
(
BDBT

)
. For Q as stochastic rounding, the entries

of the quantization error η are Unif [−1, 1]. It follows that for any entry of η, E
[
η2ij
]
=
∫ 1

0
x(1−

x)dx = 1
6 . Note that for stochastic rounding, the quantization error will be x with probability

(1− |x|). Therefore, Lavg(A, H) = m
6 tr

(
BDBT

)
. Based on these same calculations of E

[
η2ij
]
,

23

we have that Lavg(LDL,H)
(9)
= m

12 tr (D) with Q as nearest , and = m
6 tr (D) with Q as stochastic

rounding. By the same reasoning on the minimization of tr
(
BDBT

)
,

Lavg(LDLQ, H) ≤ Lavg(A, H).

Subsection 3.3 (Incoherence: Optimality with a Spectral Bound)

Definition 1. We say a symmetric Hessian matrix H ∈ Rn×n is µ-incoherent if it has an eigende-
composition H = QΛQT such that for all i and j, |Qij | =

∣∣eTi Qej
∣∣ ≤ µ/

√
n. By extension, we say

a weight matrix W ∈ Rm×n is µ-incoherent if all i and j, |Wij | =
∣∣eTi Wej

∣∣ ≤ µ ∥W∥F /
√
mn.

Lemma 8. Let H ∈ Rn×n be a positive semi-definite symmetric matrix, and let a1, . . . , an be a
sequence of vectors in Rn. Consider the recurrence given by Σ0 = 0 ∈ Rn×n and from k = 0 to
n− 1

Σk+1 = (I − eka
T
k)Σk(I − ake

T
k) + eke

T
k .

Let ℓ(a1, . . . , an) = tr (HΣn). Then if H = LDLT is the LDL decomposition of H , a global
minimum of ℓ occurs when ak is the kth column of L, and at this minimum, ℓ = tr (D).

Proof. First observe that at step k, Σk will be 0 in all entries (Σk)ij if min(i, j) ≥ k. This means
that changing the last n− k entries of ak does not change Σ (or ℓ) at all. Without loss of generality,
set those entries of ak to 0. If A is the matrix whose kth row is ak, this is equivalent to saying that A
is strictly lower triangular.

Next, let η be a random Gaussian sampled from N (0, I), and consider the recurrence given by
x0 = 0 ∈ Rn and

xk+1 = xk − eka
T
k xk + eke

T
k η.

It’s straightforward to see that Σk = E
[
xkx

T
k

]
. But it’s also easy to see that the step-k update only

modifies/assigns the kth entry of x, and does so based only on earlier entries of x. Since eTk xk = 0,
and no later step assigns the k-or-lower entries of x,

eTk xn = eTk xk+1 = 0− aTk xk + eTk η = −aTk xn + eTk η,

which in vector form yields
(I +A)xn = η.

In particular, this immediately implies that

Σn = (I +A)−1(I +A)−T

and
ℓ = tr (HΣn) = tr

(
(I +A)−TH(I +A)−1

)
= tr

(
B−THB−1

)
.

where B = I +A. Differentiating with respect to B in strictly lower triangular direction ∆ (the only
direction in which we have degress of freedom, since the diagonal of B must be unit) yields

−2 tr
(
B−THB−1∆B−1

)
.

It’s not hard to see that if H = LDLT is the LDL decomposition of H , and BT = L, that the
gradient is

−2 tr
(
D∆B−1

)
= −2 tr

(
∆B−1D

)
= −2⟨∆T , B−1D⟩.

Since ∆T is strictly upper triangular, but B−1D must be lower triangular, this is 0 so we have a
minimum. The uniqueness of this minimum (up to assignments of the lower-triangular elements of A
or B, which have no effect on ℓ) also immediately follows from the recurrence relation. This implies
the minimum is global. This is what we wanted to show.

Lemma 2. Let H ∈ Rn×n be a µ-incoherent positive semi-definite symmetric matrix and let
H = (Ù + I)D(Ù + I)T be its LDL Cholesky decomposition, where Ù is a strictly upper triangular
matrix and D is a (non-negative) diagonal matrix. Then,

tr (D) ≤ µ2

n
tr
(
H1/2

)2
.

24

Proof. By continuity of tr (D) and tr
(
H1/2

)
, it suffices to prove the lemma for positive definite H .

First, the closure of positive definite symmetric matrices is the set of positive semi-definite symmetric
matrices. Second, consider the set of H that are positive definite and satisfy µ2

n tr
(
H1/2

)2−tr (D) ≥
0, i.e. are non-negative. The closure of this set (i.e. H ⪰ 0) must also satisfy that the inequality is
non-negative.

Let H = QΛQT be the eigendecomposition of H . First, observe that by incoherence,

eTkH
1/2ek =

n∑
i=1

λ
1/2
i (eTi Qek)

2 ≤ µ2

n

n∑
i=1

λ
1/2
i =

µ2

n
tr
(
H1/2

)
.

Set

α =
µ2

n
tr
(
H1/2

)
,

and consider the recurrence from Lemma 8 with

ak =
H1/2ek

α

Then
Σk+1 =

(
I − α−1eke

T
kH

1/2
)
Σk

(
I − α−1H1/2eke

T
k

)
+ eke

T
k .

Suppose by way of induction that for some scalar the covariance Σk ⪯ αH−1/2. For the base case,
this obviously holds since Σ0 = 0. At step k,

Σk+1 ⪯
(
I − α−1eke

T
kH

1/2
)
αH−1/2

(
I − α−1H1/2eke

T
k

)
+ eke

T
k

= αH−1/2 − 2eke
T
k + α−1eke

T
kH

1/2eke
T
k + eke

T
k

⪯ αH−1/2.

Note that with this assignment,

aTkΣkak ≤ (α−1eTkH
1/2)(αH−1/2)(α−1H1/2ek) = α−1eTkH

1/2ek ≤ 1.

So, by induction it follows that

Σn ⪯
µ2

n
tr
(
H1/2

)
·H−1/2,

and so

tr (HΣn) ≤
µ2

n
tr
(
H1/2

)
tr
(
H ·H−1/2

)
=

µ2

n
tr
(
H1/2

)2
.

But from Lemma 8, we know that tr (D) is the global minimum of tr (HΣn) for any assignment of
ak. This immediately gives us the desired result.

Lemma 3. Let H be symmetric positive definite. In the worst case stochastic rounding achieves
Lworst(Stoch, H) = (m/4) tr (H). In the average case nearest and stochastic rounding achieve
Lavg({Near,Stoch}, H) = (m/c) tr (H), where c = 12 for nearest, and c = 6 for stochastic.

Proof. For nearest and stochastic rounding, set the linear feedback U in Eq. (2) to be zero. Stochastic
rounding achieves worst-case loss,

Lworst(Stoch, H)
(3)
= sup

W∈Rm×n

E
[
tr
(
ηHηT

)]
=

m

4
tr (H) . (11)

For the average-case proxy loss, recall the computations of E
[
η2ij
]

from the proof of Theorem 1.

Lavg(Near, H)
(3)
= EW∼Unif [0,1]m×n

[
tr
(
ηHηT

)]
=

m

12
tr (H) (12)

Lavg(Stoch, H)
(3)
= EW∼Unif [0,1]m×n

[
tr
(
ηHηT

)]
=

m

6
tr (H) . (13)

25

Without incoherence: no improvement with a spectral bound

Theorem 4. Consider all H̃ with the same spectrum as H . For any positive semi-definite H , the
following holds. On the worst-case loss LDLQ achieves the same error as stochastic rounding,

sup
H̃s.t. eig(H̃)=eig(H)

Lworst(LDLQ, H̃) = Lworst(Stoch, H) =
m

4
tr (H) .

On the average-case loss LDLQ achieves the same error as the corresponding rounding routine. Let
B = {Near,Stoch} and c = 12 for nearest, c = 6 for stochastic.

sup
H̃s.t. eig(H̃)=eig(H)

Lavg(LDLQ
∗, H̃) = Lavg(B, H) =

m

c
tr (H) .

Proof. See Lemma 3 for calculations on the proxy loss for nearest and stochastic rounding.

For LDLQ, we will derive lower and upper bounds on supH̃s.t. eig(H̃)=eig(H) Lworst(LDLQ, H̃) and
supH̃s.t. eig(H̃)=eig(H) Lavg(LDLQ, H̃), and show they are equal. To construct a lower bound, con-
sider H̃ = IΛI where Λ are the eigenvalues of H . This decomposition is also the LDL decomposition
of H̃ , rewritten as H̃ = (U + I)D(U + I)−1. It follows that tr (D) = tr

(
H̃
)

for this H̃ . Combine
this result with the worst and average-case losses calculated in the proof of Theorem 1. For the
worst-case loss from the proof of Theorem 1, ≥ m

4 tr (H). The lower bound for the average-case loss
is ≥ m

12 tr (H) for Q as nearest, and ≥ m
6 tr (H) for Q as stochastic. Now upper bounds are derived

using the preceding calculations in Eq. (11)-(13), and using the worst and average-case optimality of
LDLQ proven in Theorem 1. The lower and upper bounds are tight, proving our result.

E Proofs for Section 4 (Quantization With Incoherence Processing:
Incoherence Processing Step)

Subsection 4.1 (Incoherence via Efficient Orthogonal Multiplication)

Lemma 9 (Theorem 2.4 from Lalley [2]). There exist constants C and A independent of n such
that for any function F from the unit sphere in n dimensions to R that is 1-Lipschitz relative to the
Riemannian metric on the sphere,

Px∼Sn (F (x)−Ex∼Sn [F (x)] ≥ t) ≤ C exp

(
−nt2

A

)
Lemma 10. Let B ∈ Rm×n be a matrix, and let x be a random vector uniformly distributed on the
unit sphere in Rn. Then there exist global constants A > 0 and C > 0 independent of m and n such
that

P

(
∥Bx∥2 ≥

A ∥B∥2F
n

log

(
C

δ

))
≤ δ,

Proof. Let

F (x) =
∥Bx∥
∥B∥F

.

Observe that

∇F (x) =
BTBx

∥Bx∥ · ∥B∥F
,

and so
∥∇F (x)∥ ≤ 1.

Also observe that for x drawn uniformly from the sphere in n dimensions,

E [F (x)] ≤
√
E [F (x)2] =

1

∥B∥F
·
√

E
[
∥Bx∥2

]
=

1√
n
.

26

So, applying Lemma 9,

P

(
∥Bx∥
∥B∥F

− 1√
n
≥ t

)
≤ C exp

(
−nt2

A

)
.

If we let δ be

δ = C exp

(
−nt2

A

)
,

then
A

n
log

(
C

δ

)
= t2

Trivially, then, for some modified global constants A′ and C ′,

A′

n
log

(
C ′

δ

)
=

(
t+

1√
n

)2

This means that

P

(
∥Bx∥2

∥B∥2F
≥ A′

n
log

(
C ′

δ

))
≤ δ,

i.e.

P

(
∥Bx∥2 ≥

A′ ∥B∥2F
n

log

(
C ′

δ

))
≤ δ,

This is what we wanted to prove.

Lemma 5. Let H be a positive semi-definite matrix on Rn×n and W a matrix on Rm×n, and suppose
that m = p1 · p2 · · · pk and n = q1 · q2 · · · qk. Let U1, U2, . . . , Uk, V1, V2, . . . , Vk be independent
random orthogonal matrices on Rpi×pi and Rqi×qi respectively. Set U as the Kronecker product
U = U1 ⊗ U2 ⊗ · · · ⊗ Uk and V as V = V1 ⊗ V2 ⊗ · · · ⊗ Vk Then V HV T is µH -incoherent with
probability at least 1− δ, and UWV T is µW -incoherent with probability at least 1− δ, where

µH = Ak/2 log

(
Ckn2

δ

)k/2

= Õ (1) and µW = Ak log

(
2Ckmn

δ

)k

= Õ (1)

for some global constants A and C independent of n and k.

Proof. First we will prove what we want to prove about H; then we will prove what we want to prove
about W . Let Q be a matrix of eigenvectors of H . Observe that since Q is an orthogonal matrix (by
the spectral theorem, because H is symmetric), Qej is a unit vector, i.e. ∥Qej∥ = 1. Call Qej = y.
Also observe that

eTi (U1 ⊗ U2 ⊗ · · · ⊗ Uk) = ((eTi1U1)⊗ (eTi2U2)⊗ · · · ⊗ (eTikUk))

for some indices ij . Call eTijUj = xT
j , and observe that the xj are all independent unit random

vectors. So,
((U1 ⊗ U2 ⊗ · · · ⊗ Uk)Q)ij = (x1 ⊗ x2 ⊗ · · · ⊗ xk)

T y

for random unit vectors x1, . . . , xk and unit vector y. We can easily bound this with k applications of
Lemma 10 and a union bound, yielding

P

((
(x1 ⊗ x2 ⊗ · · · ⊗ xk)

T y
)2 ≥ Ak

n
log

(
C

δ

)k
)
≤ kδ,

Setting δ 7→ δ
kn2 yields

P

((
(x1 ⊗ x2 ⊗ · · · ⊗ xk)

T y
)2 ≥ Ak

n
log

(
Ckn2

δ

)k
)
≤ δ

n2
,

and unioning over all the entries of the large orthogonal matrix,

P

max
i,j

∣∣∣((U1 ⊗ U2 ⊗ · · · ⊗ Uk)Q)ij

∣∣∣ ≥
√

Ak

n
log

(
Ckn2

δ

)k
 ≤ δ.

27

Next, for W , observe that if we flatten W , then W/ ∥W∥F is a unit vector. Then any entry of the
resulting matrix can be written as

(x1 ⊗ x2 ⊗ · · · ⊗ xk)
TW (y1 ⊗ y2 ⊗ · · · ⊗ yk)

where x1, . . . , xk and y1, . . . , yk are k independent random unit vectors. We can easily bound this
with 2k applications of Lemma 10 and a union bound, yielding

P

((
(x1 ⊗ x2 ⊗ · · · ⊗ xk)

TW (y1 ⊗ y2 ⊗ · · · ⊗ yk)
)2 ≥ A2k

mn
log

(
C

δ

)2k
)
≤ 2kδ,

Setting δ 7→ δ
2kmn yields

P

((
(x1 ⊗ x2 ⊗ · · · ⊗ xk)

TW (y1 ⊗ x2 ⊗ · · · ⊗ yk)
)2 ≥ A2k

mn
log

(
2Ckmn

δ

)2k
)
≤ δ

mn
,

and unioning over all the mn entries of the large orthogonal matrix,

P

max
i,j

∣∣eTi (U1 ⊗ U2 ⊗ . . . Uk)W (V1 ⊗ V2 ⊗ · · · ⊗ Vk)ej
∣∣ ≥

√
A2k

mn
log

(
2Ckmn

δ

)2k
 ≤ δ.

This is what we wanted to show.

F Proofs for Section 5 (Extensions and Further Analyses)

Subsection 5.1 (OPTQ is a Special Case of LDLQ)

Theorem 6. OTPQ [1] falls within the class of adaptive rounding procedures with linear feedback
as described by Eq. (2), and is equivalent to LDLQ in Section 3.

Proof. OPTQ works in the following way. After OPTQ has quantized the first t− 1 components of
the row vector w, it minimizes the proxy loss over the remaining n− t+ 1 elements, keeping the
first t − 1 elements fixed. It then quantizes the tth element using nearest rounding to the grid and
clamping. It then proceeds to the next column. If we let ∆ = ŵ−w, this proxy loss that it minimizes
can be written in block form as

ℓ = ∆1:(t−1)H1:(t−1),1:(t−1)∆
T
1:(t−1) + 2∆1:(t−1)H1:(t−1),t:n +∆t:nHt:n,t:n∆

T
t:n

and its minimum over ∆t:n will occur when
0 = ∆1:(t−1)H1:(t−1),t:n +∆t:nHt:n,t:n,

i.e.
∆t:n = −∆1:(t−1)H1:(t−1),t:n (Ht:n,t:n)

−1
.

Now, suppose that H = ŨDŨT is the LDL decomposition of H , where Ũ is unit upper triangular
and D is diagonal. Since Ũ is upper triangular,

Ht:n,t:n = Ũt:n,t:nDt:n,t:nŨ
T
t:n,t:n.

Similarly,
H1:(t−1),t:n = Ũ1:(t−1),t:nDt:n,t:nŨ

T
t:n,t:n.

This means that
∆t:n = −∆1:(t−1)Ũ1:(t−1),t:n

(
Ũt:n,t:n

)−1

.

Now, the only part of the value of ∆t:n which matters is the first entry, since this is the one that’s
going to be used to make the next quantization decision. But since Ũt:n,t:n is unit upper triangular

and so is its inverse,
(
Ũt:n,t:n

)−1

et = et, and so

∆t = ∆t:ne1 = −∆1:(t−1)Ũ1:(t−1),t:net = −∆1:(t−1)Ũ1:(t−1),t = −∆(Ũ − I)et.

Finally, we quantize the t-th weight as

ŵt = Q(wt − (Ŵ −W)(Ũ − I)et).

This update is equivalent to our adaptive rounding with linear feedback procedure in Eq. (2), with U
assigned from the LDL decomposition of H .

28

Subsection 5.2 (A Bound for Rounding to a Finite Grid)

Algorithm 5 presents a quantization procedure which theoretically address OPTQ’s clamping issue,
by incorporating a restriction of |Ŵij −Wij | into objective (7). Note that for simplicity, here we
present the explicit case where only two factors are used in each Kronecker product of orthogonal
matrices; however, the proof should generalize to any number of factors.

Algorithm 5 “Fixed” Rounding via a Convex Program
Require: W ∈ Rm×n, H ∈ Rn×n, c > 0, ρ > 0
Require: factorization m = p1p2, n = p3p4

draw U1 ∈ Rp1×p1 uniformly from the set of orthogonal matrices using seed seed(U1)
draw U2 ∈ Rp2×p2 uniformly from the set of orthogonal matrices using seed seed(U2)
draw U3 ∈ Rp3×p3 uniformly from the set of orthogonal matrices using seed seed(U3)
draw U4 ∈ Rp4×p4 uniformly from the set of orthogonal matrices using seed seed(U4)
W ← (U1 ⊗ U2)W (U3 ⊗ U4)
H ← (UT

3 ⊗ UT
4)H(U3 ⊗ U4)

W ← 2b−1
2

(
W
ρ + 1

)
elementwise

W ← clamp(W,min = 0,max = 2b − 1)) elementwise
use ADMM or some other solver to solve

minimize: tr
(
HLTL

)
over: L unit upper triangular

subject to: eTi L
TLei ≤ 1 + c, ∀i ∈ {1, . . . , n}.

note that when c =∞, L−1 is the factor from the LDL decomposition of H
Ù ← L−1 − I
for k ∈ {1, . . . , n} do Ŵk ← clamp(Q(Wk + (W − Ŵ)Ùk), 0, 2

b − 1) ▷ round with LF
Ŵ ← ρ

(
2Ŵ
2b−1

− 1
)

Ŵ ← (UT
1 ⊗ UT

2)Ŵ (UT
3 ⊗ UT

4)

return Ŵ encoded as a tuple of the integer rounded values, the scale factor ρ, and the seeds

Lemma 11. Suppose that for positive definite µ-incoherent matrix H ∈ Rn×n and scalar c > 0, L
is the solution to the optimization problem

minimize: tr
(
HLTL

)
over: L unit upper triangular

subject to: eTi L
TLei ≤ 1 + c, ∀i ∈ {1, . . . , n}.

Then the solution satisfies

tr
(
HLTL

)
=

µ2

n ·min(1, c)
tr
(
H1/2

)2
.

Proof. Let η ∈ R1×n be a random standard Gaussian variable as a row vector, let A be a matrix, and
consider the recurrence relation over xt ∈ R1×n given by x0 = 0 and

xt = xt−1 − xt−1Aeie
T
i + ηeie

T
i

We first note that since xt is supported only on {1, . . . , t}, if M denotes the strictly upper triangular
mask, this update step is equivalent to

xt = xt−1 − xt−1(A⊙M)eie
T
i + ηeie

T
i .

From here, it’s fairly easy to see by induction that

xn = −xn(A⊙M) + η,

and so
xn(I +A⊙M) = η,

29

or
xn = η(I +A⊙M)−1.

Now, since I + A ⊙M is a unit upper triangular matrix, its inverse is also a unit upper triangular
matrix. If we let L = (I +A⊙M)−1, then L is a unit upper triangular matrix and

E
[
xT
nxn

]
= LTL.

We are going to choose A such that L is a feasible solution to our optimization problem and has the
desired objective. Next, let Σt = E

[
xT
t xt

]
, and observe that

Σt =
(
I −Aeie

T
i

)T
Σt−1

(
I −Aeie

T
i

)
+ eie

T
i .

Let α > 0 be some constant to be set later, and set A = αH1/2. Suppose by way of induction that
for some constant β > 0 to be set later, Σt ⪯ βH−1/2. The base case clearly holds since Σ0 = 0.
For the inductive step,

Σt ⪯ β
(
I − αH1/2eie

T
i

)T
H−1/2

(
I − αH1/2eie

T
i

)
+ eie

T
i

= βH−1/2 − 2αβeie
T
i + α2βeie

T
i H

1/2eie
T
i + eie

T
i .

This inductive step will hold if, letting h = maxi e
T
i H

1/2ei,

2αβ ≥ 1 + α2βh

On the other hand,

eTi L
TLei = E

[
(xnei)

2
]

= E
[
(−xi−1Aei + ηei)

2
]

= E
[
(−xi−1Aei)

2
]
+ 1

= eTi A
TΣi−1Aei + 1

= α2eTi H
1/2Σi−1H

1/2ei + 1

≤ α2βeTi H
1/2H−1/2H1/2ei + 1

≤ α2βeTi H
1/2ei + 1.

So the constraint of our optimization problem will be satisfied if

α2βh ≤ c.

To satisfy these constraints, set β = max(h, h/c) and α = β−1. Then

2max(h, h/c)−1 ·max(h, h/c) ≥ 1 + max(h, h/c)−2 ·max(h, h/c) · h,

and
max(h, h/c)−2 ·max(h, h/c) · h ≤ c.

Also, the objective will be bounded by

tr
(
HLTL

)
= tr (HΣn) ≤ β tr

(
H1/2

)
= max(1, c−1) · h · tr

(
H1/2

)
.

Now, applying incoherence to bound h, where H = UΛUT is the eigendecomposition of H ,

eTi H
1/2ei =

n∑
j=1

λ
1/2
j (eTi Uej)

2 ≤
n∑

j=1

λ
1/2
j

µ2

n
=

µ2

n
tr
(
H1/2

)
.

So this yields a whole bound of

tr
(
HLTL

)
=

µ2

n ·min(1, c)
tr
(
H1/2

)2
.

This is what we wanted to show.

30

Lemma 12. Suppose that we quantize the row vector w ∈ R1×n using L the solution to the
optimization problem

minimize: tr
(
HLTL

)
over: L unit upper triangular

subject to: eTi L
TLei ≤ 1 + c, ∀i ∈ {1, . . . , n}

and
ŵ = Qstoch

(
w − (ŵ − w)(L−1 − I)

)
,

where Qstoch denotes elementwise unbiased stochastic rounding. Then for any u ∈ Rn and any
δ > 0

P

(
|(ŵ − w)u| ≥ ∥Lu∥

√
1

2
log

(
2

δ

))
≤ δ.

In particular,

P

(∣∣(ŵ − w)(L−1 − I)ei
∣∣ ≥√ c

2
log

(
2

δ

))
≤ δ.

Proof. Let η be the error of stochastic rounding, and observe that each entry is, conditioned on earlier
steps, zero mean and supported on two values that differ by 1. Also observe that

ŵ =
(
w − (ŵ − w)(L−1 − I)

)
+ η,

and so
ŵ − w = ηL

and
E [exp ((ŵ − w)u)] = E [exp (ηLu)] .

From a repeated application of Hoeffding’s lemma, we get

E [exp ((ŵ − w)u)] ≤ exp

(
1

8
∥Lu∥2

)
.

Setting u 7→ γu for γ > 0,

E [exp (γ(ŵ − w)u)] ≤ exp

(
γ2

8
∥Lu∥2

)
.

And by Markov’s inequality,

P (exp (γ(ŵ − w)u) ≥ exp(γR)) ≤ exp(−γR) exp

(
γ2

8
∥Lu∥2

)
,

i.e.

P ((ŵ − w)u ≥ R) ≤ exp

(
−γR+

γ2

8
∥Lu∥2

)
.

Minimizing the right side over γ yields γ = 4R ∥Lu∥−2 and

P ((ŵ − w)u ≥ R) ≤ exp
(
−2R2 ∥Lu∥−2

)
.

By a union bound,
P (|(ŵ − w)u| ≥ R) ≤ 2 exp

(
−2R2 ∥Lu∥−2

)
.

Now setting the right side equal to δ,

P

(
|(ŵ − w)u| ≥ ∥Lu∥

√
1

2
log

(
2

δ

))
≤ δ.

This is what we wanted to show. The second statement follows from the fact that∥∥L(L−1 − I)ei
∥∥2 = ∥ei − Lei∥2 = eTi ei−eTi Lei−eTi LT ei+eTi L

TLei ≤ 1−1−1+(1+c) = c.

31

Lemma 13. Suppose that we quantize the row vector w ∈ R1×n using L the solution to the
optimization problem

minimize: tr
(
HLTL

)
over: L unit upper triangular

subject to: eTi L
TLei ≤ 1 + c, ∀i ∈ {1, . . . , n}

and
ŵ = Qstoch

(
w − (ŵ − w)(L−1 − I)

)
,

where Qstoch denotes elementwise unbiased stochastic rounding. Suppose that for some integer b,
1 ≤ wij ≤ 2b − 2. Then if we set

c = 2

(
log

(
4mn

δ

))−1

,

then with probability at least 1− δ, 0 ≤ ŵij ≤ 2b − 1 and

tr
(
(ŵ − w)H(ŵ − w)T

)
≤ µ2m

4n
tr
(
H1/2

)2(
log

(
4mn

δ

)2
)
.

Proof. First, from the previous lemmas, if Uei is the ith eigenvector of H , with eigenvalue λi since

P

(
λi(e

T
j (ŵ − w)Uei)

2 ≥ λi ∥LUei∥2 ·
1

2
log

(
2

δ

))
≤ δ.

By the union bound,

P

(
∃i, j, λi(e

T
j (ŵ − w)Uei)

2 ≥ λi ∥LUei∥2 ·
1

2
log

(
2mn

δ

))
≤ δ.

And so

P

∑
i,j

λi(e
T
j (ŵ − w)Uei)

2 ≥
∑
i,j

λi ∥LUei∥2 ·
1

2
log

(
2mn

δ

) ≤ δ,

which simplifies to

P

(
tr
(
(ŵ − w)H(ŵ − w)T

)
≥ m tr

(
HLTL

)
· 1
2
log

(
2mn

δ

))
≤ δ.

Now applying the other lemma,

P

(
tr
(
(ŵ − w)H(ŵ − w)T

)
≥ µ2m

2n ·min(1, c)
tr
(
H1/2

)2
log

(
2mn

δ

))
≤ δ.

And substituting δ 7→ δ/2,

P

(
tr
(
(ŵ − w)H(ŵ − w)T

)
≥ µ2m

2n ·min(1, c)
tr
(
H1/2

)2
log

(
4mn

δ

))
≤ δ

2
.

On the other hand, again by a union bound from the previous lemma,

P

(
∃i, j,

∣∣eTj (ŵ − w)(L−1 − I)ei
∣∣ ≥√ c

2
log

(
4mn

δ

))
≤ δ

2
.

Setting

c = 2

(
log

(
4mn

δ

))−1

yields

P
(
∃i, j,

∣∣eTj (ŵ − w)(L−1 − I)ei
∣∣ ≥ 1

)
≤ δ

2
.

32

And so by another union bound, the probability that

tr
(
(ŵ − w)H(ŵ − w)T

)
≤ µ2m

4n
tr
(
H1/2

)2(
log

(
4mn

δ

))2

and
max
i,j

∣∣eTj (ŵ − w)(L−1 − I)ei
∣∣ ≤ 1

is no less than 1−δ. It’s clear that if this second inequality holds, the value we pass in to the stochastic
quantizer will be in range, and thus so will the output. This proves what we want.

Theorem 14. Suppose that we are given an input matrix w with bounded maximum entry magnitude
∥w∥∞ and we want to quantize it using b bits. Suppose that we first re-scale the entries of w by
mapping

wij 7→
2b − 3

2

(
wij

∥w∥∞
+ 1

)
+ 1;

this guarantees that 1 ≤ wij ≤ 2b − 2. Then, suppose we quantize using the procedure described in
the previous lemma. Finally, we undo the scaling. Then then with probability at least 1− δ, all the
quantized weights will be in range (no overflow or need for clipping) and

tr
(
(ŵ − w)H(ŵ − w)T

)
≤ µ2m

n(2b − 3)2
tr
(
H1/2

)2
∥w∥2∞

(
log

(
4mn

δ

)2
)
.

Proof. This is a straightforward consequence of the previous lemma.

Theorem 15. Suppose that we are given an input matrix w with bounded ∥w∥F and we want to
quantize it using b bits. Suppose that we first multiply by two-factor orthogonal matrices, and then
we re-scale the entries of w by mapping

wij 7→
2b − 3

2

 wij

∥w∥F
√

A2

mn log
(
2Cmn

δ

)2 + 1

+ 1;

this guarantees that 1 ≤ wij ≤ 2b − 2. Then, suppose we quantize using the procedure described in
the previous lemma. Finally, we undo the scaling and multiplication. Then then with probability at
least 1− δ, all the quantized weights will be in range (no overflow or need for clipping) and

tr
(
(ŵ − w)H(ŵ − w)T

)
≤ A4

n2(2b − 3)2
tr
(
H1/2

)2
∥w∥2F

(
log

(
12Cmn2

δ

))6

= Õ
(

1

n24b
tr
(
H1/2

)2
∥w∥2F

)
.

Proof. It is a straightforward consequence of Lemma 5, that unioning over the three bounds on the
infinity norm of w, the incoherence of H , and the stochastic rounding, with probability at least 1−3δ,

tr
(
(ŵ − w)H(ŵ − w)T

)
≤ m

n(2b − 3)2
tr
(
H1/2

)2
∥w∥2F

(
log

(
4mn

δ

)2
)

·A2 log

(
2Cn2

δ

)2

· A
2

mn
log

(
2Cn

δ

)2

.

Substituting δ 7→ δ/3,

tr
(
(ŵ − w)H(ŵ − w)T

)
≤ 1

n(2b − 3)2
tr
(
H1/2

)2
∥w∥2F

(
log

(
12mn

δ

)2
)

·A2 log

(
6Cn2

δ

)2

· A
2

n
log

(
6Cn

δ

)2

.

33

And this right side is clearly less than

tr
(
(ŵ − w)H(ŵ − w)T

)
≤ A4

n2(2b − 3)2
tr
(
H1/2

)2
∥w∥2F

(
log

(
12Cmn2

δ

))6

.

This is what we wanted to show.

Theorem 7. Suppose that we run Algorithm 5 (Supplement) to quantize a matrix W ∈ Rm×n by
solving the objective (7). Then there exists an assignment of the algorithm’s hyperparameters c and ρ
such that with probability at least 1− δ, all the quantized weights will be in range (no overflow or
need for clipping) and

tr
(
(Ŵ −W)H(Ŵ −W)T

)
= Õ

(
1

n24b
tr
(
H1/2

)2
∥W∥2F

)
.

Proof. This follows directly from the previous theorem, which says explicitly what the hyperparame-
ter assignments should be.

References for the Appendix
[1] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Optq: Accurate quantization

for generative pre-trained transformers. In International Conference on Learning Representations,
2023.

[2] Steve Lalley. Lecture notes on measure-theoretic probability 2. http://galton.uchicago.
edu/~lalley/Courses/383/Concentration.pdf, 2018.

[3] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort.
Up or down? adaptive rounding for post-training quantization. In International Conference on
Machine Learning, pages 7197–7206. PMLR, 2020.

34

http://galton.uchicago.edu/~lalley/Courses/383/Concentration.pdf
http://galton.uchicago.edu/~lalley/Courses/383/Concentration.pdf

	Introduction
	Related Work
	Quantization With Incoherence Processing: Adaptive Rounding Step
	LDLQ: An Optimal Adaptive Rounding Method
	Deriving the Optimality of the LDLQ Adaptive Rounding Procedure
	Incoherence: Optimality with a Spectral Bound

	Quantization With Incoherence Processing: Incoherence Processing Step
	Incoherence via Efficient Orthogonal Multiplication
	Additional Heuristics

	Extensions and Further Analyses
	OPTQ is a Special Case of LDLQ
	A Bound for Rounding to a Finite Grid

	Experiments
	Conclusion
	Checklist
	Broader Impacts
	Limitations
	Experiments, Reproducibility

	Additional Method Clarifications
	Subsection 4.2 (Incoherence-Based Heuristics)
	Subsection 4.2 (Greedy Updates)

	Additional Experimental Descriptions and Results
	Subsections 3.2 and 3.3 (Empirical Properties of H Across OPT-125m to 2.7b)
	Subsection 5.1 (Empirical Verification of OPTQ Equivalence)
	Subsection 5.2 (Empirical Verification of LDLQ/OPTQ Finite Grid Counterexample)
	Additional Details on the Experimental Setup and Computational Resources
	Section 6 (Main Results on Additional Evaluations)
	Section 6 (All Methods, All Model Sizes, All Bit Weights, All Evaluation Tasks)
	Section 6 (Evaluating the Effectiveness of the Proxy Objective)
	Section 6 (Evaluating Unbiased Rounding in LDLQ/OPTQ)
	Section 6 (Evaluating Algorithm 5 Which Accounts for Clamping)

	Proofs for Section 3 (Quantization With Incoherence Processing: Adaptive Rounding Step)
	Proofs for Section 4 (Quantization With Incoherence Processing: Incoherence Processing Step)
	Proofs for Section 5 (Extensions and Further Analyses)

